1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2017 Klaralvdalens Datakonsult AB (KDAB). |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the Qt3D module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "bezierevaluator_p.h" |
41 | #include <private/keyframe_p.h> |
42 | #include <QtCore/qglobal.h> |
43 | #include <QtCore/qdebug.h> |
44 | |
45 | #include <cmath> |
46 | |
47 | QT_BEGIN_NAMESPACE |
48 | |
49 | namespace { |
50 | |
51 | inline double qCbrt(double x) |
52 | { |
53 | // Android is just broken and doesn't define cbrt in std namespace |
54 | #if defined(Q_OS_ANDROID) |
55 | if (x > 0.0) |
56 | return std::pow(x, 1.0 / 3.0); |
57 | else if (x < 0.0) |
58 | return -std::pow(-x, 1.0 / 3.0); |
59 | else |
60 | return 0.0; |
61 | #else |
62 | return std::cbrt(x: x); |
63 | #endif |
64 | } |
65 | |
66 | } // anonymous |
67 | |
68 | namespace Qt3DAnimation { |
69 | namespace Animation { |
70 | |
71 | /*! |
72 | \internal |
73 | |
74 | Evaluates the value of the cubic bezier at time \a time. |
75 | This requires first finding the value of the bezier parameter, u, |
76 | corresponding to the requested time which should itself be |
77 | sandwiched by the provided times and keyframes. |
78 | |
79 | Once u is found, substitute this back into the cubic Bezier |
80 | equation using the y components of the keyframe control points. |
81 | */ |
82 | float BezierEvaluator::valueForTime(float time) const |
83 | { |
84 | const float u = parameterForTime(time); |
85 | |
86 | // Calculate powers of u and (1-u) that we need |
87 | const float u2 = u * u; |
88 | const float u3 = u2 * u; |
89 | const float mu = 1.0f - u; |
90 | const float mu2 = mu * mu; |
91 | const float mu3 = mu2 * mu; |
92 | |
93 | // The cubic Bezier control points |
94 | const float p0 = m_keyframe0.value; |
95 | const float p1 = m_keyframe0.rightControlPoint.y(); |
96 | const float p2 = m_keyframe1.leftControlPoint.y(); |
97 | const float p3 = m_keyframe1.value; |
98 | |
99 | // Evaluate the cubic Bezier function |
100 | return p0 * mu3 + 3.0f * p1 * mu2 * u + 3.0f * p2 * mu * u2 + p3 * u3; |
101 | } |
102 | |
103 | /*! |
104 | \internal |
105 | |
106 | Calculates the value of the Bezier parameter, u, for the |
107 | requested time which is the x coordinate of the Keyframes. |
108 | |
109 | Given 4 ordered control points p0, p1, p2, and p3, the cubic |
110 | Bezier equation is: |
111 | |
112 | x(u) = (1-u)^3 p0 + 3 (1-u)^2 u p1 + 3 (1-u) u^2 p2 + u^3 p3 |
113 | |
114 | To find the value of u that corresponds with a given x |
115 | value (time in the case of keyframes), we can expand the |
116 | above equation, and then collect terms to arrive at: |
117 | |
118 | 0 = a u^3 + b u^2 + c u + d |
119 | |
120 | where |
121 | |
122 | a = p3 - p0 + 3 (p1 - p2) |
123 | b = 3 (p0 - 2 p1 + p2) |
124 | c = 3 (p1 - p0) |
125 | d = p0 - x(u) |
126 | |
127 | We can then use findCubicRoots to locate the single root of |
128 | this cubic equation found in the range [0,1] used for this |
129 | section of the FCurve. This works because the FCurve ensures |
130 | that the function it represents via the Bezier control points |
131 | in the Keyframes is single valued. (as a function of time). |
132 | Time, therefore must be single valued on the interval and |
133 | therefore have a single root for any given time in the interval |
134 | covered by the Keyframes. |
135 | */ |
136 | float BezierEvaluator::parameterForTime(float time) const |
137 | { |
138 | Q_ASSERT(time >= m_time0); |
139 | Q_ASSERT(time <= m_time1); |
140 | |
141 | const float p0 = m_time0; |
142 | const float p1 = m_keyframe0.rightControlPoint.x(); |
143 | const float p2 = m_keyframe1.leftControlPoint.x(); |
144 | const float p3 = m_time1; |
145 | |
146 | const float coeffs[4] = { |
147 | p0 - time, // d |
148 | 3.0f * (p1 - p0), // c |
149 | 3.0f * (p0 - 2.0f * p1 + p2), // b |
150 | p3 - p0 + 3.0f * (p1 - p2) // a |
151 | }; |
152 | |
153 | float roots[3]; |
154 | const int numberOfRoots = findCubicRoots(coefficients: coeffs, roots); |
155 | for (int i = 0; i < numberOfRoots; ++i) { |
156 | if (roots[i] >= -0.01f && roots[i] <= 1.01f) |
157 | return qMin(a: qMax(a: roots[i], b: 0.0f), b: 1.0f); |
158 | } |
159 | |
160 | qWarning() << "Failed to find root of cubic bezier at time" << time |
161 | << "with coeffs: a =" << coeffs[3] << "b =" << coeffs[2] |
162 | << "c =" << coeffs[1] << "d =" << coeffs[0]; |
163 | return 0.0f; |
164 | } |
165 | |
166 | bool almostZero(float value, float threshold=1e-3f) |
167 | { |
168 | // 1e-3 might seem excessively fuzzy, but any smaller value will make the |
169 | // factors a, b, and c large enough to knock out the cubic solver. |
170 | return value > -threshold && value < threshold; |
171 | } |
172 | |
173 | /*! |
174 | \internal |
175 | |
176 | Finds the roots of the cubic equation ax^3 + bx^2 + cx + d = 0 for |
177 | real coefficients and returns the number of roots. The roots are |
178 | put into the \a roots array. The coefficients should be passed in |
179 | as coeffs[0] = d, coeffs[1] = c, coeffs[2] = b, coeffs[3] = a. |
180 | */ |
181 | int BezierEvaluator::findCubicRoots(const float coeffs[4], float roots[3]) |
182 | { |
183 | const float a = coeffs[3]; |
184 | const float b = coeffs[2]; |
185 | const float c = coeffs[1]; |
186 | const float d = coeffs[0]; |
187 | |
188 | // Simple cases with linear, quadratic or invalid equations |
189 | if (almostZero(value: a)) { |
190 | if (almostZero(value: b)) { |
191 | if (almostZero(value: c)) |
192 | return 0; |
193 | |
194 | roots[0] = -d / c; |
195 | return 1; |
196 | } |
197 | const float discriminant = c * c - 4.f * b * d; |
198 | if (discriminant < 0.f) |
199 | return 0; |
200 | |
201 | if (discriminant == 0.f) { |
202 | roots[0] = -c / (2.f * b); |
203 | return 1; |
204 | } |
205 | |
206 | roots[0] = (-c + std::sqrt(x: discriminant)) / (2.f * b); |
207 | roots[1] = (-c - std::sqrt(x: discriminant)) / (2.f * b); |
208 | return 2; |
209 | } |
210 | |
211 | // See https://en.wikipedia.org/wiki/Cubic_function#General_solution_to_the_cubic_equation_with_real_coefficients |
212 | // for a description. We depress the general cubic to a form that can more easily be solved. Solve it and then |
213 | // substitue the results back to get the roots of the original cubic. |
214 | int numberOfRoots = 0; |
215 | const double oneThird = 1.0 / 3.0; |
216 | const double piByThree = M_PI / 3.0; |
217 | |
218 | // Put cubic into normal format: x^3 + Ax^2 + Bx + C = 0 |
219 | const double A = double(b / a); |
220 | const double B = double(c / a); |
221 | const double C = double(d / a); |
222 | |
223 | // Substitute x = y - A/3 to eliminate quadratic term (depressed form): |
224 | // x^3 + px + q = 0 |
225 | const double Asq = A * A; |
226 | const double p = oneThird * (-oneThird * Asq + B); |
227 | const double q = 1.0 / 2.0 * (2.0 / 27.0 * A * Asq - oneThird * A * B + C); |
228 | |
229 | // Use Cardano's formula |
230 | const double pCubed = p * p * p; |
231 | const double discriminant = q * q + pCubed; |
232 | |
233 | if (almostZero(value: discriminant, threshold: 1e-6f)) { |
234 | if (qIsNull(d: q)) { |
235 | // One repeated triple root |
236 | roots[0] = 0.0; |
237 | numberOfRoots = 1; |
238 | } else { |
239 | // One single and one double root |
240 | double u = qCbrt(x: -q); |
241 | roots[0] = 2.0 * u; |
242 | roots[1] = -u; |
243 | numberOfRoots = 2; |
244 | } |
245 | } else if (discriminant < 0) { |
246 | // Three real solutions |
247 | double phi = oneThird * std::acos(x: -q / std::sqrt(x: -pCubed)); |
248 | double t = 2.0 * std::sqrt(x: -p); |
249 | |
250 | roots[0] = t * std::cos(x: phi); |
251 | roots[1] = -t * std::cos(x: phi + piByThree); |
252 | roots[2] = -t * std::cos(x: phi - piByThree); |
253 | numberOfRoots = 3; |
254 | } else { |
255 | // One real solution |
256 | double sqrtDisc = std::sqrt(x: discriminant); |
257 | double u = qCbrt(x: sqrtDisc - q); |
258 | double v = -qCbrt(x: sqrtDisc + q); |
259 | |
260 | roots[0] = u + v; |
261 | numberOfRoots = 1; |
262 | } |
263 | |
264 | // Substitute back in |
265 | const double sub = oneThird * A; |
266 | for (int i = 0; i < numberOfRoots; ++i) { |
267 | roots[i] -= sub; |
268 | // Take care of cases where we are close to zero or one |
269 | if (almostZero(value: roots[i], threshold: 1e-6f)) |
270 | roots[i] = 0.f; |
271 | if (almostZero(value: roots[i] - 1.f, threshold: 1e-6f)) |
272 | roots[i] = 1.f; |
273 | } |
274 | |
275 | return numberOfRoots; |
276 | } |
277 | |
278 | } // namespace Animation |
279 | } // namespace Qt3DAnimation |
280 | |
281 | QT_END_NAMESPACE |
282 | |