| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2015 Klaralvdalens Datakonsult AB (KDAB). |
| 4 | ** Contact: https://www.qt.io/licensing/ |
| 5 | ** |
| 6 | ** This file is part of the Qt3D module of the Qt Toolkit. |
| 7 | ** |
| 8 | ** $QT_BEGIN_LICENSE:GPL-EXCEPT$ |
| 9 | ** Commercial License Usage |
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 11 | ** accordance with the commercial license agreement provided with the |
| 12 | ** Software or, alternatively, in accordance with the terms contained in |
| 13 | ** a written agreement between you and The Qt Company. For licensing terms |
| 14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 15 | ** information use the contact form at https://www.qt.io/contact-us. |
| 16 | ** |
| 17 | ** GNU General Public License Usage |
| 18 | ** Alternatively, this file may be used under the terms of the GNU |
| 19 | ** General Public License version 3 as published by the Free Software |
| 20 | ** Foundation with exceptions as appearing in the file LICENSE.GPL3-EXCEPT |
| 21 | ** included in the packaging of this file. Please review the following |
| 22 | ** information to ensure the GNU General Public License requirements will |
| 23 | ** be met: https://www.gnu.org/licenses/gpl-3.0.html. |
| 24 | ** |
| 25 | ** $QT_END_LICENSE$ |
| 26 | ** |
| 27 | ****************************************************************************/ |
| 28 | |
| 29 | #include <QtTest/QTest> |
| 30 | #include <Qt3DAnimation/private/bezierevaluator_p.h> |
| 31 | #include <Qt3DAnimation/private/keyframe_p.h> |
| 32 | #include <QtCore/qvector.h> |
| 33 | |
| 34 | #include <cmath> |
| 35 | |
| 36 | Q_DECLARE_METATYPE(Qt3DAnimation::Animation::Keyframe) |
| 37 | |
| 38 | using namespace Qt3DAnimation; |
| 39 | using namespace Qt3DAnimation::Animation; |
| 40 | |
| 41 | class tst_BezierEvaluator : public QObject |
| 42 | { |
| 43 | Q_OBJECT |
| 44 | |
| 45 | private Q_SLOTS: |
| 46 | void checkFindCubicRoots_data() |
| 47 | { |
| 48 | // Test data verified on Wolfram Alpha with snippets such as: |
| 49 | // Plot[x^3-5x^2+x+3,{x,-3,6}] |
| 50 | // Solve[x^3-5x^2+x+3,x] |
| 51 | // If you need more, try these at https://www.wolframalpha.com/ |
| 52 | |
| 53 | QTest::addColumn<float>(name: "a" ); |
| 54 | QTest::addColumn<float>(name: "b" ); |
| 55 | QTest::addColumn<float>(name: "c" ); |
| 56 | QTest::addColumn<float>(name: "d" ); |
| 57 | QTest::addColumn<int>(name: "rootCount" ); |
| 58 | QTest::addColumn<QVector<float>>(name: "roots" ); |
| 59 | |
| 60 | float a = 1.0f; |
| 61 | float b = 0.0f; |
| 62 | float c = 0.0f; |
| 63 | float d = 0.0f; |
| 64 | int rootCount = 1; |
| 65 | QVector<float> roots = { 0.0f }; |
| 66 | QTest::newRow(dataTag: "a=1, b=0, c=0, d=0" ) << a << b << c << d << rootCount << roots; |
| 67 | roots.clear(); |
| 68 | |
| 69 | a = 1.0f; |
| 70 | b = -1.0f; |
| 71 | c = 1.0f; |
| 72 | d = -1.0f; |
| 73 | rootCount = 1; |
| 74 | roots.resize(asize: 1); |
| 75 | roots[0] = 1.0f; |
| 76 | QTest::newRow(dataTag: "a=1, b=-1, c=1, d=-1" ) << a << b << c << d << rootCount << roots; |
| 77 | roots.clear(); |
| 78 | |
| 79 | a = 1.0f; |
| 80 | b = -2.0f; |
| 81 | c = 1.0f; |
| 82 | d = -1.0f; |
| 83 | rootCount = 1; |
| 84 | roots.resize(asize: 1); |
| 85 | roots[0] = 1.7548776f; |
| 86 | QTest::newRow(dataTag: "a=1, b=-2, c=1, d=-1" ) << a << b << c << d << rootCount << roots; |
| 87 | roots.clear(); |
| 88 | |
| 89 | a = 1.0f; |
| 90 | b = -5.0f; |
| 91 | c = 1.0f; |
| 92 | d = 3.0f; |
| 93 | rootCount = 3; |
| 94 | roots.resize(asize: 3); |
| 95 | roots[0] = 2.0f + std::sqrt(x: 7.0f); |
| 96 | roots[1] = 1.0f; |
| 97 | roots[2] = 2.0f - std::sqrt(x: 7.0f); |
| 98 | QTest::newRow(dataTag: "a=1, b=-5, c=1, d=3" ) << a << b << c << d << rootCount << roots; |
| 99 | roots.clear(); |
| 100 | |
| 101 | // quadratic equation |
| 102 | a = 0.0f; |
| 103 | b = 9.0f; |
| 104 | c = 11.0f; |
| 105 | d = 3.0f; |
| 106 | roots.resize(asize: 2); |
| 107 | roots[0] = -11.0f/18.0f + std::sqrt(x: 13.0f) / 18.0f; |
| 108 | roots[1] = -11.0f/18.0f - std::sqrt(x: 13.0f) / 18.0f; |
| 109 | QTest::newRow(dataTag: "a=0, b=9, c=11, d=3" ) << a << b << c << d << roots.size() << roots; |
| 110 | roots.clear(); |
| 111 | |
| 112 | // quadratic equation with discriminant = 0 |
| 113 | a = 0.0f; |
| 114 | b = 1.0f; |
| 115 | c = 2.0f; |
| 116 | d = 1.0f; |
| 117 | roots.resize(asize: 1); |
| 118 | roots[0] = -1.f; |
| 119 | QTest::newRow(dataTag: "a=0, b=1, c=2, d=1" ) << a << b << c << d << roots.size() << roots; |
| 120 | roots.clear(); |
| 121 | |
| 122 | // quadratic equation with discriminant < 0 |
| 123 | a = 0.0f; |
| 124 | b = 1.0f; |
| 125 | c = 4.0f; |
| 126 | d = 8.0f; |
| 127 | roots.resize(asize: 0); |
| 128 | QTest::newRow(dataTag: "a=0, b=1, c=4, d=8" ) << a << b << c << d << roots.size() << roots; |
| 129 | roots.clear(); |
| 130 | |
| 131 | // linear equation |
| 132 | a = 0.0f; |
| 133 | b = 0.0f; |
| 134 | c = 2.0f; |
| 135 | d = 1.0f; |
| 136 | roots.resize(asize: 1); |
| 137 | roots[0] = -0.5f; |
| 138 | QTest::newRow(dataTag: "a=0, b=0, c=2, d=1" ) << a << b << c << d << roots.size() << roots; |
| 139 | roots.clear(); |
| 140 | |
| 141 | // linear equation |
| 142 | a = 0.0f; |
| 143 | b = 0.0f; |
| 144 | c = 8.0f; |
| 145 | d = -5.0f; |
| 146 | roots.resize(asize: 1); |
| 147 | roots[0] = -d/c; |
| 148 | QTest::newRow(dataTag: "a=0, b=0, c=8, d=-5" ) << a << b << c << d << roots.size() << roots; |
| 149 | roots.clear(); |
| 150 | |
| 151 | // invalid equation |
| 152 | a = 0.0f; |
| 153 | b = 0.0f; |
| 154 | c = 0.0f; |
| 155 | d = -5.0f; |
| 156 | roots.resize(asize: 0); |
| 157 | QTest::newRow(dataTag: "a=0, b=0, c=0, d=-5" ) << a << b << c << d << roots.size() << roots; |
| 158 | roots.clear(); |
| 159 | |
| 160 | // Invalid equation |
| 161 | a = 0.0f; |
| 162 | b = 0.0f; |
| 163 | c = 0.0f; |
| 164 | d = 42.0f; |
| 165 | roots.resize(asize: 0); |
| 166 | QTest::newRow(dataTag: "a=0, b=0, c=0, d=42" ) << a << b << c << d << roots.size() << roots; |
| 167 | roots.clear(); |
| 168 | |
| 169 | // almost linear equation |
| 170 | a = 1.90735e-06f; |
| 171 | b = -2.86102e-06f; |
| 172 | c = 5.0; |
| 173 | d = 0.0; |
| 174 | roots.resize(asize: 1); |
| 175 | roots[0] = -d/c; |
| 176 | QTest::newRow(dataTag: "a=~0, b=~0, c=5, d=0" ) << a << b << c << d << roots.size() << roots; |
| 177 | roots.clear(); |
| 178 | |
| 179 | // case that produces a result just below zero, that should be evaluated as zero |
| 180 | a = -0.75f; |
| 181 | b = 0.75f; |
| 182 | c = 2.5; |
| 183 | d = 0.0; |
| 184 | roots.resize(asize: 3); |
| 185 | roots[0] = 2.39297f; |
| 186 | roots[1] = 0.f; |
| 187 | roots[2] = -1.39297f; |
| 188 | QTest::newRow(dataTag: "a=-0.75, b=0.75, c=2.5, d=0" ) << a << b << c << d << roots.size() << roots; |
| 189 | roots.clear(); |
| 190 | |
| 191 | // Case that produces a discriminant that is close enough to zero that it should be |
| 192 | // evaluated as zero. |
| 193 | // Expected roots = 0.0, ~1.5 |
| 194 | a = -3.998f; |
| 195 | b = 5.997f; |
| 196 | c = 0.0f; |
| 197 | d = 0.0f; |
| 198 | roots.resize(asize: 2); |
| 199 | roots[0] = 1.5f; |
| 200 | roots[1] = 0.0f; |
| 201 | QTest::newRow(dataTag: "a=-3.998, b=5.997, c=0, d=0" ) << a << b << c << d << roots.size() << roots; |
| 202 | roots.clear(); |
| 203 | } |
| 204 | |
| 205 | void checkFindCubicRoots() |
| 206 | { |
| 207 | QFETCH(float, a); |
| 208 | QFETCH(float, b); |
| 209 | QFETCH(float, c); |
| 210 | QFETCH(float, d); |
| 211 | QFETCH(int, rootCount); |
| 212 | QFETCH(QVector<float>, roots); |
| 213 | |
| 214 | float coeffs[4]; |
| 215 | coeffs[0] = d; |
| 216 | coeffs[1] = c; |
| 217 | coeffs[2] = b; |
| 218 | coeffs[3] = a; |
| 219 | |
| 220 | float results[3]; |
| 221 | const int foundRootCount = BezierEvaluator::findCubicRoots(coefficients: coeffs, roots: results); |
| 222 | |
| 223 | QCOMPARE(foundRootCount, rootCount); |
| 224 | for (int i = 0; i < rootCount; ++i) |
| 225 | QCOMPARE(results[i], roots[i]); |
| 226 | } |
| 227 | |
| 228 | void checkParameterForTime_data() |
| 229 | { |
| 230 | QTest::addColumn<float>(name: "t0" ); |
| 231 | QTest::addColumn<Keyframe>(name: "kf0" ); |
| 232 | QTest::addColumn<float>(name: "t1" ); |
| 233 | QTest::addColumn<Keyframe>(name: "kf1" ); |
| 234 | QTest::addColumn<QVector<float>>(name: "times" ); |
| 235 | QTest::addColumn<QVector<float>>(name: "bezierParamters" ); |
| 236 | |
| 237 | { |
| 238 | float t0 = 0.0f; |
| 239 | Keyframe kf0{.value: 0.0f, .leftControlPoint: {-5.0f, 0.0f}, .rightControlPoint: {5.0f, 0.0f}, .interpolation: QKeyFrame::BezierInterpolation}; |
| 240 | float t1 = 50.0f; |
| 241 | Keyframe kf1{.value: 5.0f, .leftControlPoint: {45.0f, 5.0f}, .rightControlPoint: {55.0f, 5.0f}, .interpolation: QKeyFrame::BezierInterpolation}; |
| 242 | const int count = 21; |
| 243 | QVector<float> times = (QVector<float>() |
| 244 | << 0.0f |
| 245 | << 1.00375f |
| 246 | << 2.48f |
| 247 | << 4.37625f |
| 248 | << 6.64f |
| 249 | << 9.21875f |
| 250 | << 12.06f |
| 251 | << 15.11125f |
| 252 | << 18.32f |
| 253 | << 21.63375f |
| 254 | << 25.0f |
| 255 | << 28.36625f |
| 256 | << 31.68f |
| 257 | << 34.88875f |
| 258 | << 37.94f |
| 259 | << 40.78125f |
| 260 | << 43.36f |
| 261 | << 45.62375f |
| 262 | << 47.52f |
| 263 | << 48.99625f |
| 264 | << 50.0f); |
| 265 | |
| 266 | QVector<float> bezierParameters; |
| 267 | float deltaU = 1.0f / float(count - 1); |
| 268 | for (int i = 0; i < count; ++i) |
| 269 | bezierParameters.push_back(t: float(i) * deltaU); |
| 270 | |
| 271 | QTest::newRow(dataTag: "t=0 to t=50, default easing" ) << t0 << kf0 |
| 272 | << t1 << kf1 |
| 273 | << times << bezierParameters; |
| 274 | } |
| 275 | { |
| 276 | // This test creates a case where the coefficients for finding |
| 277 | // the cubic roots will be a = 0, b = 0, c ~= 6.28557 d ~= -6.28557 |
| 278 | // Because c ~= d, the answer should be one root = 1, but |
| 279 | // because of numerical imprecision, it will be slightly larger. |
| 280 | // We have a fuzzy check in parameterForTime that takes care of this. |
| 281 | float t0 = 3.71443009f; |
| 282 | Keyframe kf0{.value: 150.0f, .leftControlPoint: {0.0f, 0.0f}, .rightControlPoint: {5.80961999f, 150.0f}, .interpolation: QKeyFrame::BezierInterpolation}; |
| 283 | float t1 = 10.0f; |
| 284 | Keyframe kf1{.value: -150.0f, .leftControlPoint: {7.904809959f, 150.0f}, .rightControlPoint: {0.f, 0.f}, .interpolation: QKeyFrame::BezierInterpolation}; |
| 285 | QVector<float> times = {10.f}; |
| 286 | QVector<float> results = {1.0f}; |
| 287 | QTest::newRow(dataTag: "t=0 to t=10, regression" ) << t0 << kf0 |
| 288 | << t1 << kf1 |
| 289 | << times << results; |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | void checkParameterForTime() |
| 294 | { |
| 295 | // GIVEN |
| 296 | QFETCH(float, t0); |
| 297 | QFETCH(Keyframe, kf0); |
| 298 | QFETCH(float, t1); |
| 299 | QFETCH(Keyframe, kf1); |
| 300 | QFETCH(QVector<float>, times); |
| 301 | QFETCH(QVector<float>, bezierParamters); |
| 302 | |
| 303 | // WHEN |
| 304 | BezierEvaluator bezier(t0, kf0, t1, kf1); |
| 305 | |
| 306 | // THEN |
| 307 | for (int i = 0; i < times.size(); ++i) { |
| 308 | const float time = times[i]; |
| 309 | const float u = bezier.parameterForTime(time); |
| 310 | QCOMPARE(u, bezierParamters[i]); |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | void checkValueForTime_data() |
| 315 | { |
| 316 | QTest::addColumn<float>(name: "t0" ); |
| 317 | QTest::addColumn<Keyframe>(name: "kf0" ); |
| 318 | QTest::addColumn<float>(name: "t1" ); |
| 319 | QTest::addColumn<Keyframe>(name: "kf1" ); |
| 320 | QTest::addColumn<QVector<float>>(name: "times" ); |
| 321 | QTest::addColumn<QVector<float>>(name: "values" ); |
| 322 | |
| 323 | float t0 = 0.0f; |
| 324 | Keyframe kf0{.value: 0.0f, .leftControlPoint: {-5.0f, 0.0f}, .rightControlPoint: {5.0f, 0.0f}, .interpolation: QKeyFrame::BezierInterpolation}; |
| 325 | float t1 = 50.0f; |
| 326 | Keyframe kf1{.value: 5.0f, .leftControlPoint: {45.0f, 5.0f}, .rightControlPoint: {55.0f, 5.0f}, .interpolation: QKeyFrame::BezierInterpolation}; |
| 327 | QVector<float> times = (QVector<float>() |
| 328 | << 0.0f |
| 329 | << 1.00375f |
| 330 | << 2.48f |
| 331 | << 4.37625f |
| 332 | << 6.64f |
| 333 | << 9.21875f |
| 334 | << 12.06f |
| 335 | << 15.11125f |
| 336 | << 18.32f |
| 337 | << 21.63375f |
| 338 | << 25.0f |
| 339 | << 28.36625f |
| 340 | << 31.68f |
| 341 | << 34.88875f |
| 342 | << 37.94f |
| 343 | << 40.78125f |
| 344 | << 43.36f |
| 345 | << 45.62375f |
| 346 | << 47.52f |
| 347 | << 48.99625f |
| 348 | << 50.0f); |
| 349 | |
| 350 | QVector<float> values = (QVector<float>() |
| 351 | << 0.0f |
| 352 | << 0.03625f |
| 353 | << 0.14f |
| 354 | << 0.30375f |
| 355 | << 0.52f |
| 356 | << 0.78125f |
| 357 | << 1.08f |
| 358 | << 1.40875f |
| 359 | << 1.76f |
| 360 | << 2.12625f |
| 361 | << 2.5f |
| 362 | << 2.87375f |
| 363 | << 3.24f |
| 364 | << 3.59125f |
| 365 | << 3.92f |
| 366 | << 4.21875f |
| 367 | << 4.48f |
| 368 | << 4.69625f |
| 369 | << 4.86f |
| 370 | << 4.96375f |
| 371 | << 5.0f); |
| 372 | |
| 373 | QTest::newRow(dataTag: "t=0, value=0 to t=50, value=5, default easing" ) << t0 << kf0 |
| 374 | << t1 << kf1 |
| 375 | << times << values; |
| 376 | } |
| 377 | |
| 378 | void checkValueForTime() |
| 379 | { |
| 380 | // GIVEN |
| 381 | QFETCH(float, t0); |
| 382 | QFETCH(Keyframe, kf0); |
| 383 | QFETCH(float, t1); |
| 384 | QFETCH(Keyframe, kf1); |
| 385 | QFETCH(QVector<float>, times); |
| 386 | QFETCH(QVector<float>, values); |
| 387 | |
| 388 | // WHEN |
| 389 | BezierEvaluator bezier(t0, kf0, t1, kf1); |
| 390 | |
| 391 | // THEN |
| 392 | for (int i = 0; i < times.size(); ++i) { |
| 393 | const float time = times[i]; |
| 394 | const float value = bezier.valueForTime(time); |
| 395 | QCOMPARE(value, values[i]); |
| 396 | } |
| 397 | } |
| 398 | }; |
| 399 | |
| 400 | QTEST_APPLESS_MAIN(tst_BezierEvaluator) |
| 401 | |
| 402 | #include "tst_bezierevaluator.moc" |
| 403 | |