| 1 | // random number generation (out of line) -*- C++ -*- | 
| 2 |  | 
| 3 | // Copyright (C) 2009-2021 Free Software Foundation, Inc. | 
| 4 | // | 
| 5 | // This file is part of the GNU ISO C++ Library.  This library is free | 
| 6 | // software; you can redistribute it and/or modify it under the | 
| 7 | // terms of the GNU General Public License as published by the | 
| 8 | // Free Software Foundation; either version 3, or (at your option) | 
| 9 | // any later version. | 
| 10 |  | 
| 11 | // This library is distributed in the hope that it will be useful, | 
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 14 | // GNU General Public License for more details. | 
| 15 |  | 
| 16 | // Under Section 7 of GPL version 3, you are granted additional | 
| 17 | // permissions described in the GCC Runtime Library Exception, version | 
| 18 | // 3.1, as published by the Free Software Foundation. | 
| 19 |  | 
| 20 | // You should have received a copy of the GNU General Public License and | 
| 21 | // a copy of the GCC Runtime Library Exception along with this program; | 
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
| 23 | // <http://www.gnu.org/licenses/>. | 
| 24 |  | 
| 25 | /** @file bits/random.tcc | 
| 26 |  *  This is an internal header file, included by other library headers. | 
| 27 |  *  Do not attempt to use it directly. @headername{random} | 
| 28 |  */ | 
| 29 |  | 
| 30 | #ifndef _RANDOM_TCC | 
| 31 | #define _RANDOM_TCC 1 | 
| 32 |  | 
| 33 | #include <numeric> // std::accumulate and std::partial_sum | 
| 34 |  | 
| 35 | namespace std _GLIBCXX_VISIBILITY(default) | 
| 36 | { | 
| 37 | _GLIBCXX_BEGIN_NAMESPACE_VERSION | 
| 38 |  | 
| 39 |   /// @cond undocumented | 
| 40 |   // (Further) implementation-space details. | 
| 41 |   namespace __detail | 
| 42 |   { | 
| 43 |     // General case for x = (ax + c) mod m -- use Schrage's algorithm | 
| 44 |     // to avoid integer overflow. | 
| 45 |     // | 
| 46 |     // Preconditions:  a > 0, m > 0. | 
| 47 |     // | 
| 48 |     // Note: only works correctly for __m % __a < __m / __a. | 
| 49 |     template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> | 
| 50 |       _Tp | 
| 51 |       _Mod<_Tp, __m, __a, __c, false, true>:: | 
| 52 |       __calc(_Tp __x) | 
| 53 |       { | 
| 54 | 	if (__a == 1) | 
| 55 | 	  __x %= __m; | 
| 56 | 	else | 
| 57 | 	  { | 
| 58 | 	    static const _Tp __q = __m / __a; | 
| 59 | 	    static const _Tp __r = __m % __a; | 
| 60 |  | 
| 61 | 	    _Tp __t1 = __a * (__x % __q); | 
| 62 | 	    _Tp __t2 = __r * (__x / __q); | 
| 63 | 	    if (__t1 >= __t2) | 
| 64 | 	      __x = __t1 - __t2; | 
| 65 | 	    else | 
| 66 | 	      __x = __m - __t2 + __t1; | 
| 67 | 	  } | 
| 68 |  | 
| 69 | 	if (__c != 0) | 
| 70 | 	  { | 
| 71 | 	    const _Tp __d = __m - __x; | 
| 72 | 	    if (__d > __c) | 
| 73 | 	      __x += __c; | 
| 74 | 	    else | 
| 75 | 	      __x = __c - __d; | 
| 76 | 	  } | 
| 77 | 	return __x; | 
| 78 |       } | 
| 79 |  | 
| 80 |     template<typename _InputIterator, typename _OutputIterator, | 
| 81 | 	     typename _Tp> | 
| 82 |       _OutputIterator | 
| 83 |       __normalize(_InputIterator __first, _InputIterator __last, | 
| 84 | 		  _OutputIterator __result, const _Tp& __factor) | 
| 85 |       { | 
| 86 | 	for (; __first != __last; ++__first, ++__result) | 
| 87 | 	  *__result = *__first / __factor; | 
| 88 | 	return __result; | 
| 89 |       } | 
| 90 |  | 
| 91 |   } // namespace __detail | 
| 92 |   /// @endcond | 
| 93 |  | 
| 94 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> | 
| 95 |     constexpr _UIntType | 
| 96 |     linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier; | 
| 97 |  | 
| 98 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> | 
| 99 |     constexpr _UIntType | 
| 100 |     linear_congruential_engine<_UIntType, __a, __c, __m>::increment; | 
| 101 |  | 
| 102 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> | 
| 103 |     constexpr _UIntType | 
| 104 |     linear_congruential_engine<_UIntType, __a, __c, __m>::modulus; | 
| 105 |  | 
| 106 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> | 
| 107 |     constexpr _UIntType | 
| 108 |     linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed; | 
| 109 |  | 
| 110 |   /** | 
| 111 |    * Seeds the LCR with integral value @p __s, adjusted so that the | 
| 112 |    * ring identity is never a member of the convergence set. | 
| 113 |    */ | 
| 114 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> | 
| 115 |     void | 
| 116 |     linear_congruential_engine<_UIntType, __a, __c, __m>:: | 
| 117 |     seed(result_type __s) | 
| 118 |     { | 
| 119 |       if ((__detail::__mod<_UIntType, __m>(__c) == 0) | 
| 120 | 	  && (__detail::__mod<_UIntType, __m>(__s) == 0)) | 
| 121 | 	_M_x = 1; | 
| 122 |       else | 
| 123 | 	_M_x = __detail::__mod<_UIntType, __m>(__s); | 
| 124 |     } | 
| 125 |  | 
| 126 |   /** | 
| 127 |    * Seeds the LCR engine with a value generated by @p __q. | 
| 128 |    */ | 
| 129 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> | 
| 130 |     template<typename _Sseq> | 
| 131 |       auto | 
| 132 |       linear_congruential_engine<_UIntType, __a, __c, __m>:: | 
| 133 |       seed(_Sseq& __q) | 
| 134 |       -> _If_seed_seq<_Sseq> | 
| 135 |       { | 
| 136 | 	const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits | 
| 137 | 	                                : std::__lg(__m); | 
| 138 | 	const _UIntType __k = (__k0 + 31) / 32; | 
| 139 | 	uint_least32_t __arr[__k + 3]; | 
| 140 | 	__q.generate(__arr + 0, __arr + __k + 3); | 
| 141 | 	_UIntType __factor = 1u; | 
| 142 | 	_UIntType __sum = 0u; | 
| 143 | 	for (size_t __j = 0; __j < __k; ++__j) | 
| 144 | 	  { | 
| 145 | 	    __sum += __arr[__j + 3] * __factor; | 
| 146 | 	    __factor *= __detail::_Shift<_UIntType, 32>::__value; | 
| 147 | 	  } | 
| 148 | 	seed(__sum); | 
| 149 |       } | 
| 150 |  | 
| 151 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, | 
| 152 | 	   typename _CharT, typename _Traits> | 
| 153 |     std::basic_ostream<_CharT, _Traits>& | 
| 154 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 155 | 	       const linear_congruential_engine<_UIntType, | 
| 156 | 						__a, __c, __m>& __lcr) | 
| 157 |     { | 
| 158 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 159 |  | 
| 160 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 161 |       const _CharT __fill = __os.fill(); | 
| 162 |       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); | 
| 163 |       __os.fill(__os.widen(' ')); | 
| 164 |  | 
| 165 |       __os << __lcr._M_x; | 
| 166 |  | 
| 167 |       __os.flags(__flags); | 
| 168 |       __os.fill(__fill); | 
| 169 |       return __os; | 
| 170 |     } | 
| 171 |  | 
| 172 |   template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, | 
| 173 | 	   typename _CharT, typename _Traits> | 
| 174 |     std::basic_istream<_CharT, _Traits>& | 
| 175 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 176 | 	       linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr) | 
| 177 |     { | 
| 178 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 179 |  | 
| 180 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 181 |       __is.flags(__ios_base::dec); | 
| 182 |  | 
| 183 |       __is >> __lcr._M_x; | 
| 184 |  | 
| 185 |       __is.flags(__flags); | 
| 186 |       return __is; | 
| 187 |     } | 
| 188 |  | 
| 189 |  | 
| 190 |   template<typename _UIntType, | 
| 191 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 192 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 193 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 194 | 	   _UIntType __f> | 
| 195 |     constexpr size_t | 
| 196 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 197 | 			    __s, __b, __t, __c, __l, __f>::word_size; | 
| 198 |  | 
| 199 |   template<typename _UIntType, | 
| 200 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 201 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 202 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 203 | 	   _UIntType __f> | 
| 204 |     constexpr size_t | 
| 205 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 206 | 			    __s, __b, __t, __c, __l, __f>::state_size; | 
| 207 |  | 
| 208 |   template<typename _UIntType, | 
| 209 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 210 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 211 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 212 | 	   _UIntType __f> | 
| 213 |     constexpr size_t | 
| 214 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 215 | 			    __s, __b, __t, __c, __l, __f>::shift_size; | 
| 216 |  | 
| 217 |   template<typename _UIntType, | 
| 218 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 219 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 220 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 221 | 	   _UIntType __f> | 
| 222 |     constexpr size_t | 
| 223 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 224 | 			    __s, __b, __t, __c, __l, __f>::mask_bits; | 
| 225 |  | 
| 226 |   template<typename _UIntType, | 
| 227 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 228 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 229 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 230 | 	   _UIntType __f> | 
| 231 |     constexpr _UIntType | 
| 232 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 233 | 			    __s, __b, __t, __c, __l, __f>::xor_mask; | 
| 234 |  | 
| 235 |   template<typename _UIntType, | 
| 236 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 237 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 238 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 239 | 	   _UIntType __f> | 
| 240 |     constexpr size_t | 
| 241 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 242 | 			    __s, __b, __t, __c, __l, __f>::tempering_u; | 
| 243 |     | 
| 244 |   template<typename _UIntType, | 
| 245 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 246 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 247 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 248 | 	   _UIntType __f> | 
| 249 |     constexpr _UIntType | 
| 250 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 251 | 			    __s, __b, __t, __c, __l, __f>::tempering_d; | 
| 252 |  | 
| 253 |   template<typename _UIntType, | 
| 254 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 255 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 256 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 257 | 	   _UIntType __f> | 
| 258 |     constexpr size_t | 
| 259 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 260 | 			    __s, __b, __t, __c, __l, __f>::tempering_s; | 
| 261 |  | 
| 262 |   template<typename _UIntType, | 
| 263 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 264 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 265 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 266 | 	   _UIntType __f> | 
| 267 |     constexpr _UIntType | 
| 268 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 269 | 			    __s, __b, __t, __c, __l, __f>::tempering_b; | 
| 270 |  | 
| 271 |   template<typename _UIntType, | 
| 272 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 273 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 274 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 275 | 	   _UIntType __f> | 
| 276 |     constexpr size_t | 
| 277 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 278 | 			    __s, __b, __t, __c, __l, __f>::tempering_t; | 
| 279 |  | 
| 280 |   template<typename _UIntType, | 
| 281 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 282 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 283 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 284 | 	   _UIntType __f> | 
| 285 |     constexpr _UIntType | 
| 286 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 287 | 			    __s, __b, __t, __c, __l, __f>::tempering_c; | 
| 288 |  | 
| 289 |   template<typename _UIntType, | 
| 290 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 291 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 292 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 293 | 	   _UIntType __f> | 
| 294 |     constexpr size_t | 
| 295 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 296 | 			    __s, __b, __t, __c, __l, __f>::tempering_l; | 
| 297 |  | 
| 298 |   template<typename _UIntType, | 
| 299 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 300 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 301 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 302 | 	   _UIntType __f> | 
| 303 |     constexpr _UIntType | 
| 304 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 305 | 			    __s, __b, __t, __c, __l, __f>:: | 
| 306 |                                               initialization_multiplier; | 
| 307 |  | 
| 308 |   template<typename _UIntType, | 
| 309 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 310 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 311 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 312 | 	   _UIntType __f> | 
| 313 |     constexpr _UIntType | 
| 314 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 315 | 			    __s, __b, __t, __c, __l, __f>::default_seed; | 
| 316 |  | 
| 317 |   template<typename _UIntType, | 
| 318 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 319 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 320 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 321 | 	   _UIntType __f> | 
| 322 |     void | 
| 323 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 324 | 			    __s, __b, __t, __c, __l, __f>:: | 
| 325 |     seed(result_type __sd) | 
| 326 |     { | 
| 327 |       _M_x[0] = __detail::__mod<_UIntType, | 
| 328 | 	__detail::_Shift<_UIntType, __w>::__value>(__sd); | 
| 329 |  | 
| 330 |       for (size_t __i = 1; __i < state_size; ++__i) | 
| 331 | 	{ | 
| 332 | 	  _UIntType __x = _M_x[__i - 1]; | 
| 333 | 	  __x ^= __x >> (__w - 2); | 
| 334 | 	  __x *= __f; | 
| 335 | 	  __x += __detail::__mod<_UIntType, __n>(__i); | 
| 336 | 	  _M_x[__i] = __detail::__mod<_UIntType, | 
| 337 | 	    __detail::_Shift<_UIntType, __w>::__value>(__x); | 
| 338 | 	} | 
| 339 |       _M_p = state_size; | 
| 340 |     } | 
| 341 |  | 
| 342 |   template<typename _UIntType, | 
| 343 | 	   size_t __w, size_t __n, size_t __m, size_t __r, | 
| 344 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 345 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 346 | 	   _UIntType __f> | 
| 347 |     template<typename _Sseq> | 
| 348 |       auto | 
| 349 |       mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 350 | 			      __s, __b, __t, __c, __l, __f>:: | 
| 351 |       seed(_Sseq& __q) | 
| 352 |       -> _If_seed_seq<_Sseq> | 
| 353 |       { | 
| 354 | 	const _UIntType __upper_mask = (~_UIntType()) << __r; | 
| 355 | 	const size_t __k = (__w + 31) / 32; | 
| 356 | 	uint_least32_t __arr[__n * __k]; | 
| 357 | 	__q.generate(__arr + 0, __arr + __n * __k); | 
| 358 |  | 
| 359 | 	bool __zero = true; | 
| 360 | 	for (size_t __i = 0; __i < state_size; ++__i) | 
| 361 | 	  { | 
| 362 | 	    _UIntType __factor = 1u; | 
| 363 | 	    _UIntType __sum = 0u; | 
| 364 | 	    for (size_t __j = 0; __j < __k; ++__j) | 
| 365 | 	      { | 
| 366 | 		__sum += __arr[__k * __i + __j] * __factor; | 
| 367 | 		__factor *= __detail::_Shift<_UIntType, 32>::__value; | 
| 368 | 	      } | 
| 369 | 	    _M_x[__i] = __detail::__mod<_UIntType, | 
| 370 | 	      __detail::_Shift<_UIntType, __w>::__value>(__sum); | 
| 371 |  | 
| 372 | 	    if (__zero) | 
| 373 | 	      { | 
| 374 | 		if (__i == 0) | 
| 375 | 		  { | 
| 376 | 		    if ((_M_x[0] & __upper_mask) != 0u) | 
| 377 | 		      __zero = false; | 
| 378 | 		  } | 
| 379 | 		else if (_M_x[__i] != 0u) | 
| 380 | 		  __zero = false; | 
| 381 | 	      } | 
| 382 | 	  } | 
| 383 |         if (__zero) | 
| 384 |           _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value; | 
| 385 | 	_M_p = state_size; | 
| 386 |       } | 
| 387 |  | 
| 388 |   template<typename _UIntType, size_t __w, | 
| 389 | 	   size_t __n, size_t __m, size_t __r, | 
| 390 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 391 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 392 | 	   _UIntType __f> | 
| 393 |     void | 
| 394 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 395 | 			    __s, __b, __t, __c, __l, __f>:: | 
| 396 |     _M_gen_rand(void) | 
| 397 |     { | 
| 398 |       const _UIntType __upper_mask = (~_UIntType()) << __r; | 
| 399 |       const _UIntType __lower_mask = ~__upper_mask; | 
| 400 |  | 
| 401 |       for (size_t __k = 0; __k < (__n - __m); ++__k) | 
| 402 |         { | 
| 403 | 	  _UIntType __y = ((_M_x[__k] & __upper_mask) | 
| 404 | 			   | (_M_x[__k + 1] & __lower_mask)); | 
| 405 | 	  _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1) | 
| 406 | 		       ^ ((__y & 0x01) ? __a : 0)); | 
| 407 |         } | 
| 408 |  | 
| 409 |       for (size_t __k = (__n - __m); __k < (__n - 1); ++__k) | 
| 410 | 	{ | 
| 411 | 	  _UIntType __y = ((_M_x[__k] & __upper_mask) | 
| 412 | 			   | (_M_x[__k + 1] & __lower_mask)); | 
| 413 | 	  _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1) | 
| 414 | 		       ^ ((__y & 0x01) ? __a : 0)); | 
| 415 | 	} | 
| 416 |  | 
| 417 |       _UIntType __y = ((_M_x[__n - 1] & __upper_mask) | 
| 418 | 		       | (_M_x[0] & __lower_mask)); | 
| 419 |       _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1) | 
| 420 | 		       ^ ((__y & 0x01) ? __a : 0)); | 
| 421 |       _M_p = 0; | 
| 422 |     } | 
| 423 |  | 
| 424 |   template<typename _UIntType, size_t __w, | 
| 425 | 	   size_t __n, size_t __m, size_t __r, | 
| 426 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 427 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 428 | 	   _UIntType __f> | 
| 429 |     void | 
| 430 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 431 | 			    __s, __b, __t, __c, __l, __f>:: | 
| 432 |     discard(unsigned long long __z) | 
| 433 |     { | 
| 434 |       while (__z > state_size - _M_p) | 
| 435 | 	{ | 
| 436 | 	  __z -= state_size - _M_p; | 
| 437 | 	  _M_gen_rand(); | 
| 438 | 	} | 
| 439 |       _M_p += __z; | 
| 440 |     } | 
| 441 |  | 
| 442 |   template<typename _UIntType, size_t __w, | 
| 443 | 	   size_t __n, size_t __m, size_t __r, | 
| 444 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 445 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 446 | 	   _UIntType __f> | 
| 447 |     typename | 
| 448 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 449 | 			    __s, __b, __t, __c, __l, __f>::result_type | 
| 450 |     mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, | 
| 451 | 			    __s, __b, __t, __c, __l, __f>:: | 
| 452 |     operator()() | 
| 453 |     { | 
| 454 |       // Reload the vector - cost is O(n) amortized over n calls. | 
| 455 |       if (_M_p >= state_size) | 
| 456 | 	_M_gen_rand(); | 
| 457 |  | 
| 458 |       // Calculate o(x(i)). | 
| 459 |       result_type __z = _M_x[_M_p++]; | 
| 460 |       __z ^= (__z >> __u) & __d; | 
| 461 |       __z ^= (__z << __s) & __b; | 
| 462 |       __z ^= (__z << __t) & __c; | 
| 463 |       __z ^= (__z >> __l); | 
| 464 |  | 
| 465 |       return __z; | 
| 466 |     } | 
| 467 |  | 
| 468 |   template<typename _UIntType, size_t __w, | 
| 469 | 	   size_t __n, size_t __m, size_t __r, | 
| 470 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 471 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 472 | 	   _UIntType __f, typename _CharT, typename _Traits> | 
| 473 |     std::basic_ostream<_CharT, _Traits>& | 
| 474 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 475 | 	       const mersenne_twister_engine<_UIntType, __w, __n, __m, | 
| 476 | 	       __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) | 
| 477 |     { | 
| 478 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 479 |  | 
| 480 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 481 |       const _CharT __fill = __os.fill(); | 
| 482 |       const _CharT __space = __os.widen(' '); | 
| 483 |       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); | 
| 484 |       __os.fill(__space); | 
| 485 |  | 
| 486 |       for (size_t __i = 0; __i < __n; ++__i) | 
| 487 | 	__os << __x._M_x[__i] << __space; | 
| 488 |       __os << __x._M_p; | 
| 489 |  | 
| 490 |       __os.flags(__flags); | 
| 491 |       __os.fill(__fill); | 
| 492 |       return __os; | 
| 493 |     } | 
| 494 |  | 
| 495 |   template<typename _UIntType, size_t __w, | 
| 496 | 	   size_t __n, size_t __m, size_t __r, | 
| 497 | 	   _UIntType __a, size_t __u, _UIntType __d, size_t __s, | 
| 498 | 	   _UIntType __b, size_t __t, _UIntType __c, size_t __l, | 
| 499 | 	   _UIntType __f, typename _CharT, typename _Traits> | 
| 500 |     std::basic_istream<_CharT, _Traits>& | 
| 501 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 502 | 	       mersenne_twister_engine<_UIntType, __w, __n, __m, | 
| 503 | 	       __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) | 
| 504 |     { | 
| 505 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 506 |  | 
| 507 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 508 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 509 |  | 
| 510 |       for (size_t __i = 0; __i < __n; ++__i) | 
| 511 | 	__is >> __x._M_x[__i]; | 
| 512 |       __is >> __x._M_p; | 
| 513 |  | 
| 514 |       __is.flags(__flags); | 
| 515 |       return __is; | 
| 516 |     } | 
| 517 |  | 
| 518 |  | 
| 519 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 520 |     constexpr size_t | 
| 521 |     subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size; | 
| 522 |  | 
| 523 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 524 |     constexpr size_t | 
| 525 |     subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag; | 
| 526 |  | 
| 527 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 528 |     constexpr size_t | 
| 529 |     subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag; | 
| 530 |  | 
| 531 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 532 |     constexpr _UIntType | 
| 533 |     subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed; | 
| 534 |  | 
| 535 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 536 |     void | 
| 537 |     subtract_with_carry_engine<_UIntType, __w, __s, __r>:: | 
| 538 |     seed(result_type __value) | 
| 539 |     { | 
| 540 |       std::linear_congruential_engine<result_type, 40014u, 0u, 2147483563u> | 
| 541 | 	__lcg(__value == 0u ? default_seed : __value); | 
| 542 |  | 
| 543 |       const size_t __n = (__w + 31) / 32; | 
| 544 |  | 
| 545 |       for (size_t __i = 0; __i < long_lag; ++__i) | 
| 546 | 	{ | 
| 547 | 	  _UIntType __sum = 0u; | 
| 548 | 	  _UIntType __factor = 1u; | 
| 549 | 	  for (size_t __j = 0; __j < __n; ++__j) | 
| 550 | 	    { | 
| 551 | 	      __sum += __detail::__mod<uint_least32_t, | 
| 552 | 		       __detail::_Shift<uint_least32_t, 32>::__value> | 
| 553 | 			 (__lcg()) * __factor; | 
| 554 | 	      __factor *= __detail::_Shift<_UIntType, 32>::__value; | 
| 555 | 	    } | 
| 556 | 	  _M_x[__i] = __detail::__mod<_UIntType, | 
| 557 | 	    __detail::_Shift<_UIntType, __w>::__value>(__sum); | 
| 558 | 	} | 
| 559 |       _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; | 
| 560 |       _M_p = 0; | 
| 561 |     } | 
| 562 |  | 
| 563 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 564 |     template<typename _Sseq> | 
| 565 |       auto | 
| 566 |       subtract_with_carry_engine<_UIntType, __w, __s, __r>:: | 
| 567 |       seed(_Sseq& __q) | 
| 568 |       -> _If_seed_seq<_Sseq> | 
| 569 |       { | 
| 570 | 	const size_t __k = (__w + 31) / 32; | 
| 571 | 	uint_least32_t __arr[__r * __k]; | 
| 572 | 	__q.generate(__arr + 0, __arr + __r * __k); | 
| 573 |  | 
| 574 | 	for (size_t __i = 0; __i < long_lag; ++__i) | 
| 575 | 	  { | 
| 576 | 	    _UIntType __sum = 0u; | 
| 577 | 	    _UIntType __factor = 1u; | 
| 578 | 	    for (size_t __j = 0; __j < __k; ++__j) | 
| 579 | 	      { | 
| 580 | 		__sum += __arr[__k * __i + __j] * __factor; | 
| 581 | 		__factor *= __detail::_Shift<_UIntType, 32>::__value; | 
| 582 | 	      } | 
| 583 | 	    _M_x[__i] = __detail::__mod<_UIntType, | 
| 584 | 	      __detail::_Shift<_UIntType, __w>::__value>(__sum); | 
| 585 | 	  } | 
| 586 | 	_M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; | 
| 587 | 	_M_p = 0; | 
| 588 |       } | 
| 589 |  | 
| 590 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r> | 
| 591 |     typename subtract_with_carry_engine<_UIntType, __w, __s, __r>:: | 
| 592 | 	     result_type | 
| 593 |     subtract_with_carry_engine<_UIntType, __w, __s, __r>:: | 
| 594 |     operator()() | 
| 595 |     { | 
| 596 |       // Derive short lag index from current index. | 
| 597 |       long __ps = _M_p - short_lag; | 
| 598 |       if (__ps < 0) | 
| 599 | 	__ps += long_lag; | 
| 600 |  | 
| 601 |       // Calculate new x(i) without overflow or division. | 
| 602 |       // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry | 
| 603 |       // cannot overflow. | 
| 604 |       _UIntType __xi; | 
| 605 |       if (_M_x[__ps] >= _M_x[_M_p] + _M_carry) | 
| 606 | 	{ | 
| 607 | 	  __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry; | 
| 608 | 	  _M_carry = 0; | 
| 609 | 	} | 
| 610 |       else | 
| 611 | 	{ | 
| 612 | 	  __xi = (__detail::_Shift<_UIntType, __w>::__value | 
| 613 | 		  - _M_x[_M_p] - _M_carry + _M_x[__ps]); | 
| 614 | 	  _M_carry = 1; | 
| 615 | 	} | 
| 616 |       _M_x[_M_p] = __xi; | 
| 617 |  | 
| 618 |       // Adjust current index to loop around in ring buffer. | 
| 619 |       if (++_M_p >= long_lag) | 
| 620 | 	_M_p = 0; | 
| 621 |  | 
| 622 |       return __xi; | 
| 623 |     } | 
| 624 |  | 
| 625 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r, | 
| 626 | 	   typename _CharT, typename _Traits> | 
| 627 |     std::basic_ostream<_CharT, _Traits>& | 
| 628 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 629 | 	       const subtract_with_carry_engine<_UIntType, | 
| 630 | 						__w, __s, __r>& __x) | 
| 631 |     { | 
| 632 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 633 |  | 
| 634 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 635 |       const _CharT __fill = __os.fill(); | 
| 636 |       const _CharT __space = __os.widen(' '); | 
| 637 |       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); | 
| 638 |       __os.fill(__space); | 
| 639 |  | 
| 640 |       for (size_t __i = 0; __i < __r; ++__i) | 
| 641 | 	__os << __x._M_x[__i] << __space; | 
| 642 |       __os << __x._M_carry << __space << __x._M_p; | 
| 643 |  | 
| 644 |       __os.flags(__flags); | 
| 645 |       __os.fill(__fill); | 
| 646 |       return __os; | 
| 647 |     } | 
| 648 |  | 
| 649 |   template<typename _UIntType, size_t __w, size_t __s, size_t __r, | 
| 650 | 	   typename _CharT, typename _Traits> | 
| 651 |     std::basic_istream<_CharT, _Traits>& | 
| 652 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 653 | 	       subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x) | 
| 654 |     { | 
| 655 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 656 |  | 
| 657 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 658 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 659 |  | 
| 660 |       for (size_t __i = 0; __i < __r; ++__i) | 
| 661 | 	__is >> __x._M_x[__i]; | 
| 662 |       __is >> __x._M_carry; | 
| 663 |       __is >> __x._M_p; | 
| 664 |  | 
| 665 |       __is.flags(__flags); | 
| 666 |       return __is; | 
| 667 |     } | 
| 668 |  | 
| 669 |  | 
| 670 |   template<typename _RandomNumberEngine, size_t __p, size_t __r> | 
| 671 |     constexpr size_t | 
| 672 |     discard_block_engine<_RandomNumberEngine, __p, __r>::block_size; | 
| 673 |  | 
| 674 |   template<typename _RandomNumberEngine, size_t __p, size_t __r> | 
| 675 |     constexpr size_t | 
| 676 |     discard_block_engine<_RandomNumberEngine, __p, __r>::used_block; | 
| 677 |  | 
| 678 |   template<typename _RandomNumberEngine, size_t __p, size_t __r> | 
| 679 |     typename discard_block_engine<_RandomNumberEngine, | 
| 680 | 			   __p, __r>::result_type | 
| 681 |     discard_block_engine<_RandomNumberEngine, __p, __r>:: | 
| 682 |     operator()() | 
| 683 |     { | 
| 684 |       if (_M_n >= used_block) | 
| 685 | 	{ | 
| 686 | 	  _M_b.discard(block_size - _M_n); | 
| 687 | 	  _M_n = 0; | 
| 688 | 	} | 
| 689 |       ++_M_n; | 
| 690 |       return _M_b(); | 
| 691 |     } | 
| 692 |  | 
| 693 |   template<typename _RandomNumberEngine, size_t __p, size_t __r, | 
| 694 | 	   typename _CharT, typename _Traits> | 
| 695 |     std::basic_ostream<_CharT, _Traits>& | 
| 696 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 697 | 	       const discard_block_engine<_RandomNumberEngine, | 
| 698 | 	       __p, __r>& __x) | 
| 699 |     { | 
| 700 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 701 |  | 
| 702 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 703 |       const _CharT __fill = __os.fill(); | 
| 704 |       const _CharT __space = __os.widen(' '); | 
| 705 |       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); | 
| 706 |       __os.fill(__space); | 
| 707 |  | 
| 708 |       __os << __x.base() << __space << __x._M_n; | 
| 709 |  | 
| 710 |       __os.flags(__flags); | 
| 711 |       __os.fill(__fill); | 
| 712 |       return __os; | 
| 713 |     } | 
| 714 |  | 
| 715 |   template<typename _RandomNumberEngine, size_t __p, size_t __r, | 
| 716 | 	   typename _CharT, typename _Traits> | 
| 717 |     std::basic_istream<_CharT, _Traits>& | 
| 718 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 719 | 	       discard_block_engine<_RandomNumberEngine, __p, __r>& __x) | 
| 720 |     { | 
| 721 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 722 |  | 
| 723 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 724 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 725 |  | 
| 726 |       __is >> __x._M_b >> __x._M_n; | 
| 727 |  | 
| 728 |       __is.flags(__flags); | 
| 729 |       return __is; | 
| 730 |     } | 
| 731 |  | 
| 732 |  | 
| 733 |   template<typename _RandomNumberEngine, size_t __w, typename _UIntType> | 
| 734 |     typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: | 
| 735 |       result_type | 
| 736 |     independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: | 
| 737 |     operator()() | 
| 738 |     { | 
| 739 |       typedef typename _RandomNumberEngine::result_type _Eresult_type; | 
| 740 |       const _Eresult_type __r | 
| 741 | 	= (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max() | 
| 742 | 	   ? _M_b.max() - _M_b.min() + 1 : 0); | 
| 743 |       const unsigned __edig = std::numeric_limits<_Eresult_type>::digits; | 
| 744 |       const unsigned __m = __r ? std::__lg(__r) : __edig; | 
| 745 |  | 
| 746 |       typedef typename std::common_type<_Eresult_type, result_type>::type | 
| 747 | 	__ctype; | 
| 748 |       const unsigned __cdig = std::numeric_limits<__ctype>::digits; | 
| 749 |  | 
| 750 |       unsigned __n, __n0; | 
| 751 |       __ctype __s0, __s1, __y0, __y1; | 
| 752 |  | 
| 753 |       for (size_t __i = 0; __i < 2; ++__i) | 
| 754 | 	{ | 
| 755 | 	  __n = (__w + __m - 1) / __m + __i; | 
| 756 | 	  __n0 = __n - __w % __n; | 
| 757 | 	  const unsigned __w0 = __w / __n;  // __w0 <= __m | 
| 758 |  | 
| 759 | 	  __s0 = 0; | 
| 760 | 	  __s1 = 0; | 
| 761 | 	  if (__w0 < __cdig) | 
| 762 | 	    { | 
| 763 | 	      __s0 = __ctype(1) << __w0; | 
| 764 | 	      __s1 = __s0 << 1; | 
| 765 | 	    } | 
| 766 |  | 
| 767 | 	  __y0 = 0; | 
| 768 | 	  __y1 = 0; | 
| 769 | 	  if (__r) | 
| 770 | 	    { | 
| 771 | 	      __y0 = __s0 * (__r / __s0); | 
| 772 | 	      if (__s1) | 
| 773 | 		__y1 = __s1 * (__r / __s1); | 
| 774 |  | 
| 775 | 	      if (__r - __y0 <= __y0 / __n) | 
| 776 | 		break; | 
| 777 | 	    } | 
| 778 | 	  else | 
| 779 | 	    break; | 
| 780 | 	} | 
| 781 |  | 
| 782 |       result_type __sum = 0; | 
| 783 |       for (size_t __k = 0; __k < __n0; ++__k) | 
| 784 | 	{ | 
| 785 | 	  __ctype __u; | 
| 786 | 	  do | 
| 787 | 	    __u = _M_b() - _M_b.min(); | 
| 788 | 	  while (__y0 && __u >= __y0); | 
| 789 | 	  __sum = __s0 * __sum + (__s0 ? __u % __s0 : __u); | 
| 790 | 	} | 
| 791 |       for (size_t __k = __n0; __k < __n; ++__k) | 
| 792 | 	{ | 
| 793 | 	  __ctype __u; | 
| 794 | 	  do | 
| 795 | 	    __u = _M_b() - _M_b.min(); | 
| 796 | 	  while (__y1 && __u >= __y1); | 
| 797 | 	  __sum = __s1 * __sum + (__s1 ? __u % __s1 : __u); | 
| 798 | 	} | 
| 799 |       return __sum; | 
| 800 |     } | 
| 801 |  | 
| 802 |  | 
| 803 |   template<typename _RandomNumberEngine, size_t __k> | 
| 804 |     constexpr size_t | 
| 805 |     shuffle_order_engine<_RandomNumberEngine, __k>::table_size; | 
| 806 |  | 
| 807 |   namespace __detail | 
| 808 |   { | 
| 809 |     // Determine whether an integer is representable as double. | 
| 810 |     template<typename _Tp> | 
| 811 |       constexpr bool | 
| 812 |       __representable_as_double(_Tp __x) noexcept | 
| 813 |       { | 
| 814 | 	static_assert(numeric_limits<_Tp>::is_integer, "" ); | 
| 815 | 	static_assert(!numeric_limits<_Tp>::is_signed, "" ); | 
| 816 | 	// All integers <= 2^53 are representable. | 
| 817 | 	return (__x <= (1ull << __DBL_MANT_DIG__)) | 
| 818 | 	  // Between 2^53 and 2^54 only even numbers are representable. | 
| 819 | 	  || (!(__x & 1) && __detail::__representable_as_double(__x >> 1)); | 
| 820 |       } | 
| 821 |  | 
| 822 |     // Determine whether x+1 is representable as double. | 
| 823 |     template<typename _Tp> | 
| 824 |       constexpr bool | 
| 825 |       __p1_representable_as_double(_Tp __x) noexcept | 
| 826 |       { | 
| 827 | 	static_assert(numeric_limits<_Tp>::is_integer, "" ); | 
| 828 | 	static_assert(!numeric_limits<_Tp>::is_signed, "" ); | 
| 829 | 	return numeric_limits<_Tp>::digits < __DBL_MANT_DIG__ | 
| 830 | 	  || (bool(__x + 1u) // return false if x+1 wraps around to zero | 
| 831 | 	      && __detail::__representable_as_double(__x + 1u)); | 
| 832 |       } | 
| 833 |   } | 
| 834 |  | 
| 835 |   template<typename _RandomNumberEngine, size_t __k> | 
| 836 |     typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type | 
| 837 |     shuffle_order_engine<_RandomNumberEngine, __k>:: | 
| 838 |     operator()() | 
| 839 |     { | 
| 840 |       constexpr result_type __range = max() - min(); | 
| 841 |       size_t __j = __k; | 
| 842 |       const result_type __y = _M_y - min(); | 
| 843 |       // Avoid using slower long double arithmetic if possible. | 
| 844 |       if _GLIBCXX17_CONSTEXPR (__detail::__p1_representable_as_double(__range)) | 
| 845 | 	__j *= __y / (__range + 1.0); | 
| 846 |       else | 
| 847 | 	__j *= __y / (__range + 1.0L); | 
| 848 |       _M_y = _M_v[__j]; | 
| 849 |       _M_v[__j] = _M_b(); | 
| 850 |  | 
| 851 |       return _M_y; | 
| 852 |     } | 
| 853 |  | 
| 854 |   template<typename _RandomNumberEngine, size_t __k, | 
| 855 | 	   typename _CharT, typename _Traits> | 
| 856 |     std::basic_ostream<_CharT, _Traits>& | 
| 857 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 858 | 	       const shuffle_order_engine<_RandomNumberEngine, __k>& __x) | 
| 859 |     { | 
| 860 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 861 |  | 
| 862 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 863 |       const _CharT __fill = __os.fill(); | 
| 864 |       const _CharT __space = __os.widen(' '); | 
| 865 |       __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); | 
| 866 |       __os.fill(__space); | 
| 867 |  | 
| 868 |       __os << __x.base(); | 
| 869 |       for (size_t __i = 0; __i < __k; ++__i) | 
| 870 | 	__os << __space << __x._M_v[__i]; | 
| 871 |       __os << __space << __x._M_y; | 
| 872 |  | 
| 873 |       __os.flags(__flags); | 
| 874 |       __os.fill(__fill); | 
| 875 |       return __os; | 
| 876 |     } | 
| 877 |  | 
| 878 |   template<typename _RandomNumberEngine, size_t __k, | 
| 879 | 	   typename _CharT, typename _Traits> | 
| 880 |     std::basic_istream<_CharT, _Traits>& | 
| 881 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 882 | 	       shuffle_order_engine<_RandomNumberEngine, __k>& __x) | 
| 883 |     { | 
| 884 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 885 |  | 
| 886 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 887 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 888 |  | 
| 889 |       __is >> __x._M_b; | 
| 890 |       for (size_t __i = 0; __i < __k; ++__i) | 
| 891 | 	__is >> __x._M_v[__i]; | 
| 892 |       __is >> __x._M_y; | 
| 893 |  | 
| 894 |       __is.flags(__flags); | 
| 895 |       return __is; | 
| 896 |     } | 
| 897 |  | 
| 898 |  | 
| 899 |   template<typename _IntType, typename _CharT, typename _Traits> | 
| 900 |     std::basic_ostream<_CharT, _Traits>& | 
| 901 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 902 | 	       const uniform_int_distribution<_IntType>& __x) | 
| 903 |     { | 
| 904 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 905 |  | 
| 906 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 907 |       const _CharT __fill = __os.fill(); | 
| 908 |       const _CharT __space = __os.widen(' '); | 
| 909 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 910 |       __os.fill(__space); | 
| 911 |  | 
| 912 |       __os << __x.a() << __space << __x.b(); | 
| 913 |  | 
| 914 |       __os.flags(__flags); | 
| 915 |       __os.fill(__fill); | 
| 916 |       return __os; | 
| 917 |     } | 
| 918 |  | 
| 919 |   template<typename _IntType, typename _CharT, typename _Traits> | 
| 920 |     std::basic_istream<_CharT, _Traits>& | 
| 921 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 922 | 	       uniform_int_distribution<_IntType>& __x) | 
| 923 |     { | 
| 924 |       using param_type | 
| 925 | 	= typename uniform_int_distribution<_IntType>::param_type; | 
| 926 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 927 |  | 
| 928 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 929 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 930 |  | 
| 931 |       _IntType __a, __b; | 
| 932 |       if (__is >> __a >> __b) | 
| 933 | 	__x.param(param_type(__a, __b)); | 
| 934 |  | 
| 935 |       __is.flags(__flags); | 
| 936 |       return __is; | 
| 937 |     } | 
| 938 |  | 
| 939 |  | 
| 940 |   template<typename _RealType> | 
| 941 |     template<typename _ForwardIterator, | 
| 942 | 	     typename _UniformRandomNumberGenerator> | 
| 943 |       void | 
| 944 |       uniform_real_distribution<_RealType>:: | 
| 945 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 946 | 		      _UniformRandomNumberGenerator& __urng, | 
| 947 | 		      const param_type& __p) | 
| 948 |       { | 
| 949 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 950 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 951 | 	  __aurng(__urng); | 
| 952 | 	auto __range = __p.b() - __p.a(); | 
| 953 | 	while (__f != __t) | 
| 954 | 	  *__f++ = __aurng() * __range + __p.a(); | 
| 955 |       } | 
| 956 |  | 
| 957 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 958 |     std::basic_ostream<_CharT, _Traits>& | 
| 959 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 960 | 	       const uniform_real_distribution<_RealType>& __x) | 
| 961 |     { | 
| 962 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 963 |  | 
| 964 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 965 |       const _CharT __fill = __os.fill(); | 
| 966 |       const std::streamsize __precision = __os.precision(); | 
| 967 |       const _CharT __space = __os.widen(' '); | 
| 968 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 969 |       __os.fill(__space); | 
| 970 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 971 |  | 
| 972 |       __os << __x.a() << __space << __x.b(); | 
| 973 |  | 
| 974 |       __os.flags(__flags); | 
| 975 |       __os.fill(__fill); | 
| 976 |       __os.precision(__precision); | 
| 977 |       return __os; | 
| 978 |     } | 
| 979 |  | 
| 980 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 981 |     std::basic_istream<_CharT, _Traits>& | 
| 982 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 983 | 	       uniform_real_distribution<_RealType>& __x) | 
| 984 |     { | 
| 985 |       using param_type | 
| 986 | 	= typename uniform_real_distribution<_RealType>::param_type; | 
| 987 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 988 |  | 
| 989 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 990 |       __is.flags(__ios_base::skipws); | 
| 991 |  | 
| 992 |       _RealType __a, __b; | 
| 993 |       if (__is >> __a >> __b) | 
| 994 | 	__x.param(param_type(__a, __b)); | 
| 995 |  | 
| 996 |       __is.flags(__flags); | 
| 997 |       return __is; | 
| 998 |     } | 
| 999 |  | 
| 1000 |  | 
| 1001 |   template<typename _ForwardIterator, | 
| 1002 | 	   typename _UniformRandomNumberGenerator> | 
| 1003 |     void | 
| 1004 |     std::bernoulli_distribution:: | 
| 1005 |     __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1006 | 		    _UniformRandomNumberGenerator& __urng, | 
| 1007 | 		    const param_type& __p) | 
| 1008 |     { | 
| 1009 |       __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1010 |       __detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 1011 | 	__aurng(__urng); | 
| 1012 |       auto __limit = __p.p() * (__aurng.max() - __aurng.min()); | 
| 1013 |  | 
| 1014 |       while (__f != __t) | 
| 1015 | 	*__f++ = (__aurng() - __aurng.min()) < __limit; | 
| 1016 |     } | 
| 1017 |  | 
| 1018 |   template<typename _CharT, typename _Traits> | 
| 1019 |     std::basic_ostream<_CharT, _Traits>& | 
| 1020 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1021 | 	       const bernoulli_distribution& __x) | 
| 1022 |     { | 
| 1023 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 1024 |  | 
| 1025 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1026 |       const _CharT __fill = __os.fill(); | 
| 1027 |       const std::streamsize __precision = __os.precision(); | 
| 1028 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1029 |       __os.fill(__os.widen(' ')); | 
| 1030 |       __os.precision(std::numeric_limits<double>::max_digits10); | 
| 1031 |  | 
| 1032 |       __os << __x.p(); | 
| 1033 |  | 
| 1034 |       __os.flags(__flags); | 
| 1035 |       __os.fill(__fill); | 
| 1036 |       __os.precision(__precision); | 
| 1037 |       return __os; | 
| 1038 |     } | 
| 1039 |  | 
| 1040 |  | 
| 1041 |   template<typename _IntType> | 
| 1042 |     template<typename _UniformRandomNumberGenerator> | 
| 1043 |       typename geometric_distribution<_IntType>::result_type | 
| 1044 |       geometric_distribution<_IntType>:: | 
| 1045 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 1046 | 		 const param_type& __param) | 
| 1047 |       { | 
| 1048 | 	// About the epsilon thing see this thread: | 
| 1049 | 	// http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html | 
| 1050 | 	const double __naf = | 
| 1051 | 	  (1 - std::numeric_limits<double>::epsilon()) / 2; | 
| 1052 | 	// The largest _RealType convertible to _IntType. | 
| 1053 | 	const double __thr = | 
| 1054 | 	  std::numeric_limits<_IntType>::max() + __naf; | 
| 1055 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 1056 | 	  __aurng(__urng); | 
| 1057 |  | 
| 1058 | 	double __cand; | 
| 1059 | 	do | 
| 1060 | 	  __cand = std::floor(std::log(1.0 - __aurng()) / __param._M_log_1_p); | 
| 1061 | 	while (__cand >= __thr); | 
| 1062 |  | 
| 1063 | 	return result_type(__cand + __naf); | 
| 1064 |       } | 
| 1065 |  | 
| 1066 |   template<typename _IntType> | 
| 1067 |     template<typename _ForwardIterator, | 
| 1068 | 	     typename _UniformRandomNumberGenerator> | 
| 1069 |       void | 
| 1070 |       geometric_distribution<_IntType>:: | 
| 1071 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1072 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1073 | 		      const param_type& __param) | 
| 1074 |       { | 
| 1075 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1076 | 	// About the epsilon thing see this thread: | 
| 1077 | 	// http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html | 
| 1078 | 	const double __naf = | 
| 1079 | 	  (1 - std::numeric_limits<double>::epsilon()) / 2; | 
| 1080 | 	// The largest _RealType convertible to _IntType. | 
| 1081 | 	const double __thr = | 
| 1082 | 	  std::numeric_limits<_IntType>::max() + __naf; | 
| 1083 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 1084 | 	  __aurng(__urng); | 
| 1085 |  | 
| 1086 | 	while (__f != __t) | 
| 1087 | 	  { | 
| 1088 | 	    double __cand; | 
| 1089 | 	    do | 
| 1090 | 	      __cand = std::floor(std::log(1.0 - __aurng()) | 
| 1091 | 				  / __param._M_log_1_p); | 
| 1092 | 	    while (__cand >= __thr); | 
| 1093 |  | 
| 1094 | 	    *__f++ = __cand + __naf; | 
| 1095 | 	  } | 
| 1096 |       } | 
| 1097 |  | 
| 1098 |   template<typename _IntType, | 
| 1099 | 	   typename _CharT, typename _Traits> | 
| 1100 |     std::basic_ostream<_CharT, _Traits>& | 
| 1101 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1102 | 	       const geometric_distribution<_IntType>& __x) | 
| 1103 |     { | 
| 1104 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 1105 |  | 
| 1106 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1107 |       const _CharT __fill = __os.fill(); | 
| 1108 |       const std::streamsize __precision = __os.precision(); | 
| 1109 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1110 |       __os.fill(__os.widen(' ')); | 
| 1111 |       __os.precision(std::numeric_limits<double>::max_digits10); | 
| 1112 |  | 
| 1113 |       __os << __x.p(); | 
| 1114 |  | 
| 1115 |       __os.flags(__flags); | 
| 1116 |       __os.fill(__fill); | 
| 1117 |       __os.precision(__precision); | 
| 1118 |       return __os; | 
| 1119 |     } | 
| 1120 |  | 
| 1121 |   template<typename _IntType, | 
| 1122 | 	   typename _CharT, typename _Traits> | 
| 1123 |     std::basic_istream<_CharT, _Traits>& | 
| 1124 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1125 | 	       geometric_distribution<_IntType>& __x) | 
| 1126 |     { | 
| 1127 |       using param_type = typename geometric_distribution<_IntType>::param_type; | 
| 1128 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 1129 |  | 
| 1130 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 1131 |       __is.flags(__ios_base::skipws); | 
| 1132 |  | 
| 1133 |       double __p; | 
| 1134 |       if (__is >> __p) | 
| 1135 | 	__x.param(param_type(__p)); | 
| 1136 |  | 
| 1137 |       __is.flags(__flags); | 
| 1138 |       return __is; | 
| 1139 |     } | 
| 1140 |  | 
| 1141 |   // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5. | 
| 1142 |   template<typename _IntType> | 
| 1143 |     template<typename _UniformRandomNumberGenerator> | 
| 1144 |       typename negative_binomial_distribution<_IntType>::result_type | 
| 1145 |       negative_binomial_distribution<_IntType>:: | 
| 1146 |       operator()(_UniformRandomNumberGenerator& __urng) | 
| 1147 |       { | 
| 1148 | 	const double __y = _M_gd(__urng); | 
| 1149 |  | 
| 1150 | 	// XXX Is the constructor too slow? | 
| 1151 | 	std::poisson_distribution<result_type> __poisson(__y); | 
| 1152 | 	return __poisson(__urng); | 
| 1153 |       } | 
| 1154 |  | 
| 1155 |   template<typename _IntType> | 
| 1156 |     template<typename _UniformRandomNumberGenerator> | 
| 1157 |       typename negative_binomial_distribution<_IntType>::result_type | 
| 1158 |       negative_binomial_distribution<_IntType>:: | 
| 1159 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 1160 | 		 const param_type& __p) | 
| 1161 |       { | 
| 1162 | 	typedef typename std::gamma_distribution<double>::param_type | 
| 1163 | 	  param_type; | 
| 1164 | 	 | 
| 1165 | 	const double __y = | 
| 1166 | 	  _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p())); | 
| 1167 |  | 
| 1168 | 	std::poisson_distribution<result_type> __poisson(__y); | 
| 1169 | 	return __poisson(__urng); | 
| 1170 |       } | 
| 1171 |  | 
| 1172 |   template<typename _IntType> | 
| 1173 |     template<typename _ForwardIterator, | 
| 1174 | 	     typename _UniformRandomNumberGenerator> | 
| 1175 |       void | 
| 1176 |       negative_binomial_distribution<_IntType>:: | 
| 1177 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1178 | 		      _UniformRandomNumberGenerator& __urng) | 
| 1179 |       { | 
| 1180 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1181 | 	while (__f != __t) | 
| 1182 | 	  { | 
| 1183 | 	    const double __y = _M_gd(__urng); | 
| 1184 |  | 
| 1185 | 	    // XXX Is the constructor too slow? | 
| 1186 | 	    std::poisson_distribution<result_type> __poisson(__y); | 
| 1187 | 	    *__f++ = __poisson(__urng); | 
| 1188 | 	  } | 
| 1189 |       } | 
| 1190 |  | 
| 1191 |   template<typename _IntType> | 
| 1192 |     template<typename _ForwardIterator, | 
| 1193 | 	     typename _UniformRandomNumberGenerator> | 
| 1194 |       void | 
| 1195 |       negative_binomial_distribution<_IntType>:: | 
| 1196 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1197 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1198 | 		      const param_type& __p) | 
| 1199 |       { | 
| 1200 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1201 | 	typename std::gamma_distribution<result_type>::param_type | 
| 1202 | 	  __p2(__p.k(), (1.0 - __p.p()) / __p.p()); | 
| 1203 |  | 
| 1204 | 	while (__f != __t) | 
| 1205 | 	  { | 
| 1206 | 	    const double __y = _M_gd(__urng, __p2); | 
| 1207 |  | 
| 1208 | 	    std::poisson_distribution<result_type> __poisson(__y); | 
| 1209 | 	    *__f++ = __poisson(__urng); | 
| 1210 | 	  } | 
| 1211 |       } | 
| 1212 |  | 
| 1213 |   template<typename _IntType, typename _CharT, typename _Traits> | 
| 1214 |     std::basic_ostream<_CharT, _Traits>& | 
| 1215 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1216 | 	       const negative_binomial_distribution<_IntType>& __x) | 
| 1217 |     { | 
| 1218 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 1219 |  | 
| 1220 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1221 |       const _CharT __fill = __os.fill(); | 
| 1222 |       const std::streamsize __precision = __os.precision(); | 
| 1223 |       const _CharT __space = __os.widen(' '); | 
| 1224 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1225 |       __os.fill(__os.widen(' ')); | 
| 1226 |       __os.precision(std::numeric_limits<double>::max_digits10); | 
| 1227 |  | 
| 1228 |       __os << __x.k() << __space << __x.p() | 
| 1229 | 	   << __space << __x._M_gd; | 
| 1230 |  | 
| 1231 |       __os.flags(__flags); | 
| 1232 |       __os.fill(__fill); | 
| 1233 |       __os.precision(__precision); | 
| 1234 |       return __os; | 
| 1235 |     } | 
| 1236 |  | 
| 1237 |   template<typename _IntType, typename _CharT, typename _Traits> | 
| 1238 |     std::basic_istream<_CharT, _Traits>& | 
| 1239 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1240 | 	       negative_binomial_distribution<_IntType>& __x) | 
| 1241 |     { | 
| 1242 |       using param_type | 
| 1243 | 	= typename negative_binomial_distribution<_IntType>::param_type; | 
| 1244 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 1245 |  | 
| 1246 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 1247 |       __is.flags(__ios_base::skipws); | 
| 1248 |  | 
| 1249 |       _IntType __k; | 
| 1250 |       double __p; | 
| 1251 |       if (__is >> __k >> __p >> __x._M_gd) | 
| 1252 | 	__x.param(param_type(__k, __p)); | 
| 1253 |  | 
| 1254 |       __is.flags(__flags); | 
| 1255 |       return __is; | 
| 1256 |     } | 
| 1257 |  | 
| 1258 |  | 
| 1259 |   template<typename _IntType> | 
| 1260 |     void | 
| 1261 |     poisson_distribution<_IntType>::param_type:: | 
| 1262 |     _M_initialize() | 
| 1263 |     { | 
| 1264 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 1265 |       if (_M_mean >= 12) | 
| 1266 | 	{ | 
| 1267 | 	  const double __m = std::floor(x: _M_mean); | 
| 1268 | 	  _M_lm_thr = std::log(x: _M_mean); | 
| 1269 | 	  _M_lfm = std::lgamma(__m + 1); | 
| 1270 | 	  _M_sm = std::sqrt(x: __m); | 
| 1271 |  | 
| 1272 | 	  const double __pi_4 = 0.7853981633974483096156608458198757L; | 
| 1273 | 	  const double __dx = std::sqrt(x: 2 * __m * std::log(x: 32 * __m | 
| 1274 | 							      / __pi_4)); | 
| 1275 | 	  _M_d = std::round(x: std::max<double>(a: 6.0, b: std::min(a: __m, b: __dx))); | 
| 1276 | 	  const double __cx = 2 * __m + _M_d; | 
| 1277 | 	  _M_scx = std::sqrt(x: __cx / 2); | 
| 1278 | 	  _M_1cx = 1 / __cx; | 
| 1279 |  | 
| 1280 | 	  _M_c2b = std::sqrt(x: __pi_4 * __cx) * std::exp(x: _M_1cx); | 
| 1281 | 	  _M_cb = 2 * __cx * std::exp(x: -_M_d * _M_1cx * (1 + _M_d / 2)) | 
| 1282 | 		/ _M_d; | 
| 1283 | 	} | 
| 1284 |       else | 
| 1285 | #endif | 
| 1286 | 	_M_lm_thr = std::exp(x: -_M_mean); | 
| 1287 |       } | 
| 1288 |  | 
| 1289 |   /** | 
| 1290 |    * A rejection algorithm when mean >= 12 and a simple method based | 
| 1291 |    * upon the multiplication of uniform random variates otherwise. | 
| 1292 |    * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 | 
| 1293 |    * is defined. | 
| 1294 |    * | 
| 1295 |    * Reference: | 
| 1296 |    * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, | 
| 1297 |    * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!). | 
| 1298 |    */ | 
| 1299 |   template<typename _IntType> | 
| 1300 |     template<typename _UniformRandomNumberGenerator> | 
| 1301 |       typename poisson_distribution<_IntType>::result_type | 
| 1302 |       poisson_distribution<_IntType>:: | 
| 1303 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 1304 | 		 const param_type& __param) | 
| 1305 |       { | 
| 1306 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 1307 | 	  __aurng(__urng); | 
| 1308 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 1309 | 	if (__param.mean() >= 12) | 
| 1310 | 	  { | 
| 1311 | 	    double __x; | 
| 1312 |  | 
| 1313 | 	    // See comments above... | 
| 1314 | 	    const double __naf = | 
| 1315 | 	      (1 - std::numeric_limits<double>::epsilon()) / 2; | 
| 1316 | 	    const double __thr = | 
| 1317 | 	      std::numeric_limits<_IntType>::max() + __naf; | 
| 1318 |  | 
| 1319 | 	    const double __m = std::floor(__param.mean()); | 
| 1320 | 	    // sqrt(pi / 2) | 
| 1321 | 	    const double __spi_2 = 1.2533141373155002512078826424055226L; | 
| 1322 | 	    const double __c1 = __param._M_sm * __spi_2; | 
| 1323 | 	    const double __c2 = __param._M_c2b + __c1; | 
| 1324 | 	    const double __c3 = __c2 + 1; | 
| 1325 | 	    const double __c4 = __c3 + 1; | 
| 1326 | 	    // 1 / 78 | 
| 1327 | 	    const double __178 = 0.0128205128205128205128205128205128L; | 
| 1328 | 	    // e^(1 / 78) | 
| 1329 | 	    const double __e178 = 1.0129030479320018583185514777512983L; | 
| 1330 | 	    const double __c5 = __c4 + __e178; | 
| 1331 | 	    const double __c = __param._M_cb + __c5; | 
| 1332 | 	    const double __2cx = 2 * (2 * __m + __param._M_d); | 
| 1333 |  | 
| 1334 | 	    bool __reject = true; | 
| 1335 | 	    do | 
| 1336 | 	      { | 
| 1337 | 		const double __u = __c * __aurng(); | 
| 1338 | 		const double __e = -std::log(1.0 - __aurng()); | 
| 1339 |  | 
| 1340 | 		double __w = 0.0; | 
| 1341 |  | 
| 1342 | 		if (__u <= __c1) | 
| 1343 | 		  { | 
| 1344 | 		    const double __n = _M_nd(__urng); | 
| 1345 | 		    const double __y = -std::abs(x: __n) * __param._M_sm - 1; | 
| 1346 | 		    __x = std::floor(x: __y); | 
| 1347 | 		    __w = -__n * __n / 2; | 
| 1348 | 		    if (__x < -__m) | 
| 1349 | 		      continue; | 
| 1350 | 		  } | 
| 1351 | 		else if (__u <= __c2) | 
| 1352 | 		  { | 
| 1353 | 		    const double __n = _M_nd(__urng); | 
| 1354 | 		    const double __y = 1 + std::abs(x: __n) * __param._M_scx; | 
| 1355 | 		    __x = std::ceil(x: __y); | 
| 1356 | 		    __w = __y * (2 - __y) * __param._M_1cx; | 
| 1357 | 		    if (__x > __param._M_d) | 
| 1358 | 		      continue; | 
| 1359 | 		  } | 
| 1360 | 		else if (__u <= __c3) | 
| 1361 | 		  // NB: This case not in the book, nor in the Errata, | 
| 1362 | 		  // but should be ok... | 
| 1363 | 		  __x = -1; | 
| 1364 | 		else if (__u <= __c4) | 
| 1365 | 		  __x = 0; | 
| 1366 | 		else if (__u <= __c5) | 
| 1367 | 		  { | 
| 1368 | 		    __x = 1; | 
| 1369 | 		    // Only in the Errata, see libstdc++/83237. | 
| 1370 | 		    __w = __178; | 
| 1371 | 		  } | 
| 1372 | 		else | 
| 1373 | 		  { | 
| 1374 | 		    const double __v = -std::log(1.0 - __aurng()); | 
| 1375 | 		    const double __y = __param._M_d | 
| 1376 | 				     + __v * __2cx / __param._M_d; | 
| 1377 | 		    __x = std::ceil(x: __y); | 
| 1378 | 		    __w = -__param._M_d * __param._M_1cx * (1 + __y / 2); | 
| 1379 | 		  } | 
| 1380 |  | 
| 1381 | 		__reject = (__w - __e - __x * __param._M_lm_thr | 
| 1382 | 			    > __param._M_lfm - std::lgamma(__x + __m + 1)); | 
| 1383 |  | 
| 1384 | 		__reject |= __x + __m >= __thr; | 
| 1385 |  | 
| 1386 | 	      } while (__reject); | 
| 1387 |  | 
| 1388 | 	    return result_type(__x + __m + __naf); | 
| 1389 | 	  } | 
| 1390 | 	else | 
| 1391 | #endif | 
| 1392 | 	  { | 
| 1393 | 	    _IntType     __x = 0; | 
| 1394 | 	    double __prod = 1.0; | 
| 1395 |  | 
| 1396 | 	    do | 
| 1397 | 	      { | 
| 1398 | 		__prod *= __aurng(); | 
| 1399 | 		__x += 1; | 
| 1400 | 	      } | 
| 1401 | 	    while (__prod > __param._M_lm_thr); | 
| 1402 |  | 
| 1403 | 	    return __x - 1; | 
| 1404 | 	  } | 
| 1405 |       } | 
| 1406 |  | 
| 1407 |   template<typename _IntType> | 
| 1408 |     template<typename _ForwardIterator, | 
| 1409 | 	     typename _UniformRandomNumberGenerator> | 
| 1410 |       void | 
| 1411 |       poisson_distribution<_IntType>:: | 
| 1412 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1413 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1414 | 		      const param_type& __param) | 
| 1415 |       { | 
| 1416 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1417 | 	// We could duplicate everything from operator()... | 
| 1418 | 	while (__f != __t) | 
| 1419 | 	  *__f++ = this->operator()(__urng, __param); | 
| 1420 |       } | 
| 1421 |  | 
| 1422 |   template<typename _IntType, | 
| 1423 | 	   typename _CharT, typename _Traits> | 
| 1424 |     std::basic_ostream<_CharT, _Traits>& | 
| 1425 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1426 | 	       const poisson_distribution<_IntType>& __x) | 
| 1427 |     { | 
| 1428 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 1429 |  | 
| 1430 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1431 |       const _CharT __fill = __os.fill(); | 
| 1432 |       const std::streamsize __precision = __os.precision(); | 
| 1433 |       const _CharT __space = __os.widen(' '); | 
| 1434 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1435 |       __os.fill(__space); | 
| 1436 |       __os.precision(std::numeric_limits<double>::max_digits10); | 
| 1437 |  | 
| 1438 |       __os << __x.mean() << __space << __x._M_nd; | 
| 1439 |  | 
| 1440 |       __os.flags(__flags); | 
| 1441 |       __os.fill(__fill); | 
| 1442 |       __os.precision(__precision); | 
| 1443 |       return __os; | 
| 1444 |     } | 
| 1445 |  | 
| 1446 |   template<typename _IntType, | 
| 1447 | 	   typename _CharT, typename _Traits> | 
| 1448 |     std::basic_istream<_CharT, _Traits>& | 
| 1449 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1450 | 	       poisson_distribution<_IntType>& __x) | 
| 1451 |     { | 
| 1452 |       using param_type = typename poisson_distribution<_IntType>::param_type; | 
| 1453 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 1454 |  | 
| 1455 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 1456 |       __is.flags(__ios_base::skipws); | 
| 1457 |  | 
| 1458 |       double __mean; | 
| 1459 |       if (__is >> __mean >> __x._M_nd) | 
| 1460 | 	__x.param(param_type(__mean)); | 
| 1461 |  | 
| 1462 |       __is.flags(__flags); | 
| 1463 |       return __is; | 
| 1464 |     } | 
| 1465 |  | 
| 1466 |  | 
| 1467 |   template<typename _IntType> | 
| 1468 |     void | 
| 1469 |     binomial_distribution<_IntType>::param_type:: | 
| 1470 |     _M_initialize() | 
| 1471 |     { | 
| 1472 |       const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p; | 
| 1473 |  | 
| 1474 |       _M_easy = true; | 
| 1475 |  | 
| 1476 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 1477 |       if (_M_t * __p12 >= 8) | 
| 1478 | 	{ | 
| 1479 | 	  _M_easy = false; | 
| 1480 | 	  const double __np = std::floor(_M_t * __p12); | 
| 1481 | 	  const double __pa = __np / _M_t; | 
| 1482 | 	  const double __1p = 1 - __pa; | 
| 1483 |  | 
| 1484 | 	  const double __pi_4 = 0.7853981633974483096156608458198757L; | 
| 1485 | 	  const double __d1x = | 
| 1486 | 	    std::sqrt(x: __np * __1p * std::log(x: 32 * __np | 
| 1487 | 					     / (81 * __pi_4 * __1p))); | 
| 1488 | 	  _M_d1 = std::round(x: std::max<double>(a: 1.0, b: __d1x)); | 
| 1489 | 	  const double __d2x = | 
| 1490 | 	    std::sqrt(__np * __1p * std::log(32 * _M_t * __1p | 
| 1491 | 					     / (__pi_4 * __pa))); | 
| 1492 | 	  _M_d2 = std::round(x: std::max<double>(a: 1.0, b: __d2x)); | 
| 1493 |  | 
| 1494 | 	  // sqrt(pi / 2) | 
| 1495 | 	  const double __spi_2 = 1.2533141373155002512078826424055226L; | 
| 1496 | 	  _M_s1 = std::sqrt(x: __np * __1p) * (1 + _M_d1 / (4 * __np)); | 
| 1497 | 	  _M_s2 = std::sqrt(x: __np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p)); | 
| 1498 | 	  _M_c = 2 * _M_d1 / __np; | 
| 1499 | 	  _M_a1 = std::exp(x: _M_c) * _M_s1 * __spi_2; | 
| 1500 | 	  const double __a12 = _M_a1 + _M_s2 * __spi_2; | 
| 1501 | 	  const double __s1s = _M_s1 * _M_s1; | 
| 1502 | 	  _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p)) | 
| 1503 | 			     * 2 * __s1s / _M_d1 | 
| 1504 | 			     * std::exp(x: -_M_d1 * _M_d1 / (2 * __s1s))); | 
| 1505 | 	  const double __s2s = _M_s2 * _M_s2; | 
| 1506 | 	  _M_s = (_M_a123 + 2 * __s2s / _M_d2 | 
| 1507 | 		  * std::exp(x: -_M_d2 * _M_d2 / (2 * __s2s))); | 
| 1508 | 	  _M_lf = (std::lgamma(__np + 1) | 
| 1509 | 		   + std::lgamma(_M_t - __np + 1)); | 
| 1510 | 	  _M_lp1p = std::log(x: __pa / __1p); | 
| 1511 |  | 
| 1512 | 	  _M_q = -std::log(x: 1 - (__p12 - __pa) / __1p); | 
| 1513 | 	} | 
| 1514 |       else | 
| 1515 | #endif | 
| 1516 | 	_M_q = -std::log(x: 1 - __p12); | 
| 1517 |     } | 
| 1518 |  | 
| 1519 |   template<typename _IntType> | 
| 1520 |     template<typename _UniformRandomNumberGenerator> | 
| 1521 |       typename binomial_distribution<_IntType>::result_type | 
| 1522 |       binomial_distribution<_IntType>:: | 
| 1523 |       _M_waiting(_UniformRandomNumberGenerator& __urng, | 
| 1524 | 		 _IntType __t, double __q) | 
| 1525 |       { | 
| 1526 | 	_IntType __x = 0; | 
| 1527 | 	double __sum = 0.0; | 
| 1528 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 1529 | 	  __aurng(__urng); | 
| 1530 |  | 
| 1531 | 	do | 
| 1532 | 	  { | 
| 1533 | 	    if (__t == __x) | 
| 1534 | 	      return __x; | 
| 1535 | 	    const double __e = -std::log(1.0 - __aurng()); | 
| 1536 | 	    __sum += __e / (__t - __x); | 
| 1537 | 	    __x += 1; | 
| 1538 | 	  } | 
| 1539 | 	while (__sum <= __q); | 
| 1540 |  | 
| 1541 | 	return __x - 1; | 
| 1542 |       } | 
| 1543 |  | 
| 1544 |   /** | 
| 1545 |    * A rejection algorithm when t * p >= 8 and a simple waiting time | 
| 1546 |    * method - the second in the referenced book - otherwise. | 
| 1547 |    * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 | 
| 1548 |    * is defined. | 
| 1549 |    * | 
| 1550 |    * Reference: | 
| 1551 |    * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, | 
| 1552 |    * New York, 1986, Ch. X, Sect. 4 (+ Errata!). | 
| 1553 |    */ | 
| 1554 |   template<typename _IntType> | 
| 1555 |     template<typename _UniformRandomNumberGenerator> | 
| 1556 |       typename binomial_distribution<_IntType>::result_type | 
| 1557 |       binomial_distribution<_IntType>:: | 
| 1558 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 1559 | 		 const param_type& __param) | 
| 1560 |       { | 
| 1561 | 	result_type __ret; | 
| 1562 | 	const _IntType __t = __param.t(); | 
| 1563 | 	const double __p = __param.p(); | 
| 1564 | 	const double __p12 = __p <= 0.5 ? __p : 1.0 - __p; | 
| 1565 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 1566 | 	  __aurng(__urng); | 
| 1567 |  | 
| 1568 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 1569 | 	if (!__param._M_easy) | 
| 1570 | 	  { | 
| 1571 | 	    double __x; | 
| 1572 |  | 
| 1573 | 	    // See comments above... | 
| 1574 | 	    const double __naf = | 
| 1575 | 	      (1 - std::numeric_limits<double>::epsilon()) / 2; | 
| 1576 | 	    const double __thr = | 
| 1577 | 	      std::numeric_limits<_IntType>::max() + __naf; | 
| 1578 |  | 
| 1579 | 	    const double __np = std::floor(__t * __p12); | 
| 1580 |  | 
| 1581 | 	    // sqrt(pi / 2) | 
| 1582 | 	    const double __spi_2 = 1.2533141373155002512078826424055226L; | 
| 1583 | 	    const double __a1 = __param._M_a1; | 
| 1584 | 	    const double __a12 = __a1 + __param._M_s2 * __spi_2; | 
| 1585 | 	    const double __a123 = __param._M_a123; | 
| 1586 | 	    const double __s1s = __param._M_s1 * __param._M_s1; | 
| 1587 | 	    const double __s2s = __param._M_s2 * __param._M_s2; | 
| 1588 |  | 
| 1589 | 	    bool __reject; | 
| 1590 | 	    do | 
| 1591 | 	      { | 
| 1592 | 		const double __u = __param._M_s * __aurng(); | 
| 1593 |  | 
| 1594 | 		double __v; | 
| 1595 |  | 
| 1596 | 		if (__u <= __a1) | 
| 1597 | 		  { | 
| 1598 | 		    const double __n = _M_nd(__urng); | 
| 1599 | 		    const double __y = __param._M_s1 * std::abs(x: __n); | 
| 1600 | 		    __reject = __y >= __param._M_d1; | 
| 1601 | 		    if (!__reject) | 
| 1602 | 		      { | 
| 1603 | 			const double __e = -std::log(1.0 - __aurng()); | 
| 1604 | 			__x = std::floor(x: __y); | 
| 1605 | 			__v = -__e - __n * __n / 2 + __param._M_c; | 
| 1606 | 		      } | 
| 1607 | 		  } | 
| 1608 | 		else if (__u <= __a12) | 
| 1609 | 		  { | 
| 1610 | 		    const double __n = _M_nd(__urng); | 
| 1611 | 		    const double __y = __param._M_s2 * std::abs(x: __n); | 
| 1612 | 		    __reject = __y >= __param._M_d2; | 
| 1613 | 		    if (!__reject) | 
| 1614 | 		      { | 
| 1615 | 			const double __e = -std::log(1.0 - __aurng()); | 
| 1616 | 			__x = std::floor(x: -__y); | 
| 1617 | 			__v = -__e - __n * __n / 2; | 
| 1618 | 		      } | 
| 1619 | 		  } | 
| 1620 | 		else if (__u <= __a123) | 
| 1621 | 		  { | 
| 1622 | 		    const double __e1 = -std::log(1.0 - __aurng()); | 
| 1623 | 		    const double __e2 = -std::log(1.0 - __aurng()); | 
| 1624 |  | 
| 1625 | 		    const double __y = __param._M_d1 | 
| 1626 | 				     + 2 * __s1s * __e1 / __param._M_d1; | 
| 1627 | 		    __x = std::floor(x: __y); | 
| 1628 | 		    __v = (-__e2 + __param._M_d1 * (1 / (__t - __np) | 
| 1629 | 						    -__y / (2 * __s1s))); | 
| 1630 | 		    __reject = false; | 
| 1631 | 		  } | 
| 1632 | 		else | 
| 1633 | 		  { | 
| 1634 | 		    const double __e1 = -std::log(1.0 - __aurng()); | 
| 1635 | 		    const double __e2 = -std::log(1.0 - __aurng()); | 
| 1636 |  | 
| 1637 | 		    const double __y = __param._M_d2 | 
| 1638 | 				     + 2 * __s2s * __e1 / __param._M_d2; | 
| 1639 | 		    __x = std::floor(x: -__y); | 
| 1640 | 		    __v = -__e2 - __param._M_d2 * __y / (2 * __s2s); | 
| 1641 | 		    __reject = false; | 
| 1642 | 		  } | 
| 1643 |  | 
| 1644 | 		__reject = __reject || __x < -__np || __x > __t - __np; | 
| 1645 | 		if (!__reject) | 
| 1646 | 		  { | 
| 1647 | 		    const double __lfx = | 
| 1648 | 		      std::lgamma(__np + __x + 1) | 
| 1649 | 		      + std::lgamma(__t - (__np + __x) + 1); | 
| 1650 | 		    __reject = __v > __param._M_lf - __lfx | 
| 1651 | 			     + __x * __param._M_lp1p; | 
| 1652 | 		  } | 
| 1653 |  | 
| 1654 | 		__reject |= __x + __np >= __thr; | 
| 1655 | 	      } | 
| 1656 | 	    while (__reject); | 
| 1657 |  | 
| 1658 | 	    __x += __np + __naf; | 
| 1659 |  | 
| 1660 | 	    const _IntType __z = _M_waiting(__urng, __t - _IntType(__x), | 
| 1661 | 					    __param._M_q); | 
| 1662 | 	    __ret = _IntType(__x) + __z; | 
| 1663 | 	  } | 
| 1664 | 	else | 
| 1665 | #endif | 
| 1666 | 	  __ret = _M_waiting(__urng, __t, __param._M_q); | 
| 1667 |  | 
| 1668 | 	if (__p12 != __p) | 
| 1669 | 	  __ret = __t - __ret; | 
| 1670 | 	return __ret; | 
| 1671 |       } | 
| 1672 |  | 
| 1673 |   template<typename _IntType> | 
| 1674 |     template<typename _ForwardIterator, | 
| 1675 | 	     typename _UniformRandomNumberGenerator> | 
| 1676 |       void | 
| 1677 |       binomial_distribution<_IntType>:: | 
| 1678 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1679 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1680 | 		      const param_type& __param) | 
| 1681 |       { | 
| 1682 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1683 | 	// We could duplicate everything from operator()... | 
| 1684 | 	while (__f != __t) | 
| 1685 | 	  *__f++ = this->operator()(__urng, __param); | 
| 1686 |       } | 
| 1687 |  | 
| 1688 |   template<typename _IntType, | 
| 1689 | 	   typename _CharT, typename _Traits> | 
| 1690 |     std::basic_ostream<_CharT, _Traits>& | 
| 1691 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1692 | 	       const binomial_distribution<_IntType>& __x) | 
| 1693 |     { | 
| 1694 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 1695 |  | 
| 1696 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1697 |       const _CharT __fill = __os.fill(); | 
| 1698 |       const std::streamsize __precision = __os.precision(); | 
| 1699 |       const _CharT __space = __os.widen(' '); | 
| 1700 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1701 |       __os.fill(__space); | 
| 1702 |       __os.precision(std::numeric_limits<double>::max_digits10); | 
| 1703 |  | 
| 1704 |       __os << __x.t() << __space << __x.p() | 
| 1705 | 	   << __space << __x._M_nd; | 
| 1706 |  | 
| 1707 |       __os.flags(__flags); | 
| 1708 |       __os.fill(__fill); | 
| 1709 |       __os.precision(__precision); | 
| 1710 |       return __os; | 
| 1711 |     } | 
| 1712 |  | 
| 1713 |   template<typename _IntType, | 
| 1714 | 	   typename _CharT, typename _Traits> | 
| 1715 |     std::basic_istream<_CharT, _Traits>& | 
| 1716 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1717 | 	       binomial_distribution<_IntType>& __x) | 
| 1718 |     { | 
| 1719 |       using param_type = typename binomial_distribution<_IntType>::param_type; | 
| 1720 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 1721 |  | 
| 1722 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 1723 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 1724 |  | 
| 1725 |       _IntType __t; | 
| 1726 |       double __p; | 
| 1727 |       if (__is >> __t >> __p >> __x._M_nd) | 
| 1728 | 	__x.param(param_type(__t, __p)); | 
| 1729 |  | 
| 1730 |       __is.flags(__flags); | 
| 1731 |       return __is; | 
| 1732 |     } | 
| 1733 |  | 
| 1734 |  | 
| 1735 |   template<typename _RealType> | 
| 1736 |     template<typename _ForwardIterator, | 
| 1737 | 	     typename _UniformRandomNumberGenerator> | 
| 1738 |       void | 
| 1739 |       std::exponential_distribution<_RealType>:: | 
| 1740 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1741 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1742 | 		      const param_type& __p) | 
| 1743 |       { | 
| 1744 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1745 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 1746 | 	  __aurng(__urng); | 
| 1747 | 	while (__f != __t) | 
| 1748 | 	  *__f++ = -std::log(result_type(1) - __aurng()) / __p.lambda(); | 
| 1749 |       } | 
| 1750 |  | 
| 1751 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 1752 |     std::basic_ostream<_CharT, _Traits>& | 
| 1753 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1754 | 	       const exponential_distribution<_RealType>& __x) | 
| 1755 |     { | 
| 1756 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 1757 |  | 
| 1758 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1759 |       const _CharT __fill = __os.fill(); | 
| 1760 |       const std::streamsize __precision = __os.precision(); | 
| 1761 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1762 |       __os.fill(__os.widen(' ')); | 
| 1763 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 1764 |  | 
| 1765 |       __os << __x.lambda(); | 
| 1766 |  | 
| 1767 |       __os.flags(__flags); | 
| 1768 |       __os.fill(__fill); | 
| 1769 |       __os.precision(__precision); | 
| 1770 |       return __os; | 
| 1771 |     } | 
| 1772 |  | 
| 1773 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 1774 |     std::basic_istream<_CharT, _Traits>& | 
| 1775 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1776 | 	       exponential_distribution<_RealType>& __x) | 
| 1777 |     { | 
| 1778 |       using param_type | 
| 1779 | 	= typename exponential_distribution<_RealType>::param_type; | 
| 1780 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 1781 |  | 
| 1782 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 1783 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 1784 |  | 
| 1785 |       _RealType __lambda; | 
| 1786 |       if (__is >> __lambda) | 
| 1787 | 	__x.param(param_type(__lambda)); | 
| 1788 |  | 
| 1789 |       __is.flags(__flags); | 
| 1790 |       return __is; | 
| 1791 |     } | 
| 1792 |  | 
| 1793 |  | 
| 1794 |   /** | 
| 1795 |    * Polar method due to Marsaglia. | 
| 1796 |    * | 
| 1797 |    * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, | 
| 1798 |    * New York, 1986, Ch. V, Sect. 4.4. | 
| 1799 |    */ | 
| 1800 |   template<typename _RealType> | 
| 1801 |     template<typename _UniformRandomNumberGenerator> | 
| 1802 |       typename normal_distribution<_RealType>::result_type | 
| 1803 |       normal_distribution<_RealType>:: | 
| 1804 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 1805 | 		 const param_type& __param) | 
| 1806 |       { | 
| 1807 | 	result_type __ret; | 
| 1808 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 1809 | 	  __aurng(__urng); | 
| 1810 |  | 
| 1811 | 	if (_M_saved_available) | 
| 1812 | 	  { | 
| 1813 | 	    _M_saved_available = false; | 
| 1814 | 	    __ret = _M_saved; | 
| 1815 | 	  } | 
| 1816 | 	else | 
| 1817 | 	  { | 
| 1818 | 	    result_type __x, __y, __r2; | 
| 1819 | 	    do | 
| 1820 | 	      { | 
| 1821 | 		__x = result_type(2.0) * __aurng() - 1.0; | 
| 1822 | 		__y = result_type(2.0) * __aurng() - 1.0; | 
| 1823 | 		__r2 = __x * __x + __y * __y; | 
| 1824 | 	      } | 
| 1825 | 	    while (__r2 > 1.0 || __r2 == 0.0); | 
| 1826 |  | 
| 1827 | 	    const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); | 
| 1828 | 	    _M_saved = __x * __mult; | 
| 1829 | 	    _M_saved_available = true; | 
| 1830 | 	    __ret = __y * __mult; | 
| 1831 | 	  } | 
| 1832 |  | 
| 1833 | 	__ret = __ret * __param.stddev() + __param.mean(); | 
| 1834 | 	return __ret; | 
| 1835 |       } | 
| 1836 |  | 
| 1837 |   template<typename _RealType> | 
| 1838 |     template<typename _ForwardIterator, | 
| 1839 | 	     typename _UniformRandomNumberGenerator> | 
| 1840 |       void | 
| 1841 |       normal_distribution<_RealType>:: | 
| 1842 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1843 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1844 | 		      const param_type& __param) | 
| 1845 |       { | 
| 1846 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1847 |  | 
| 1848 | 	if (__f == __t) | 
| 1849 | 	  return; | 
| 1850 |  | 
| 1851 | 	if (_M_saved_available) | 
| 1852 | 	  { | 
| 1853 | 	    _M_saved_available = false; | 
| 1854 | 	    *__f++ = _M_saved * __param.stddev() + __param.mean(); | 
| 1855 |  | 
| 1856 | 	    if (__f == __t) | 
| 1857 | 	      return; | 
| 1858 | 	  } | 
| 1859 |  | 
| 1860 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 1861 | 	  __aurng(__urng); | 
| 1862 |  | 
| 1863 | 	while (__f + 1 < __t) | 
| 1864 | 	  { | 
| 1865 | 	    result_type __x, __y, __r2; | 
| 1866 | 	    do | 
| 1867 | 	      { | 
| 1868 | 		__x = result_type(2.0) * __aurng() - 1.0; | 
| 1869 | 		__y = result_type(2.0) * __aurng() - 1.0; | 
| 1870 | 		__r2 = __x * __x + __y * __y; | 
| 1871 | 	      } | 
| 1872 | 	    while (__r2 > 1.0 || __r2 == 0.0); | 
| 1873 |  | 
| 1874 | 	    const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); | 
| 1875 | 	    *__f++ = __y * __mult * __param.stddev() + __param.mean(); | 
| 1876 | 	    *__f++ = __x * __mult * __param.stddev() + __param.mean(); | 
| 1877 | 	  } | 
| 1878 |  | 
| 1879 | 	if (__f != __t) | 
| 1880 | 	  { | 
| 1881 | 	    result_type __x, __y, __r2; | 
| 1882 | 	    do | 
| 1883 | 	      { | 
| 1884 | 		__x = result_type(2.0) * __aurng() - 1.0; | 
| 1885 | 		__y = result_type(2.0) * __aurng() - 1.0; | 
| 1886 | 		__r2 = __x * __x + __y * __y; | 
| 1887 | 	      } | 
| 1888 | 	    while (__r2 > 1.0 || __r2 == 0.0); | 
| 1889 |  | 
| 1890 | 	    const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); | 
| 1891 | 	    _M_saved = __x * __mult; | 
| 1892 | 	    _M_saved_available = true; | 
| 1893 | 	    *__f = __y * __mult * __param.stddev() + __param.mean(); | 
| 1894 | 	  } | 
| 1895 |       } | 
| 1896 |  | 
| 1897 |   template<typename _RealType> | 
| 1898 |     bool | 
| 1899 |     operator==(const std::normal_distribution<_RealType>& __d1, | 
| 1900 | 	       const std::normal_distribution<_RealType>& __d2) | 
| 1901 |     { | 
| 1902 |       if (__d1._M_param == __d2._M_param | 
| 1903 | 	  && __d1._M_saved_available == __d2._M_saved_available) | 
| 1904 | 	{ | 
| 1905 | 	  if (__d1._M_saved_available | 
| 1906 | 	      && __d1._M_saved == __d2._M_saved) | 
| 1907 | 	    return true; | 
| 1908 | 	  else if(!__d1._M_saved_available) | 
| 1909 | 	    return true; | 
| 1910 | 	  else | 
| 1911 | 	    return false; | 
| 1912 | 	} | 
| 1913 |       else | 
| 1914 | 	return false; | 
| 1915 |     } | 
| 1916 |  | 
| 1917 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 1918 |     std::basic_ostream<_CharT, _Traits>& | 
| 1919 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1920 | 	       const normal_distribution<_RealType>& __x) | 
| 1921 |     { | 
| 1922 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 1923 |  | 
| 1924 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1925 |       const _CharT __fill = __os.fill(); | 
| 1926 |       const std::streamsize __precision = __os.precision(); | 
| 1927 |       const _CharT __space = __os.widen(' '); | 
| 1928 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1929 |       __os.fill(__space); | 
| 1930 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 1931 |  | 
| 1932 |       __os << __x.mean() << __space << __x.stddev() | 
| 1933 | 	   << __space << __x._M_saved_available; | 
| 1934 |       if (__x._M_saved_available) | 
| 1935 | 	__os << __space << __x._M_saved; | 
| 1936 |  | 
| 1937 |       __os.flags(__flags); | 
| 1938 |       __os.fill(__fill); | 
| 1939 |       __os.precision(__precision); | 
| 1940 |       return __os; | 
| 1941 |     } | 
| 1942 |  | 
| 1943 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 1944 |     std::basic_istream<_CharT, _Traits>& | 
| 1945 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 1946 | 	       normal_distribution<_RealType>& __x) | 
| 1947 |     { | 
| 1948 |       using param_type = typename normal_distribution<_RealType>::param_type; | 
| 1949 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 1950 |  | 
| 1951 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 1952 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 1953 |  | 
| 1954 |       double __mean, __stddev; | 
| 1955 |       bool __saved_avail; | 
| 1956 |       if (__is >> __mean >> __stddev >> __saved_avail) | 
| 1957 | 	{ | 
| 1958 | 	  if (!__saved_avail || (__is >> __x._M_saved)) | 
| 1959 | 	    { | 
| 1960 | 	      __x._M_saved_available = __saved_avail; | 
| 1961 | 	      __x.param(param_type(__mean, __stddev)); | 
| 1962 | 	    } | 
| 1963 | 	} | 
| 1964 |  | 
| 1965 |       __is.flags(__flags); | 
| 1966 |       return __is; | 
| 1967 |     } | 
| 1968 |  | 
| 1969 |  | 
| 1970 |   template<typename _RealType> | 
| 1971 |     template<typename _ForwardIterator, | 
| 1972 | 	     typename _UniformRandomNumberGenerator> | 
| 1973 |       void | 
| 1974 |       lognormal_distribution<_RealType>:: | 
| 1975 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 1976 | 		      _UniformRandomNumberGenerator& __urng, | 
| 1977 | 		      const param_type& __p) | 
| 1978 |       { | 
| 1979 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 1980 | 	  while (__f != __t) | 
| 1981 | 	    *__f++ = std::exp(__p.s() * _M_nd(__urng) + __p.m()); | 
| 1982 |       } | 
| 1983 |  | 
| 1984 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 1985 |     std::basic_ostream<_CharT, _Traits>& | 
| 1986 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 1987 | 	       const lognormal_distribution<_RealType>& __x) | 
| 1988 |     { | 
| 1989 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 1990 |  | 
| 1991 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 1992 |       const _CharT __fill = __os.fill(); | 
| 1993 |       const std::streamsize __precision = __os.precision(); | 
| 1994 |       const _CharT __space = __os.widen(' '); | 
| 1995 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 1996 |       __os.fill(__space); | 
| 1997 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 1998 |  | 
| 1999 |       __os << __x.m() << __space << __x.s() | 
| 2000 | 	   << __space << __x._M_nd; | 
| 2001 |  | 
| 2002 |       __os.flags(__flags); | 
| 2003 |       __os.fill(__fill); | 
| 2004 |       __os.precision(__precision); | 
| 2005 |       return __os; | 
| 2006 |     } | 
| 2007 |  | 
| 2008 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2009 |     std::basic_istream<_CharT, _Traits>& | 
| 2010 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2011 | 	       lognormal_distribution<_RealType>& __x) | 
| 2012 |     { | 
| 2013 |       using param_type | 
| 2014 | 	= typename lognormal_distribution<_RealType>::param_type; | 
| 2015 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 2016 |  | 
| 2017 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2018 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2019 |  | 
| 2020 |       _RealType __m, __s; | 
| 2021 |       if (__is >> __m >> __s >> __x._M_nd) | 
| 2022 | 	__x.param(param_type(__m, __s)); | 
| 2023 |  | 
| 2024 |       __is.flags(__flags); | 
| 2025 |       return __is; | 
| 2026 |     } | 
| 2027 |  | 
| 2028 |   template<typename _RealType> | 
| 2029 |     template<typename _ForwardIterator, | 
| 2030 | 	     typename _UniformRandomNumberGenerator> | 
| 2031 |       void | 
| 2032 |       std::chi_squared_distribution<_RealType>:: | 
| 2033 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2034 | 		      _UniformRandomNumberGenerator& __urng) | 
| 2035 |       { | 
| 2036 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2037 | 	while (__f != __t) | 
| 2038 | 	  *__f++ = 2 * _M_gd(__urng); | 
| 2039 |       } | 
| 2040 |  | 
| 2041 |   template<typename _RealType> | 
| 2042 |     template<typename _ForwardIterator, | 
| 2043 | 	     typename _UniformRandomNumberGenerator> | 
| 2044 |       void | 
| 2045 |       std::chi_squared_distribution<_RealType>:: | 
| 2046 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2047 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2048 | 		      const typename | 
| 2049 | 		      std::gamma_distribution<result_type>::param_type& __p) | 
| 2050 |       { | 
| 2051 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2052 | 	while (__f != __t) | 
| 2053 | 	  *__f++ = 2 * _M_gd(__urng, __p); | 
| 2054 |       } | 
| 2055 |  | 
| 2056 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2057 |     std::basic_ostream<_CharT, _Traits>& | 
| 2058 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2059 | 	       const chi_squared_distribution<_RealType>& __x) | 
| 2060 |     { | 
| 2061 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 2062 |  | 
| 2063 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2064 |       const _CharT __fill = __os.fill(); | 
| 2065 |       const std::streamsize __precision = __os.precision(); | 
| 2066 |       const _CharT __space = __os.widen(' '); | 
| 2067 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2068 |       __os.fill(__space); | 
| 2069 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2070 |  | 
| 2071 |       __os << __x.n() << __space << __x._M_gd; | 
| 2072 |  | 
| 2073 |       __os.flags(__flags); | 
| 2074 |       __os.fill(__fill); | 
| 2075 |       __os.precision(__precision); | 
| 2076 |       return __os; | 
| 2077 |     } | 
| 2078 |  | 
| 2079 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2080 |     std::basic_istream<_CharT, _Traits>& | 
| 2081 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2082 | 	       chi_squared_distribution<_RealType>& __x) | 
| 2083 |     { | 
| 2084 |       using param_type | 
| 2085 | 	= typename chi_squared_distribution<_RealType>::param_type; | 
| 2086 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 2087 |  | 
| 2088 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2089 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2090 |  | 
| 2091 |       _RealType __n; | 
| 2092 |       if (__is >> __n >> __x._M_gd) | 
| 2093 | 	__x.param(param_type(__n)); | 
| 2094 |  | 
| 2095 |       __is.flags(__flags); | 
| 2096 |       return __is; | 
| 2097 |     } | 
| 2098 |  | 
| 2099 |  | 
| 2100 |   template<typename _RealType> | 
| 2101 |     template<typename _UniformRandomNumberGenerator> | 
| 2102 |       typename cauchy_distribution<_RealType>::result_type | 
| 2103 |       cauchy_distribution<_RealType>:: | 
| 2104 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 2105 | 		 const param_type& __p) | 
| 2106 |       { | 
| 2107 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2108 | 	  __aurng(__urng); | 
| 2109 | 	_RealType __u; | 
| 2110 | 	do | 
| 2111 | 	  __u = __aurng(); | 
| 2112 | 	while (__u == 0.5); | 
| 2113 |  | 
| 2114 | 	const _RealType __pi = 3.1415926535897932384626433832795029L; | 
| 2115 | 	return __p.a() + __p.b() * std::tan(__pi * __u); | 
| 2116 |       } | 
| 2117 |  | 
| 2118 |   template<typename _RealType> | 
| 2119 |     template<typename _ForwardIterator, | 
| 2120 | 	     typename _UniformRandomNumberGenerator> | 
| 2121 |       void | 
| 2122 |       cauchy_distribution<_RealType>:: | 
| 2123 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2124 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2125 | 		      const param_type& __p) | 
| 2126 |       { | 
| 2127 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2128 | 	const _RealType __pi = 3.1415926535897932384626433832795029L; | 
| 2129 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2130 | 	  __aurng(__urng); | 
| 2131 | 	while (__f != __t) | 
| 2132 | 	  { | 
| 2133 | 	    _RealType __u; | 
| 2134 | 	    do | 
| 2135 | 	      __u = __aurng(); | 
| 2136 | 	    while (__u == 0.5); | 
| 2137 |  | 
| 2138 | 	    *__f++ = __p.a() + __p.b() * std::tan(__pi * __u); | 
| 2139 | 	  } | 
| 2140 |       } | 
| 2141 |  | 
| 2142 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2143 |     std::basic_ostream<_CharT, _Traits>& | 
| 2144 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2145 | 	       const cauchy_distribution<_RealType>& __x) | 
| 2146 |     { | 
| 2147 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 2148 |  | 
| 2149 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2150 |       const _CharT __fill = __os.fill(); | 
| 2151 |       const std::streamsize __precision = __os.precision(); | 
| 2152 |       const _CharT __space = __os.widen(' '); | 
| 2153 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2154 |       __os.fill(__space); | 
| 2155 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2156 |  | 
| 2157 |       __os << __x.a() << __space << __x.b(); | 
| 2158 |  | 
| 2159 |       __os.flags(__flags); | 
| 2160 |       __os.fill(__fill); | 
| 2161 |       __os.precision(__precision); | 
| 2162 |       return __os; | 
| 2163 |     } | 
| 2164 |  | 
| 2165 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2166 |     std::basic_istream<_CharT, _Traits>& | 
| 2167 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2168 | 	       cauchy_distribution<_RealType>& __x) | 
| 2169 |     { | 
| 2170 |       using param_type = typename cauchy_distribution<_RealType>::param_type; | 
| 2171 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 2172 |  | 
| 2173 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2174 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2175 |  | 
| 2176 |       _RealType __a, __b; | 
| 2177 |       if (__is >> __a >> __b) | 
| 2178 | 	__x.param(param_type(__a, __b)); | 
| 2179 |  | 
| 2180 |       __is.flags(__flags); | 
| 2181 |       return __is; | 
| 2182 |     } | 
| 2183 |  | 
| 2184 |  | 
| 2185 |   template<typename _RealType> | 
| 2186 |     template<typename _ForwardIterator, | 
| 2187 | 	     typename _UniformRandomNumberGenerator> | 
| 2188 |       void | 
| 2189 |       std::fisher_f_distribution<_RealType>:: | 
| 2190 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2191 | 		      _UniformRandomNumberGenerator& __urng) | 
| 2192 |       { | 
| 2193 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2194 | 	while (__f != __t) | 
| 2195 | 	  *__f++ = ((_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m())); | 
| 2196 |       } | 
| 2197 |  | 
| 2198 |   template<typename _RealType> | 
| 2199 |     template<typename _ForwardIterator, | 
| 2200 | 	     typename _UniformRandomNumberGenerator> | 
| 2201 |       void | 
| 2202 |       std::fisher_f_distribution<_RealType>:: | 
| 2203 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2204 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2205 | 		      const param_type& __p) | 
| 2206 |       { | 
| 2207 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2208 | 	typedef typename std::gamma_distribution<result_type>::param_type | 
| 2209 | 	  param_type; | 
| 2210 | 	param_type __p1(__p.m() / 2); | 
| 2211 | 	param_type __p2(__p.n() / 2); | 
| 2212 | 	while (__f != __t) | 
| 2213 | 	  *__f++ = ((_M_gd_x(__urng, __p1) * n()) | 
| 2214 | 		    / (_M_gd_y(__urng, __p2) * m())); | 
| 2215 |       } | 
| 2216 |  | 
| 2217 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2218 |     std::basic_ostream<_CharT, _Traits>& | 
| 2219 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2220 | 	       const fisher_f_distribution<_RealType>& __x) | 
| 2221 |     { | 
| 2222 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 2223 |  | 
| 2224 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2225 |       const _CharT __fill = __os.fill(); | 
| 2226 |       const std::streamsize __precision = __os.precision(); | 
| 2227 |       const _CharT __space = __os.widen(' '); | 
| 2228 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2229 |       __os.fill(__space); | 
| 2230 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2231 |  | 
| 2232 |       __os << __x.m() << __space << __x.n() | 
| 2233 | 	   << __space << __x._M_gd_x << __space << __x._M_gd_y; | 
| 2234 |  | 
| 2235 |       __os.flags(__flags); | 
| 2236 |       __os.fill(__fill); | 
| 2237 |       __os.precision(__precision); | 
| 2238 |       return __os; | 
| 2239 |     } | 
| 2240 |  | 
| 2241 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2242 |     std::basic_istream<_CharT, _Traits>& | 
| 2243 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2244 | 	       fisher_f_distribution<_RealType>& __x) | 
| 2245 |     { | 
| 2246 |       using param_type | 
| 2247 | 	= typename fisher_f_distribution<_RealType>::param_type; | 
| 2248 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 2249 |  | 
| 2250 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2251 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2252 |  | 
| 2253 |       _RealType __m, __n; | 
| 2254 |       if (__is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y) | 
| 2255 | 	__x.param(param_type(__m, __n)); | 
| 2256 |  | 
| 2257 |       __is.flags(__flags); | 
| 2258 |       return __is; | 
| 2259 |     } | 
| 2260 |  | 
| 2261 |  | 
| 2262 |   template<typename _RealType> | 
| 2263 |     template<typename _ForwardIterator, | 
| 2264 | 	     typename _UniformRandomNumberGenerator> | 
| 2265 |       void | 
| 2266 |       std::student_t_distribution<_RealType>:: | 
| 2267 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2268 | 		      _UniformRandomNumberGenerator& __urng) | 
| 2269 |       { | 
| 2270 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2271 | 	while (__f != __t) | 
| 2272 | 	  *__f++ = _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); | 
| 2273 |       } | 
| 2274 |  | 
| 2275 |   template<typename _RealType> | 
| 2276 |     template<typename _ForwardIterator, | 
| 2277 | 	     typename _UniformRandomNumberGenerator> | 
| 2278 |       void | 
| 2279 |       std::student_t_distribution<_RealType>:: | 
| 2280 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2281 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2282 | 		      const param_type& __p) | 
| 2283 |       { | 
| 2284 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2285 | 	typename std::gamma_distribution<result_type>::param_type | 
| 2286 | 	  __p2(__p.n() / 2, 2); | 
| 2287 | 	while (__f != __t) | 
| 2288 | 	  *__f++ =  _M_nd(__urng) * std::sqrt(__p.n() / _M_gd(__urng, __p2)); | 
| 2289 |       } | 
| 2290 |  | 
| 2291 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2292 |     std::basic_ostream<_CharT, _Traits>& | 
| 2293 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2294 | 	       const student_t_distribution<_RealType>& __x) | 
| 2295 |     { | 
| 2296 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 2297 |  | 
| 2298 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2299 |       const _CharT __fill = __os.fill(); | 
| 2300 |       const std::streamsize __precision = __os.precision(); | 
| 2301 |       const _CharT __space = __os.widen(' '); | 
| 2302 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2303 |       __os.fill(__space); | 
| 2304 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2305 |  | 
| 2306 |       __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd; | 
| 2307 |  | 
| 2308 |       __os.flags(__flags); | 
| 2309 |       __os.fill(__fill); | 
| 2310 |       __os.precision(__precision); | 
| 2311 |       return __os; | 
| 2312 |     } | 
| 2313 |  | 
| 2314 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2315 |     std::basic_istream<_CharT, _Traits>& | 
| 2316 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2317 | 	       student_t_distribution<_RealType>& __x) | 
| 2318 |     { | 
| 2319 |       using param_type | 
| 2320 | 	= typename student_t_distribution<_RealType>::param_type; | 
| 2321 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 2322 |  | 
| 2323 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2324 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2325 |  | 
| 2326 |       _RealType __n; | 
| 2327 |       if (__is >> __n >> __x._M_nd >> __x._M_gd) | 
| 2328 | 	__x.param(param_type(__n)); | 
| 2329 |  | 
| 2330 |       __is.flags(__flags); | 
| 2331 |       return __is; | 
| 2332 |     } | 
| 2333 |  | 
| 2334 |  | 
| 2335 |   template<typename _RealType> | 
| 2336 |     void | 
| 2337 |     gamma_distribution<_RealType>::param_type:: | 
| 2338 |     _M_initialize() | 
| 2339 |     { | 
| 2340 |       _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha; | 
| 2341 |  | 
| 2342 |       const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0); | 
| 2343 |       _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1); | 
| 2344 |     } | 
| 2345 |  | 
| 2346 |   /** | 
| 2347 |    * Marsaglia, G. and Tsang, W. W. | 
| 2348 |    * "A Simple Method for Generating Gamma Variables" | 
| 2349 |    * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000. | 
| 2350 |    */ | 
| 2351 |   template<typename _RealType> | 
| 2352 |     template<typename _UniformRandomNumberGenerator> | 
| 2353 |       typename gamma_distribution<_RealType>::result_type | 
| 2354 |       gamma_distribution<_RealType>:: | 
| 2355 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 2356 | 		 const param_type& __param) | 
| 2357 |       { | 
| 2358 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2359 | 	  __aurng(__urng); | 
| 2360 |  | 
| 2361 | 	result_type __u, __v, __n; | 
| 2362 | 	const result_type __a1 = (__param._M_malpha | 
| 2363 | 				  - _RealType(1.0) / _RealType(3.0)); | 
| 2364 |  | 
| 2365 | 	do | 
| 2366 | 	  { | 
| 2367 | 	    do | 
| 2368 | 	      { | 
| 2369 | 		__n = _M_nd(__urng); | 
| 2370 | 		__v = result_type(1.0) + __param._M_a2 * __n;  | 
| 2371 | 	      } | 
| 2372 | 	    while (__v <= 0.0); | 
| 2373 |  | 
| 2374 | 	    __v = __v * __v * __v; | 
| 2375 | 	    __u = __aurng(); | 
| 2376 | 	  } | 
| 2377 | 	while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n | 
| 2378 | 	       && (std::log(__u) > (0.5 * __n * __n + __a1 | 
| 2379 | 				    * (1.0 - __v + std::log(__v))))); | 
| 2380 |  | 
| 2381 | 	if (__param.alpha() == __param._M_malpha) | 
| 2382 | 	  return __a1 * __v * __param.beta(); | 
| 2383 | 	else | 
| 2384 | 	  { | 
| 2385 | 	    do | 
| 2386 | 	      __u = __aurng(); | 
| 2387 | 	    while (__u == 0.0); | 
| 2388 | 	     | 
| 2389 | 	    return (std::pow(__u, result_type(1.0) / __param.alpha()) | 
| 2390 | 		    * __a1 * __v * __param.beta()); | 
| 2391 | 	  } | 
| 2392 |       } | 
| 2393 |  | 
| 2394 |   template<typename _RealType> | 
| 2395 |     template<typename _ForwardIterator, | 
| 2396 | 	     typename _UniformRandomNumberGenerator> | 
| 2397 |       void | 
| 2398 |       gamma_distribution<_RealType>:: | 
| 2399 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2400 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2401 | 		      const param_type& __param) | 
| 2402 |       { | 
| 2403 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2404 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2405 | 	  __aurng(__urng); | 
| 2406 |  | 
| 2407 | 	result_type __u, __v, __n; | 
| 2408 | 	const result_type __a1 = (__param._M_malpha | 
| 2409 | 				  - _RealType(1.0) / _RealType(3.0)); | 
| 2410 |  | 
| 2411 | 	if (__param.alpha() == __param._M_malpha) | 
| 2412 | 	  while (__f != __t) | 
| 2413 | 	    { | 
| 2414 | 	      do | 
| 2415 | 		{ | 
| 2416 | 		  do | 
| 2417 | 		    { | 
| 2418 | 		      __n = _M_nd(__urng); | 
| 2419 | 		      __v = result_type(1.0) + __param._M_a2 * __n; | 
| 2420 | 		    } | 
| 2421 | 		  while (__v <= 0.0); | 
| 2422 |  | 
| 2423 | 		  __v = __v * __v * __v; | 
| 2424 | 		  __u = __aurng(); | 
| 2425 | 		} | 
| 2426 | 	      while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n | 
| 2427 | 		     && (std::log(__u) > (0.5 * __n * __n + __a1 | 
| 2428 | 					  * (1.0 - __v + std::log(__v))))); | 
| 2429 |  | 
| 2430 | 	      *__f++ = __a1 * __v * __param.beta(); | 
| 2431 | 	    } | 
| 2432 | 	else | 
| 2433 | 	  while (__f != __t) | 
| 2434 | 	    { | 
| 2435 | 	      do | 
| 2436 | 		{ | 
| 2437 | 		  do | 
| 2438 | 		    { | 
| 2439 | 		      __n = _M_nd(__urng); | 
| 2440 | 		      __v = result_type(1.0) + __param._M_a2 * __n; | 
| 2441 | 		    } | 
| 2442 | 		  while (__v <= 0.0); | 
| 2443 |  | 
| 2444 | 		  __v = __v * __v * __v; | 
| 2445 | 		  __u = __aurng(); | 
| 2446 | 		} | 
| 2447 | 	      while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n | 
| 2448 | 		     && (std::log(__u) > (0.5 * __n * __n + __a1 | 
| 2449 | 					  * (1.0 - __v + std::log(__v))))); | 
| 2450 |  | 
| 2451 | 	      do | 
| 2452 | 		__u = __aurng(); | 
| 2453 | 	      while (__u == 0.0); | 
| 2454 |  | 
| 2455 | 	      *__f++ = (std::pow(__u, result_type(1.0) / __param.alpha()) | 
| 2456 | 			* __a1 * __v * __param.beta()); | 
| 2457 | 	    } | 
| 2458 |       } | 
| 2459 |  | 
| 2460 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2461 |     std::basic_ostream<_CharT, _Traits>& | 
| 2462 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2463 | 	       const gamma_distribution<_RealType>& __x) | 
| 2464 |     { | 
| 2465 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 2466 |  | 
| 2467 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2468 |       const _CharT __fill = __os.fill(); | 
| 2469 |       const std::streamsize __precision = __os.precision(); | 
| 2470 |       const _CharT __space = __os.widen(' '); | 
| 2471 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2472 |       __os.fill(__space); | 
| 2473 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2474 |  | 
| 2475 |       __os << __x.alpha() << __space << __x.beta() | 
| 2476 | 	   << __space << __x._M_nd; | 
| 2477 |  | 
| 2478 |       __os.flags(__flags); | 
| 2479 |       __os.fill(__fill); | 
| 2480 |       __os.precision(__precision); | 
| 2481 |       return __os; | 
| 2482 |     } | 
| 2483 |  | 
| 2484 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2485 |     std::basic_istream<_CharT, _Traits>& | 
| 2486 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2487 | 	       gamma_distribution<_RealType>& __x) | 
| 2488 |     { | 
| 2489 |       using param_type = typename gamma_distribution<_RealType>::param_type; | 
| 2490 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 2491 |  | 
| 2492 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2493 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2494 |  | 
| 2495 |       _RealType __alpha_val, __beta_val; | 
| 2496 |       if (__is >> __alpha_val >> __beta_val >> __x._M_nd) | 
| 2497 | 	__x.param(param_type(__alpha_val, __beta_val)); | 
| 2498 |  | 
| 2499 |       __is.flags(__flags); | 
| 2500 |       return __is; | 
| 2501 |     } | 
| 2502 |  | 
| 2503 |  | 
| 2504 |   template<typename _RealType> | 
| 2505 |     template<typename _UniformRandomNumberGenerator> | 
| 2506 |       typename weibull_distribution<_RealType>::result_type | 
| 2507 |       weibull_distribution<_RealType>:: | 
| 2508 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 2509 | 		 const param_type& __p) | 
| 2510 |       { | 
| 2511 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2512 | 	  __aurng(__urng); | 
| 2513 | 	return __p.b() * std::pow(-std::log(result_type(1) - __aurng()), | 
| 2514 | 				  result_type(1) / __p.a()); | 
| 2515 |       } | 
| 2516 |  | 
| 2517 |   template<typename _RealType> | 
| 2518 |     template<typename _ForwardIterator, | 
| 2519 | 	     typename _UniformRandomNumberGenerator> | 
| 2520 |       void | 
| 2521 |       weibull_distribution<_RealType>:: | 
| 2522 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2523 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2524 | 		      const param_type& __p) | 
| 2525 |       { | 
| 2526 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2527 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2528 | 	  __aurng(__urng); | 
| 2529 | 	auto __inv_a = result_type(1) / __p.a(); | 
| 2530 |  | 
| 2531 | 	while (__f != __t) | 
| 2532 | 	  *__f++ = __p.b() * std::pow(-std::log(result_type(1) - __aurng()), | 
| 2533 | 				      __inv_a); | 
| 2534 |       } | 
| 2535 |  | 
| 2536 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2537 |     std::basic_ostream<_CharT, _Traits>& | 
| 2538 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2539 | 	       const weibull_distribution<_RealType>& __x) | 
| 2540 |     { | 
| 2541 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 2542 |  | 
| 2543 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2544 |       const _CharT __fill = __os.fill(); | 
| 2545 |       const std::streamsize __precision = __os.precision(); | 
| 2546 |       const _CharT __space = __os.widen(' '); | 
| 2547 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2548 |       __os.fill(__space); | 
| 2549 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2550 |  | 
| 2551 |       __os << __x.a() << __space << __x.b(); | 
| 2552 |  | 
| 2553 |       __os.flags(__flags); | 
| 2554 |       __os.fill(__fill); | 
| 2555 |       __os.precision(__precision); | 
| 2556 |       return __os; | 
| 2557 |     } | 
| 2558 |  | 
| 2559 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2560 |     std::basic_istream<_CharT, _Traits>& | 
| 2561 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2562 | 	       weibull_distribution<_RealType>& __x) | 
| 2563 |     { | 
| 2564 |       using param_type = typename weibull_distribution<_RealType>::param_type; | 
| 2565 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 2566 |  | 
| 2567 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2568 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2569 |  | 
| 2570 |       _RealType __a, __b; | 
| 2571 |       if (__is >> __a >> __b) | 
| 2572 | 	__x.param(param_type(__a, __b)); | 
| 2573 |  | 
| 2574 |       __is.flags(__flags); | 
| 2575 |       return __is; | 
| 2576 |     } | 
| 2577 |  | 
| 2578 |  | 
| 2579 |   template<typename _RealType> | 
| 2580 |     template<typename _UniformRandomNumberGenerator> | 
| 2581 |       typename extreme_value_distribution<_RealType>::result_type | 
| 2582 |       extreme_value_distribution<_RealType>:: | 
| 2583 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 2584 | 		 const param_type& __p) | 
| 2585 |       { | 
| 2586 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2587 | 	  __aurng(__urng); | 
| 2588 | 	return __p.a() - __p.b() * std::log(-std::log(result_type(1) | 
| 2589 | 						      - __aurng())); | 
| 2590 |       } | 
| 2591 |  | 
| 2592 |   template<typename _RealType> | 
| 2593 |     template<typename _ForwardIterator, | 
| 2594 | 	     typename _UniformRandomNumberGenerator> | 
| 2595 |       void | 
| 2596 |       extreme_value_distribution<_RealType>:: | 
| 2597 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2598 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2599 | 		      const param_type& __p) | 
| 2600 |       { | 
| 2601 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2602 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, result_type> | 
| 2603 | 	  __aurng(__urng); | 
| 2604 |  | 
| 2605 | 	while (__f != __t) | 
| 2606 | 	  *__f++ = __p.a() - __p.b() * std::log(-std::log(result_type(1) | 
| 2607 | 							  - __aurng())); | 
| 2608 |       } | 
| 2609 |  | 
| 2610 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2611 |     std::basic_ostream<_CharT, _Traits>& | 
| 2612 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2613 | 	       const extreme_value_distribution<_RealType>& __x) | 
| 2614 |     { | 
| 2615 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 2616 |  | 
| 2617 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2618 |       const _CharT __fill = __os.fill(); | 
| 2619 |       const std::streamsize __precision = __os.precision(); | 
| 2620 |       const _CharT __space = __os.widen(' '); | 
| 2621 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2622 |       __os.fill(__space); | 
| 2623 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2624 |  | 
| 2625 |       __os << __x.a() << __space << __x.b(); | 
| 2626 |  | 
| 2627 |       __os.flags(__flags); | 
| 2628 |       __os.fill(__fill); | 
| 2629 |       __os.precision(__precision); | 
| 2630 |       return __os; | 
| 2631 |     } | 
| 2632 |  | 
| 2633 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2634 |     std::basic_istream<_CharT, _Traits>& | 
| 2635 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2636 | 	       extreme_value_distribution<_RealType>& __x) | 
| 2637 |     { | 
| 2638 |       using param_type | 
| 2639 | 	= typename extreme_value_distribution<_RealType>::param_type; | 
| 2640 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 2641 |  | 
| 2642 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2643 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2644 |  | 
| 2645 |       _RealType __a, __b; | 
| 2646 |       if (__is >> __a >> __b) | 
| 2647 | 	__x.param(param_type(__a, __b)); | 
| 2648 |  | 
| 2649 |       __is.flags(__flags); | 
| 2650 |       return __is; | 
| 2651 |     } | 
| 2652 |  | 
| 2653 |  | 
| 2654 |   template<typename _IntType> | 
| 2655 |     void | 
| 2656 |     discrete_distribution<_IntType>::param_type:: | 
| 2657 |     _M_initialize() | 
| 2658 |     { | 
| 2659 |       if (_M_prob.size() < 2) | 
| 2660 | 	{ | 
| 2661 | 	  _M_prob.clear(); | 
| 2662 | 	  return; | 
| 2663 | 	} | 
| 2664 |  | 
| 2665 |       const double __sum = std::accumulate(first: _M_prob.begin(), | 
| 2666 | 					   last: _M_prob.end(), init: 0.0); | 
| 2667 |       __glibcxx_assert(__sum > 0); | 
| 2668 |       // Now normalize the probabilites. | 
| 2669 |       __detail::__normalize(first: _M_prob.begin(), last: _M_prob.end(), result: _M_prob.begin(), | 
| 2670 | 			    factor: __sum); | 
| 2671 |       // Accumulate partial sums. | 
| 2672 |       _M_cp.reserve(n: _M_prob.size()); | 
| 2673 |       std::partial_sum(first: _M_prob.begin(), last: _M_prob.end(), | 
| 2674 | 		       result: std::back_inserter(x&: _M_cp)); | 
| 2675 |       // Make sure the last cumulative probability is one. | 
| 2676 |       _M_cp[_M_cp.size() - 1] = 1.0; | 
| 2677 |     } | 
| 2678 |  | 
| 2679 |   template<typename _IntType> | 
| 2680 |     template<typename _Func> | 
| 2681 |       discrete_distribution<_IntType>::param_type:: | 
| 2682 |       param_type(size_t __nw, double __xmin, double __xmax, _Func __fw) | 
| 2683 |       : _M_prob(), _M_cp() | 
| 2684 |       { | 
| 2685 | 	const size_t __n = __nw == 0 ? 1 : __nw; | 
| 2686 | 	const double __delta = (__xmax - __xmin) / __n; | 
| 2687 |  | 
| 2688 | 	_M_prob.reserve(__n); | 
| 2689 | 	for (size_t __k = 0; __k < __nw; ++__k) | 
| 2690 | 	  _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta)); | 
| 2691 |  | 
| 2692 | 	_M_initialize(); | 
| 2693 |       } | 
| 2694 |  | 
| 2695 |   template<typename _IntType> | 
| 2696 |     template<typename _UniformRandomNumberGenerator> | 
| 2697 |       typename discrete_distribution<_IntType>::result_type | 
| 2698 |       discrete_distribution<_IntType>:: | 
| 2699 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 2700 | 		 const param_type& __param) | 
| 2701 |       { | 
| 2702 | 	if (__param._M_cp.empty()) | 
| 2703 | 	  return result_type(0); | 
| 2704 |  | 
| 2705 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 2706 | 	  __aurng(__urng); | 
| 2707 |  | 
| 2708 | 	const double __p = __aurng(); | 
| 2709 | 	auto __pos = std::lower_bound(__param._M_cp.begin(), | 
| 2710 | 				      __param._M_cp.end(), __p); | 
| 2711 |  | 
| 2712 | 	return __pos - __param._M_cp.begin(); | 
| 2713 |       } | 
| 2714 |  | 
| 2715 |   template<typename _IntType> | 
| 2716 |     template<typename _ForwardIterator, | 
| 2717 | 	     typename _UniformRandomNumberGenerator> | 
| 2718 |       void | 
| 2719 |       discrete_distribution<_IntType>:: | 
| 2720 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2721 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2722 | 		      const param_type& __param) | 
| 2723 |       { | 
| 2724 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2725 |  | 
| 2726 | 	if (__param._M_cp.empty()) | 
| 2727 | 	  { | 
| 2728 | 	    while (__f != __t) | 
| 2729 | 	      *__f++ = result_type(0); | 
| 2730 | 	    return; | 
| 2731 | 	  } | 
| 2732 |  | 
| 2733 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 2734 | 	  __aurng(__urng); | 
| 2735 |  | 
| 2736 | 	while (__f != __t) | 
| 2737 | 	  { | 
| 2738 | 	    const double __p = __aurng(); | 
| 2739 | 	    auto __pos = std::lower_bound(__param._M_cp.begin(), | 
| 2740 | 					  __param._M_cp.end(), __p); | 
| 2741 |  | 
| 2742 | 	    *__f++ = __pos - __param._M_cp.begin(); | 
| 2743 | 	  } | 
| 2744 |       } | 
| 2745 |  | 
| 2746 |   template<typename _IntType, typename _CharT, typename _Traits> | 
| 2747 |     std::basic_ostream<_CharT, _Traits>& | 
| 2748 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2749 | 	       const discrete_distribution<_IntType>& __x) | 
| 2750 |     { | 
| 2751 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 2752 |  | 
| 2753 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2754 |       const _CharT __fill = __os.fill(); | 
| 2755 |       const std::streamsize __precision = __os.precision(); | 
| 2756 |       const _CharT __space = __os.widen(' '); | 
| 2757 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2758 |       __os.fill(__space); | 
| 2759 |       __os.precision(std::numeric_limits<double>::max_digits10); | 
| 2760 |  | 
| 2761 |       std::vector<double> __prob = __x.probabilities(); | 
| 2762 |       __os << __prob.size(); | 
| 2763 |       for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit) | 
| 2764 | 	__os << __space << *__dit; | 
| 2765 |  | 
| 2766 |       __os.flags(__flags); | 
| 2767 |       __os.fill(__fill); | 
| 2768 |       __os.precision(__precision); | 
| 2769 |       return __os; | 
| 2770 |     } | 
| 2771 |  | 
| 2772 | namespace __detail | 
| 2773 | { | 
| 2774 |   template<typename _ValT, typename _CharT, typename _Traits> | 
| 2775 |     basic_istream<_CharT, _Traits>& | 
| 2776 |     (basic_istream<_CharT, _Traits>& __is, | 
| 2777 | 		     vector<_ValT>& __vals, size_t __n) | 
| 2778 |     { | 
| 2779 |       __vals.reserve(__n); | 
| 2780 |       while (__n--) | 
| 2781 | 	{ | 
| 2782 | 	  _ValT __val; | 
| 2783 | 	  if (__is >> __val) | 
| 2784 | 	    __vals.push_back(__val); | 
| 2785 | 	  else | 
| 2786 | 	    break; | 
| 2787 | 	} | 
| 2788 |       return __is; | 
| 2789 |     } | 
| 2790 | } // namespace __detail | 
| 2791 |  | 
| 2792 |   template<typename _IntType, typename _CharT, typename _Traits> | 
| 2793 |     std::basic_istream<_CharT, _Traits>& | 
| 2794 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 2795 | 	       discrete_distribution<_IntType>& __x) | 
| 2796 |     { | 
| 2797 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 2798 |  | 
| 2799 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 2800 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 2801 |  | 
| 2802 |       size_t __n; | 
| 2803 |       if (__is >> __n) | 
| 2804 | 	{ | 
| 2805 | 	  std::vector<double> __prob_vec; | 
| 2806 | 	  if (__detail::__extract_params(__is, __prob_vec, __n)) | 
| 2807 | 	    __x.param({__prob_vec.begin(), __prob_vec.end()}); | 
| 2808 | 	} | 
| 2809 |  | 
| 2810 |       __is.flags(__flags); | 
| 2811 |       return __is; | 
| 2812 |     } | 
| 2813 |  | 
| 2814 |  | 
| 2815 |   template<typename _RealType> | 
| 2816 |     void | 
| 2817 |     piecewise_constant_distribution<_RealType>::param_type:: | 
| 2818 |     _M_initialize() | 
| 2819 |     { | 
| 2820 |       if (_M_int.size() < 2 | 
| 2821 | 	  || (_M_int.size() == 2 | 
| 2822 | 	      && _M_int[0] == _RealType(0) | 
| 2823 | 	      && _M_int[1] == _RealType(1))) | 
| 2824 | 	{ | 
| 2825 | 	  _M_int.clear(); | 
| 2826 | 	  _M_den.clear(); | 
| 2827 | 	  return; | 
| 2828 | 	} | 
| 2829 |  | 
| 2830 |       const double __sum = std::accumulate(first: _M_den.begin(), | 
| 2831 | 					   last: _M_den.end(), init: 0.0); | 
| 2832 |       __glibcxx_assert(__sum > 0); | 
| 2833 |  | 
| 2834 |       __detail::__normalize(first: _M_den.begin(), last: _M_den.end(), result: _M_den.begin(), | 
| 2835 | 			    factor: __sum); | 
| 2836 |  | 
| 2837 |       _M_cp.reserve(n: _M_den.size()); | 
| 2838 |       std::partial_sum(first: _M_den.begin(), last: _M_den.end(), | 
| 2839 | 		       result: std::back_inserter(x&: _M_cp)); | 
| 2840 |  | 
| 2841 |       // Make sure the last cumulative probability is one. | 
| 2842 |       _M_cp[_M_cp.size() - 1] = 1.0; | 
| 2843 |  | 
| 2844 |       for (size_t __k = 0; __k < _M_den.size(); ++__k) | 
| 2845 | 	_M_den[__k] /= _M_int[__k + 1] - _M_int[__k]; | 
| 2846 |     } | 
| 2847 |  | 
| 2848 |   template<typename _RealType> | 
| 2849 |     template<typename _InputIteratorB, typename _InputIteratorW> | 
| 2850 |       piecewise_constant_distribution<_RealType>::param_type:: | 
| 2851 |       param_type(_InputIteratorB __bbegin, | 
| 2852 | 		 _InputIteratorB __bend, | 
| 2853 | 		 _InputIteratorW __wbegin) | 
| 2854 |       : _M_int(), _M_den(), _M_cp() | 
| 2855 |       { | 
| 2856 | 	if (__bbegin != __bend) | 
| 2857 | 	  { | 
| 2858 | 	    for (;;) | 
| 2859 | 	      { | 
| 2860 | 		_M_int.push_back(*__bbegin); | 
| 2861 | 		++__bbegin; | 
| 2862 | 		if (__bbegin == __bend) | 
| 2863 | 		  break; | 
| 2864 |  | 
| 2865 | 		_M_den.push_back(*__wbegin); | 
| 2866 | 		++__wbegin; | 
| 2867 | 	      } | 
| 2868 | 	  } | 
| 2869 |  | 
| 2870 | 	_M_initialize(); | 
| 2871 |       } | 
| 2872 |  | 
| 2873 |   template<typename _RealType> | 
| 2874 |     template<typename _Func> | 
| 2875 |       piecewise_constant_distribution<_RealType>::param_type:: | 
| 2876 |       param_type(initializer_list<_RealType> __bl, _Func __fw) | 
| 2877 |       : _M_int(), _M_den(), _M_cp() | 
| 2878 |       { | 
| 2879 | 	_M_int.reserve(__bl.size()); | 
| 2880 | 	for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) | 
| 2881 | 	  _M_int.push_back(*__biter); | 
| 2882 |  | 
| 2883 | 	_M_den.reserve(n: _M_int.size() - 1); | 
| 2884 | 	for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) | 
| 2885 | 	  _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k]))); | 
| 2886 |  | 
| 2887 | 	_M_initialize(); | 
| 2888 |       } | 
| 2889 |  | 
| 2890 |   template<typename _RealType> | 
| 2891 |     template<typename _Func> | 
| 2892 |       piecewise_constant_distribution<_RealType>::param_type:: | 
| 2893 |       param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) | 
| 2894 |       : _M_int(), _M_den(), _M_cp() | 
| 2895 |       { | 
| 2896 | 	const size_t __n = __nw == 0 ? 1 : __nw; | 
| 2897 | 	const _RealType __delta = (__xmax - __xmin) / __n; | 
| 2898 |  | 
| 2899 | 	_M_int.reserve(__n + 1); | 
| 2900 | 	for (size_t __k = 0; __k <= __nw; ++__k) | 
| 2901 | 	  _M_int.push_back(__xmin + __k * __delta); | 
| 2902 |  | 
| 2903 | 	_M_den.reserve(__n); | 
| 2904 | 	for (size_t __k = 0; __k < __nw; ++__k) | 
| 2905 | 	  _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta)); | 
| 2906 |  | 
| 2907 | 	_M_initialize(); | 
| 2908 |       } | 
| 2909 |  | 
| 2910 |   template<typename _RealType> | 
| 2911 |     template<typename _UniformRandomNumberGenerator> | 
| 2912 |       typename piecewise_constant_distribution<_RealType>::result_type | 
| 2913 |       piecewise_constant_distribution<_RealType>:: | 
| 2914 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 2915 | 		 const param_type& __param) | 
| 2916 |       { | 
| 2917 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 2918 | 	  __aurng(__urng); | 
| 2919 |  | 
| 2920 | 	const double __p = __aurng(); | 
| 2921 | 	if (__param._M_cp.empty()) | 
| 2922 | 	  return __p; | 
| 2923 |  | 
| 2924 | 	auto __pos = std::lower_bound(__param._M_cp.begin(), | 
| 2925 | 				      __param._M_cp.end(), __p); | 
| 2926 | 	const size_t __i = __pos - __param._M_cp.begin(); | 
| 2927 |  | 
| 2928 | 	const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; | 
| 2929 |  | 
| 2930 | 	return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i]; | 
| 2931 |       } | 
| 2932 |  | 
| 2933 |   template<typename _RealType> | 
| 2934 |     template<typename _ForwardIterator, | 
| 2935 | 	     typename _UniformRandomNumberGenerator> | 
| 2936 |       void | 
| 2937 |       piecewise_constant_distribution<_RealType>:: | 
| 2938 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 2939 | 		      _UniformRandomNumberGenerator& __urng, | 
| 2940 | 		      const param_type& __param) | 
| 2941 |       { | 
| 2942 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 2943 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 2944 | 	  __aurng(__urng); | 
| 2945 |  | 
| 2946 | 	if (__param._M_cp.empty()) | 
| 2947 | 	  { | 
| 2948 | 	    while (__f != __t) | 
| 2949 | 	      *__f++ = __aurng(); | 
| 2950 | 	    return; | 
| 2951 | 	  } | 
| 2952 |  | 
| 2953 | 	while (__f != __t) | 
| 2954 | 	  { | 
| 2955 | 	    const double __p = __aurng(); | 
| 2956 |  | 
| 2957 | 	    auto __pos = std::lower_bound(__param._M_cp.begin(), | 
| 2958 | 					  __param._M_cp.end(), __p); | 
| 2959 | 	    const size_t __i = __pos - __param._M_cp.begin(); | 
| 2960 |  | 
| 2961 | 	    const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; | 
| 2962 |  | 
| 2963 | 	    *__f++ = (__param._M_int[__i] | 
| 2964 | 		      + (__p - __pref) / __param._M_den[__i]); | 
| 2965 | 	  } | 
| 2966 |       } | 
| 2967 |  | 
| 2968 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 2969 |     std::basic_ostream<_CharT, _Traits>& | 
| 2970 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 2971 | 	       const piecewise_constant_distribution<_RealType>& __x) | 
| 2972 |     { | 
| 2973 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 2974 |  | 
| 2975 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 2976 |       const _CharT __fill = __os.fill(); | 
| 2977 |       const std::streamsize __precision = __os.precision(); | 
| 2978 |       const _CharT __space = __os.widen(' '); | 
| 2979 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 2980 |       __os.fill(__space); | 
| 2981 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 2982 |  | 
| 2983 |       std::vector<_RealType> __int = __x.intervals(); | 
| 2984 |       __os << __int.size() - 1; | 
| 2985 |  | 
| 2986 |       for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) | 
| 2987 | 	__os << __space << *__xit; | 
| 2988 |  | 
| 2989 |       std::vector<double> __den = __x.densities(); | 
| 2990 |       for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) | 
| 2991 | 	__os << __space << *__dit; | 
| 2992 |  | 
| 2993 |       __os.flags(__flags); | 
| 2994 |       __os.fill(__fill); | 
| 2995 |       __os.precision(__precision); | 
| 2996 |       return __os; | 
| 2997 |     } | 
| 2998 |  | 
| 2999 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 3000 |     std::basic_istream<_CharT, _Traits>& | 
| 3001 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 3002 | 	       piecewise_constant_distribution<_RealType>& __x) | 
| 3003 |     { | 
| 3004 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 3005 |  | 
| 3006 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 3007 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 3008 |  | 
| 3009 |       size_t __n; | 
| 3010 |       if (__is >> __n) | 
| 3011 | 	{ | 
| 3012 | 	  std::vector<_RealType> __int_vec; | 
| 3013 | 	  if (__detail::__extract_params(__is, __int_vec, __n + 1)) | 
| 3014 | 	    { | 
| 3015 | 	      std::vector<double> __den_vec; | 
| 3016 | 	      if (__detail::__extract_params(__is, __den_vec, __n)) | 
| 3017 | 		{ | 
| 3018 | 		  __x.param({ __int_vec.begin(), __int_vec.end(), | 
| 3019 | 			      __den_vec.begin() }); | 
| 3020 | 		} | 
| 3021 | 	    } | 
| 3022 | 	} | 
| 3023 |  | 
| 3024 |       __is.flags(__flags); | 
| 3025 |       return __is; | 
| 3026 |     } | 
| 3027 |  | 
| 3028 |  | 
| 3029 |   template<typename _RealType> | 
| 3030 |     void | 
| 3031 |     piecewise_linear_distribution<_RealType>::param_type:: | 
| 3032 |     _M_initialize() | 
| 3033 |     { | 
| 3034 |       if (_M_int.size() < 2 | 
| 3035 | 	  || (_M_int.size() == 2 | 
| 3036 | 	      && _M_int[0] == _RealType(0) | 
| 3037 | 	      && _M_int[1] == _RealType(1) | 
| 3038 | 	      && _M_den[0] == _M_den[1])) | 
| 3039 | 	{ | 
| 3040 | 	  _M_int.clear(); | 
| 3041 | 	  _M_den.clear(); | 
| 3042 | 	  return; | 
| 3043 | 	} | 
| 3044 |  | 
| 3045 |       double __sum = 0.0; | 
| 3046 |       _M_cp.reserve(n: _M_int.size() - 1); | 
| 3047 |       _M_m.reserve(n: _M_int.size() - 1); | 
| 3048 |       for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) | 
| 3049 | 	{ | 
| 3050 | 	  const _RealType __delta = _M_int[__k + 1] - _M_int[__k]; | 
| 3051 | 	  __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta; | 
| 3052 | 	  _M_cp.push_back(x: __sum); | 
| 3053 | 	  _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta); | 
| 3054 | 	} | 
| 3055 |       __glibcxx_assert(__sum > 0); | 
| 3056 |  | 
| 3057 |       //  Now normalize the densities... | 
| 3058 |       __detail::__normalize(first: _M_den.begin(), last: _M_den.end(), result: _M_den.begin(), | 
| 3059 | 			    factor: __sum); | 
| 3060 |       //  ... and partial sums...  | 
| 3061 |       __detail::__normalize(first: _M_cp.begin(), last: _M_cp.end(), result: _M_cp.begin(), factor: __sum); | 
| 3062 |       //  ... and slopes. | 
| 3063 |       __detail::__normalize(first: _M_m.begin(), last: _M_m.end(), result: _M_m.begin(), factor: __sum); | 
| 3064 |  | 
| 3065 |       //  Make sure the last cumulative probablility is one. | 
| 3066 |       _M_cp[_M_cp.size() - 1] = 1.0; | 
| 3067 |      } | 
| 3068 |  | 
| 3069 |   template<typename _RealType> | 
| 3070 |     template<typename _InputIteratorB, typename _InputIteratorW> | 
| 3071 |       piecewise_linear_distribution<_RealType>::param_type:: | 
| 3072 |       param_type(_InputIteratorB __bbegin, | 
| 3073 | 		 _InputIteratorB __bend, | 
| 3074 | 		 _InputIteratorW __wbegin) | 
| 3075 |       : _M_int(), _M_den(), _M_cp(), _M_m() | 
| 3076 |       { | 
| 3077 | 	for (; __bbegin != __bend; ++__bbegin, ++__wbegin) | 
| 3078 | 	  { | 
| 3079 | 	    _M_int.push_back(*__bbegin); | 
| 3080 | 	    _M_den.push_back(*__wbegin); | 
| 3081 | 	  } | 
| 3082 |  | 
| 3083 | 	_M_initialize(); | 
| 3084 |       } | 
| 3085 |  | 
| 3086 |   template<typename _RealType> | 
| 3087 |     template<typename _Func> | 
| 3088 |       piecewise_linear_distribution<_RealType>::param_type:: | 
| 3089 |       param_type(initializer_list<_RealType> __bl, _Func __fw) | 
| 3090 |       : _M_int(), _M_den(), _M_cp(), _M_m() | 
| 3091 |       { | 
| 3092 | 	_M_int.reserve(__bl.size()); | 
| 3093 | 	_M_den.reserve(n: __bl.size()); | 
| 3094 | 	for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) | 
| 3095 | 	  { | 
| 3096 | 	    _M_int.push_back(*__biter); | 
| 3097 | 	    _M_den.push_back(__fw(*__biter)); | 
| 3098 | 	  } | 
| 3099 |  | 
| 3100 | 	_M_initialize(); | 
| 3101 |       } | 
| 3102 |  | 
| 3103 |   template<typename _RealType> | 
| 3104 |     template<typename _Func> | 
| 3105 |       piecewise_linear_distribution<_RealType>::param_type:: | 
| 3106 |       param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) | 
| 3107 |       : _M_int(), _M_den(), _M_cp(), _M_m() | 
| 3108 |       { | 
| 3109 | 	const size_t __n = __nw == 0 ? 1 : __nw; | 
| 3110 | 	const _RealType __delta = (__xmax - __xmin) / __n; | 
| 3111 |  | 
| 3112 | 	_M_int.reserve(__n + 1); | 
| 3113 | 	_M_den.reserve(n: __n + 1); | 
| 3114 | 	for (size_t __k = 0; __k <= __nw; ++__k) | 
| 3115 | 	  { | 
| 3116 | 	    _M_int.push_back(__xmin + __k * __delta); | 
| 3117 | 	    _M_den.push_back(__fw(_M_int[__k] + __delta)); | 
| 3118 | 	  } | 
| 3119 |  | 
| 3120 | 	_M_initialize(); | 
| 3121 |       } | 
| 3122 |  | 
| 3123 |   template<typename _RealType> | 
| 3124 |     template<typename _UniformRandomNumberGenerator> | 
| 3125 |       typename piecewise_linear_distribution<_RealType>::result_type | 
| 3126 |       piecewise_linear_distribution<_RealType>:: | 
| 3127 |       operator()(_UniformRandomNumberGenerator& __urng, | 
| 3128 | 		 const param_type& __param) | 
| 3129 |       { | 
| 3130 | 	__detail::_Adaptor<_UniformRandomNumberGenerator, double> | 
| 3131 | 	  __aurng(__urng); | 
| 3132 |  | 
| 3133 | 	const double __p = __aurng(); | 
| 3134 | 	if (__param._M_cp.empty()) | 
| 3135 | 	  return __p; | 
| 3136 |  | 
| 3137 | 	auto __pos = std::lower_bound(__param._M_cp.begin(), | 
| 3138 | 				      __param._M_cp.end(), __p); | 
| 3139 | 	const size_t __i = __pos - __param._M_cp.begin(); | 
| 3140 |  | 
| 3141 | 	const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; | 
| 3142 |  | 
| 3143 | 	const double __a = 0.5 * __param._M_m[__i]; | 
| 3144 | 	const double __b = __param._M_den[__i]; | 
| 3145 | 	const double __cm = __p - __pref; | 
| 3146 |  | 
| 3147 | 	_RealType __x = __param._M_int[__i]; | 
| 3148 | 	if (__a == 0) | 
| 3149 | 	  __x += __cm / __b; | 
| 3150 | 	else | 
| 3151 | 	  { | 
| 3152 | 	    const double __d = __b * __b + 4.0 * __a * __cm; | 
| 3153 | 	    __x += 0.5 * (std::sqrt(x: __d) - __b) / __a; | 
| 3154 |           } | 
| 3155 |  | 
| 3156 |         return __x; | 
| 3157 |       } | 
| 3158 |  | 
| 3159 |   template<typename _RealType> | 
| 3160 |     template<typename _ForwardIterator, | 
| 3161 | 	     typename _UniformRandomNumberGenerator> | 
| 3162 |       void | 
| 3163 |       piecewise_linear_distribution<_RealType>:: | 
| 3164 |       __generate_impl(_ForwardIterator __f, _ForwardIterator __t, | 
| 3165 | 		      _UniformRandomNumberGenerator& __urng, | 
| 3166 | 		      const param_type& __param) | 
| 3167 |       { | 
| 3168 | 	__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) | 
| 3169 | 	// We could duplicate everything from operator()... | 
| 3170 | 	while (__f != __t) | 
| 3171 | 	  *__f++ = this->operator()(__urng, __param); | 
| 3172 |       } | 
| 3173 |  | 
| 3174 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 3175 |     std::basic_ostream<_CharT, _Traits>& | 
| 3176 |     operator<<(std::basic_ostream<_CharT, _Traits>& __os, | 
| 3177 | 	       const piecewise_linear_distribution<_RealType>& __x) | 
| 3178 |     { | 
| 3179 |       using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; | 
| 3180 |  | 
| 3181 |       const typename __ios_base::fmtflags __flags = __os.flags(); | 
| 3182 |       const _CharT __fill = __os.fill(); | 
| 3183 |       const std::streamsize __precision = __os.precision(); | 
| 3184 |       const _CharT __space = __os.widen(' '); | 
| 3185 |       __os.flags(__ios_base::scientific | __ios_base::left); | 
| 3186 |       __os.fill(__space); | 
| 3187 |       __os.precision(std::numeric_limits<_RealType>::max_digits10); | 
| 3188 |  | 
| 3189 |       std::vector<_RealType> __int = __x.intervals(); | 
| 3190 |       __os << __int.size() - 1; | 
| 3191 |  | 
| 3192 |       for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) | 
| 3193 | 	__os << __space << *__xit; | 
| 3194 |  | 
| 3195 |       std::vector<double> __den = __x.densities(); | 
| 3196 |       for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) | 
| 3197 | 	__os << __space << *__dit; | 
| 3198 |  | 
| 3199 |       __os.flags(__flags); | 
| 3200 |       __os.fill(__fill); | 
| 3201 |       __os.precision(__precision); | 
| 3202 |       return __os; | 
| 3203 |     } | 
| 3204 |  | 
| 3205 |   template<typename _RealType, typename _CharT, typename _Traits> | 
| 3206 |     std::basic_istream<_CharT, _Traits>& | 
| 3207 |     operator>>(std::basic_istream<_CharT, _Traits>& __is, | 
| 3208 | 	       piecewise_linear_distribution<_RealType>& __x) | 
| 3209 |     { | 
| 3210 |       using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; | 
| 3211 |  | 
| 3212 |       const typename __ios_base::fmtflags __flags = __is.flags(); | 
| 3213 |       __is.flags(__ios_base::dec | __ios_base::skipws); | 
| 3214 |  | 
| 3215 |       size_t __n; | 
| 3216 |       if (__is >> __n) | 
| 3217 | 	{ | 
| 3218 | 	  vector<_RealType> __int_vec; | 
| 3219 | 	  if (__detail::__extract_params(__is, __int_vec, __n + 1)) | 
| 3220 | 	    { | 
| 3221 | 	      vector<double> __den_vec; | 
| 3222 | 	      if (__detail::__extract_params(__is, __den_vec, __n + 1)) | 
| 3223 | 		{ | 
| 3224 | 		  __x.param({ __int_vec.begin(), __int_vec.end(), | 
| 3225 | 			      __den_vec.begin() }); | 
| 3226 | 		} | 
| 3227 | 	    } | 
| 3228 | 	} | 
| 3229 |       __is.flags(__flags); | 
| 3230 |       return __is; | 
| 3231 |     } | 
| 3232 |  | 
| 3233 |  | 
| 3234 |   template<typename _IntType, typename> | 
| 3235 |     seed_seq::seed_seq(std::initializer_list<_IntType> __il) | 
| 3236 |     { | 
| 3237 |       _M_v.reserve(n: __il.size()); | 
| 3238 |       for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter) | 
| 3239 | 	_M_v.push_back(__detail::__mod<result_type, | 
| 3240 | 		       __detail::_Shift<result_type, 32>::__value>(*__iter)); | 
| 3241 |     } | 
| 3242 |  | 
| 3243 |   template<typename _InputIterator> | 
| 3244 |     seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end) | 
| 3245 |     { | 
| 3246 |       if _GLIBCXX17_CONSTEXPR (__is_random_access_iter<_InputIterator>::value) | 
| 3247 | 	_M_v.reserve(n: std::distance(__begin, __end)); | 
| 3248 |  | 
| 3249 |       for (_InputIterator __iter = __begin; __iter != __end; ++__iter) | 
| 3250 | 	_M_v.push_back(__detail::__mod<result_type, | 
| 3251 | 		       __detail::_Shift<result_type, 32>::__value>(*__iter)); | 
| 3252 |     } | 
| 3253 |  | 
| 3254 |   template<typename _RandomAccessIterator> | 
| 3255 |     void | 
| 3256 |     seed_seq::generate(_RandomAccessIterator __begin, | 
| 3257 | 		       _RandomAccessIterator __end) | 
| 3258 |     { | 
| 3259 |       typedef typename iterator_traits<_RandomAccessIterator>::value_type | 
| 3260 |         _Type; | 
| 3261 |  | 
| 3262 |       if (__begin == __end) | 
| 3263 | 	return; | 
| 3264 |  | 
| 3265 |       std::fill(__begin, __end, _Type(0x8b8b8b8bu)); | 
| 3266 |  | 
| 3267 |       const size_t __n = __end - __begin; | 
| 3268 |       const size_t __s = _M_v.size(); | 
| 3269 |       const size_t __t = (__n >= 623) ? 11 | 
| 3270 | 		       : (__n >=  68) ? 7 | 
| 3271 | 		       : (__n >=  39) ? 5 | 
| 3272 | 		       : (__n >=   7) ? 3 | 
| 3273 | 		       : (__n - 1) / 2; | 
| 3274 |       const size_t __p = (__n - __t) / 2; | 
| 3275 |       const size_t __q = __p + __t; | 
| 3276 |       const size_t __m = std::max(a: size_t(__s + 1), b: __n); | 
| 3277 |  | 
| 3278 | #ifndef __UINT32_TYPE__ | 
| 3279 |       struct _Up | 
| 3280 |       { | 
| 3281 | 	_Up(uint_least32_t v) : _M_v(v & 0xffffffffu) { } | 
| 3282 |  | 
| 3283 | 	operator uint_least32_t() const { return _M_v; } | 
| 3284 |  | 
| 3285 | 	uint_least32_t _M_v; | 
| 3286 |       }; | 
| 3287 |       using uint32_t = _Up; | 
| 3288 | #endif | 
| 3289 |  | 
| 3290 |       // k == 0, every element in [begin,end) equals 0x8b8b8b8bu | 
| 3291 | 	{ | 
| 3292 | 	  uint32_t __r1 = 1371501266u; | 
| 3293 | 	  uint32_t __r2 = __r1 + __s; | 
| 3294 | 	  __begin[__p] += __r1; | 
| 3295 | 	  __begin[__q] = (uint32_t)__begin[__q] + __r2; | 
| 3296 | 	  __begin[0] = __r2; | 
| 3297 | 	} | 
| 3298 |  | 
| 3299 |       for (size_t __k = 1; __k <= __s; ++__k) | 
| 3300 | 	{ | 
| 3301 | 	  const size_t __kn = __k % __n; | 
| 3302 | 	  const size_t __kpn = (__k + __p) % __n; | 
| 3303 | 	  const size_t __kqn = (__k + __q) % __n; | 
| 3304 | 	  uint32_t __arg = (__begin[__kn] | 
| 3305 | 			    ^ __begin[__kpn] | 
| 3306 | 			    ^ __begin[(__k - 1) % __n]); | 
| 3307 | 	  uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27)); | 
| 3308 | 	  uint32_t __r2 = __r1 + (uint32_t)__kn + _M_v[__k - 1]; | 
| 3309 | 	  __begin[__kpn] = (uint32_t)__begin[__kpn] + __r1; | 
| 3310 | 	  __begin[__kqn] = (uint32_t)__begin[__kqn] + __r2; | 
| 3311 | 	  __begin[__kn] = __r2; | 
| 3312 | 	} | 
| 3313 |  | 
| 3314 |       for (size_t __k = __s + 1; __k < __m; ++__k) | 
| 3315 | 	{ | 
| 3316 | 	  const size_t __kn = __k % __n; | 
| 3317 | 	  const size_t __kpn = (__k + __p) % __n; | 
| 3318 | 	  const size_t __kqn = (__k + __q) % __n; | 
| 3319 | 	  uint32_t __arg = (__begin[__kn] | 
| 3320 | 				 ^ __begin[__kpn] | 
| 3321 | 				 ^ __begin[(__k - 1) % __n]); | 
| 3322 | 	  uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27)); | 
| 3323 | 	  uint32_t __r2 = __r1 + (uint32_t)__kn; | 
| 3324 | 	  __begin[__kpn] = (uint32_t)__begin[__kpn] + __r1; | 
| 3325 | 	  __begin[__kqn] = (uint32_t)__begin[__kqn] + __r2; | 
| 3326 | 	  __begin[__kn] = __r2; | 
| 3327 | 	} | 
| 3328 |  | 
| 3329 |       for (size_t __k = __m; __k < __m + __n; ++__k) | 
| 3330 | 	{ | 
| 3331 | 	  const size_t __kn = __k % __n; | 
| 3332 | 	  const size_t __kpn = (__k + __p) % __n; | 
| 3333 | 	  const size_t __kqn = (__k + __q) % __n; | 
| 3334 | 	  uint32_t __arg = (__begin[__kn] | 
| 3335 | 			    + __begin[__kpn] | 
| 3336 | 			    + __begin[(__k - 1) % __n]); | 
| 3337 | 	  uint32_t __r3 = 1566083941u * (__arg ^ (__arg >> 27)); | 
| 3338 | 	  uint32_t __r4 = __r3 - __kn; | 
| 3339 | 	  __begin[__kpn] ^= __r3; | 
| 3340 | 	  __begin[__kqn] ^= __r4; | 
| 3341 | 	  __begin[__kn] = __r4; | 
| 3342 | 	} | 
| 3343 |     } | 
| 3344 |  | 
| 3345 |   template<typename _RealType, size_t __bits, | 
| 3346 | 	   typename _UniformRandomNumberGenerator> | 
| 3347 |     _RealType | 
| 3348 |     generate_canonical(_UniformRandomNumberGenerator& __urng) | 
| 3349 |     { | 
| 3350 |       static_assert(std::is_floating_point<_RealType>::value, | 
| 3351 | 		    "template argument must be a floating point type" ); | 
| 3352 |  | 
| 3353 |       const size_t __b | 
| 3354 | 	= std::min(a: static_cast<size_t>(std::numeric_limits<_RealType>::digits), | 
| 3355 |                    b: __bits); | 
| 3356 |       const long double __r = static_cast<long double>(__urng.max()) | 
| 3357 | 			    - static_cast<long double>(__urng.min()) + 1.0L; | 
| 3358 |       const size_t __log2r = std::log(x: __r) / std::log(x: 2.0L); | 
| 3359 |       const size_t __m = std::max<size_t>(a: 1UL, | 
| 3360 | 					  b: (__b + __log2r - 1UL) / __log2r); | 
| 3361 |       _RealType __ret; | 
| 3362 |       _RealType __sum = _RealType(0); | 
| 3363 |       _RealType __tmp = _RealType(1); | 
| 3364 |       for (size_t __k = __m; __k != 0; --__k) | 
| 3365 | 	{ | 
| 3366 | 	  __sum += _RealType(__urng() - __urng.min()) * __tmp; | 
| 3367 | 	  __tmp *= __r; | 
| 3368 | 	} | 
| 3369 |       __ret = __sum / __tmp; | 
| 3370 |       if (__builtin_expect(__ret >= _RealType(1), 0)) | 
| 3371 | 	{ | 
| 3372 | #if _GLIBCXX_USE_C99_MATH_TR1 | 
| 3373 | 	  __ret = std::nextafter(_RealType(1), _RealType(0)); | 
| 3374 | #else | 
| 3375 | 	  __ret = _RealType(1) | 
| 3376 | 	    - std::numeric_limits<_RealType>::epsilon() / _RealType(2); | 
| 3377 | #endif | 
| 3378 | 	} | 
| 3379 |       return __ret; | 
| 3380 |     } | 
| 3381 |  | 
| 3382 | _GLIBCXX_END_NAMESPACE_VERSION | 
| 3383 | } // namespace | 
| 3384 |  | 
| 3385 | #endif | 
| 3386 |  |