1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2015 Klaralvdalens Datakonsult AB (KDAB). |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the Qt3D module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:GPL-EXCEPT$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation with exceptions as appearing in the file LICENSE.GPL3-EXCEPT |
21 | ** included in the packaging of this file. Please review the following |
22 | ** information to ensure the GNU General Public License requirements will |
23 | ** be met: https://www.gnu.org/licenses/gpl-3.0.html. |
24 | ** |
25 | ** $QT_END_LICENSE$ |
26 | ** |
27 | ****************************************************************************/ |
28 | |
29 | #include <QtTest/QTest> |
30 | #include <Qt3DAnimation/private/bezierevaluator_p.h> |
31 | #include <Qt3DAnimation/private/keyframe_p.h> |
32 | #include <QtCore/qvector.h> |
33 | |
34 | #include <cmath> |
35 | |
36 | Q_DECLARE_METATYPE(Qt3DAnimation::Animation::Keyframe) |
37 | |
38 | using namespace Qt3DAnimation; |
39 | using namespace Qt3DAnimation::Animation; |
40 | |
41 | class tst_BezierEvaluator : public QObject |
42 | { |
43 | Q_OBJECT |
44 | |
45 | private Q_SLOTS: |
46 | void checkFindCubicRoots_data() |
47 | { |
48 | // Test data verified on Wolfram Alpha with snippets such as: |
49 | // Plot[x^3-5x^2+x+3,{x,-3,6}] |
50 | // Solve[x^3-5x^2+x+3,x] |
51 | // If you need more, try these at https://www.wolframalpha.com/ |
52 | |
53 | QTest::addColumn<float>(name: "a" ); |
54 | QTest::addColumn<float>(name: "b" ); |
55 | QTest::addColumn<float>(name: "c" ); |
56 | QTest::addColumn<float>(name: "d" ); |
57 | QTest::addColumn<int>(name: "rootCount" ); |
58 | QTest::addColumn<QVector<float>>(name: "roots" ); |
59 | |
60 | float a = 1.0f; |
61 | float b = 0.0f; |
62 | float c = 0.0f; |
63 | float d = 0.0f; |
64 | int rootCount = 1; |
65 | QVector<float> roots = { 0.0f }; |
66 | QTest::newRow(dataTag: "a=1, b=0, c=0, d=0" ) << a << b << c << d << rootCount << roots; |
67 | roots.clear(); |
68 | |
69 | a = 1.0f; |
70 | b = -1.0f; |
71 | c = 1.0f; |
72 | d = -1.0f; |
73 | rootCount = 1; |
74 | roots.resize(asize: 1); |
75 | roots[0] = 1.0f; |
76 | QTest::newRow(dataTag: "a=1, b=-1, c=1, d=-1" ) << a << b << c << d << rootCount << roots; |
77 | roots.clear(); |
78 | |
79 | a = 1.0f; |
80 | b = -2.0f; |
81 | c = 1.0f; |
82 | d = -1.0f; |
83 | rootCount = 1; |
84 | roots.resize(asize: 1); |
85 | roots[0] = 1.7548776f; |
86 | QTest::newRow(dataTag: "a=1, b=-2, c=1, d=-1" ) << a << b << c << d << rootCount << roots; |
87 | roots.clear(); |
88 | |
89 | a = 1.0f; |
90 | b = -5.0f; |
91 | c = 1.0f; |
92 | d = 3.0f; |
93 | rootCount = 3; |
94 | roots.resize(asize: 3); |
95 | roots[0] = 2.0f + std::sqrt(x: 7.0f); |
96 | roots[1] = 1.0f; |
97 | roots[2] = 2.0f - std::sqrt(x: 7.0f); |
98 | QTest::newRow(dataTag: "a=1, b=-5, c=1, d=3" ) << a << b << c << d << rootCount << roots; |
99 | roots.clear(); |
100 | |
101 | // quadratic equation |
102 | a = 0.0f; |
103 | b = 9.0f; |
104 | c = 11.0f; |
105 | d = 3.0f; |
106 | roots.resize(asize: 2); |
107 | roots[0] = -11.0f/18.0f + std::sqrt(x: 13.0f) / 18.0f; |
108 | roots[1] = -11.0f/18.0f - std::sqrt(x: 13.0f) / 18.0f; |
109 | QTest::newRow(dataTag: "a=0, b=9, c=11, d=3" ) << a << b << c << d << roots.size() << roots; |
110 | roots.clear(); |
111 | |
112 | // quadratic equation with discriminant = 0 |
113 | a = 0.0f; |
114 | b = 1.0f; |
115 | c = 2.0f; |
116 | d = 1.0f; |
117 | roots.resize(asize: 1); |
118 | roots[0] = -1.f; |
119 | QTest::newRow(dataTag: "a=0, b=1, c=2, d=1" ) << a << b << c << d << roots.size() << roots; |
120 | roots.clear(); |
121 | |
122 | // quadratic equation with discriminant < 0 |
123 | a = 0.0f; |
124 | b = 1.0f; |
125 | c = 4.0f; |
126 | d = 8.0f; |
127 | roots.resize(asize: 0); |
128 | QTest::newRow(dataTag: "a=0, b=1, c=4, d=8" ) << a << b << c << d << roots.size() << roots; |
129 | roots.clear(); |
130 | |
131 | // linear equation |
132 | a = 0.0f; |
133 | b = 0.0f; |
134 | c = 2.0f; |
135 | d = 1.0f; |
136 | roots.resize(asize: 1); |
137 | roots[0] = -0.5f; |
138 | QTest::newRow(dataTag: "a=0, b=0, c=2, d=1" ) << a << b << c << d << roots.size() << roots; |
139 | roots.clear(); |
140 | |
141 | // linear equation |
142 | a = 0.0f; |
143 | b = 0.0f; |
144 | c = 8.0f; |
145 | d = -5.0f; |
146 | roots.resize(asize: 1); |
147 | roots[0] = -d/c; |
148 | QTest::newRow(dataTag: "a=0, b=0, c=8, d=-5" ) << a << b << c << d << roots.size() << roots; |
149 | roots.clear(); |
150 | |
151 | // invalid equation |
152 | a = 0.0f; |
153 | b = 0.0f; |
154 | c = 0.0f; |
155 | d = -5.0f; |
156 | roots.resize(asize: 0); |
157 | QTest::newRow(dataTag: "a=0, b=0, c=0, d=-5" ) << a << b << c << d << roots.size() << roots; |
158 | roots.clear(); |
159 | |
160 | // Invalid equation |
161 | a = 0.0f; |
162 | b = 0.0f; |
163 | c = 0.0f; |
164 | d = 42.0f; |
165 | roots.resize(asize: 0); |
166 | QTest::newRow(dataTag: "a=0, b=0, c=0, d=42" ) << a << b << c << d << roots.size() << roots; |
167 | roots.clear(); |
168 | |
169 | // almost linear equation |
170 | a = 1.90735e-06f; |
171 | b = -2.86102e-06f; |
172 | c = 5.0; |
173 | d = 0.0; |
174 | roots.resize(asize: 1); |
175 | roots[0] = -d/c; |
176 | QTest::newRow(dataTag: "a=~0, b=~0, c=5, d=0" ) << a << b << c << d << roots.size() << roots; |
177 | roots.clear(); |
178 | |
179 | // case that produces a result just below zero, that should be evaluated as zero |
180 | a = -0.75f; |
181 | b = 0.75f; |
182 | c = 2.5; |
183 | d = 0.0; |
184 | roots.resize(asize: 3); |
185 | roots[0] = 2.39297f; |
186 | roots[1] = 0.f; |
187 | roots[2] = -1.39297f; |
188 | QTest::newRow(dataTag: "a=-0.75, b=0.75, c=2.5, d=0" ) << a << b << c << d << roots.size() << roots; |
189 | roots.clear(); |
190 | |
191 | // Case that produces a discriminant that is close enough to zero that it should be |
192 | // evaluated as zero. |
193 | // Expected roots = 0.0, ~1.5 |
194 | a = -3.998f; |
195 | b = 5.997f; |
196 | c = 0.0f; |
197 | d = 0.0f; |
198 | roots.resize(asize: 2); |
199 | roots[0] = 1.5f; |
200 | roots[1] = 0.0f; |
201 | QTest::newRow(dataTag: "a=-3.998, b=5.997, c=0, d=0" ) << a << b << c << d << roots.size() << roots; |
202 | roots.clear(); |
203 | } |
204 | |
205 | void checkFindCubicRoots() |
206 | { |
207 | QFETCH(float, a); |
208 | QFETCH(float, b); |
209 | QFETCH(float, c); |
210 | QFETCH(float, d); |
211 | QFETCH(int, rootCount); |
212 | QFETCH(QVector<float>, roots); |
213 | |
214 | float coeffs[4]; |
215 | coeffs[0] = d; |
216 | coeffs[1] = c; |
217 | coeffs[2] = b; |
218 | coeffs[3] = a; |
219 | |
220 | float results[3]; |
221 | const int foundRootCount = BezierEvaluator::findCubicRoots(coefficients: coeffs, roots: results); |
222 | |
223 | QCOMPARE(foundRootCount, rootCount); |
224 | for (int i = 0; i < rootCount; ++i) |
225 | QCOMPARE(results[i], roots[i]); |
226 | } |
227 | |
228 | void checkParameterForTime_data() |
229 | { |
230 | QTest::addColumn<float>(name: "t0" ); |
231 | QTest::addColumn<Keyframe>(name: "kf0" ); |
232 | QTest::addColumn<float>(name: "t1" ); |
233 | QTest::addColumn<Keyframe>(name: "kf1" ); |
234 | QTest::addColumn<QVector<float>>(name: "times" ); |
235 | QTest::addColumn<QVector<float>>(name: "bezierParamters" ); |
236 | |
237 | { |
238 | float t0 = 0.0f; |
239 | Keyframe kf0{.value: 0.0f, .leftControlPoint: {-5.0f, 0.0f}, .rightControlPoint: {5.0f, 0.0f}, .interpolation: QKeyFrame::BezierInterpolation}; |
240 | float t1 = 50.0f; |
241 | Keyframe kf1{.value: 5.0f, .leftControlPoint: {45.0f, 5.0f}, .rightControlPoint: {55.0f, 5.0f}, .interpolation: QKeyFrame::BezierInterpolation}; |
242 | const int count = 21; |
243 | QVector<float> times = (QVector<float>() |
244 | << 0.0f |
245 | << 1.00375f |
246 | << 2.48f |
247 | << 4.37625f |
248 | << 6.64f |
249 | << 9.21875f |
250 | << 12.06f |
251 | << 15.11125f |
252 | << 18.32f |
253 | << 21.63375f |
254 | << 25.0f |
255 | << 28.36625f |
256 | << 31.68f |
257 | << 34.88875f |
258 | << 37.94f |
259 | << 40.78125f |
260 | << 43.36f |
261 | << 45.62375f |
262 | << 47.52f |
263 | << 48.99625f |
264 | << 50.0f); |
265 | |
266 | QVector<float> bezierParameters; |
267 | float deltaU = 1.0f / float(count - 1); |
268 | for (int i = 0; i < count; ++i) |
269 | bezierParameters.push_back(t: float(i) * deltaU); |
270 | |
271 | QTest::newRow(dataTag: "t=0 to t=50, default easing" ) << t0 << kf0 |
272 | << t1 << kf1 |
273 | << times << bezierParameters; |
274 | } |
275 | { |
276 | // This test creates a case where the coefficients for finding |
277 | // the cubic roots will be a = 0, b = 0, c ~= 6.28557 d ~= -6.28557 |
278 | // Because c ~= d, the answer should be one root = 1, but |
279 | // because of numerical imprecision, it will be slightly larger. |
280 | // We have a fuzzy check in parameterForTime that takes care of this. |
281 | float t0 = 3.71443009f; |
282 | Keyframe kf0{.value: 150.0f, .leftControlPoint: {0.0f, 0.0f}, .rightControlPoint: {5.80961999f, 150.0f}, .interpolation: QKeyFrame::BezierInterpolation}; |
283 | float t1 = 10.0f; |
284 | Keyframe kf1{.value: -150.0f, .leftControlPoint: {7.904809959f, 150.0f}, .rightControlPoint: {0.f, 0.f}, .interpolation: QKeyFrame::BezierInterpolation}; |
285 | QVector<float> times = {10.f}; |
286 | QVector<float> results = {1.0f}; |
287 | QTest::newRow(dataTag: "t=0 to t=10, regression" ) << t0 << kf0 |
288 | << t1 << kf1 |
289 | << times << results; |
290 | } |
291 | } |
292 | |
293 | void checkParameterForTime() |
294 | { |
295 | // GIVEN |
296 | QFETCH(float, t0); |
297 | QFETCH(Keyframe, kf0); |
298 | QFETCH(float, t1); |
299 | QFETCH(Keyframe, kf1); |
300 | QFETCH(QVector<float>, times); |
301 | QFETCH(QVector<float>, bezierParamters); |
302 | |
303 | // WHEN |
304 | BezierEvaluator bezier(t0, kf0, t1, kf1); |
305 | |
306 | // THEN |
307 | for (int i = 0; i < times.size(); ++i) { |
308 | const float time = times[i]; |
309 | const float u = bezier.parameterForTime(time); |
310 | QCOMPARE(u, bezierParamters[i]); |
311 | } |
312 | } |
313 | |
314 | void checkValueForTime_data() |
315 | { |
316 | QTest::addColumn<float>(name: "t0" ); |
317 | QTest::addColumn<Keyframe>(name: "kf0" ); |
318 | QTest::addColumn<float>(name: "t1" ); |
319 | QTest::addColumn<Keyframe>(name: "kf1" ); |
320 | QTest::addColumn<QVector<float>>(name: "times" ); |
321 | QTest::addColumn<QVector<float>>(name: "values" ); |
322 | |
323 | float t0 = 0.0f; |
324 | Keyframe kf0{.value: 0.0f, .leftControlPoint: {-5.0f, 0.0f}, .rightControlPoint: {5.0f, 0.0f}, .interpolation: QKeyFrame::BezierInterpolation}; |
325 | float t1 = 50.0f; |
326 | Keyframe kf1{.value: 5.0f, .leftControlPoint: {45.0f, 5.0f}, .rightControlPoint: {55.0f, 5.0f}, .interpolation: QKeyFrame::BezierInterpolation}; |
327 | QVector<float> times = (QVector<float>() |
328 | << 0.0f |
329 | << 1.00375f |
330 | << 2.48f |
331 | << 4.37625f |
332 | << 6.64f |
333 | << 9.21875f |
334 | << 12.06f |
335 | << 15.11125f |
336 | << 18.32f |
337 | << 21.63375f |
338 | << 25.0f |
339 | << 28.36625f |
340 | << 31.68f |
341 | << 34.88875f |
342 | << 37.94f |
343 | << 40.78125f |
344 | << 43.36f |
345 | << 45.62375f |
346 | << 47.52f |
347 | << 48.99625f |
348 | << 50.0f); |
349 | |
350 | QVector<float> values = (QVector<float>() |
351 | << 0.0f |
352 | << 0.03625f |
353 | << 0.14f |
354 | << 0.30375f |
355 | << 0.52f |
356 | << 0.78125f |
357 | << 1.08f |
358 | << 1.40875f |
359 | << 1.76f |
360 | << 2.12625f |
361 | << 2.5f |
362 | << 2.87375f |
363 | << 3.24f |
364 | << 3.59125f |
365 | << 3.92f |
366 | << 4.21875f |
367 | << 4.48f |
368 | << 4.69625f |
369 | << 4.86f |
370 | << 4.96375f |
371 | << 5.0f); |
372 | |
373 | QTest::newRow(dataTag: "t=0, value=0 to t=50, value=5, default easing" ) << t0 << kf0 |
374 | << t1 << kf1 |
375 | << times << values; |
376 | } |
377 | |
378 | void checkValueForTime() |
379 | { |
380 | // GIVEN |
381 | QFETCH(float, t0); |
382 | QFETCH(Keyframe, kf0); |
383 | QFETCH(float, t1); |
384 | QFETCH(Keyframe, kf1); |
385 | QFETCH(QVector<float>, times); |
386 | QFETCH(QVector<float>, values); |
387 | |
388 | // WHEN |
389 | BezierEvaluator bezier(t0, kf0, t1, kf1); |
390 | |
391 | // THEN |
392 | for (int i = 0; i < times.size(); ++i) { |
393 | const float time = times[i]; |
394 | const float value = bezier.valueForTime(time); |
395 | QCOMPARE(value, values[i]); |
396 | } |
397 | } |
398 | }; |
399 | |
400 | QTEST_APPLESS_MAIN(tst_BezierEvaluator) |
401 | |
402 | #include "tst_bezierevaluator.moc" |
403 | |