1 | // Internal policy header for unordered_set and unordered_map -*- C++ -*- |
2 | |
3 | // Copyright (C) 2010-2021 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file bits/hashtable_policy.h |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. |
28 | * @headername{unordered_map,unordered_set} |
29 | */ |
30 | |
31 | #ifndef _HASHTABLE_POLICY_H |
32 | #define _HASHTABLE_POLICY_H 1 |
33 | |
34 | #include <tuple> // for std::tuple, std::forward_as_tuple |
35 | #include <bits/stl_algobase.h> // for std::min, std::is_permutation. |
36 | #include <ext/numeric_traits.h> // for __gnu_cxx::__int_traits |
37 | |
38 | namespace std _GLIBCXX_VISIBILITY(default) |
39 | { |
40 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
41 | /// @cond undocumented |
42 | |
43 | template<typename _Key, typename _Value, typename _Alloc, |
44 | typename _ExtractKey, typename _Equal, |
45 | typename _Hash, typename _RangeHash, typename _Unused, |
46 | typename _RehashPolicy, typename _Traits> |
47 | class _Hashtable; |
48 | |
49 | namespace __detail |
50 | { |
51 | /** |
52 | * @defgroup hashtable-detail Base and Implementation Classes |
53 | * @ingroup unordered_associative_containers |
54 | * @{ |
55 | */ |
56 | template<typename _Key, typename _Value, typename _ExtractKey, |
57 | typename _Equal, typename _Hash, typename _RangeHash, |
58 | typename _Unused, typename _Traits> |
59 | struct _Hashtable_base; |
60 | |
61 | // Helper function: return distance(first, last) for forward |
62 | // iterators, or 0/1 for input iterators. |
63 | template<class _Iterator> |
64 | inline typename std::iterator_traits<_Iterator>::difference_type |
65 | __distance_fw(_Iterator __first, _Iterator __last, |
66 | std::input_iterator_tag) |
67 | { return __first != __last ? 1 : 0; } |
68 | |
69 | template<class _Iterator> |
70 | inline typename std::iterator_traits<_Iterator>::difference_type |
71 | __distance_fw(_Iterator __first, _Iterator __last, |
72 | std::forward_iterator_tag) |
73 | { return std::distance(__first, __last); } |
74 | |
75 | template<class _Iterator> |
76 | inline typename std::iterator_traits<_Iterator>::difference_type |
77 | __distance_fw(_Iterator __first, _Iterator __last) |
78 | { return __distance_fw(__first, __last, |
79 | std::__iterator_category(__first)); } |
80 | |
81 | struct _Identity |
82 | { |
83 | template<typename _Tp> |
84 | _Tp&& |
85 | operator()(_Tp&& __x) const noexcept |
86 | { return std::forward<_Tp>(__x); } |
87 | }; |
88 | |
89 | struct _Select1st |
90 | { |
91 | template<typename _Tp> |
92 | auto |
93 | operator()(_Tp&& __x) const noexcept |
94 | -> decltype(std::get<0>(std::forward<_Tp>(__x))) |
95 | { return std::get<0>(std::forward<_Tp>(__x)); } |
96 | }; |
97 | |
98 | template<typename _NodeAlloc> |
99 | struct _Hashtable_alloc; |
100 | |
101 | // Functor recycling a pool of nodes and using allocation once the pool is |
102 | // empty. |
103 | template<typename _NodeAlloc> |
104 | struct _ReuseOrAllocNode |
105 | { |
106 | private: |
107 | using __node_alloc_type = _NodeAlloc; |
108 | using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>; |
109 | using __node_alloc_traits = |
110 | typename __hashtable_alloc::__node_alloc_traits; |
111 | using __node_type = typename __hashtable_alloc::__node_type; |
112 | |
113 | public: |
114 | _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h) |
115 | : _M_nodes(__nodes), _M_h(__h) { } |
116 | _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete; |
117 | |
118 | ~_ReuseOrAllocNode() |
119 | { _M_h._M_deallocate_nodes(_M_nodes); } |
120 | |
121 | template<typename _Arg> |
122 | __node_type* |
123 | operator()(_Arg&& __arg) const |
124 | { |
125 | if (_M_nodes) |
126 | { |
127 | __node_type* __node = _M_nodes; |
128 | _M_nodes = _M_nodes->_M_next(); |
129 | __node->_M_nxt = nullptr; |
130 | auto& __a = _M_h._M_node_allocator(); |
131 | __node_alloc_traits::destroy(__a, __node->_M_valptr()); |
132 | __try |
133 | { |
134 | __node_alloc_traits::construct(__a, __node->_M_valptr(), |
135 | std::forward<_Arg>(__arg)); |
136 | } |
137 | __catch(...) |
138 | { |
139 | _M_h._M_deallocate_node_ptr(__node); |
140 | __throw_exception_again; |
141 | } |
142 | return __node; |
143 | } |
144 | return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); |
145 | } |
146 | |
147 | private: |
148 | mutable __node_type* _M_nodes; |
149 | __hashtable_alloc& _M_h; |
150 | }; |
151 | |
152 | // Functor similar to the previous one but without any pool of nodes to |
153 | // recycle. |
154 | template<typename _NodeAlloc> |
155 | struct _AllocNode |
156 | { |
157 | private: |
158 | using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>; |
159 | using __node_type = typename __hashtable_alloc::__node_type; |
160 | |
161 | public: |
162 | _AllocNode(__hashtable_alloc& __h) |
163 | : _M_h(__h) { } |
164 | |
165 | template<typename _Arg> |
166 | __node_type* |
167 | operator()(_Arg&& __arg) const |
168 | { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); } |
169 | |
170 | private: |
171 | __hashtable_alloc& _M_h; |
172 | }; |
173 | |
174 | // Auxiliary types used for all instantiations of _Hashtable nodes |
175 | // and iterators. |
176 | |
177 | /** |
178 | * struct _Hashtable_traits |
179 | * |
180 | * Important traits for hash tables. |
181 | * |
182 | * @tparam _Cache_hash_code Boolean value. True if the value of |
183 | * the hash function is stored along with the value. This is a |
184 | * time-space tradeoff. Storing it may improve lookup speed by |
185 | * reducing the number of times we need to call the _Hash or _Equal |
186 | * functors. |
187 | * |
188 | * @tparam _Constant_iterators Boolean value. True if iterator and |
189 | * const_iterator are both constant iterator types. This is true |
190 | * for unordered_set and unordered_multiset, false for |
191 | * unordered_map and unordered_multimap. |
192 | * |
193 | * @tparam _Unique_keys Boolean value. True if the return value |
194 | * of _Hashtable::count(k) is always at most one, false if it may |
195 | * be an arbitrary number. This is true for unordered_set and |
196 | * unordered_map, false for unordered_multiset and |
197 | * unordered_multimap. |
198 | */ |
199 | template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> |
200 | struct _Hashtable_traits |
201 | { |
202 | using __hash_cached = __bool_constant<_Cache_hash_code>; |
203 | using __constant_iterators = __bool_constant<_Constant_iterators>; |
204 | using __unique_keys = __bool_constant<_Unique_keys>; |
205 | }; |
206 | |
207 | /** |
208 | * struct _Hash_node_base |
209 | * |
210 | * Nodes, used to wrap elements stored in the hash table. A policy |
211 | * template parameter of class template _Hashtable controls whether |
212 | * nodes also store a hash code. In some cases (e.g. strings) this |
213 | * may be a performance win. |
214 | */ |
215 | struct _Hash_node_base |
216 | { |
217 | _Hash_node_base* _M_nxt; |
218 | |
219 | _Hash_node_base() noexcept : _M_nxt() { } |
220 | |
221 | _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { } |
222 | }; |
223 | |
224 | /** |
225 | * struct _Hash_node_value_base |
226 | * |
227 | * Node type with the value to store. |
228 | */ |
229 | template<typename _Value> |
230 | struct _Hash_node_value_base |
231 | { |
232 | typedef _Value value_type; |
233 | |
234 | __gnu_cxx::__aligned_buffer<_Value> _M_storage; |
235 | |
236 | _Value* |
237 | _M_valptr() noexcept |
238 | { return _M_storage._M_ptr(); } |
239 | |
240 | const _Value* |
241 | _M_valptr() const noexcept |
242 | { return _M_storage._M_ptr(); } |
243 | |
244 | _Value& |
245 | _M_v() noexcept |
246 | { return *_M_valptr(); } |
247 | |
248 | const _Value& |
249 | _M_v() const noexcept |
250 | { return *_M_valptr(); } |
251 | }; |
252 | |
253 | /** |
254 | * Primary template struct _Hash_node_code_cache. |
255 | */ |
256 | template<bool _Cache_hash_code> |
257 | struct _Hash_node_code_cache |
258 | { }; |
259 | |
260 | /** |
261 | * Specialization for node with cache, struct _Hash_node_code_cache. |
262 | */ |
263 | template<> |
264 | struct _Hash_node_code_cache<true> |
265 | { std::size_t _M_hash_code; }; |
266 | |
267 | template<typename _Value, bool _Cache_hash_code> |
268 | struct _Hash_node_value |
269 | : _Hash_node_value_base<_Value> |
270 | , _Hash_node_code_cache<_Cache_hash_code> |
271 | { }; |
272 | |
273 | /** |
274 | * Primary template struct _Hash_node. |
275 | */ |
276 | template<typename _Value, bool _Cache_hash_code> |
277 | struct _Hash_node |
278 | : _Hash_node_base |
279 | , _Hash_node_value<_Value, _Cache_hash_code> |
280 | { |
281 | _Hash_node* |
282 | _M_next() const noexcept |
283 | { return static_cast<_Hash_node*>(this->_M_nxt); } |
284 | }; |
285 | |
286 | /// Base class for node iterators. |
287 | template<typename _Value, bool _Cache_hash_code> |
288 | struct _Node_iterator_base |
289 | { |
290 | using __node_type = _Hash_node<_Value, _Cache_hash_code>; |
291 | |
292 | __node_type* _M_cur; |
293 | |
294 | _Node_iterator_base() : _M_cur(nullptr) { } |
295 | _Node_iterator_base(__node_type* __p) noexcept |
296 | : _M_cur(__p) { } |
297 | |
298 | void |
299 | _M_incr() noexcept |
300 | { _M_cur = _M_cur->_M_next(); } |
301 | |
302 | friend bool |
303 | operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
304 | noexcept |
305 | { return __x._M_cur == __y._M_cur; } |
306 | |
307 | #if __cpp_impl_three_way_comparison < 201907L |
308 | friend bool |
309 | operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
310 | noexcept |
311 | { return __x._M_cur != __y._M_cur; } |
312 | #endif |
313 | }; |
314 | |
315 | /// Node iterators, used to iterate through all the hashtable. |
316 | template<typename _Value, bool __constant_iterators, bool __cache> |
317 | struct _Node_iterator |
318 | : public _Node_iterator_base<_Value, __cache> |
319 | { |
320 | private: |
321 | using __base_type = _Node_iterator_base<_Value, __cache>; |
322 | using __node_type = typename __base_type::__node_type; |
323 | |
324 | public: |
325 | typedef _Value value_type; |
326 | typedef std::ptrdiff_t difference_type; |
327 | typedef std::forward_iterator_tag iterator_category; |
328 | |
329 | using pointer = typename std::conditional<__constant_iterators, |
330 | const value_type*, value_type*>::type; |
331 | |
332 | using reference = typename std::conditional<__constant_iterators, |
333 | const value_type&, value_type&>::type; |
334 | |
335 | _Node_iterator() = default; |
336 | |
337 | explicit |
338 | _Node_iterator(__node_type* __p) noexcept |
339 | : __base_type(__p) { } |
340 | |
341 | reference |
342 | operator*() const noexcept |
343 | { return this->_M_cur->_M_v(); } |
344 | |
345 | pointer |
346 | operator->() const noexcept |
347 | { return this->_M_cur->_M_valptr(); } |
348 | |
349 | _Node_iterator& |
350 | operator++() noexcept |
351 | { |
352 | this->_M_incr(); |
353 | return *this; |
354 | } |
355 | |
356 | _Node_iterator |
357 | operator++(int) noexcept |
358 | { |
359 | _Node_iterator __tmp(*this); |
360 | this->_M_incr(); |
361 | return __tmp; |
362 | } |
363 | }; |
364 | |
365 | /// Node const_iterators, used to iterate through all the hashtable. |
366 | template<typename _Value, bool __constant_iterators, bool __cache> |
367 | struct _Node_const_iterator |
368 | : public _Node_iterator_base<_Value, __cache> |
369 | { |
370 | private: |
371 | using __base_type = _Node_iterator_base<_Value, __cache>; |
372 | using __node_type = typename __base_type::__node_type; |
373 | |
374 | public: |
375 | typedef _Value value_type; |
376 | typedef std::ptrdiff_t difference_type; |
377 | typedef std::forward_iterator_tag iterator_category; |
378 | |
379 | typedef const value_type* pointer; |
380 | typedef const value_type& reference; |
381 | |
382 | _Node_const_iterator() = default; |
383 | |
384 | explicit |
385 | _Node_const_iterator(__node_type* __p) noexcept |
386 | : __base_type(__p) { } |
387 | |
388 | _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, |
389 | __cache>& __x) noexcept |
390 | : __base_type(__x._M_cur) { } |
391 | |
392 | reference |
393 | operator*() const noexcept |
394 | { return this->_M_cur->_M_v(); } |
395 | |
396 | pointer |
397 | operator->() const noexcept |
398 | { return this->_M_cur->_M_valptr(); } |
399 | |
400 | _Node_const_iterator& |
401 | operator++() noexcept |
402 | { |
403 | this->_M_incr(); |
404 | return *this; |
405 | } |
406 | |
407 | _Node_const_iterator |
408 | operator++(int) noexcept |
409 | { |
410 | _Node_const_iterator __tmp(*this); |
411 | this->_M_incr(); |
412 | return __tmp; |
413 | } |
414 | }; |
415 | |
416 | // Many of class template _Hashtable's template parameters are policy |
417 | // classes. These are defaults for the policies. |
418 | |
419 | /// Default range hashing function: use division to fold a large number |
420 | /// into the range [0, N). |
421 | struct _Mod_range_hashing |
422 | { |
423 | typedef std::size_t first_argument_type; |
424 | typedef std::size_t second_argument_type; |
425 | typedef std::size_t result_type; |
426 | |
427 | result_type |
428 | operator()(first_argument_type __num, |
429 | second_argument_type __den) const noexcept |
430 | { return __num % __den; } |
431 | }; |
432 | |
433 | /// Default ranged hash function H. In principle it should be a |
434 | /// function object composed from objects of type H1 and H2 such that |
435 | /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of |
436 | /// h1 and h2. So instead we'll just use a tag to tell class template |
437 | /// hashtable to do that composition. |
438 | struct _Default_ranged_hash { }; |
439 | |
440 | /// Default value for rehash policy. Bucket size is (usually) the |
441 | /// smallest prime that keeps the load factor small enough. |
442 | struct _Prime_rehash_policy |
443 | { |
444 | using __has_load_factor = true_type; |
445 | |
446 | _Prime_rehash_policy(float __z = 1.0) noexcept |
447 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
448 | |
449 | float |
450 | max_load_factor() const noexcept |
451 | { return _M_max_load_factor; } |
452 | |
453 | // Return a bucket size no smaller than n. |
454 | std::size_t |
455 | _M_next_bkt(std::size_t __n) const; |
456 | |
457 | // Return a bucket count appropriate for n elements |
458 | std::size_t |
459 | _M_bkt_for_elements(std::size_t __n) const |
460 | { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
461 | |
462 | // __n_bkt is current bucket count, __n_elt is current element count, |
463 | // and __n_ins is number of elements to be inserted. Do we need to |
464 | // increase bucket count? If so, return make_pair(true, n), where n |
465 | // is the new bucket count. If not, return make_pair(false, 0). |
466 | std::pair<bool, std::size_t> |
467 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
468 | std::size_t __n_ins) const; |
469 | |
470 | typedef std::size_t _State; |
471 | |
472 | _State |
473 | _M_state() const |
474 | { return _M_next_resize; } |
475 | |
476 | void |
477 | _M_reset() noexcept |
478 | { _M_next_resize = 0; } |
479 | |
480 | void |
481 | _M_reset(_State __state) |
482 | { _M_next_resize = __state; } |
483 | |
484 | static const std::size_t _S_growth_factor = 2; |
485 | |
486 | float _M_max_load_factor; |
487 | mutable std::size_t _M_next_resize; |
488 | }; |
489 | |
490 | /// Range hashing function assuming that second arg is a power of 2. |
491 | struct _Mask_range_hashing |
492 | { |
493 | typedef std::size_t first_argument_type; |
494 | typedef std::size_t second_argument_type; |
495 | typedef std::size_t result_type; |
496 | |
497 | result_type |
498 | operator()(first_argument_type __num, |
499 | second_argument_type __den) const noexcept |
500 | { return __num & (__den - 1); } |
501 | }; |
502 | |
503 | /// Compute closest power of 2 not less than __n |
504 | inline std::size_t |
505 | __clp2(std::size_t __n) noexcept |
506 | { |
507 | using __gnu_cxx::__int_traits; |
508 | // Equivalent to return __n ? std::bit_ceil(__n) : 0; |
509 | if (__n < 2) |
510 | return __n; |
511 | const unsigned __lz = sizeof(size_t) > sizeof(long) |
512 | ? __builtin_clzll(__n - 1ull) |
513 | : __builtin_clzl(__n - 1ul); |
514 | // Doing two shifts avoids undefined behaviour when __lz == 0. |
515 | return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1; |
516 | } |
517 | |
518 | /// Rehash policy providing power of 2 bucket numbers. Avoids modulo |
519 | /// operations. |
520 | struct _Power2_rehash_policy |
521 | { |
522 | using __has_load_factor = true_type; |
523 | |
524 | _Power2_rehash_policy(float __z = 1.0) noexcept |
525 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
526 | |
527 | float |
528 | max_load_factor() const noexcept |
529 | { return _M_max_load_factor; } |
530 | |
531 | // Return a bucket size no smaller than n (as long as n is not above the |
532 | // highest power of 2). |
533 | std::size_t |
534 | _M_next_bkt(std::size_t __n) noexcept |
535 | { |
536 | if (__n == 0) |
537 | // Special case on container 1st initialization with 0 bucket count |
538 | // hint. We keep _M_next_resize to 0 to make sure that next time we |
539 | // want to add an element allocation will take place. |
540 | return 1; |
541 | |
542 | const auto __max_width = std::min<size_t>(a: sizeof(size_t), b: 8); |
543 | const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1); |
544 | std::size_t __res = __clp2(__n); |
545 | |
546 | if (__res == 0) |
547 | __res = __max_bkt; |
548 | else if (__res == 1) |
549 | // If __res is 1 we force it to 2 to make sure there will be an |
550 | // allocation so that nothing need to be stored in the initial |
551 | // single bucket |
552 | __res = 2; |
553 | |
554 | if (__res == __max_bkt) |
555 | // Set next resize to the max value so that we never try to rehash again |
556 | // as we already reach the biggest possible bucket number. |
557 | // Note that it might result in max_load_factor not being respected. |
558 | _M_next_resize = size_t(-1); |
559 | else |
560 | _M_next_resize |
561 | = __builtin_floor(__res * (double)_M_max_load_factor); |
562 | |
563 | return __res; |
564 | } |
565 | |
566 | // Return a bucket count appropriate for n elements |
567 | std::size_t |
568 | _M_bkt_for_elements(std::size_t __n) const noexcept |
569 | { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
570 | |
571 | // __n_bkt is current bucket count, __n_elt is current element count, |
572 | // and __n_ins is number of elements to be inserted. Do we need to |
573 | // increase bucket count? If so, return make_pair(true, n), where n |
574 | // is the new bucket count. If not, return make_pair(false, 0). |
575 | std::pair<bool, std::size_t> |
576 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
577 | std::size_t __n_ins) noexcept |
578 | { |
579 | if (__n_elt + __n_ins > _M_next_resize) |
580 | { |
581 | // If _M_next_resize is 0 it means that we have nothing allocated so |
582 | // far and that we start inserting elements. In this case we start |
583 | // with an initial bucket size of 11. |
584 | double __min_bkts |
585 | = std::max<std::size_t>(a: __n_elt + __n_ins, b: _M_next_resize ? 0 : 11) |
586 | / (double)_M_max_load_factor; |
587 | if (__min_bkts >= __n_bkt) |
588 | return { true, |
589 | _M_next_bkt(n: std::max<std::size_t>(a: __builtin_floor(__min_bkts) + 1, |
590 | b: __n_bkt * _S_growth_factor)) }; |
591 | |
592 | _M_next_resize |
593 | = __builtin_floor(__n_bkt * (double)_M_max_load_factor); |
594 | return { false, 0 }; |
595 | } |
596 | else |
597 | return { false, 0 }; |
598 | } |
599 | |
600 | typedef std::size_t _State; |
601 | |
602 | _State |
603 | _M_state() const noexcept |
604 | { return _M_next_resize; } |
605 | |
606 | void |
607 | _M_reset() noexcept |
608 | { _M_next_resize = 0; } |
609 | |
610 | void |
611 | _M_reset(_State __state) noexcept |
612 | { _M_next_resize = __state; } |
613 | |
614 | static const std::size_t _S_growth_factor = 2; |
615 | |
616 | float _M_max_load_factor; |
617 | std::size_t _M_next_resize; |
618 | }; |
619 | |
620 | // Base classes for std::_Hashtable. We define these base classes |
621 | // because in some cases we want to do different things depending on |
622 | // the value of a policy class. In some cases the policy class |
623 | // affects which member functions and nested typedefs are defined; |
624 | // we handle that by specializing base class templates. Several of |
625 | // the base class templates need to access other members of class |
626 | // template _Hashtable, so we use a variant of the "Curiously |
627 | // Recurring Template Pattern" (CRTP) technique. |
628 | |
629 | /** |
630 | * Primary class template _Map_base. |
631 | * |
632 | * If the hashtable has a value type of the form pair<T1, T2> and a |
633 | * key extraction policy (_ExtractKey) that returns the first part |
634 | * of the pair, the hashtable gets a mapped_type typedef. If it |
635 | * satisfies those criteria and also has unique keys, then it also |
636 | * gets an operator[]. |
637 | */ |
638 | template<typename _Key, typename _Value, typename _Alloc, |
639 | typename _ExtractKey, typename _Equal, |
640 | typename _Hash, typename _RangeHash, typename _Unused, |
641 | typename _RehashPolicy, typename _Traits, |
642 | bool _Unique_keys = _Traits::__unique_keys::value> |
643 | struct _Map_base { }; |
644 | |
645 | /// Partial specialization, __unique_keys set to false. |
646 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
647 | typename _Hash, typename _RangeHash, typename _Unused, |
648 | typename _RehashPolicy, typename _Traits> |
649 | struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
650 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
651 | { |
652 | using mapped_type = typename std::tuple_element<1, _Pair>::type; |
653 | }; |
654 | |
655 | /// Partial specialization, __unique_keys set to true. |
656 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
657 | typename _Hash, typename _RangeHash, typename _Unused, |
658 | typename _RehashPolicy, typename _Traits> |
659 | struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
660 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
661 | { |
662 | private: |
663 | using __hashtable_base = _Hashtable_base<_Key, _Pair, _Select1st, _Equal, |
664 | _Hash, _RangeHash, _Unused, |
665 | _Traits>; |
666 | |
667 | using __hashtable = _Hashtable<_Key, _Pair, _Alloc, _Select1st, _Equal, |
668 | _Hash, _RangeHash, |
669 | _Unused, _RehashPolicy, _Traits>; |
670 | |
671 | using __hash_code = typename __hashtable_base::__hash_code; |
672 | |
673 | public: |
674 | using key_type = typename __hashtable_base::key_type; |
675 | using mapped_type = typename std::tuple_element<1, _Pair>::type; |
676 | |
677 | mapped_type& |
678 | operator[](const key_type& __k); |
679 | |
680 | mapped_type& |
681 | operator[](key_type&& __k); |
682 | |
683 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
684 | // DR 761. unordered_map needs an at() member function. |
685 | mapped_type& |
686 | at(const key_type& __k); |
687 | |
688 | const mapped_type& |
689 | at(const key_type& __k) const; |
690 | }; |
691 | |
692 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
693 | typename _Hash, typename _RangeHash, typename _Unused, |
694 | typename _RehashPolicy, typename _Traits> |
695 | auto |
696 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
697 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
698 | operator[](const key_type& __k) |
699 | -> mapped_type& |
700 | { |
701 | __hashtable* __h = static_cast<__hashtable*>(this); |
702 | __hash_code __code = __h->_M_hash_code(__k); |
703 | std::size_t __bkt = __h->_M_bucket_index(__code); |
704 | if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
705 | return __node->_M_v().second; |
706 | |
707 | typename __hashtable::_Scoped_node __node { |
708 | __h, |
709 | std::piecewise_construct, |
710 | std::tuple<const key_type&>(__k), |
711 | std::tuple<>() |
712 | }; |
713 | auto __pos |
714 | = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
715 | __node._M_node = nullptr; |
716 | return __pos->second; |
717 | } |
718 | |
719 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
720 | typename _Hash, typename _RangeHash, typename _Unused, |
721 | typename _RehashPolicy, typename _Traits> |
722 | auto |
723 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
724 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
725 | operator[](key_type&& __k) |
726 | -> mapped_type& |
727 | { |
728 | __hashtable* __h = static_cast<__hashtable*>(this); |
729 | __hash_code __code = __h->_M_hash_code(__k); |
730 | std::size_t __bkt = __h->_M_bucket_index(__code); |
731 | if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
732 | return __node->_M_v().second; |
733 | |
734 | typename __hashtable::_Scoped_node __node { |
735 | __h, |
736 | std::piecewise_construct, |
737 | std::forward_as_tuple(std::move(__k)), |
738 | std::tuple<>() |
739 | }; |
740 | auto __pos |
741 | = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
742 | __node._M_node = nullptr; |
743 | return __pos->second; |
744 | } |
745 | |
746 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
747 | typename _Hash, typename _RangeHash, typename _Unused, |
748 | typename _RehashPolicy, typename _Traits> |
749 | auto |
750 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
751 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
752 | at(const key_type& __k) |
753 | -> mapped_type& |
754 | { |
755 | __hashtable* __h = static_cast<__hashtable*>(this); |
756 | auto __ite = __h->find(__k); |
757 | |
758 | if (!__ite._M_cur) |
759 | __throw_out_of_range(__N("_Map_base::at" )); |
760 | return __ite->second; |
761 | } |
762 | |
763 | template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, |
764 | typename _Hash, typename _RangeHash, typename _Unused, |
765 | typename _RehashPolicy, typename _Traits> |
766 | auto |
767 | _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, |
768 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
769 | at(const key_type& __k) const |
770 | -> const mapped_type& |
771 | { |
772 | const __hashtable* __h = static_cast<const __hashtable*>(this); |
773 | auto __ite = __h->find(__k); |
774 | |
775 | if (!__ite._M_cur) |
776 | __throw_out_of_range(__N("_Map_base::at" )); |
777 | return __ite->second; |
778 | } |
779 | |
780 | /** |
781 | * Primary class template _Insert_base. |
782 | * |
783 | * Defines @c insert member functions appropriate to all _Hashtables. |
784 | */ |
785 | template<typename _Key, typename _Value, typename _Alloc, |
786 | typename _ExtractKey, typename _Equal, |
787 | typename _Hash, typename _RangeHash, typename _Unused, |
788 | typename _RehashPolicy, typename _Traits> |
789 | struct _Insert_base |
790 | { |
791 | protected: |
792 | using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, |
793 | _Equal, _Hash, _RangeHash, |
794 | _Unused, _Traits>; |
795 | |
796 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
797 | _Hash, _RangeHash, |
798 | _Unused, _RehashPolicy, _Traits>; |
799 | |
800 | using __hash_cached = typename _Traits::__hash_cached; |
801 | using __constant_iterators = typename _Traits::__constant_iterators; |
802 | |
803 | using __hashtable_alloc = _Hashtable_alloc< |
804 | __alloc_rebind<_Alloc, _Hash_node<_Value, |
805 | __hash_cached::value>>>; |
806 | |
807 | using value_type = typename __hashtable_base::value_type; |
808 | using size_type = typename __hashtable_base::size_type; |
809 | |
810 | using __unique_keys = typename _Traits::__unique_keys; |
811 | using __node_alloc_type = typename __hashtable_alloc::__node_alloc_type; |
812 | using __node_gen_type = _AllocNode<__node_alloc_type>; |
813 | |
814 | __hashtable& |
815 | _M_conjure_hashtable() |
816 | { return *(static_cast<__hashtable*>(this)); } |
817 | |
818 | template<typename _InputIterator, typename _NodeGetter> |
819 | void |
820 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
821 | const _NodeGetter&, true_type __uks); |
822 | |
823 | template<typename _InputIterator, typename _NodeGetter> |
824 | void |
825 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
826 | const _NodeGetter&, false_type __uks); |
827 | |
828 | public: |
829 | using iterator = _Node_iterator<_Value, __constant_iterators::value, |
830 | __hash_cached::value>; |
831 | |
832 | using const_iterator = _Node_const_iterator<_Value, __constant_iterators::value, |
833 | __hash_cached::value>; |
834 | |
835 | using __ireturn_type = typename std::conditional<__unique_keys::value, |
836 | std::pair<iterator, bool>, |
837 | iterator>::type; |
838 | |
839 | __ireturn_type |
840 | insert(const value_type& __v) |
841 | { |
842 | __hashtable& __h = _M_conjure_hashtable(); |
843 | __node_gen_type __node_gen(__h); |
844 | return __h._M_insert(__v, __node_gen, __unique_keys{}); |
845 | } |
846 | |
847 | iterator |
848 | insert(const_iterator __hint, const value_type& __v) |
849 | { |
850 | __hashtable& __h = _M_conjure_hashtable(); |
851 | __node_gen_type __node_gen(__h); |
852 | return __h._M_insert(__hint, __v, __node_gen, __unique_keys{}); |
853 | } |
854 | |
855 | template<typename _KType, typename... _Args> |
856 | std::pair<iterator, bool> |
857 | try_emplace(const_iterator, _KType&& __k, _Args&&... __args) |
858 | { |
859 | __hashtable& __h = _M_conjure_hashtable(); |
860 | auto __code = __h._M_hash_code(__k); |
861 | std::size_t __bkt = __h._M_bucket_index(__code); |
862 | if (auto __node = __h._M_find_node(__bkt, __k, __code)) |
863 | return { iterator(__node), false }; |
864 | |
865 | typename __hashtable::_Scoped_node __node { |
866 | &__h, |
867 | std::piecewise_construct, |
868 | std::forward_as_tuple(std::forward<_KType>(__k)), |
869 | std::forward_as_tuple(std::forward<_Args>(__args)...) |
870 | }; |
871 | auto __it |
872 | = __h._M_insert_unique_node(__bkt, __code, __node._M_node); |
873 | __node._M_node = nullptr; |
874 | return { __it, true }; |
875 | } |
876 | |
877 | void |
878 | insert(initializer_list<value_type> __l) |
879 | { this->insert(__l.begin(), __l.end()); } |
880 | |
881 | template<typename _InputIterator> |
882 | void |
883 | insert(_InputIterator __first, _InputIterator __last) |
884 | { |
885 | __hashtable& __h = _M_conjure_hashtable(); |
886 | __node_gen_type __node_gen(__h); |
887 | return _M_insert_range(__first, __last, __node_gen, __unique_keys{}); |
888 | } |
889 | }; |
890 | |
891 | template<typename _Key, typename _Value, typename _Alloc, |
892 | typename _ExtractKey, typename _Equal, |
893 | typename _Hash, typename _RangeHash, typename _Unused, |
894 | typename _RehashPolicy, typename _Traits> |
895 | template<typename _InputIterator, typename _NodeGetter> |
896 | void |
897 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
898 | _Hash, _RangeHash, _Unused, |
899 | _RehashPolicy, _Traits>:: |
900 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
901 | const _NodeGetter& __node_gen, true_type __uks) |
902 | { |
903 | __hashtable& __h = _M_conjure_hashtable(); |
904 | for (; __first != __last; ++__first) |
905 | __h._M_insert(*__first, __node_gen, __uks); |
906 | } |
907 | |
908 | template<typename _Key, typename _Value, typename _Alloc, |
909 | typename _ExtractKey, typename _Equal, |
910 | typename _Hash, typename _RangeHash, typename _Unused, |
911 | typename _RehashPolicy, typename _Traits> |
912 | template<typename _InputIterator, typename _NodeGetter> |
913 | void |
914 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
915 | _Hash, _RangeHash, _Unused, |
916 | _RehashPolicy, _Traits>:: |
917 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
918 | const _NodeGetter& __node_gen, false_type __uks) |
919 | { |
920 | using __rehash_type = typename __hashtable::__rehash_type; |
921 | using __rehash_state = typename __hashtable::__rehash_state; |
922 | using pair_type = std::pair<bool, std::size_t>; |
923 | |
924 | size_type __n_elt = __detail::__distance_fw(__first, __last); |
925 | if (__n_elt == 0) |
926 | return; |
927 | |
928 | __hashtable& __h = _M_conjure_hashtable(); |
929 | __rehash_type& __rehash = __h._M_rehash_policy; |
930 | const __rehash_state& __saved_state = __rehash._M_state(); |
931 | pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count, |
932 | __h._M_element_count, |
933 | __n_elt); |
934 | |
935 | if (__do_rehash.first) |
936 | __h._M_rehash(__do_rehash.second, __saved_state); |
937 | |
938 | for (; __first != __last; ++__first) |
939 | __h._M_insert(*__first, __node_gen, __uks); |
940 | } |
941 | |
942 | /** |
943 | * Primary class template _Insert. |
944 | * |
945 | * Defines @c insert member functions that depend on _Hashtable policies, |
946 | * via partial specializations. |
947 | */ |
948 | template<typename _Key, typename _Value, typename _Alloc, |
949 | typename _ExtractKey, typename _Equal, |
950 | typename _Hash, typename _RangeHash, typename _Unused, |
951 | typename _RehashPolicy, typename _Traits, |
952 | bool _Constant_iterators = _Traits::__constant_iterators::value> |
953 | struct _Insert; |
954 | |
955 | /// Specialization. |
956 | template<typename _Key, typename _Value, typename _Alloc, |
957 | typename _ExtractKey, typename _Equal, |
958 | typename _Hash, typename _RangeHash, typename _Unused, |
959 | typename _RehashPolicy, typename _Traits> |
960 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
961 | _Hash, _RangeHash, _Unused, |
962 | _RehashPolicy, _Traits, true> |
963 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
964 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> |
965 | { |
966 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
967 | _Equal, _Hash, _RangeHash, _Unused, |
968 | _RehashPolicy, _Traits>; |
969 | |
970 | using value_type = typename __base_type::value_type; |
971 | using iterator = typename __base_type::iterator; |
972 | using const_iterator = typename __base_type::const_iterator; |
973 | using __ireturn_type = typename __base_type::__ireturn_type; |
974 | |
975 | using __unique_keys = typename __base_type::__unique_keys; |
976 | using __hashtable = typename __base_type::__hashtable; |
977 | using __node_gen_type = typename __base_type::__node_gen_type; |
978 | |
979 | using __base_type::insert; |
980 | |
981 | __ireturn_type |
982 | insert(value_type&& __v) |
983 | { |
984 | __hashtable& __h = this->_M_conjure_hashtable(); |
985 | __node_gen_type __node_gen(__h); |
986 | return __h._M_insert(std::move(__v), __node_gen, __unique_keys{}); |
987 | } |
988 | |
989 | iterator |
990 | insert(const_iterator __hint, value_type&& __v) |
991 | { |
992 | __hashtable& __h = this->_M_conjure_hashtable(); |
993 | __node_gen_type __node_gen(__h); |
994 | return __h._M_insert(__hint, std::move(__v), __node_gen, |
995 | __unique_keys{}); |
996 | } |
997 | }; |
998 | |
999 | /// Specialization. |
1000 | template<typename _Key, typename _Value, typename _Alloc, |
1001 | typename _ExtractKey, typename _Equal, |
1002 | typename _Hash, typename _RangeHash, typename _Unused, |
1003 | typename _RehashPolicy, typename _Traits> |
1004 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1005 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
1006 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1007 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> |
1008 | { |
1009 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
1010 | _Equal, _Hash, _RangeHash, _Unused, |
1011 | _RehashPolicy, _Traits>; |
1012 | using value_type = typename __base_type::value_type; |
1013 | using iterator = typename __base_type::iterator; |
1014 | using const_iterator = typename __base_type::const_iterator; |
1015 | |
1016 | using __unique_keys = typename __base_type::__unique_keys; |
1017 | using __hashtable = typename __base_type::__hashtable; |
1018 | using __ireturn_type = typename __base_type::__ireturn_type; |
1019 | |
1020 | using __base_type::insert; |
1021 | |
1022 | template<typename _Pair> |
1023 | using __is_cons = std::is_constructible<value_type, _Pair&&>; |
1024 | |
1025 | template<typename _Pair> |
1026 | using _IFcons = std::enable_if<__is_cons<_Pair>::value>; |
1027 | |
1028 | template<typename _Pair> |
1029 | using _IFconsp = typename _IFcons<_Pair>::type; |
1030 | |
1031 | template<typename _Pair, typename = _IFconsp<_Pair>> |
1032 | __ireturn_type |
1033 | insert(_Pair&& __v) |
1034 | { |
1035 | __hashtable& __h = this->_M_conjure_hashtable(); |
1036 | return __h._M_emplace(__unique_keys{}, std::forward<_Pair>(__v)); |
1037 | } |
1038 | |
1039 | template<typename _Pair, typename = _IFconsp<_Pair>> |
1040 | iterator |
1041 | insert(const_iterator __hint, _Pair&& __v) |
1042 | { |
1043 | __hashtable& __h = this->_M_conjure_hashtable(); |
1044 | return __h._M_emplace(__hint, __unique_keys{}, |
1045 | std::forward<_Pair>(__v)); |
1046 | } |
1047 | }; |
1048 | |
1049 | template<typename _Policy> |
1050 | using __has_load_factor = typename _Policy::__has_load_factor; |
1051 | |
1052 | /** |
1053 | * Primary class template _Rehash_base. |
1054 | * |
1055 | * Give hashtable the max_load_factor functions and reserve iff the |
1056 | * rehash policy supports it. |
1057 | */ |
1058 | template<typename _Key, typename _Value, typename _Alloc, |
1059 | typename _ExtractKey, typename _Equal, |
1060 | typename _Hash, typename _RangeHash, typename _Unused, |
1061 | typename _RehashPolicy, typename _Traits, |
1062 | typename = |
1063 | __detected_or_t<false_type, __has_load_factor, _RehashPolicy>> |
1064 | struct _Rehash_base; |
1065 | |
1066 | /// Specialization when rehash policy doesn't provide load factor management. |
1067 | template<typename _Key, typename _Value, typename _Alloc, |
1068 | typename _ExtractKey, typename _Equal, |
1069 | typename _Hash, typename _RangeHash, typename _Unused, |
1070 | typename _RehashPolicy, typename _Traits> |
1071 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1072 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
1073 | false_type /* Has load factor */> |
1074 | { |
1075 | }; |
1076 | |
1077 | /// Specialization when rehash policy provide load factor management. |
1078 | template<typename _Key, typename _Value, typename _Alloc, |
1079 | typename _ExtractKey, typename _Equal, |
1080 | typename _Hash, typename _RangeHash, typename _Unused, |
1081 | typename _RehashPolicy, typename _Traits> |
1082 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1083 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
1084 | true_type /* Has load factor */> |
1085 | { |
1086 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, |
1087 | _Equal, _Hash, _RangeHash, _Unused, |
1088 | _RehashPolicy, _Traits>; |
1089 | |
1090 | float |
1091 | max_load_factor() const noexcept |
1092 | { |
1093 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1094 | return __this->__rehash_policy().max_load_factor(); |
1095 | } |
1096 | |
1097 | void |
1098 | max_load_factor(float __z) |
1099 | { |
1100 | __hashtable* __this = static_cast<__hashtable*>(this); |
1101 | __this->__rehash_policy(_RehashPolicy(__z)); |
1102 | } |
1103 | |
1104 | void |
1105 | reserve(std::size_t __n) |
1106 | { |
1107 | __hashtable* __this = static_cast<__hashtable*>(this); |
1108 | __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n)); |
1109 | } |
1110 | }; |
1111 | |
1112 | /** |
1113 | * Primary class template _Hashtable_ebo_helper. |
1114 | * |
1115 | * Helper class using EBO when it is not forbidden (the type is not |
1116 | * final) and when it is worth it (the type is empty.) |
1117 | */ |
1118 | template<int _Nm, typename _Tp, |
1119 | bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> |
1120 | struct _Hashtable_ebo_helper; |
1121 | |
1122 | /// Specialization using EBO. |
1123 | template<int _Nm, typename _Tp> |
1124 | struct _Hashtable_ebo_helper<_Nm, _Tp, true> |
1125 | : private _Tp |
1126 | { |
1127 | _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { } |
1128 | |
1129 | template<typename _OtherTp> |
1130 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
1131 | : _Tp(std::forward<_OtherTp>(__tp)) |
1132 | { } |
1133 | |
1134 | const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); } |
1135 | _Tp& _M_get() { return static_cast<_Tp&>(*this); } |
1136 | }; |
1137 | |
1138 | /// Specialization not using EBO. |
1139 | template<int _Nm, typename _Tp> |
1140 | struct _Hashtable_ebo_helper<_Nm, _Tp, false> |
1141 | { |
1142 | _Hashtable_ebo_helper() = default; |
1143 | |
1144 | template<typename _OtherTp> |
1145 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
1146 | : _M_tp(std::forward<_OtherTp>(__tp)) |
1147 | { } |
1148 | |
1149 | const _Tp& _M_cget() const { return _M_tp; } |
1150 | _Tp& _M_get() { return _M_tp; } |
1151 | |
1152 | private: |
1153 | _Tp _M_tp{}; |
1154 | }; |
1155 | |
1156 | /** |
1157 | * Primary class template _Local_iterator_base. |
1158 | * |
1159 | * Base class for local iterators, used to iterate within a bucket |
1160 | * but not between buckets. |
1161 | */ |
1162 | template<typename _Key, typename _Value, typename _ExtractKey, |
1163 | typename _Hash, typename _RangeHash, typename _Unused, |
1164 | bool __cache_hash_code> |
1165 | struct _Local_iterator_base; |
1166 | |
1167 | /** |
1168 | * Primary class template _Hash_code_base. |
1169 | * |
1170 | * Encapsulates two policy issues that aren't quite orthogonal. |
1171 | * (1) the difference between using a ranged hash function and using |
1172 | * the combination of a hash function and a range-hashing function. |
1173 | * In the former case we don't have such things as hash codes, so |
1174 | * we have a dummy type as placeholder. |
1175 | * (2) Whether or not we cache hash codes. Caching hash codes is |
1176 | * meaningless if we have a ranged hash function. |
1177 | * |
1178 | * We also put the key extraction objects here, for convenience. |
1179 | * Each specialization derives from one or more of the template |
1180 | * parameters to benefit from Ebo. This is important as this type |
1181 | * is inherited in some cases by the _Local_iterator_base type used |
1182 | * to implement local_iterator and const_local_iterator. As with |
1183 | * any iterator type we prefer to make it as small as possible. |
1184 | */ |
1185 | template<typename _Key, typename _Value, typename _ExtractKey, |
1186 | typename _Hash, typename _RangeHash, typename _Unused, |
1187 | bool __cache_hash_code> |
1188 | struct _Hash_code_base |
1189 | : private _Hashtable_ebo_helper<1, _Hash> |
1190 | { |
1191 | private: |
1192 | using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>; |
1193 | |
1194 | // Gives the local iterator implementation access to _M_bucket_index(). |
1195 | friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1196 | _Hash, _RangeHash, _Unused, false>; |
1197 | |
1198 | public: |
1199 | typedef _Hash hasher; |
1200 | |
1201 | hasher |
1202 | hash_function() const |
1203 | { return _M_hash(); } |
1204 | |
1205 | protected: |
1206 | typedef std::size_t __hash_code; |
1207 | |
1208 | // We need the default constructor for the local iterators and _Hashtable |
1209 | // default constructor. |
1210 | _Hash_code_base() = default; |
1211 | |
1212 | _Hash_code_base(const _Hash& __hash) : __ebo_hash(__hash) { } |
1213 | |
1214 | __hash_code |
1215 | _M_hash_code(const _Key& __k) const |
1216 | { |
1217 | static_assert(__is_invocable<const _Hash&, const _Key&>{}, |
1218 | "hash function must be invocable with an argument of key type" ); |
1219 | return _M_hash()(__k); |
1220 | } |
1221 | |
1222 | template<typename _Kt> |
1223 | __hash_code |
1224 | _M_hash_code_tr(const _Kt& __k) const |
1225 | { |
1226 | static_assert(__is_invocable<const _Hash&, const _Kt&>{}, |
1227 | "hash function must be invocable with an argument of key type" ); |
1228 | return _M_hash()(__k); |
1229 | } |
1230 | |
1231 | std::size_t |
1232 | _M_bucket_index(__hash_code __c, std::size_t __bkt_count) const |
1233 | { return _RangeHash{}(__c, __bkt_count); } |
1234 | |
1235 | std::size_t |
1236 | _M_bucket_index(const _Hash_node_value<_Value, false>& __n, |
1237 | std::size_t __bkt_count) const |
1238 | noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>())) |
1239 | && noexcept(declval<const _RangeHash&>()((__hash_code)0, |
1240 | (std::size_t)0)) ) |
1241 | { |
1242 | return _RangeHash{}(_M_hash_code(k: _ExtractKey{}(__n._M_v())), |
1243 | __bkt_count); |
1244 | } |
1245 | |
1246 | std::size_t |
1247 | _M_bucket_index(const _Hash_node_value<_Value, true>& __n, |
1248 | std::size_t __bkt_count) const |
1249 | noexcept( noexcept(declval<const _RangeHash&>()((__hash_code)0, |
1250 | (std::size_t)0)) ) |
1251 | { return _RangeHash{}(__n._M_hash_code, __bkt_count); } |
1252 | |
1253 | void |
1254 | _M_store_code(_Hash_node_code_cache<false>&, __hash_code) const |
1255 | { } |
1256 | |
1257 | void |
1258 | _M_copy_code(_Hash_node_code_cache<false>&, |
1259 | const _Hash_node_code_cache<false>&) const |
1260 | { } |
1261 | |
1262 | void |
1263 | _M_store_code(_Hash_node_code_cache<true>& __n, __hash_code __c) const |
1264 | { __n._M_hash_code = __c; } |
1265 | |
1266 | void |
1267 | _M_copy_code(_Hash_node_code_cache<true>& __to, |
1268 | const _Hash_node_code_cache<true>& __from) const |
1269 | { __to._M_hash_code = __from._M_hash_code; } |
1270 | |
1271 | void |
1272 | _M_swap(_Hash_code_base& __x) |
1273 | { std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get()); } |
1274 | |
1275 | const _Hash& |
1276 | _M_hash() const { return __ebo_hash::_M_cget(); } |
1277 | }; |
1278 | |
1279 | /// Partial specialization used when nodes contain a cached hash code. |
1280 | template<typename _Key, typename _Value, typename _ExtractKey, |
1281 | typename _Hash, typename _RangeHash, typename _Unused> |
1282 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1283 | _Hash, _RangeHash, _Unused, true> |
1284 | : public _Node_iterator_base<_Value, true> |
1285 | { |
1286 | protected: |
1287 | using __base_node_iter = _Node_iterator_base<_Value, true>; |
1288 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1289 | _Hash, _RangeHash, _Unused, true>; |
1290 | |
1291 | _Local_iterator_base() = default; |
1292 | _Local_iterator_base(const __hash_code_base&, |
1293 | _Hash_node<_Value, true>* __p, |
1294 | std::size_t __bkt, std::size_t __bkt_count) |
1295 | : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
1296 | { } |
1297 | |
1298 | void |
1299 | _M_incr() |
1300 | { |
1301 | __base_node_iter::_M_incr(); |
1302 | if (this->_M_cur) |
1303 | { |
1304 | std::size_t __bkt |
1305 | = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count); |
1306 | if (__bkt != _M_bucket) |
1307 | this->_M_cur = nullptr; |
1308 | } |
1309 | } |
1310 | |
1311 | std::size_t _M_bucket; |
1312 | std::size_t _M_bucket_count; |
1313 | |
1314 | public: |
1315 | std::size_t |
1316 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
1317 | }; |
1318 | |
1319 | // Uninitialized storage for a _Hash_code_base. |
1320 | // This type is DefaultConstructible and Assignable even if the |
1321 | // _Hash_code_base type isn't, so that _Local_iterator_base<..., false> |
1322 | // can be DefaultConstructible and Assignable. |
1323 | template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value> |
1324 | struct _Hash_code_storage |
1325 | { |
1326 | __gnu_cxx::__aligned_buffer<_Tp> _M_storage; |
1327 | |
1328 | _Tp* |
1329 | _M_h() { return _M_storage._M_ptr(); } |
1330 | |
1331 | const _Tp* |
1332 | _M_h() const { return _M_storage._M_ptr(); } |
1333 | }; |
1334 | |
1335 | // Empty partial specialization for empty _Hash_code_base types. |
1336 | template<typename _Tp> |
1337 | struct _Hash_code_storage<_Tp, true> |
1338 | { |
1339 | static_assert( std::is_empty<_Tp>::value, "Type must be empty" ); |
1340 | |
1341 | // As _Tp is an empty type there will be no bytes written/read through |
1342 | // the cast pointer, so no strict-aliasing violation. |
1343 | _Tp* |
1344 | _M_h() { return reinterpret_cast<_Tp*>(this); } |
1345 | |
1346 | const _Tp* |
1347 | _M_h() const { return reinterpret_cast<const _Tp*>(this); } |
1348 | }; |
1349 | |
1350 | template<typename _Key, typename _Value, typename _ExtractKey, |
1351 | typename _Hash, typename _RangeHash, typename _Unused> |
1352 | using __hash_code_for_local_iter |
1353 | = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey, |
1354 | _Hash, _RangeHash, _Unused, false>>; |
1355 | |
1356 | // Partial specialization used when hash codes are not cached |
1357 | template<typename _Key, typename _Value, typename _ExtractKey, |
1358 | typename _Hash, typename _RangeHash, typename _Unused> |
1359 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
1360 | _Hash, _RangeHash, _Unused, false> |
1361 | : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
1362 | _Unused> |
1363 | , _Node_iterator_base<_Value, false> |
1364 | { |
1365 | protected: |
1366 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1367 | _Hash, _RangeHash, _Unused, false>; |
1368 | using __node_iter_base = _Node_iterator_base<_Value, false>; |
1369 | |
1370 | _Local_iterator_base() : _M_bucket_count(-1) { } |
1371 | |
1372 | _Local_iterator_base(const __hash_code_base& __base, |
1373 | _Hash_node<_Value, false>* __p, |
1374 | std::size_t __bkt, std::size_t __bkt_count) |
1375 | : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
1376 | { _M_init(__base); } |
1377 | |
1378 | ~_Local_iterator_base() |
1379 | { |
1380 | if (_M_bucket_count != size_t(-1)) |
1381 | _M_destroy(); |
1382 | } |
1383 | |
1384 | _Local_iterator_base(const _Local_iterator_base& __iter) |
1385 | : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket) |
1386 | , _M_bucket_count(__iter._M_bucket_count) |
1387 | { |
1388 | if (_M_bucket_count != size_t(-1)) |
1389 | _M_init(base: *__iter._M_h()); |
1390 | } |
1391 | |
1392 | _Local_iterator_base& |
1393 | operator=(const _Local_iterator_base& __iter) |
1394 | { |
1395 | if (_M_bucket_count != -1) |
1396 | _M_destroy(); |
1397 | this->_M_cur = __iter._M_cur; |
1398 | _M_bucket = __iter._M_bucket; |
1399 | _M_bucket_count = __iter._M_bucket_count; |
1400 | if (_M_bucket_count != -1) |
1401 | _M_init(base: *__iter._M_h()); |
1402 | return *this; |
1403 | } |
1404 | |
1405 | void |
1406 | _M_incr() |
1407 | { |
1408 | __node_iter_base::_M_incr(); |
1409 | if (this->_M_cur) |
1410 | { |
1411 | std::size_t __bkt = this->_M_h()->_M_bucket_index(*this->_M_cur, |
1412 | _M_bucket_count); |
1413 | if (__bkt != _M_bucket) |
1414 | this->_M_cur = nullptr; |
1415 | } |
1416 | } |
1417 | |
1418 | std::size_t _M_bucket; |
1419 | std::size_t _M_bucket_count; |
1420 | |
1421 | void |
1422 | _M_init(const __hash_code_base& __base) |
1423 | { ::new(this->_M_h()) __hash_code_base(__base); } |
1424 | |
1425 | void |
1426 | _M_destroy() { this->_M_h()->~__hash_code_base(); } |
1427 | |
1428 | public: |
1429 | std::size_t |
1430 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
1431 | }; |
1432 | |
1433 | /// local iterators |
1434 | template<typename _Key, typename _Value, typename _ExtractKey, |
1435 | typename _Hash, typename _RangeHash, typename _Unused, |
1436 | bool __constant_iterators, bool __cache> |
1437 | struct _Local_iterator |
1438 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
1439 | _Hash, _RangeHash, _Unused, __cache> |
1440 | { |
1441 | private: |
1442 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
1443 | _Hash, _RangeHash, _Unused, __cache>; |
1444 | using __hash_code_base = typename __base_type::__hash_code_base; |
1445 | |
1446 | public: |
1447 | typedef _Value value_type; |
1448 | typedef typename std::conditional<__constant_iterators, |
1449 | const value_type*, value_type*>::type |
1450 | pointer; |
1451 | typedef typename std::conditional<__constant_iterators, |
1452 | const value_type&, value_type&>::type |
1453 | reference; |
1454 | typedef std::ptrdiff_t difference_type; |
1455 | typedef std::forward_iterator_tag iterator_category; |
1456 | |
1457 | _Local_iterator() = default; |
1458 | |
1459 | _Local_iterator(const __hash_code_base& __base, |
1460 | _Hash_node<_Value, __cache>* __n, |
1461 | std::size_t __bkt, std::size_t __bkt_count) |
1462 | : __base_type(__base, __n, __bkt, __bkt_count) |
1463 | { } |
1464 | |
1465 | reference |
1466 | operator*() const |
1467 | { return this->_M_cur->_M_v(); } |
1468 | |
1469 | pointer |
1470 | operator->() const |
1471 | { return this->_M_cur->_M_valptr(); } |
1472 | |
1473 | _Local_iterator& |
1474 | operator++() |
1475 | { |
1476 | this->_M_incr(); |
1477 | return *this; |
1478 | } |
1479 | |
1480 | _Local_iterator |
1481 | operator++(int) |
1482 | { |
1483 | _Local_iterator __tmp(*this); |
1484 | this->_M_incr(); |
1485 | return __tmp; |
1486 | } |
1487 | }; |
1488 | |
1489 | /// local const_iterators |
1490 | template<typename _Key, typename _Value, typename _ExtractKey, |
1491 | typename _Hash, typename _RangeHash, typename _Unused, |
1492 | bool __constant_iterators, bool __cache> |
1493 | struct _Local_const_iterator |
1494 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
1495 | _Hash, _RangeHash, _Unused, __cache> |
1496 | { |
1497 | private: |
1498 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
1499 | _Hash, _RangeHash, _Unused, __cache>; |
1500 | using __hash_code_base = typename __base_type::__hash_code_base; |
1501 | |
1502 | public: |
1503 | typedef _Value value_type; |
1504 | typedef const value_type* pointer; |
1505 | typedef const value_type& reference; |
1506 | typedef std::ptrdiff_t difference_type; |
1507 | typedef std::forward_iterator_tag iterator_category; |
1508 | |
1509 | _Local_const_iterator() = default; |
1510 | |
1511 | _Local_const_iterator(const __hash_code_base& __base, |
1512 | _Hash_node<_Value, __cache>* __n, |
1513 | std::size_t __bkt, std::size_t __bkt_count) |
1514 | : __base_type(__base, __n, __bkt, __bkt_count) |
1515 | { } |
1516 | |
1517 | _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, |
1518 | _Hash, _RangeHash, _Unused, |
1519 | __constant_iterators, |
1520 | __cache>& __x) |
1521 | : __base_type(__x) |
1522 | { } |
1523 | |
1524 | reference |
1525 | operator*() const |
1526 | { return this->_M_cur->_M_v(); } |
1527 | |
1528 | pointer |
1529 | operator->() const |
1530 | { return this->_M_cur->_M_valptr(); } |
1531 | |
1532 | _Local_const_iterator& |
1533 | operator++() |
1534 | { |
1535 | this->_M_incr(); |
1536 | return *this; |
1537 | } |
1538 | |
1539 | _Local_const_iterator |
1540 | operator++(int) |
1541 | { |
1542 | _Local_const_iterator __tmp(*this); |
1543 | this->_M_incr(); |
1544 | return __tmp; |
1545 | } |
1546 | }; |
1547 | |
1548 | /** |
1549 | * Primary class template _Hashtable_base. |
1550 | * |
1551 | * Helper class adding management of _Equal functor to |
1552 | * _Hash_code_base type. |
1553 | * |
1554 | * Base class templates are: |
1555 | * - __detail::_Hash_code_base |
1556 | * - __detail::_Hashtable_ebo_helper |
1557 | */ |
1558 | template<typename _Key, typename _Value, typename _ExtractKey, |
1559 | typename _Equal, typename _Hash, typename _RangeHash, |
1560 | typename _Unused, typename _Traits> |
1561 | struct _Hashtable_base |
1562 | : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
1563 | _Unused, _Traits::__hash_cached::value>, |
1564 | private _Hashtable_ebo_helper<0, _Equal> |
1565 | { |
1566 | public: |
1567 | typedef _Key key_type; |
1568 | typedef _Value value_type; |
1569 | typedef _Equal key_equal; |
1570 | typedef std::size_t size_type; |
1571 | typedef std::ptrdiff_t difference_type; |
1572 | |
1573 | using __traits_type = _Traits; |
1574 | using __hash_cached = typename __traits_type::__hash_cached; |
1575 | |
1576 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
1577 | _Hash, _RangeHash, _Unused, |
1578 | __hash_cached::value>; |
1579 | |
1580 | using __hash_code = typename __hash_code_base::__hash_code; |
1581 | |
1582 | private: |
1583 | using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>; |
1584 | |
1585 | static bool |
1586 | _S_equals(__hash_code, const _Hash_node_code_cache<false>&) |
1587 | { return true; } |
1588 | |
1589 | static bool |
1590 | _S_node_equals(const _Hash_node_code_cache<false>&, |
1591 | const _Hash_node_code_cache<false>&) |
1592 | { return true; } |
1593 | |
1594 | static bool |
1595 | _S_equals(__hash_code __c, const _Hash_node_code_cache<true>& __n) |
1596 | { return __c == __n._M_hash_code; } |
1597 | |
1598 | static bool |
1599 | _S_node_equals(const _Hash_node_code_cache<true>& __lhn, |
1600 | const _Hash_node_code_cache<true>& __rhn) |
1601 | { return __lhn._M_hash_code == __rhn._M_hash_code; } |
1602 | |
1603 | protected: |
1604 | _Hashtable_base() = default; |
1605 | |
1606 | _Hashtable_base(const _Hash& __hash, const _Equal& __eq) |
1607 | : __hash_code_base(__hash), _EqualEBO(__eq) |
1608 | { } |
1609 | |
1610 | bool |
1611 | _M_equals(const _Key& __k, __hash_code __c, |
1612 | const _Hash_node_value<_Value, __hash_cached::value>& __n) const |
1613 | { |
1614 | static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{}, |
1615 | "key equality predicate must be invocable with two arguments of " |
1616 | "key type" ); |
1617 | return _S_equals(__c, __n) && _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
1618 | } |
1619 | |
1620 | template<typename _Kt> |
1621 | bool |
1622 | _M_equals_tr(const _Kt& __k, __hash_code __c, |
1623 | const _Hash_node_value<_Value, |
1624 | __hash_cached::value>& __n) const |
1625 | { |
1626 | static_assert( |
1627 | __is_invocable<const _Equal&, const _Kt&, const _Key&>{}, |
1628 | "key equality predicate must be invocable with two arguments of " |
1629 | "key type" ); |
1630 | return _S_equals(__c, __n) && _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
1631 | } |
1632 | |
1633 | bool |
1634 | _M_node_equals( |
1635 | const _Hash_node_value<_Value, __hash_cached::value>& __lhn, |
1636 | const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const |
1637 | { |
1638 | return _S_node_equals(__lhn, __rhn) |
1639 | && _M_eq()(_ExtractKey{}(__lhn._M_v()), _ExtractKey{}(__rhn._M_v())); |
1640 | } |
1641 | |
1642 | void |
1643 | _M_swap(_Hashtable_base& __x) |
1644 | { |
1645 | __hash_code_base::_M_swap(__x); |
1646 | std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get()); |
1647 | } |
1648 | |
1649 | const _Equal& |
1650 | _M_eq() const { return _EqualEBO::_M_cget(); } |
1651 | }; |
1652 | |
1653 | /** |
1654 | * Primary class template _Equality. |
1655 | * |
1656 | * This is for implementing equality comparison for unordered |
1657 | * containers, per N3068, by John Lakos and Pablo Halpern. |
1658 | * Algorithmically, we follow closely the reference implementations |
1659 | * therein. |
1660 | */ |
1661 | template<typename _Key, typename _Value, typename _Alloc, |
1662 | typename _ExtractKey, typename _Equal, |
1663 | typename _Hash, typename _RangeHash, typename _Unused, |
1664 | typename _RehashPolicy, typename _Traits, |
1665 | bool _Unique_keys = _Traits::__unique_keys::value> |
1666 | struct _Equality; |
1667 | |
1668 | /// unordered_map and unordered_set specializations. |
1669 | template<typename _Key, typename _Value, typename _Alloc, |
1670 | typename _ExtractKey, typename _Equal, |
1671 | typename _Hash, typename _RangeHash, typename _Unused, |
1672 | typename _RehashPolicy, typename _Traits> |
1673 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1674 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
1675 | { |
1676 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1677 | _Hash, _RangeHash, _Unused, |
1678 | _RehashPolicy, _Traits>; |
1679 | |
1680 | bool |
1681 | _M_equal(const __hashtable&) const; |
1682 | }; |
1683 | |
1684 | template<typename _Key, typename _Value, typename _Alloc, |
1685 | typename _ExtractKey, typename _Equal, |
1686 | typename _Hash, typename _RangeHash, typename _Unused, |
1687 | typename _RehashPolicy, typename _Traits> |
1688 | bool |
1689 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1690 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
1691 | _M_equal(const __hashtable& __other) const |
1692 | { |
1693 | using __node_type = typename __hashtable::__node_type; |
1694 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1695 | if (__this->size() != __other.size()) |
1696 | return false; |
1697 | |
1698 | for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) |
1699 | { |
1700 | std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur); |
1701 | auto __prev_n = __other._M_buckets[__ybkt]; |
1702 | if (!__prev_n) |
1703 | return false; |
1704 | |
1705 | for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);; |
1706 | __n = __n->_M_next()) |
1707 | { |
1708 | if (__n->_M_v() == *__itx) |
1709 | break; |
1710 | |
1711 | if (!__n->_M_nxt |
1712 | || __other._M_bucket_index(*__n->_M_next()) != __ybkt) |
1713 | return false; |
1714 | } |
1715 | } |
1716 | |
1717 | return true; |
1718 | } |
1719 | |
1720 | /// unordered_multiset and unordered_multimap specializations. |
1721 | template<typename _Key, typename _Value, typename _Alloc, |
1722 | typename _ExtractKey, typename _Equal, |
1723 | typename _Hash, typename _RangeHash, typename _Unused, |
1724 | typename _RehashPolicy, typename _Traits> |
1725 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1726 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
1727 | { |
1728 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1729 | _Hash, _RangeHash, _Unused, |
1730 | _RehashPolicy, _Traits>; |
1731 | |
1732 | bool |
1733 | _M_equal(const __hashtable&) const; |
1734 | }; |
1735 | |
1736 | template<typename _Key, typename _Value, typename _Alloc, |
1737 | typename _ExtractKey, typename _Equal, |
1738 | typename _Hash, typename _RangeHash, typename _Unused, |
1739 | typename _RehashPolicy, typename _Traits> |
1740 | bool |
1741 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
1742 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>:: |
1743 | _M_equal(const __hashtable& __other) const |
1744 | { |
1745 | using __node_type = typename __hashtable::__node_type; |
1746 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
1747 | if (__this->size() != __other.size()) |
1748 | return false; |
1749 | |
1750 | for (auto __itx = __this->begin(); __itx != __this->end();) |
1751 | { |
1752 | std::size_t __x_count = 1; |
1753 | auto __itx_end = __itx; |
1754 | for (++__itx_end; __itx_end != __this->end() |
1755 | && __this->key_eq()(_ExtractKey{}(*__itx), |
1756 | _ExtractKey{}(*__itx_end)); |
1757 | ++__itx_end) |
1758 | ++__x_count; |
1759 | |
1760 | std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur); |
1761 | auto __y_prev_n = __other._M_buckets[__ybkt]; |
1762 | if (!__y_prev_n) |
1763 | return false; |
1764 | |
1765 | __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt); |
1766 | for (;;) |
1767 | { |
1768 | if (__this->key_eq()(_ExtractKey{}(__y_n->_M_v()), |
1769 | _ExtractKey{}(*__itx))) |
1770 | break; |
1771 | |
1772 | auto __y_ref_n = __y_n; |
1773 | for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next()) |
1774 | if (!__other._M_node_equals(*__y_ref_n, *__y_n)) |
1775 | break; |
1776 | |
1777 | if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt) |
1778 | return false; |
1779 | } |
1780 | |
1781 | typename __hashtable::const_iterator __ity(__y_n); |
1782 | for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end) |
1783 | if (--__x_count == 0) |
1784 | break; |
1785 | |
1786 | if (__x_count != 0) |
1787 | return false; |
1788 | |
1789 | if (!std::is_permutation(__itx, __itx_end, __ity)) |
1790 | return false; |
1791 | |
1792 | __itx = __itx_end; |
1793 | } |
1794 | return true; |
1795 | } |
1796 | |
1797 | /** |
1798 | * This type deals with all allocation and keeps an allocator instance |
1799 | * through inheritance to benefit from EBO when possible. |
1800 | */ |
1801 | template<typename _NodeAlloc> |
1802 | struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc> |
1803 | { |
1804 | private: |
1805 | using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>; |
1806 | public: |
1807 | using __node_type = typename _NodeAlloc::value_type; |
1808 | using __node_alloc_type = _NodeAlloc; |
1809 | // Use __gnu_cxx to benefit from _S_always_equal and al. |
1810 | using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>; |
1811 | |
1812 | using __value_alloc_traits = typename __node_alloc_traits::template |
1813 | rebind_traits<typename __node_type::value_type>; |
1814 | |
1815 | using __node_ptr = __node_type*; |
1816 | using __node_base = _Hash_node_base; |
1817 | using __node_base_ptr = __node_base*; |
1818 | using __buckets_alloc_type = |
1819 | __alloc_rebind<__node_alloc_type, __node_base_ptr>; |
1820 | using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>; |
1821 | using __buckets_ptr = __node_base_ptr*; |
1822 | |
1823 | _Hashtable_alloc() = default; |
1824 | _Hashtable_alloc(const _Hashtable_alloc&) = default; |
1825 | _Hashtable_alloc(_Hashtable_alloc&&) = default; |
1826 | |
1827 | template<typename _Alloc> |
1828 | _Hashtable_alloc(_Alloc&& __a) |
1829 | : __ebo_node_alloc(std::forward<_Alloc>(__a)) |
1830 | { } |
1831 | |
1832 | __node_alloc_type& |
1833 | _M_node_allocator() |
1834 | { return __ebo_node_alloc::_M_get(); } |
1835 | |
1836 | const __node_alloc_type& |
1837 | _M_node_allocator() const |
1838 | { return __ebo_node_alloc::_M_cget(); } |
1839 | |
1840 | // Allocate a node and construct an element within it. |
1841 | template<typename... _Args> |
1842 | __node_ptr |
1843 | _M_allocate_node(_Args&&... __args); |
1844 | |
1845 | // Destroy the element within a node and deallocate the node. |
1846 | void |
1847 | _M_deallocate_node(__node_ptr __n); |
1848 | |
1849 | // Deallocate a node. |
1850 | void |
1851 | _M_deallocate_node_ptr(__node_ptr __n); |
1852 | |
1853 | // Deallocate the linked list of nodes pointed to by __n. |
1854 | // The elements within the nodes are destroyed. |
1855 | void |
1856 | _M_deallocate_nodes(__node_ptr __n); |
1857 | |
1858 | __buckets_ptr |
1859 | _M_allocate_buckets(std::size_t __bkt_count); |
1860 | |
1861 | void |
1862 | _M_deallocate_buckets(__buckets_ptr, std::size_t __bkt_count); |
1863 | }; |
1864 | |
1865 | // Definitions of class template _Hashtable_alloc's out-of-line member |
1866 | // functions. |
1867 | template<typename _NodeAlloc> |
1868 | template<typename... _Args> |
1869 | auto |
1870 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args) |
1871 | -> __node_ptr |
1872 | { |
1873 | auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1); |
1874 | __node_ptr __n = std::__to_address(__nptr); |
1875 | __try |
1876 | { |
1877 | ::new ((void*)__n) __node_type; |
1878 | __node_alloc_traits::construct(_M_node_allocator(), |
1879 | __n->_M_valptr(), |
1880 | std::forward<_Args>(__args)...); |
1881 | return __n; |
1882 | } |
1883 | __catch(...) |
1884 | { |
1885 | __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1); |
1886 | __throw_exception_again; |
1887 | } |
1888 | } |
1889 | |
1890 | template<typename _NodeAlloc> |
1891 | void |
1892 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n) |
1893 | { |
1894 | __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr()); |
1895 | _M_deallocate_node_ptr(__n); |
1896 | } |
1897 | |
1898 | template<typename _NodeAlloc> |
1899 | void |
1900 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n) |
1901 | { |
1902 | typedef typename __node_alloc_traits::pointer _Ptr; |
1903 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n); |
1904 | __n->~__node_type(); |
1905 | __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1); |
1906 | } |
1907 | |
1908 | template<typename _NodeAlloc> |
1909 | void |
1910 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n) |
1911 | { |
1912 | while (__n) |
1913 | { |
1914 | __node_ptr __tmp = __n; |
1915 | __n = __n->_M_next(); |
1916 | _M_deallocate_node(n: __tmp); |
1917 | } |
1918 | } |
1919 | |
1920 | template<typename _NodeAlloc> |
1921 | auto |
1922 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count) |
1923 | -> __buckets_ptr |
1924 | { |
1925 | __buckets_alloc_type __alloc(_M_node_allocator()); |
1926 | |
1927 | auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count); |
1928 | __buckets_ptr __p = std::__to_address(__ptr); |
1929 | __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr)); |
1930 | return __p; |
1931 | } |
1932 | |
1933 | template<typename _NodeAlloc> |
1934 | void |
1935 | _Hashtable_alloc<_NodeAlloc>:: |
1936 | _M_deallocate_buckets(__buckets_ptr __bkts, |
1937 | std::size_t __bkt_count) |
1938 | { |
1939 | typedef typename __buckets_alloc_traits::pointer _Ptr; |
1940 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts); |
1941 | __buckets_alloc_type __alloc(_M_node_allocator()); |
1942 | __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count); |
1943 | } |
1944 | |
1945 | ///@} hashtable-detail |
1946 | } // namespace __detail |
1947 | /// @endcond |
1948 | _GLIBCXX_END_NAMESPACE_VERSION |
1949 | } // namespace std |
1950 | |
1951 | #endif // _HASHTABLE_POLICY_H |
1952 | |