1/*
2 * Copyright 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#ifndef DRM_FOURCC_H
25#define DRM_FOURCC_H
26
27#include "drm.h"
28
29#if defined(__cplusplus)
30extern "C" {
31#endif
32
33/**
34 * DOC: overview
35 *
36 * In the DRM subsystem, framebuffer pixel formats are described using the
37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38 * fourcc code, a Format Modifier may optionally be provided, in order to
39 * further describe the buffer's format - for example tiling or compression.
40 *
41 * Format Modifiers
42 * ----------------
43 *
44 * Format modifiers are used in conjunction with a fourcc code, forming a
45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
46 * format and data layout of the buffer, and should be the only way to describe
47 * that particular buffer.
48 *
49 * Having multiple fourcc:modifier pairs which describe the same layout should
50 * be avoided, as such aliases run the risk of different drivers exposing
51 * different names for the same data format, forcing userspace to understand
52 * that they are aliases.
53 *
54 * Format modifiers may change any property of the buffer, including the number
55 * of planes and/or the required allocation size. Format modifiers are
56 * vendor-namespaced, and as such the relationship between a fourcc code and a
57 * modifier is specific to the modifier being used. For example, some modifiers
58 * may preserve meaning - such as number of planes - from the fourcc code,
59 * whereas others may not.
60 *
61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62 * match only a single modifier. A modifier must not be a subset of layouts of
63 * another modifier. For instance, it's incorrect to encode pitch alignment in
64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65 * aligned modifier. That said, modifiers can have implicit minimal
66 * requirements.
67 *
68 * For modifiers where the combination of fourcc code and modifier can alias,
69 * a canonical pair needs to be defined and used by all drivers. Preferred
70 * combinations are also encouraged where all combinations might lead to
71 * confusion and unnecessarily reduced interoperability. An example for the
72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73 *
74 * There are two kinds of modifier users:
75 *
76 * - Kernel and user-space drivers: for drivers it's important that modifiers
77 * don't alias, otherwise two drivers might support the same format but use
78 * different aliases, preventing them from sharing buffers in an efficient
79 * format.
80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81 * see modifiers as opaque tokens they can check for equality and intersect.
82 * These users mustn't need to know to reason about the modifier value
83 * (i.e. they are not expected to extract information out of the modifier).
84 *
85 * Vendors should document their modifier usage in as much detail as
86 * possible, to ensure maximum compatibility across devices, drivers and
87 * applications.
88 *
89 * The authoritative list of format modifier codes is found in
90 * `include/uapi/drm/drm_fourcc.h`
91 *
92 * Open Source User Waiver
93 * -----------------------
94 *
95 * Because this is the authoritative source for pixel formats and modifiers
96 * referenced by GL, Vulkan extensions and other standards and hence used both
97 * by open source and closed source driver stacks, the usual requirement for an
98 * upstream in-kernel or open source userspace user does not apply.
99 *
100 * To ensure, as much as feasible, compatibility across stacks and avoid
101 * confusion with incompatible enumerations stakeholders for all relevant driver
102 * stacks should approve additions.
103 */
104
105#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
106 ((__u32)(c) << 16) | ((__u32)(d) << 24))
107
108#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
109
110/* Reserve 0 for the invalid format specifier */
111#define DRM_FORMAT_INVALID 0
112
113/* color index */
114#define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
115#define DRM_FORMAT_C2 fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
116#define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
117#define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
118
119/* 1 bpp Darkness (inverse relationship between channel value and brightness) */
120#define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
121
122/* 2 bpp Darkness (inverse relationship between channel value and brightness) */
123#define DRM_FORMAT_D2 fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
124
125/* 4 bpp Darkness (inverse relationship between channel value and brightness) */
126#define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
127
128/* 8 bpp Darkness (inverse relationship between channel value and brightness) */
129#define DRM_FORMAT_D8 fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
130
131/* 1 bpp Red (direct relationship between channel value and brightness) */
132#define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
133
134/* 2 bpp Red (direct relationship between channel value and brightness) */
135#define DRM_FORMAT_R2 fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
136
137/* 4 bpp Red (direct relationship between channel value and brightness) */
138#define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
139
140/* 8 bpp Red (direct relationship between channel value and brightness) */
141#define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
142
143/* 10 bpp Red (direct relationship between channel value and brightness) */
144#define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
145
146/* 12 bpp Red (direct relationship between channel value and brightness) */
147#define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
148
149/* 16 bpp Red (direct relationship between channel value and brightness) */
150#define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
151
152/* 16 bpp RG */
153#define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
154#define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
155
156/* 32 bpp RG */
157#define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
158#define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
159
160/* 8 bpp RGB */
161#define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
162#define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
163
164/* 16 bpp RGB */
165#define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
166#define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
167#define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
168#define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
169
170#define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
171#define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
172#define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
173#define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
174
175#define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
176#define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
177#define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
178#define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
179
180#define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
181#define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
182#define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
183#define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
184
185#define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
186#define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
187
188/* 24 bpp RGB */
189#define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
190#define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
191
192/* 32 bpp RGB */
193#define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
194#define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
195#define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
196#define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
197
198#define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
199#define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
200#define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
201#define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
202
203#define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
204#define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
205#define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
206#define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
207
208#define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
209#define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
210#define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
211#define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
212
213/* 64 bpp RGB */
214#define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
215#define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
216
217#define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
218#define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
219
220/*
221 * Floating point 64bpp RGB
222 * IEEE 754-2008 binary16 half-precision float
223 * [15:0] sign:exponent:mantissa 1:5:10
224 */
225#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
226#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
227
228#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
229#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
230
231/*
232 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
233 * of unused padding per component:
234 */
235#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
236
237/* packed YCbCr */
238#define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
239#define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
240#define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
241#define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
242
243#define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
244#define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
245#define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
246#define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
247#define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
248#define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
249
250/*
251 * packed Y2xx indicate for each component, xx valid data occupy msb
252 * 16-xx padding occupy lsb
253 */
254#define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
255#define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
256#define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
257
258/*
259 * packed Y4xx indicate for each component, xx valid data occupy msb
260 * 16-xx padding occupy lsb except Y410
261 */
262#define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
263#define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
264#define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
265
266#define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
267#define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
268#define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
269
270/*
271 * packed YCbCr420 2x2 tiled formats
272 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
273 */
274/* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
275#define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
276/* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
277#define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
278
279/* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
280#define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
281/* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
282#define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
283
284/*
285 * 1-plane YUV 4:2:0
286 * In these formats, the component ordering is specified (Y, followed by U
287 * then V), but the exact Linear layout is undefined.
288 * These formats can only be used with a non-Linear modifier.
289 */
290#define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')
291#define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
292
293/*
294 * 2 plane RGB + A
295 * index 0 = RGB plane, same format as the corresponding non _A8 format has
296 * index 1 = A plane, [7:0] A
297 */
298#define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
299#define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
300#define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
301#define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
302#define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
303#define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
304#define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
305#define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
306
307/*
308 * 2 plane YCbCr
309 * index 0 = Y plane, [7:0] Y
310 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
311 * or
312 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
313 */
314#define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
315#define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
316#define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
317#define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
318#define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
319#define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
320/*
321 * 2 plane YCbCr
322 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
323 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
324 */
325#define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
326#define DRM_FORMAT_NV20 fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */
327#define DRM_FORMAT_NV30 fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
328
329/*
330 * 2 plane YCbCr MSB aligned
331 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
332 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
333 */
334#define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
335
336/*
337 * 2 plane YCbCr MSB aligned
338 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
339 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
340 */
341#define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
342
343/*
344 * 2 plane YCbCr MSB aligned
345 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
346 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
347 */
348#define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
349
350/*
351 * 2 plane YCbCr MSB aligned
352 * index 0 = Y plane, [15:0] Y little endian
353 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
354 */
355#define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
356
357/* 2 plane YCbCr420.
358 * 3 10 bit components and 2 padding bits packed into 4 bytes.
359 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
360 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
361 */
362#define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
363
364/* 3 plane non-subsampled (444) YCbCr
365 * 16 bits per component, but only 10 bits are used and 6 bits are padded
366 * index 0: Y plane, [15:0] Y:x [10:6] little endian
367 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
368 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
369 */
370#define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
371
372/* 3 plane non-subsampled (444) YCrCb
373 * 16 bits per component, but only 10 bits are used and 6 bits are padded
374 * index 0: Y plane, [15:0] Y:x [10:6] little endian
375 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
376 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
377 */
378#define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
379
380/*
381 * 3 plane YCbCr LSB aligned
382 * In order to use these formats in a similar fashion to MSB aligned ones
383 * implementation can multiply the values by 2^6=64. For that reason the padding
384 * must only contain zeros.
385 * index 0 = Y plane, [15:0] z:Y [6:10] little endian
386 * index 1 = Cr plane, [15:0] z:Cr [6:10] little endian
387 * index 2 = Cb plane, [15:0] z:Cb [6:10] little endian
388 */
389#define DRM_FORMAT_S010 fourcc_code('S', '0', '1', '0') /* 2x2 subsampled Cb (1) and Cr (2) planes 10 bits per channel */
390#define DRM_FORMAT_S210 fourcc_code('S', '2', '1', '0') /* 2x1 subsampled Cb (1) and Cr (2) planes 10 bits per channel */
391#define DRM_FORMAT_S410 fourcc_code('S', '4', '1', '0') /* non-subsampled Cb (1) and Cr (2) planes 10 bits per channel */
392
393/*
394 * 3 plane YCbCr LSB aligned
395 * In order to use these formats in a similar fashion to MSB aligned ones
396 * implementation can multiply the values by 2^4=16. For that reason the padding
397 * must only contain zeros.
398 * index 0 = Y plane, [15:0] z:Y [4:12] little endian
399 * index 1 = Cr plane, [15:0] z:Cr [4:12] little endian
400 * index 2 = Cb plane, [15:0] z:Cb [4:12] little endian
401 */
402#define DRM_FORMAT_S012 fourcc_code('S', '0', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes 12 bits per channel */
403#define DRM_FORMAT_S212 fourcc_code('S', '2', '1', '2') /* 2x1 subsampled Cb (1) and Cr (2) planes 12 bits per channel */
404#define DRM_FORMAT_S412 fourcc_code('S', '4', '1', '2') /* non-subsampled Cb (1) and Cr (2) planes 12 bits per channel */
405
406/*
407 * 3 plane YCbCr
408 * index 0 = Y plane, [15:0] Y little endian
409 * index 1 = Cr plane, [15:0] Cr little endian
410 * index 2 = Cb plane, [15:0] Cb little endian
411 */
412#define DRM_FORMAT_S016 fourcc_code('S', '0', '1', '6') /* 2x2 subsampled Cb (1) and Cr (2) planes 16 bits per channel */
413#define DRM_FORMAT_S216 fourcc_code('S', '2', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes 16 bits per channel */
414#define DRM_FORMAT_S416 fourcc_code('S', '4', '1', '6') /* non-subsampled Cb (1) and Cr (2) planes 16 bits per channel */
415
416/*
417 * 3 plane YCbCr
418 * index 0: Y plane, [7:0] Y
419 * index 1: Cb plane, [7:0] Cb
420 * index 2: Cr plane, [7:0] Cr
421 * or
422 * index 1: Cr plane, [7:0] Cr
423 * index 2: Cb plane, [7:0] Cb
424 */
425#define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
426#define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
427#define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
428#define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
429#define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
430#define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
431#define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
432#define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
433#define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
434#define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
435
436
437/*
438 * Format Modifiers:
439 *
440 * Format modifiers describe, typically, a re-ordering or modification
441 * of the data in a plane of an FB. This can be used to express tiled/
442 * swizzled formats, or compression, or a combination of the two.
443 *
444 * The upper 8 bits of the format modifier are a vendor-id as assigned
445 * below. The lower 56 bits are assigned as vendor sees fit.
446 */
447
448/* Vendor Ids: */
449#define DRM_FORMAT_MOD_VENDOR_NONE 0
450#define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
451#define DRM_FORMAT_MOD_VENDOR_AMD 0x02
452#define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
453#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
454#define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
455#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
456#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
457#define DRM_FORMAT_MOD_VENDOR_ARM 0x08
458#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
459#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
460#define DRM_FORMAT_MOD_VENDOR_MTK 0x0b
461#define DRM_FORMAT_MOD_VENDOR_APPLE 0x0c
462
463/* add more to the end as needed */
464
465#define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
466
467#define fourcc_mod_get_vendor(modifier) \
468 (((modifier) >> 56) & 0xff)
469
470#define fourcc_mod_is_vendor(modifier, vendor) \
471 (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
472
473#define fourcc_mod_code(vendor, val) \
474 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
475
476/*
477 * Format Modifier tokens:
478 *
479 * When adding a new token please document the layout with a code comment,
480 * similar to the fourcc codes above. drm_fourcc.h is considered the
481 * authoritative source for all of these.
482 *
483 * Generic modifier names:
484 *
485 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
486 * for layouts which are common across multiple vendors. To preserve
487 * compatibility, in cases where a vendor-specific definition already exists and
488 * a generic name for it is desired, the common name is a purely symbolic alias
489 * and must use the same numerical value as the original definition.
490 *
491 * Note that generic names should only be used for modifiers which describe
492 * generic layouts (such as pixel re-ordering), which may have
493 * independently-developed support across multiple vendors.
494 *
495 * In future cases where a generic layout is identified before merging with a
496 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
497 * 'NONE' could be considered. This should only be for obvious, exceptional
498 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
499 * apply to a single vendor.
500 *
501 * Generic names should not be used for cases where multiple hardware vendors
502 * have implementations of the same standardised compression scheme (such as
503 * AFBC). In those cases, all implementations should use the same format
504 * modifier(s), reflecting the vendor of the standard.
505 */
506
507#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
508
509/*
510 * Invalid Modifier
511 *
512 * This modifier can be used as a sentinel to terminate the format modifiers
513 * list, or to initialize a variable with an invalid modifier. It might also be
514 * used to report an error back to userspace for certain APIs.
515 */
516#define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
517
518/*
519 * Linear Layout
520 *
521 * Just plain linear layout. Note that this is different from no specifying any
522 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
523 * which tells the driver to also take driver-internal information into account
524 * and so might actually result in a tiled framebuffer.
525 */
526#define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
527
528/*
529 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
530 *
531 * The "none" format modifier doesn't actually mean that the modifier is
532 * implicit, instead it means that the layout is linear. Whether modifiers are
533 * used is out-of-band information carried in an API-specific way (e.g. in a
534 * flag for drm_mode_fb_cmd2).
535 */
536#define DRM_FORMAT_MOD_NONE 0
537
538/* Intel framebuffer modifiers */
539
540/*
541 * Intel X-tiling layout
542 *
543 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
544 * in row-major layout. Within the tile bytes are laid out row-major, with
545 * a platform-dependent stride. On top of that the memory can apply
546 * platform-depending swizzling of some higher address bits into bit6.
547 *
548 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
549 * On earlier platforms the is highly platforms specific and not useful for
550 * cross-driver sharing. It exists since on a given platform it does uniquely
551 * identify the layout in a simple way for i915-specific userspace, which
552 * facilitated conversion of userspace to modifiers. Additionally the exact
553 * format on some really old platforms is not known.
554 */
555#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
556
557/*
558 * Intel Y-tiling layout
559 *
560 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
561 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
562 * chunks column-major, with a platform-dependent height. On top of that the
563 * memory can apply platform-depending swizzling of some higher address bits
564 * into bit6.
565 *
566 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
567 * On earlier platforms the is highly platforms specific and not useful for
568 * cross-driver sharing. It exists since on a given platform it does uniquely
569 * identify the layout in a simple way for i915-specific userspace, which
570 * facilitated conversion of userspace to modifiers. Additionally the exact
571 * format on some really old platforms is not known.
572 */
573#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
574
575/*
576 * Intel Yf-tiling layout
577 *
578 * This is a tiled layout using 4Kb tiles in row-major layout.
579 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
580 * are arranged in four groups (two wide, two high) with column-major layout.
581 * Each group therefore consists out of four 256 byte units, which are also laid
582 * out as 2x2 column-major.
583 * 256 byte units are made out of four 64 byte blocks of pixels, producing
584 * either a square block or a 2:1 unit.
585 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
586 * in pixel depends on the pixel depth.
587 */
588#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
589
590/*
591 * Intel color control surface (CCS) for render compression
592 *
593 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
594 * The main surface will be plane index 0 and must be Y/Yf-tiled,
595 * the CCS will be plane index 1.
596 *
597 * Each CCS tile matches a 1024x512 pixel area of the main surface.
598 * To match certain aspects of the 3D hardware the CCS is
599 * considered to be made up of normal 128Bx32 Y tiles, Thus
600 * the CCS pitch must be specified in multiples of 128 bytes.
601 *
602 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
603 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
604 * But that fact is not relevant unless the memory is accessed
605 * directly.
606 */
607#define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
608#define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
609
610/*
611 * Intel color control surfaces (CCS) for Gen-12 render compression.
612 *
613 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
614 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
615 * main surface. In other words, 4 bits in CCS map to a main surface cache
616 * line pair. The main surface pitch is required to be a multiple of four
617 * Y-tile widths.
618 */
619#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
620
621/*
622 * Intel color control surfaces (CCS) for Gen-12 media compression
623 *
624 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
625 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
626 * main surface. In other words, 4 bits in CCS map to a main surface cache
627 * line pair. The main surface pitch is required to be a multiple of four
628 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
629 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
630 * planes 2 and 3 for the respective CCS.
631 */
632#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
633
634/*
635 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
636 * compression.
637 *
638 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
639 * and at index 1. The clear color is stored at index 2, and the pitch should
640 * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
641 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
642 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
643 * the converted clear color of size 64 bits. The first 32 bits store the Lower
644 * Converted Clear Color value and the next 32 bits store the Higher Converted
645 * Clear Color value when applicable. The Converted Clear Color values are
646 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
647 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
648 * corresponds to an area of 4x1 tiles in the main surface. The main surface
649 * pitch is required to be a multiple of 4 tile widths.
650 */
651#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
652
653/*
654 * Intel Tile 4 layout
655 *
656 * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
657 * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
658 * only differs from Tile Y at the 256B granularity in between. At this
659 * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
660 * of 64B x 8 rows.
661 */
662#define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9)
663
664/*
665 * Intel color control surfaces (CCS) for DG2 render compression.
666 *
667 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
668 * outside of the GEM object in a reserved memory area dedicated for the
669 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
670 * main surface pitch is required to be a multiple of four Tile 4 widths.
671 */
672#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
673
674/*
675 * Intel color control surfaces (CCS) for DG2 media compression.
676 *
677 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
678 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
679 * 0 and 1, respectively. The CCS for all planes are stored outside of the
680 * GEM object in a reserved memory area dedicated for the storage of the
681 * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
682 * pitch is required to be a multiple of four Tile 4 widths.
683 */
684#define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
685
686/*
687 * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
688 *
689 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
690 * outside of the GEM object in a reserved memory area dedicated for the
691 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
692 * main surface pitch is required to be a multiple of four Tile 4 widths. The
693 * clear color is stored at plane index 1 and the pitch should be 64 bytes
694 * aligned. The format of the 256 bits of clear color data matches the one used
695 * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
696 * for details.
697 */
698#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
699
700/*
701 * Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
702 *
703 * The main surface is tile4 and at plane index 0, the CCS is linear and
704 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
705 * main surface. In other words, 4 bits in CCS map to a main surface cache
706 * line pair. The main surface pitch is required to be a multiple of four
707 * tile4 widths.
708 */
709#define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
710
711/*
712 * Intel Color Control Surfaces (CCS) for display ver. 14 media compression
713 *
714 * The main surface is tile4 and at plane index 0, the CCS is linear and
715 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
716 * main surface. In other words, 4 bits in CCS map to a main surface cache
717 * line pair. The main surface pitch is required to be a multiple of four
718 * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
719 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
720 * planes 2 and 3 for the respective CCS.
721 */
722#define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
723
724/*
725 * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
726 * compression.
727 *
728 * The main surface is tile4 and is at plane index 0 whereas CCS is linear
729 * and at index 1. The clear color is stored at index 2, and the pitch should
730 * be ignored. The clear color structure is 256 bits. The first 128 bits
731 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
732 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
733 * the converted clear color of size 64 bits. The first 32 bits store the Lower
734 * Converted Clear Color value and the next 32 bits store the Higher Converted
735 * Clear Color value when applicable. The Converted Clear Color values are
736 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
737 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
738 * corresponds to an area of 4x1 tiles in the main surface. The main surface
739 * pitch is required to be a multiple of 4 tile widths.
740 */
741#define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
742
743/*
744 * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
745 * on integrated graphics
746 *
747 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
748 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
749 * 0 and 1, respectively. The CCS for all planes are stored outside of the
750 * GEM object in a reserved memory area dedicated for the storage of the
751 * CCS data for all compressible GEM objects.
752 */
753#define I915_FORMAT_MOD_4_TILED_LNL_CCS fourcc_mod_code(INTEL, 16)
754
755/*
756 * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
757 * on discrete graphics
758 *
759 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
760 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
761 * 0 and 1, respectively. The CCS for all planes are stored outside of the
762 * GEM object in a reserved memory area dedicated for the storage of the
763 * CCS data for all compressible GEM objects. The GEM object must be stored in
764 * contiguous memory with a size aligned to 64KB
765 */
766#define I915_FORMAT_MOD_4_TILED_BMG_CCS fourcc_mod_code(INTEL, 17)
767
768/*
769 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
770 *
771 * Macroblocks are laid in a Z-shape, and each pixel data is following the
772 * standard NV12 style.
773 * As for NV12, an image is the result of two frame buffers: one for Y,
774 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
775 * Alignment requirements are (for each buffer):
776 * - multiple of 128 pixels for the width
777 * - multiple of 32 pixels for the height
778 *
779 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
780 */
781#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
782
783/*
784 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
785 *
786 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
787 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
788 * they correspond to their 16x16 luma block.
789 */
790#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
791
792/*
793 * Qualcomm Compressed Format
794 *
795 * Refers to a compressed variant of the base format that is compressed.
796 * Implementation may be platform and base-format specific.
797 *
798 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
799 * Pixel data pitch/stride is aligned with macrotile width.
800 * Pixel data height is aligned with macrotile height.
801 * Entire pixel data buffer is aligned with 4k(bytes).
802 */
803#define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
804
805/*
806 * Qualcomm Tiled Format
807 *
808 * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
809 * Implementation may be platform and base-format specific.
810 *
811 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
812 * Pixel data pitch/stride is aligned with macrotile width.
813 * Pixel data height is aligned with macrotile height.
814 * Entire pixel data buffer is aligned with 4k(bytes).
815 */
816#define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3)
817
818/*
819 * Qualcomm Alternate Tiled Format
820 *
821 * Alternate tiled format typically only used within GMEM.
822 * Implementation may be platform and base-format specific.
823 */
824#define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2)
825
826
827/* Vivante framebuffer modifiers */
828
829/*
830 * Vivante 4x4 tiling layout
831 *
832 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
833 * layout.
834 */
835#define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
836
837/*
838 * Vivante 64x64 super-tiling layout
839 *
840 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
841 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
842 * major layout.
843 *
844 * For more information: see
845 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
846 */
847#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
848
849/*
850 * Vivante 4x4 tiling layout for dual-pipe
851 *
852 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
853 * different base address. Offsets from the base addresses are therefore halved
854 * compared to the non-split tiled layout.
855 */
856#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
857
858/*
859 * Vivante 64x64 super-tiling layout for dual-pipe
860 *
861 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
862 * starts at a different base address. Offsets from the base addresses are
863 * therefore halved compared to the non-split super-tiled layout.
864 */
865#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
866
867/*
868 * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
869 * the color buffer tiling modifiers defined above. When TS is present it's a
870 * separate buffer containing the clear/compression status of each tile. The
871 * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
872 * tile size in bytes covered by one entry in the status buffer and s is the
873 * number of status bits per entry.
874 * We reserve the top 8 bits of the Vivante modifier space for tile status
875 * clear/compression modifiers, as future cores might add some more TS layout
876 * variations.
877 */
878#define VIVANTE_MOD_TS_64_4 (1ULL << 48)
879#define VIVANTE_MOD_TS_64_2 (2ULL << 48)
880#define VIVANTE_MOD_TS_128_4 (3ULL << 48)
881#define VIVANTE_MOD_TS_256_4 (4ULL << 48)
882#define VIVANTE_MOD_TS_MASK (0xfULL << 48)
883
884/*
885 * Vivante compression modifiers. Those depend on a TS modifier being present
886 * as the TS bits get reinterpreted as compression tags instead of simple
887 * clear markers when compression is enabled.
888 */
889#define VIVANTE_MOD_COMP_DEC400 (1ULL << 52)
890#define VIVANTE_MOD_COMP_MASK (0xfULL << 52)
891
892/* Masking out the extension bits will yield the base modifier. */
893#define VIVANTE_MOD_EXT_MASK (VIVANTE_MOD_TS_MASK | \
894 VIVANTE_MOD_COMP_MASK)
895
896/* NVIDIA frame buffer modifiers */
897
898/*
899 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
900 *
901 * Pixels are arranged in simple tiles of 16 x 16 bytes.
902 */
903#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
904
905/*
906 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
907 * and Tegra GPUs starting with Tegra K1.
908 *
909 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
910 * based on the architecture generation. GOBs themselves are then arranged in
911 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
912 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
913 * a block depth or height of "4").
914 *
915 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
916 * in full detail.
917 *
918 * Macro
919 * Bits Param Description
920 * ---- ----- -----------------------------------------------------------------
921 *
922 * 3:0 h log2(height) of each block, in GOBs. Placed here for
923 * compatibility with the existing
924 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
925 *
926 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for
927 * compatibility with the existing
928 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
929 *
930 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
931 * size). Must be zero.
932 *
933 * Note there is no log2(width) parameter. Some portions of the
934 * hardware support a block width of two gobs, but it is impractical
935 * to use due to lack of support elsewhere, and has no known
936 * benefits.
937 *
938 * 11:9 - Reserved (To support 2D-array textures with variable array stride
939 * in blocks, specified via log2(tile width in blocks)). Must be
940 * zero.
941 *
942 * 19:12 k Page Kind. This value directly maps to a field in the page
943 * tables of all GPUs >= NV50. It affects the exact layout of bits
944 * in memory and can be derived from the tuple
945 *
946 * (format, GPU model, compression type, samples per pixel)
947 *
948 * Where compression type is defined below. If GPU model were
949 * implied by the format modifier, format, or memory buffer, page
950 * kind would not need to be included in the modifier itself, but
951 * since the modifier should define the layout of the associated
952 * memory buffer independent from any device or other context, it
953 * must be included here.
954 *
955 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
956 * starting with Fermi GPUs. Additionally, the mapping between page
957 * kind and bit layout has changed at various points.
958 *
959 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
960 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
961 * 2 = Gob Height 8, Turing+ Page Kind mapping
962 * 3 = Reserved for future use.
963 *
964 * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further
965 * bit remapping step that occurs at an even lower level than the
966 * page kind and block linear swizzles. This causes the layout of
967 * surfaces mapped in those SOC's GPUs to be incompatible with the
968 * equivalent mapping on other GPUs in the same system.
969 *
970 * 0 = Tegra K1 - Tegra Parker/TX2 Layout.
971 * 1 = Desktop GPU and Tegra Xavier+ Layout
972 *
973 * 25:23 c Lossless Framebuffer Compression type.
974 *
975 * 0 = none
976 * 1 = ROP/3D, layout 1, exact compression format implied by Page
977 * Kind field
978 * 2 = ROP/3D, layout 2, exact compression format implied by Page
979 * Kind field
980 * 3 = CDE horizontal
981 * 4 = CDE vertical
982 * 5 = Reserved for future use
983 * 6 = Reserved for future use
984 * 7 = Reserved for future use
985 *
986 * 55:25 - Reserved for future use. Must be zero.
987 */
988#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
989 fourcc_mod_code(NVIDIA, (0x10 | \
990 ((h) & 0xf) | \
991 (((k) & 0xff) << 12) | \
992 (((g) & 0x3) << 20) | \
993 (((s) & 0x1) << 22) | \
994 (((c) & 0x7) << 23)))
995
996/* To grandfather in prior block linear format modifiers to the above layout,
997 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
998 * with block-linear layouts, is remapped within drivers to the value 0xfe,
999 * which corresponds to the "generic" kind used for simple single-sample
1000 * uncompressed color formats on Fermi - Volta GPUs.
1001 */
1002static __inline__ __u64
1003drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
1004{
1005 if (!(modifier & 0x10) || (modifier & (0xff << 12)))
1006 return modifier;
1007 else
1008 return modifier | (0xfe << 12);
1009}
1010
1011/*
1012 * 16Bx2 Block Linear layout, used by Tegra K1 and later
1013 *
1014 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
1015 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
1016 *
1017 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
1018 *
1019 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
1020 * Valid values are:
1021 *
1022 * 0 == ONE_GOB
1023 * 1 == TWO_GOBS
1024 * 2 == FOUR_GOBS
1025 * 3 == EIGHT_GOBS
1026 * 4 == SIXTEEN_GOBS
1027 * 5 == THIRTYTWO_GOBS
1028 *
1029 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
1030 * in full detail.
1031 */
1032#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
1033 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
1034
1035#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
1036 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
1037#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
1038 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
1039#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
1040 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
1041#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
1042 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
1043#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
1044 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
1045#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
1046 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
1047
1048/*
1049 * Some Broadcom modifiers take parameters, for example the number of
1050 * vertical lines in the image. Reserve the lower 32 bits for modifier
1051 * type, and the next 24 bits for parameters. Top 8 bits are the
1052 * vendor code.
1053 */
1054#define __fourcc_mod_broadcom_param_shift 8
1055#define __fourcc_mod_broadcom_param_bits 48
1056#define fourcc_mod_broadcom_code(val, params) \
1057 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
1058#define fourcc_mod_broadcom_param(m) \
1059 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
1060 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
1061#define fourcc_mod_broadcom_mod(m) \
1062 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
1063 __fourcc_mod_broadcom_param_shift))
1064
1065/*
1066 * Broadcom VC4 "T" format
1067 *
1068 * This is the primary layout that the V3D GPU can texture from (it
1069 * can't do linear). The T format has:
1070 *
1071 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
1072 * pixels at 32 bit depth.
1073 *
1074 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1075 * 16x16 pixels).
1076 *
1077 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
1078 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1079 * they're (TR, BR, BL, TL), where bottom left is start of memory.
1080 *
1081 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1082 * tiles) or right-to-left (odd rows of 4k tiles).
1083 */
1084#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1085
1086/*
1087 * Broadcom SAND format
1088 *
1089 * This is the native format that the H.264 codec block uses. For VC4
1090 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
1091 *
1092 * The image can be considered to be split into columns, and the
1093 * columns are placed consecutively into memory. The width of those
1094 * columns can be either 32, 64, 128, or 256 pixels, but in practice
1095 * only 128 pixel columns are used.
1096 *
1097 * The pitch between the start of each column is set to optimally
1098 * switch between SDRAM banks. This is passed as the number of lines
1099 * of column width in the modifier (we can't use the stride value due
1100 * to various core checks that look at it , so you should set the
1101 * stride to width*cpp).
1102 *
1103 * Note that the column height for this format modifier is the same
1104 * for all of the planes, assuming that each column contains both Y
1105 * and UV. Some SAND-using hardware stores UV in a separate tiled
1106 * image from Y to reduce the column height, which is not supported
1107 * with these modifiers.
1108 *
1109 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
1110 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
1111 * wide, but as this is a 10 bpp format that translates to 96 pixels.
1112 */
1113
1114#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
1115 fourcc_mod_broadcom_code(2, v)
1116#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
1117 fourcc_mod_broadcom_code(3, v)
1118#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
1119 fourcc_mod_broadcom_code(4, v)
1120#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
1121 fourcc_mod_broadcom_code(5, v)
1122
1123#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
1124 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
1125#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
1126 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
1127#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
1128 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
1129#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
1130 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
1131
1132/* Broadcom UIF format
1133 *
1134 * This is the common format for the current Broadcom multimedia
1135 * blocks, including V3D 3.x and newer, newer video codecs, and
1136 * displays.
1137 *
1138 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1139 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
1140 * stored in columns, with padding between the columns to ensure that
1141 * moving from one column to the next doesn't hit the same SDRAM page
1142 * bank.
1143 *
1144 * To calculate the padding, it is assumed that each hardware block
1145 * and the software driving it knows the platform's SDRAM page size,
1146 * number of banks, and XOR address, and that it's identical between
1147 * all blocks using the format. This tiling modifier will use XOR as
1148 * necessary to reduce the padding. If a hardware block can't do XOR,
1149 * the assumption is that a no-XOR tiling modifier will be created.
1150 */
1151#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1152
1153/*
1154 * Arm Framebuffer Compression (AFBC) modifiers
1155 *
1156 * AFBC is a proprietary lossless image compression protocol and format.
1157 * It provides fine-grained random access and minimizes the amount of data
1158 * transferred between IP blocks.
1159 *
1160 * AFBC has several features which may be supported and/or used, which are
1161 * represented using bits in the modifier. Not all combinations are valid,
1162 * and different devices or use-cases may support different combinations.
1163 *
1164 * Further information on the use of AFBC modifiers can be found in
1165 * Documentation/gpu/afbc.rst
1166 */
1167
1168/*
1169 * The top 4 bits (out of the 56 bits allotted for specifying vendor specific
1170 * modifiers) denote the category for modifiers. Currently we have three
1171 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1172 * sixteen different categories.
1173 */
1174#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1175 fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1176
1177#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1178#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1179
1180#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1181 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1182
1183/*
1184 * AFBC superblock size
1185 *
1186 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1187 * size (in pixels) must be aligned to a multiple of the superblock size.
1188 * Four lowest significant bits(LSBs) are reserved for block size.
1189 *
1190 * Where one superblock size is specified, it applies to all planes of the
1191 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1192 * the first applies to the Luma plane and the second applies to the Chroma
1193 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1194 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1195 */
1196#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf
1197#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
1198#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)
1199#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)
1200#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1201
1202/*
1203 * AFBC lossless colorspace transform
1204 *
1205 * Indicates that the buffer makes use of the AFBC lossless colorspace
1206 * transform.
1207 */
1208#define AFBC_FORMAT_MOD_YTR (1ULL << 4)
1209
1210/*
1211 * AFBC block-split
1212 *
1213 * Indicates that the payload of each superblock is split. The second
1214 * half of the payload is positioned at a predefined offset from the start
1215 * of the superblock payload.
1216 */
1217#define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
1218
1219/*
1220 * AFBC sparse layout
1221 *
1222 * This flag indicates that the payload of each superblock must be stored at a
1223 * predefined position relative to the other superblocks in the same AFBC
1224 * buffer. This order is the same order used by the header buffer. In this mode
1225 * each superblock is given the same amount of space as an uncompressed
1226 * superblock of the particular format would require, rounding up to the next
1227 * multiple of 128 bytes in size.
1228 */
1229#define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
1230
1231/*
1232 * AFBC copy-block restrict
1233 *
1234 * Buffers with this flag must obey the copy-block restriction. The restriction
1235 * is such that there are no copy-blocks referring across the border of 8x8
1236 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1237 */
1238#define AFBC_FORMAT_MOD_CBR (1ULL << 7)
1239
1240/*
1241 * AFBC tiled layout
1242 *
1243 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1244 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1245 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1246 * larger bpp formats. The order between the tiles is scan line.
1247 * When the tiled layout is used, the buffer size (in pixels) must be aligned
1248 * to the tile size.
1249 */
1250#define AFBC_FORMAT_MOD_TILED (1ULL << 8)
1251
1252/*
1253 * AFBC solid color blocks
1254 *
1255 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1256 * can be reduced if a whole superblock is a single color.
1257 */
1258#define AFBC_FORMAT_MOD_SC (1ULL << 9)
1259
1260/*
1261 * AFBC double-buffer
1262 *
1263 * Indicates that the buffer is allocated in a layout safe for front-buffer
1264 * rendering.
1265 */
1266#define AFBC_FORMAT_MOD_DB (1ULL << 10)
1267
1268/*
1269 * AFBC buffer content hints
1270 *
1271 * Indicates that the buffer includes per-superblock content hints.
1272 */
1273#define AFBC_FORMAT_MOD_BCH (1ULL << 11)
1274
1275/* AFBC uncompressed storage mode
1276 *
1277 * Indicates that the buffer is using AFBC uncompressed storage mode.
1278 * In this mode all superblock payloads in the buffer use the uncompressed
1279 * storage mode, which is usually only used for data which cannot be compressed.
1280 * The buffer layout is the same as for AFBC buffers without USM set, this only
1281 * affects the storage mode of the individual superblocks. Note that even a
1282 * buffer without USM set may use uncompressed storage mode for some or all
1283 * superblocks, USM just guarantees it for all.
1284 */
1285#define AFBC_FORMAT_MOD_USM (1ULL << 12)
1286
1287/*
1288 * Arm Fixed-Rate Compression (AFRC) modifiers
1289 *
1290 * AFRC is a proprietary fixed rate image compression protocol and format,
1291 * designed to provide guaranteed bandwidth and memory footprint
1292 * reductions in graphics and media use-cases.
1293 *
1294 * AFRC buffers consist of one or more planes, with the same components
1295 * and meaning as an uncompressed buffer using the same pixel format.
1296 *
1297 * Within each plane, the pixel/luma/chroma values are grouped into
1298 * "coding unit" blocks which are individually compressed to a
1299 * fixed size (in bytes). All coding units within a given plane of a buffer
1300 * store the same number of values, and have the same compressed size.
1301 *
1302 * The coding unit size is configurable, allowing different rates of compression.
1303 *
1304 * The start of each AFRC buffer plane must be aligned to an alignment granule which
1305 * depends on the coding unit size.
1306 *
1307 * Coding Unit Size Plane Alignment
1308 * ---------------- ---------------
1309 * 16 bytes 1024 bytes
1310 * 24 bytes 512 bytes
1311 * 32 bytes 2048 bytes
1312 *
1313 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1314 * to a multiple of the paging tile dimensions.
1315 * The dimensions of each paging tile depend on whether the buffer is optimised for
1316 * scanline (SCAN layout) or rotated (ROT layout) access.
1317 *
1318 * Layout Paging Tile Width Paging Tile Height
1319 * ------ ----------------- ------------------
1320 * SCAN 16 coding units 4 coding units
1321 * ROT 8 coding units 8 coding units
1322 *
1323 * The dimensions of each coding unit depend on the number of components
1324 * in the compressed plane and whether the buffer is optimised for
1325 * scanline (SCAN layout) or rotated (ROT layout) access.
1326 *
1327 * Number of Components in Plane Layout Coding Unit Width Coding Unit Height
1328 * ----------------------------- --------- ----------------- ------------------
1329 * 1 SCAN 16 samples 4 samples
1330 * Example: 16x4 luma samples in a 'Y' plane
1331 * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1332 * ----------------------------- --------- ----------------- ------------------
1333 * 1 ROT 8 samples 8 samples
1334 * Example: 8x8 luma samples in a 'Y' plane
1335 * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1336 * ----------------------------- --------- ----------------- ------------------
1337 * 2 DONT CARE 8 samples 4 samples
1338 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1339 * ----------------------------- --------- ----------------- ------------------
1340 * 3 DONT CARE 4 samples 4 samples
1341 * Example: 4x4 pixels in an RGB buffer without alpha
1342 * ----------------------------- --------- ----------------- ------------------
1343 * 4 DONT CARE 4 samples 4 samples
1344 * Example: 4x4 pixels in an RGB buffer with alpha
1345 */
1346
1347#define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1348
1349#define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1350 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1351
1352/*
1353 * AFRC coding unit size modifier.
1354 *
1355 * Indicates the number of bytes used to store each compressed coding unit for
1356 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1357 * is the same for both Cb and Cr, which may be stored in separate planes.
1358 *
1359 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1360 * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1361 * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1362 * this corresponds to the luma plane.
1363 *
1364 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1365 * each compressed coding unit in the second and third planes in the buffer.
1366 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1367 *
1368 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1369 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1370 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1371 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1372 */
1373#define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1374#define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1375#define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1376#define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1377
1378#define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1379#define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1380
1381/*
1382 * AFRC scanline memory layout.
1383 *
1384 * Indicates if the buffer uses the scanline-optimised layout
1385 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1386 * The memory layout is the same for all planes.
1387 */
1388#define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1389
1390/*
1391 * Arm 16x16 Block U-Interleaved modifier
1392 *
1393 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1394 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1395 * in the block are reordered.
1396 */
1397#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1398 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1399
1400/*
1401 * Allwinner tiled modifier
1402 *
1403 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1404 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1405 * planes.
1406 *
1407 * With this tiling, the luminance samples are disposed in tiles representing
1408 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1409 * The pixel order in each tile is linear and the tiles are disposed linearly,
1410 * both in row-major order.
1411 */
1412#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1413
1414/*
1415 * Amlogic Video Framebuffer Compression modifiers
1416 *
1417 * Amlogic uses a proprietary lossless image compression protocol and format
1418 * for their hardware video codec accelerators, either video decoders or
1419 * video input encoders.
1420 *
1421 * It considerably reduces memory bandwidth while writing and reading
1422 * frames in memory.
1423 *
1424 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1425 * per component YCbCr 420, single plane :
1426 * - DRM_FORMAT_YUV420_8BIT
1427 * - DRM_FORMAT_YUV420_10BIT
1428 *
1429 * The first 8 bits of the mode defines the layout, then the following 8 bits
1430 * defines the options changing the layout.
1431 *
1432 * Not all combinations are valid, and different SoCs may support different
1433 * combinations of layout and options.
1434 */
1435#define __fourcc_mod_amlogic_layout_mask 0xff
1436#define __fourcc_mod_amlogic_options_shift 8
1437#define __fourcc_mod_amlogic_options_mask 0xff
1438
1439#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1440 fourcc_mod_code(AMLOGIC, \
1441 ((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1442 (((__options) & __fourcc_mod_amlogic_options_mask) \
1443 << __fourcc_mod_amlogic_options_shift))
1444
1445/* Amlogic FBC Layouts */
1446
1447/*
1448 * Amlogic FBC Basic Layout
1449 *
1450 * The basic layout is composed of:
1451 * - a body content organized in 64x32 superblocks with 4096 bytes per
1452 * superblock in default mode.
1453 * - a 32 bytes per 128x64 header block
1454 *
1455 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1456 */
1457#define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
1458
1459/*
1460 * Amlogic FBC Scatter Memory layout
1461 *
1462 * Indicates the header contains IOMMU references to the compressed
1463 * frames content to optimize memory access and layout.
1464 *
1465 * In this mode, only the header memory address is needed, thus the
1466 * content memory organization is tied to the current producer
1467 * execution and cannot be saved/dumped neither transferrable between
1468 * Amlogic SoCs supporting this modifier.
1469 *
1470 * Due to the nature of the layout, these buffers are not expected to
1471 * be accessible by the user-space clients, but only accessible by the
1472 * hardware producers and consumers.
1473 *
1474 * The user-space clients should expect a failure while trying to mmap
1475 * the DMA-BUF handle returned by the producer.
1476 */
1477#define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)
1478
1479/* Amlogic FBC Layout Options Bit Mask */
1480
1481/*
1482 * Amlogic FBC Memory Saving mode
1483 *
1484 * Indicates the storage is packed when pixel size is multiple of word
1485 * boundaries, i.e. 8bit should be stored in this mode to save allocation
1486 * memory.
1487 *
1488 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1489 * the basic layout and 3200 bytes per 64x32 superblock combined with
1490 * the scatter layout.
1491 */
1492#define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
1493
1494/* MediaTek modifiers
1495 * Bits Parameter Notes
1496 * ----- ------------------------ ---------------------------------------------
1497 * 7: 0 TILE LAYOUT Values are MTK_FMT_MOD_TILE_*
1498 * 15: 8 COMPRESSION Values are MTK_FMT_MOD_COMPRESS_*
1499 * 23:16 10 BIT LAYOUT Values are MTK_FMT_MOD_10BIT_LAYOUT_*
1500 *
1501 */
1502
1503#define DRM_FORMAT_MOD_MTK(__flags) fourcc_mod_code(MTK, __flags)
1504
1505/*
1506 * MediaTek Tiled Modifier
1507 * The lowest 8 bits of the modifier is used to specify the tiling
1508 * layout. Only the 16L_32S tiling is used for now, but we define an
1509 * "untiled" version and leave room for future expansion.
1510 */
1511#define MTK_FMT_MOD_TILE_MASK 0xf
1512#define MTK_FMT_MOD_TILE_NONE 0x0
1513#define MTK_FMT_MOD_TILE_16L32S 0x1
1514
1515/*
1516 * Bits 8-15 specify compression options
1517 */
1518#define MTK_FMT_MOD_COMPRESS_MASK (0xf << 8)
1519#define MTK_FMT_MOD_COMPRESS_NONE (0x0 << 8)
1520#define MTK_FMT_MOD_COMPRESS_V1 (0x1 << 8)
1521
1522/*
1523 * Bits 16-23 specify how the bits of 10 bit formats are
1524 * stored out in memory
1525 */
1526#define MTK_FMT_MOD_10BIT_LAYOUT_MASK (0xf << 16)
1527#define MTK_FMT_MOD_10BIT_LAYOUT_PACKED (0x0 << 16)
1528#define MTK_FMT_MOD_10BIT_LAYOUT_LSBTILED (0x1 << 16)
1529#define MTK_FMT_MOD_10BIT_LAYOUT_LSBRASTER (0x2 << 16)
1530
1531/* alias for the most common tiling format */
1532#define DRM_FORMAT_MOD_MTK_16L_32S_TILE DRM_FORMAT_MOD_MTK(MTK_FMT_MOD_TILE_16L32S)
1533
1534/*
1535 * Apple GPU-tiled layouts.
1536 *
1537 * Apple GPUs support nonlinear tilings with optional lossless compression.
1538 *
1539 * GPU-tiled images are divided into 16KiB tiles:
1540 *
1541 * Bytes per pixel Tile size
1542 * --------------- ---------
1543 * 1 128x128
1544 * 2 128x64
1545 * 4 64x64
1546 * 8 64x32
1547 * 16 32x32
1548 *
1549 * Tiles are raster-order. Pixels within a tile are interleaved (Morton order).
1550 *
1551 * Compressed images pad the body to 128-bytes and are immediately followed by a
1552 * metadata section. The metadata section rounds the image dimensions to
1553 * powers-of-two and contains 8 bytes for each 16x16 compression subtile.
1554 * Subtiles are interleaved (Morton order).
1555 *
1556 * All images are 128-byte aligned.
1557 *
1558 * These layouts fundamentally do not have meaningful strides. No matter how we
1559 * specify strides for these layouts, userspace unaware of Apple image layouts
1560 * will be unable to use correctly the specified stride for any purpose.
1561 * Userspace aware of the image layouts do not use strides. The most "correct"
1562 * convention would be setting the image stride to 0. Unfortunately, some
1563 * software assumes the stride is at least (width * bytes per pixel). We
1564 * therefore require that stride equals (width * bytes per pixel). Since the
1565 * stride is arbitrary here, we pick the simplest convention.
1566 *
1567 * Although containing two sections, compressed image layouts are treated in
1568 * software as a single plane. This is modelled after AFBC, a similar
1569 * scheme. Attempting to separate the sections to be "explicit" in DRM would
1570 * only generate more confusion, as software does not treat the image this way.
1571 *
1572 * For detailed information on the hardware image layouts, see
1573 * https://docs.mesa3d.org/drivers/asahi.html#image-layouts
1574 */
1575#define DRM_FORMAT_MOD_APPLE_GPU_TILED fourcc_mod_code(APPLE, 1)
1576#define DRM_FORMAT_MOD_APPLE_GPU_TILED_COMPRESSED fourcc_mod_code(APPLE, 2)
1577
1578/*
1579 * AMD modifiers
1580 *
1581 * Memory layout:
1582 *
1583 * without DCC:
1584 * - main surface
1585 *
1586 * with DCC & without DCC_RETILE:
1587 * - main surface in plane 0
1588 * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1589 *
1590 * with DCC & DCC_RETILE:
1591 * - main surface in plane 0
1592 * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1593 * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1594 *
1595 * For multi-plane formats the above surfaces get merged into one plane for
1596 * each format plane, based on the required alignment only.
1597 *
1598 * Bits Parameter Notes
1599 * ----- ------------------------ ---------------------------------------------
1600 *
1601 * 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_*
1602 * 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_*
1603 * 13 DCC
1604 * 14 DCC_RETILE
1605 * 15 DCC_PIPE_ALIGN
1606 * 16 DCC_INDEPENDENT_64B
1607 * 17 DCC_INDEPENDENT_128B
1608 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1609 * 20 DCC_CONSTANT_ENCODE
1610 * 23:21 PIPE_XOR_BITS Only for some chips
1611 * 26:24 BANK_XOR_BITS Only for some chips
1612 * 29:27 PACKERS Only for some chips
1613 * 32:30 RB Only for some chips
1614 * 35:33 PIPE Only for some chips
1615 * 55:36 - Reserved for future use, must be zero
1616 */
1617#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1618
1619#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1620
1621/* Reserve 0 for GFX8 and older */
1622#define AMD_FMT_MOD_TILE_VER_GFX9 1
1623#define AMD_FMT_MOD_TILE_VER_GFX10 2
1624#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1625#define AMD_FMT_MOD_TILE_VER_GFX11 4
1626#define AMD_FMT_MOD_TILE_VER_GFX12 5
1627
1628/*
1629 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1630 * version.
1631 */
1632#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1633
1634/*
1635 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1636 * GFX9 as canonical version.
1637 *
1638 * 64K_D_2D on GFX12 is identical to 64K_D on GFX11.
1639 */
1640#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1641#define AMD_FMT_MOD_TILE_GFX9_4K_D_X 22
1642#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1643#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1644#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1645#define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1646
1647/* Gfx12 swizzle modes:
1648 * 0 - LINEAR
1649 * 1 - 256B_2D - 2D block dimensions
1650 * 2 - 4KB_2D
1651 * 3 - 64KB_2D
1652 * 4 - 256KB_2D
1653 * 5 - 4KB_3D - 3D block dimensions
1654 * 6 - 64KB_3D
1655 * 7 - 256KB_3D
1656 */
1657#define AMD_FMT_MOD_TILE_GFX12_256B_2D 1
1658#define AMD_FMT_MOD_TILE_GFX12_4K_2D 2
1659#define AMD_FMT_MOD_TILE_GFX12_64K_2D 3
1660#define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
1661
1662#define AMD_FMT_MOD_DCC_BLOCK_64B 0
1663#define AMD_FMT_MOD_DCC_BLOCK_128B 1
1664#define AMD_FMT_MOD_DCC_BLOCK_256B 2
1665
1666#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1667#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1668#define AMD_FMT_MOD_TILE_SHIFT 8
1669#define AMD_FMT_MOD_TILE_MASK 0x1F
1670
1671/* Whether DCC compression is enabled. */
1672#define AMD_FMT_MOD_DCC_SHIFT 13
1673#define AMD_FMT_MOD_DCC_MASK 0x1
1674
1675/*
1676 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1677 * one which is not-aligned.
1678 */
1679#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1680#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1681
1682/* Only set if DCC_RETILE = false */
1683#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1684#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1685
1686#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1687#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1688#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1689#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1690#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1691#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1692
1693/*
1694 * DCC supports embedding some clear colors directly in the DCC surface.
1695 * However, on older GPUs the rendering HW ignores the embedded clear color
1696 * and prefers the driver provided color. This necessitates doing a fastclear
1697 * eliminate operation before a process transfers control.
1698 *
1699 * If this bit is set that means the fastclear eliminate is not needed for these
1700 * embeddable colors.
1701 */
1702#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1703#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1704
1705/*
1706 * The below fields are for accounting for per GPU differences. These are only
1707 * relevant for GFX9 and later and if the tile field is *_X/_T.
1708 *
1709 * PIPE_XOR_BITS = always needed
1710 * BANK_XOR_BITS = only for TILE_VER_GFX9
1711 * PACKERS = only for TILE_VER_GFX10_RBPLUS
1712 * RB = only for TILE_VER_GFX9 & DCC
1713 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1714 */
1715#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1716#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1717#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1718#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1719#define AMD_FMT_MOD_PACKERS_SHIFT 27
1720#define AMD_FMT_MOD_PACKERS_MASK 0x7
1721#define AMD_FMT_MOD_RB_SHIFT 30
1722#define AMD_FMT_MOD_RB_MASK 0x7
1723#define AMD_FMT_MOD_PIPE_SHIFT 33
1724#define AMD_FMT_MOD_PIPE_MASK 0x7
1725
1726#define AMD_FMT_MOD_SET(field, value) \
1727 ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1728#define AMD_FMT_MOD_GET(field, value) \
1729 (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1730#define AMD_FMT_MOD_CLEAR(field) \
1731 (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1732
1733#if defined(__cplusplus)
1734}
1735#endif
1736
1737#endif /* DRM_FOURCC_H */
1738

source code of include/libdrm/drm_fourcc.h