1 | /* |
2 | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
4 | * |
5 | * Licensed under the Apache License 2.0 (the "License"). You may not use |
6 | * this file except in compliance with the License. You can obtain a copy |
7 | * in the file LICENSE in the source distribution or at |
8 | * https://www.openssl.org/source/license.html |
9 | */ |
10 | |
11 | #ifndef OPENSSL_BN_H |
12 | # define OPENSSL_BN_H |
13 | # pragma once |
14 | |
15 | # include <openssl/macros.h> |
16 | # ifndef OPENSSL_NO_DEPRECATED_3_0 |
17 | # define |
18 | # endif |
19 | |
20 | # include <openssl/e_os2.h> |
21 | # ifndef OPENSSL_NO_STDIO |
22 | # include <stdio.h> |
23 | # endif |
24 | # include <openssl/opensslconf.h> |
25 | # include <openssl/types.h> |
26 | # include <openssl/crypto.h> |
27 | # include <openssl/bnerr.h> |
28 | |
29 | #ifdef __cplusplus |
30 | extern "C" { |
31 | #endif |
32 | |
33 | /* |
34 | * 64-bit processor with LP64 ABI |
35 | */ |
36 | # ifdef SIXTY_FOUR_BIT_LONG |
37 | # define BN_ULONG unsigned long |
38 | # define BN_BYTES 8 |
39 | # endif |
40 | |
41 | /* |
42 | * 64-bit processor other than LP64 ABI |
43 | */ |
44 | # ifdef SIXTY_FOUR_BIT |
45 | # define BN_ULONG unsigned long long |
46 | # define BN_BYTES 8 |
47 | # endif |
48 | |
49 | # ifdef THIRTY_TWO_BIT |
50 | # define BN_ULONG unsigned int |
51 | # define BN_BYTES 4 |
52 | # endif |
53 | |
54 | # define BN_BITS2 (BN_BYTES * 8) |
55 | # define BN_BITS (BN_BITS2 * 2) |
56 | # define BN_TBIT ((BN_ULONG)1 << (BN_BITS2 - 1)) |
57 | |
58 | # define BN_FLG_MALLOCED 0x01 |
59 | # define BN_FLG_STATIC_DATA 0x02 |
60 | |
61 | /* |
62 | * avoid leaking exponent information through timing, |
63 | * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime, |
64 | * BN_div() will call BN_div_no_branch, |
65 | * BN_mod_inverse() will call bn_mod_inverse_no_branch. |
66 | */ |
67 | # define BN_FLG_CONSTTIME 0x04 |
68 | # define BN_FLG_SECURE 0x08 |
69 | |
70 | # ifndef OPENSSL_NO_DEPRECATED_0_9_8 |
71 | /* deprecated name for the flag */ |
72 | # define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME |
73 | # define BN_FLG_FREE 0x8000 /* used for debugging */ |
74 | # endif |
75 | |
76 | void BN_set_flags(BIGNUM *b, int n); |
77 | int BN_get_flags(const BIGNUM *b, int n); |
78 | |
79 | /* Values for |top| in BN_rand() */ |
80 | #define BN_RAND_TOP_ANY -1 |
81 | #define BN_RAND_TOP_ONE 0 |
82 | #define BN_RAND_TOP_TWO 1 |
83 | |
84 | /* Values for |bottom| in BN_rand() */ |
85 | #define BN_RAND_BOTTOM_ANY 0 |
86 | #define BN_RAND_BOTTOM_ODD 1 |
87 | |
88 | /* |
89 | * get a clone of a BIGNUM with changed flags, for *temporary* use only (the |
90 | * two BIGNUMs cannot be used in parallel!). Also only for *read only* use. The |
91 | * value |dest| should be a newly allocated BIGNUM obtained via BN_new() that |
92 | * has not been otherwise initialised or used. |
93 | */ |
94 | void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags); |
95 | |
96 | /* Wrapper function to make using BN_GENCB easier */ |
97 | int BN_GENCB_call(BN_GENCB *cb, int a, int b); |
98 | |
99 | BN_GENCB *BN_GENCB_new(void); |
100 | void BN_GENCB_free(BN_GENCB *cb); |
101 | |
102 | /* Populate a BN_GENCB structure with an "old"-style callback */ |
103 | void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *), |
104 | void *cb_arg); |
105 | |
106 | /* Populate a BN_GENCB structure with a "new"-style callback */ |
107 | void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *), |
108 | void *cb_arg); |
109 | |
110 | void *BN_GENCB_get_arg(BN_GENCB *cb); |
111 | |
112 | # ifndef OPENSSL_NO_DEPRECATED_3_0 |
113 | # define BN_prime_checks 0 /* default: select number of iterations based |
114 | * on the size of the number */ |
115 | |
116 | /* |
117 | * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations |
118 | * that will be done for checking that a random number is probably prime. The |
119 | * error rate for accepting a composite number as prime depends on the size of |
120 | * the prime |b|. The error rates used are for calculating an RSA key with 2 primes, |
121 | * and so the level is what you would expect for a key of double the size of the |
122 | * prime. |
123 | * |
124 | * This table is generated using the algorithm of FIPS PUB 186-4 |
125 | * Digital Signature Standard (DSS), section F.1, page 117. |
126 | * (https://dx.doi.org/10.6028/NIST.FIPS.186-4) |
127 | * |
128 | * The following magma script was used to generate the output: |
129 | * securitybits:=125; |
130 | * k:=1024; |
131 | * for t:=1 to 65 do |
132 | * for M:=3 to Floor(2*Sqrt(k-1)-1) do |
133 | * S:=0; |
134 | * // Sum over m |
135 | * for m:=3 to M do |
136 | * s:=0; |
137 | * // Sum over j |
138 | * for j:=2 to m do |
139 | * s+:=(RealField(32)!2)^-(j+(k-1)/j); |
140 | * end for; |
141 | * S+:=2^(m-(m-1)*t)*s; |
142 | * end for; |
143 | * A:=2^(k-2-M*t); |
144 | * B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S; |
145 | * pkt:=2.00743*Log(2)*k*2^-k*(A+B); |
146 | * seclevel:=Floor(-Log(2,pkt)); |
147 | * if seclevel ge securitybits then |
148 | * printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M; |
149 | * break; |
150 | * end if; |
151 | * end for; |
152 | * if seclevel ge securitybits then break; end if; |
153 | * end for; |
154 | * |
155 | * It can be run online at: |
156 | * http://magma.maths.usyd.edu.au/calc |
157 | * |
158 | * And will output: |
159 | * k: 1024, security: 129 bits (t: 6, M: 23) |
160 | * |
161 | * k is the number of bits of the prime, securitybits is the level we want to |
162 | * reach. |
163 | * |
164 | * prime length | RSA key size | # MR tests | security level |
165 | * -------------+--------------|------------+--------------- |
166 | * (b) >= 6394 | >= 12788 | 3 | 256 bit |
167 | * (b) >= 3747 | >= 7494 | 3 | 192 bit |
168 | * (b) >= 1345 | >= 2690 | 4 | 128 bit |
169 | * (b) >= 1080 | >= 2160 | 5 | 128 bit |
170 | * (b) >= 852 | >= 1704 | 5 | 112 bit |
171 | * (b) >= 476 | >= 952 | 5 | 80 bit |
172 | * (b) >= 400 | >= 800 | 6 | 80 bit |
173 | * (b) >= 347 | >= 694 | 7 | 80 bit |
174 | * (b) >= 308 | >= 616 | 8 | 80 bit |
175 | * (b) >= 55 | >= 110 | 27 | 64 bit |
176 | * (b) >= 6 | >= 12 | 34 | 64 bit |
177 | */ |
178 | |
179 | # define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \ |
180 | (b) >= 1345 ? 4 : \ |
181 | (b) >= 476 ? 5 : \ |
182 | (b) >= 400 ? 6 : \ |
183 | (b) >= 347 ? 7 : \ |
184 | (b) >= 308 ? 8 : \ |
185 | (b) >= 55 ? 27 : \ |
186 | /* b >= 6 */ 34) |
187 | # endif |
188 | |
189 | # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8) |
190 | |
191 | int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w); |
192 | int BN_is_zero(const BIGNUM *a); |
193 | int BN_is_one(const BIGNUM *a); |
194 | int BN_is_word(const BIGNUM *a, const BN_ULONG w); |
195 | int BN_is_odd(const BIGNUM *a); |
196 | |
197 | # define BN_one(a) (BN_set_word((a),1)) |
198 | |
199 | void BN_zero_ex(BIGNUM *a); |
200 | |
201 | # if OPENSSL_API_LEVEL > 908 |
202 | # define BN_zero(a) BN_zero_ex(a) |
203 | # else |
204 | # define BN_zero(a) (BN_set_word((a),0)) |
205 | # endif |
206 | |
207 | const BIGNUM *BN_value_one(void); |
208 | char *BN_options(void); |
209 | BN_CTX *BN_CTX_new_ex(OSSL_LIB_CTX *ctx); |
210 | BN_CTX *BN_CTX_new(void); |
211 | BN_CTX *BN_CTX_secure_new_ex(OSSL_LIB_CTX *ctx); |
212 | BN_CTX *BN_CTX_secure_new(void); |
213 | void BN_CTX_free(BN_CTX *c); |
214 | void BN_CTX_start(BN_CTX *ctx); |
215 | BIGNUM *BN_CTX_get(BN_CTX *ctx); |
216 | void BN_CTX_end(BN_CTX *ctx); |
217 | int BN_rand_ex(BIGNUM *rnd, int bits, int top, int bottom, |
218 | unsigned int strength, BN_CTX *ctx); |
219 | int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); |
220 | int BN_priv_rand_ex(BIGNUM *rnd, int bits, int top, int bottom, |
221 | unsigned int strength, BN_CTX *ctx); |
222 | int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom); |
223 | int BN_rand_range_ex(BIGNUM *r, const BIGNUM *range, unsigned int strength, |
224 | BN_CTX *ctx); |
225 | int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); |
226 | int BN_priv_rand_range_ex(BIGNUM *r, const BIGNUM *range, |
227 | unsigned int strength, BN_CTX *ctx); |
228 | int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range); |
229 | # ifndef OPENSSL_NO_DEPRECATED_3_0 |
230 | OSSL_DEPRECATEDIN_3_0 |
231 | int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); |
232 | OSSL_DEPRECATEDIN_3_0 |
233 | int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); |
234 | # endif |
235 | int BN_num_bits(const BIGNUM *a); |
236 | int BN_num_bits_word(BN_ULONG l); |
237 | int BN_security_bits(int L, int N); |
238 | BIGNUM *BN_new(void); |
239 | BIGNUM *BN_secure_new(void); |
240 | void BN_clear_free(BIGNUM *a); |
241 | BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b); |
242 | void BN_swap(BIGNUM *a, BIGNUM *b); |
243 | BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret); |
244 | int BN_bn2bin(const BIGNUM *a, unsigned char *to); |
245 | int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen); |
246 | BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret); |
247 | int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen); |
248 | BIGNUM *BN_native2bn(const unsigned char *s, int len, BIGNUM *ret); |
249 | int BN_bn2nativepad(const BIGNUM *a, unsigned char *to, int tolen); |
250 | BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret); |
251 | int BN_bn2mpi(const BIGNUM *a, unsigned char *to); |
252 | int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
253 | int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
254 | int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
255 | int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
256 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); |
257 | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); |
258 | /** BN_set_negative sets sign of a BIGNUM |
259 | * \param b pointer to the BIGNUM object |
260 | * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise |
261 | */ |
262 | void BN_set_negative(BIGNUM *b, int n); |
263 | /** BN_is_negative returns 1 if the BIGNUM is negative |
264 | * \param b pointer to the BIGNUM object |
265 | * \return 1 if a < 0 and 0 otherwise |
266 | */ |
267 | int BN_is_negative(const BIGNUM *b); |
268 | |
269 | int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, |
270 | BN_CTX *ctx); |
271 | # define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx)) |
272 | int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); |
273 | int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, |
274 | BN_CTX *ctx); |
275 | int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
276 | const BIGNUM *m); |
277 | int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, |
278 | BN_CTX *ctx); |
279 | int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
280 | const BIGNUM *m); |
281 | int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, |
282 | BN_CTX *ctx); |
283 | int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); |
284 | int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); |
285 | int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m); |
286 | int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, |
287 | BN_CTX *ctx); |
288 | int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m); |
289 | |
290 | BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); |
291 | BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w); |
292 | int BN_mul_word(BIGNUM *a, BN_ULONG w); |
293 | int BN_add_word(BIGNUM *a, BN_ULONG w); |
294 | int BN_sub_word(BIGNUM *a, BN_ULONG w); |
295 | int BN_set_word(BIGNUM *a, BN_ULONG w); |
296 | BN_ULONG BN_get_word(const BIGNUM *a); |
297 | |
298 | int BN_cmp(const BIGNUM *a, const BIGNUM *b); |
299 | void BN_free(BIGNUM *a); |
300 | int BN_is_bit_set(const BIGNUM *a, int n); |
301 | int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); |
302 | int BN_lshift1(BIGNUM *r, const BIGNUM *a); |
303 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
304 | |
305 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
306 | const BIGNUM *m, BN_CTX *ctx); |
307 | int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
308 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); |
309 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
310 | const BIGNUM *m, BN_CTX *ctx, |
311 | BN_MONT_CTX *in_mont); |
312 | int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, |
313 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); |
314 | int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1, |
315 | const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, |
316 | BN_CTX *ctx, BN_MONT_CTX *m_ctx); |
317 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
318 | const BIGNUM *m, BN_CTX *ctx); |
319 | int BN_mod_exp_mont_consttime_x2(BIGNUM *rr1, const BIGNUM *a1, const BIGNUM *p1, |
320 | const BIGNUM *m1, BN_MONT_CTX *in_mont1, |
321 | BIGNUM *rr2, const BIGNUM *a2, const BIGNUM *p2, |
322 | const BIGNUM *m2, BN_MONT_CTX *in_mont2, |
323 | BN_CTX *ctx); |
324 | |
325 | int BN_mask_bits(BIGNUM *a, int n); |
326 | # ifndef OPENSSL_NO_STDIO |
327 | int BN_print_fp(FILE *fp, const BIGNUM *a); |
328 | # endif |
329 | int BN_print(BIO *bio, const BIGNUM *a); |
330 | int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx); |
331 | int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); |
332 | int BN_rshift1(BIGNUM *r, const BIGNUM *a); |
333 | void BN_clear(BIGNUM *a); |
334 | BIGNUM *BN_dup(const BIGNUM *a); |
335 | int BN_ucmp(const BIGNUM *a, const BIGNUM *b); |
336 | int BN_set_bit(BIGNUM *a, int n); |
337 | int BN_clear_bit(BIGNUM *a, int n); |
338 | char *BN_bn2hex(const BIGNUM *a); |
339 | char *BN_bn2dec(const BIGNUM *a); |
340 | int BN_hex2bn(BIGNUM **a, const char *str); |
341 | int BN_dec2bn(BIGNUM **a, const char *str); |
342 | int BN_asc2bn(BIGNUM **a, const char *str); |
343 | int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); |
344 | int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); /* returns |
345 | * -2 for |
346 | * error */ |
347 | BIGNUM *BN_mod_inverse(BIGNUM *ret, |
348 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); |
349 | BIGNUM *BN_mod_sqrt(BIGNUM *ret, |
350 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); |
351 | |
352 | void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords); |
353 | |
354 | /* Deprecated versions */ |
355 | # ifndef OPENSSL_NO_DEPRECATED_0_9_8 |
356 | OSSL_DEPRECATEDIN_0_9_8 |
357 | BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, |
358 | const BIGNUM *add, const BIGNUM *rem, |
359 | void (*callback) (int, int, void *), |
360 | void *cb_arg); |
361 | OSSL_DEPRECATEDIN_0_9_8 |
362 | int BN_is_prime(const BIGNUM *p, int nchecks, |
363 | void (*callback) (int, int, void *), |
364 | BN_CTX *ctx, void *cb_arg); |
365 | OSSL_DEPRECATEDIN_0_9_8 |
366 | int BN_is_prime_fasttest(const BIGNUM *p, int nchecks, |
367 | void (*callback) (int, int, void *), |
368 | BN_CTX *ctx, void *cb_arg, |
369 | int do_trial_division); |
370 | # endif |
371 | # ifndef OPENSSL_NO_DEPRECATED_3_0 |
372 | OSSL_DEPRECATEDIN_3_0 |
373 | int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb); |
374 | OSSL_DEPRECATEDIN_3_0 |
375 | int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, |
376 | int do_trial_division, BN_GENCB *cb); |
377 | # endif |
378 | /* Newer versions */ |
379 | int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe, |
380 | const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb, |
381 | BN_CTX *ctx); |
382 | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, |
383 | const BIGNUM *rem, BN_GENCB *cb); |
384 | int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb); |
385 | |
386 | # ifndef OPENSSL_NO_DEPRECATED_3_0 |
387 | OSSL_DEPRECATEDIN_3_0 |
388 | int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx); |
389 | |
390 | OSSL_DEPRECATEDIN_3_0 |
391 | int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, |
392 | const BIGNUM *Xp, const BIGNUM *Xp1, |
393 | const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, |
394 | BN_GENCB *cb); |
395 | OSSL_DEPRECATEDIN_3_0 |
396 | int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, |
397 | BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, |
398 | BN_CTX *ctx, BN_GENCB *cb); |
399 | # endif |
400 | |
401 | BN_MONT_CTX *BN_MONT_CTX_new(void); |
402 | int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
403 | BN_MONT_CTX *mont, BN_CTX *ctx); |
404 | int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, |
405 | BN_CTX *ctx); |
406 | int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, |
407 | BN_CTX *ctx); |
408 | void BN_MONT_CTX_free(BN_MONT_CTX *mont); |
409 | int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx); |
410 | BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from); |
411 | BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock, |
412 | const BIGNUM *mod, BN_CTX *ctx); |
413 | |
414 | /* BN_BLINDING flags */ |
415 | # define BN_BLINDING_NO_UPDATE 0x00000001 |
416 | # define BN_BLINDING_NO_RECREATE 0x00000002 |
417 | |
418 | BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod); |
419 | void BN_BLINDING_free(BN_BLINDING *b); |
420 | int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx); |
421 | int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); |
422 | int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); |
423 | int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *); |
424 | int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, |
425 | BN_CTX *); |
426 | |
427 | int BN_BLINDING_is_current_thread(BN_BLINDING *b); |
428 | void BN_BLINDING_set_current_thread(BN_BLINDING *b); |
429 | int BN_BLINDING_lock(BN_BLINDING *b); |
430 | int BN_BLINDING_unlock(BN_BLINDING *b); |
431 | |
432 | unsigned long BN_BLINDING_get_flags(const BN_BLINDING *); |
433 | void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long); |
434 | BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b, |
435 | const BIGNUM *e, BIGNUM *m, BN_CTX *ctx, |
436 | int (*bn_mod_exp) (BIGNUM *r, |
437 | const BIGNUM *a, |
438 | const BIGNUM *p, |
439 | const BIGNUM *m, |
440 | BN_CTX *ctx, |
441 | BN_MONT_CTX *m_ctx), |
442 | BN_MONT_CTX *m_ctx); |
443 | # ifndef OPENSSL_NO_DEPRECATED_0_9_8 |
444 | OSSL_DEPRECATEDIN_0_9_8 |
445 | void BN_set_params(int mul, int high, int low, int mont); |
446 | OSSL_DEPRECATEDIN_0_9_8 |
447 | int BN_get_params(int which); /* 0, mul, 1 high, 2 low, 3 mont */ |
448 | # endif |
449 | |
450 | BN_RECP_CTX *BN_RECP_CTX_new(void); |
451 | void BN_RECP_CTX_free(BN_RECP_CTX *recp); |
452 | int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx); |
453 | int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, |
454 | BN_RECP_CTX *recp, BN_CTX *ctx); |
455 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
456 | const BIGNUM *m, BN_CTX *ctx); |
457 | int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, |
458 | BN_RECP_CTX *recp, BN_CTX *ctx); |
459 | |
460 | # ifndef OPENSSL_NO_EC2M |
461 | |
462 | /* |
463 | * Functions for arithmetic over binary polynomials represented by BIGNUMs. |
464 | * The BIGNUM::neg property of BIGNUMs representing binary polynomials is |
465 | * ignored. Note that input arguments are not const so that their bit arrays |
466 | * can be expanded to the appropriate size if needed. |
467 | */ |
468 | |
469 | /* |
470 | * r = a + b |
471 | */ |
472 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); |
473 | # define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b) |
474 | /* |
475 | * r=a mod p |
476 | */ |
477 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); |
478 | /* r = (a * b) mod p */ |
479 | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
480 | const BIGNUM *p, BN_CTX *ctx); |
481 | /* r = (a * a) mod p */ |
482 | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
483 | /* r = (1 / b) mod p */ |
484 | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); |
485 | /* r = (a / b) mod p */ |
486 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
487 | const BIGNUM *p, BN_CTX *ctx); |
488 | /* r = (a ^ b) mod p */ |
489 | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
490 | const BIGNUM *p, BN_CTX *ctx); |
491 | /* r = sqrt(a) mod p */ |
492 | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
493 | BN_CTX *ctx); |
494 | /* r^2 + r = a mod p */ |
495 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
496 | BN_CTX *ctx); |
497 | # define BN_GF2m_cmp(a, b) BN_ucmp((a), (b)) |
498 | /*- |
499 | * Some functions allow for representation of the irreducible polynomials |
500 | * as an unsigned int[], say p. The irreducible f(t) is then of the form: |
501 | * t^p[0] + t^p[1] + ... + t^p[k] |
502 | * where m = p[0] > p[1] > ... > p[k] = 0. |
503 | */ |
504 | /* r = a mod p */ |
505 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]); |
506 | /* r = (a * b) mod p */ |
507 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
508 | const int p[], BN_CTX *ctx); |
509 | /* r = (a * a) mod p */ |
510 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
511 | BN_CTX *ctx); |
512 | /* r = (1 / b) mod p */ |
513 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[], |
514 | BN_CTX *ctx); |
515 | /* r = (a / b) mod p */ |
516 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
517 | const int p[], BN_CTX *ctx); |
518 | /* r = (a ^ b) mod p */ |
519 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
520 | const int p[], BN_CTX *ctx); |
521 | /* r = sqrt(a) mod p */ |
522 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, |
523 | const int p[], BN_CTX *ctx); |
524 | /* r^2 + r = a mod p */ |
525 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a, |
526 | const int p[], BN_CTX *ctx); |
527 | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max); |
528 | int BN_GF2m_arr2poly(const int p[], BIGNUM *a); |
529 | |
530 | # endif |
531 | |
532 | /* |
533 | * faster mod functions for the 'NIST primes' 0 <= a < p^2 |
534 | */ |
535 | int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
536 | int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
537 | int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
538 | int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
539 | int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); |
540 | |
541 | const BIGNUM *BN_get0_nist_prime_192(void); |
542 | const BIGNUM *BN_get0_nist_prime_224(void); |
543 | const BIGNUM *BN_get0_nist_prime_256(void); |
544 | const BIGNUM *BN_get0_nist_prime_384(void); |
545 | const BIGNUM *BN_get0_nist_prime_521(void); |
546 | |
547 | int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a, |
548 | const BIGNUM *field, BN_CTX *ctx); |
549 | |
550 | int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range, |
551 | const BIGNUM *priv, const unsigned char *message, |
552 | size_t message_len, BN_CTX *ctx); |
553 | |
554 | /* Primes from RFC 2409 */ |
555 | BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn); |
556 | BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn); |
557 | |
558 | /* Primes from RFC 3526 */ |
559 | BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn); |
560 | BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn); |
561 | BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn); |
562 | BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn); |
563 | BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn); |
564 | BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn); |
565 | |
566 | # ifndef OPENSSL_NO_DEPRECATED_1_1_0 |
567 | # define get_rfc2409_prime_768 BN_get_rfc2409_prime_768 |
568 | # define get_rfc2409_prime_1024 BN_get_rfc2409_prime_1024 |
569 | # define get_rfc3526_prime_1536 BN_get_rfc3526_prime_1536 |
570 | # define get_rfc3526_prime_2048 BN_get_rfc3526_prime_2048 |
571 | # define get_rfc3526_prime_3072 BN_get_rfc3526_prime_3072 |
572 | # define get_rfc3526_prime_4096 BN_get_rfc3526_prime_4096 |
573 | # define get_rfc3526_prime_6144 BN_get_rfc3526_prime_6144 |
574 | # define get_rfc3526_prime_8192 BN_get_rfc3526_prime_8192 |
575 | # endif |
576 | |
577 | int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom); |
578 | |
579 | |
580 | # ifdef __cplusplus |
581 | } |
582 | # endif |
583 | #endif |
584 | |