| 1 | /**************************************************************************** | 
| 2 | ** | 
| 3 | ** Copyright (C) 2015 Klaralvdalens Datakonsult AB (KDAB). | 
| 4 | ** Contact: https://www.qt.io/licensing/ | 
| 5 | ** | 
| 6 | ** This file is part of the Qt3D module of the Qt Toolkit. | 
| 7 | ** | 
| 8 | ** $QT_BEGIN_LICENSE:GPL-EXCEPT$ | 
| 9 | ** Commercial License Usage | 
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in | 
| 11 | ** accordance with the commercial license agreement provided with the | 
| 12 | ** Software or, alternatively, in accordance with the terms contained in | 
| 13 | ** a written agreement between you and The Qt Company. For licensing terms | 
| 14 | ** and conditions see https://www.qt.io/terms-conditions. For further | 
| 15 | ** information use the contact form at https://www.qt.io/contact-us. | 
| 16 | ** | 
| 17 | ** GNU General Public License Usage | 
| 18 | ** Alternatively, this file may be used under the terms of the GNU | 
| 19 | ** General Public License version 3 as published by the Free Software | 
| 20 | ** Foundation with exceptions as appearing in the file LICENSE.GPL3-EXCEPT | 
| 21 | ** included in the packaging of this file. Please review the following | 
| 22 | ** information to ensure the GNU General Public License requirements will | 
| 23 | ** be met: https://www.gnu.org/licenses/gpl-3.0.html. | 
| 24 | ** | 
| 25 | ** $QT_END_LICENSE$ | 
| 26 | ** | 
| 27 | ****************************************************************************/ | 
| 28 |  | 
| 29 | #include <QtTest/QTest> | 
| 30 | #include <Qt3DAnimation/private/bezierevaluator_p.h> | 
| 31 | #include <Qt3DAnimation/private/keyframe_p.h> | 
| 32 | #include <QtCore/qvector.h> | 
| 33 |  | 
| 34 | #include <cmath> | 
| 35 |  | 
| 36 | Q_DECLARE_METATYPE(Qt3DAnimation::Animation::Keyframe) | 
| 37 |  | 
| 38 | using namespace Qt3DAnimation; | 
| 39 | using namespace Qt3DAnimation::Animation; | 
| 40 |  | 
| 41 | class tst_BezierEvaluator : public QObject | 
| 42 | { | 
| 43 |     Q_OBJECT | 
| 44 |  | 
| 45 | private Q_SLOTS: | 
| 46 |     void checkFindCubicRoots_data() | 
| 47 |     { | 
| 48 |         // Test data verified on Wolfram Alpha with snippets such as: | 
| 49 |         // Plot[x^3-5x^2+x+3,{x,-3,6}] | 
| 50 |         // Solve[x^3-5x^2+x+3,x] | 
| 51 |         // If you need more, try these at https://www.wolframalpha.com/ | 
| 52 |  | 
| 53 |         QTest::addColumn<float>(name: "a" ); | 
| 54 |         QTest::addColumn<float>(name: "b" ); | 
| 55 |         QTest::addColumn<float>(name: "c" ); | 
| 56 |         QTest::addColumn<float>(name: "d" ); | 
| 57 |         QTest::addColumn<int>(name: "rootCount" ); | 
| 58 |         QTest::addColumn<QVector<float>>(name: "roots" ); | 
| 59 |  | 
| 60 |         float a = 1.0f; | 
| 61 |         float b = 0.0f; | 
| 62 |         float c = 0.0f; | 
| 63 |         float d = 0.0f; | 
| 64 |         int rootCount = 1; | 
| 65 |         QVector<float> roots = { 0.0f }; | 
| 66 |         QTest::newRow(dataTag: "a=1, b=0, c=0, d=0" ) << a << b << c << d << rootCount << roots; | 
| 67 |         roots.clear(); | 
| 68 |  | 
| 69 |         a = 1.0f; | 
| 70 |         b = -1.0f; | 
| 71 |         c = 1.0f; | 
| 72 |         d = -1.0f; | 
| 73 |         rootCount = 1; | 
| 74 |         roots.resize(asize: 1); | 
| 75 |         roots[0] = 1.0f; | 
| 76 |         QTest::newRow(dataTag: "a=1, b=-1, c=1, d=-1" ) << a << b << c << d << rootCount << roots; | 
| 77 |         roots.clear(); | 
| 78 |  | 
| 79 |         a = 1.0f; | 
| 80 |         b = -2.0f; | 
| 81 |         c = 1.0f; | 
| 82 |         d = -1.0f; | 
| 83 |         rootCount = 1; | 
| 84 |         roots.resize(asize: 1); | 
| 85 |         roots[0] = 1.7548776f; | 
| 86 |         QTest::newRow(dataTag: "a=1, b=-2, c=1, d=-1" ) << a << b << c << d << rootCount << roots; | 
| 87 |         roots.clear(); | 
| 88 |  | 
| 89 |         a = 1.0f; | 
| 90 |         b = -5.0f; | 
| 91 |         c = 1.0f; | 
| 92 |         d = 3.0f; | 
| 93 |         rootCount = 3; | 
| 94 |         roots.resize(asize: 3); | 
| 95 |         roots[0] = 2.0f + std::sqrt(x: 7.0f); | 
| 96 |         roots[1] = 1.0f; | 
| 97 |         roots[2] = 2.0f - std::sqrt(x: 7.0f); | 
| 98 |         QTest::newRow(dataTag: "a=1, b=-5, c=1, d=3" ) << a << b << c << d << rootCount << roots; | 
| 99 |         roots.clear(); | 
| 100 |  | 
| 101 |         // quadratic equation | 
| 102 |         a = 0.0f; | 
| 103 |         b = 9.0f; | 
| 104 |         c = 11.0f; | 
| 105 |         d = 3.0f; | 
| 106 |         roots.resize(asize: 2); | 
| 107 |         roots[0] = -11.0f/18.0f + std::sqrt(x: 13.0f) / 18.0f; | 
| 108 |         roots[1] = -11.0f/18.0f - std::sqrt(x: 13.0f) / 18.0f; | 
| 109 |         QTest::newRow(dataTag: "a=0, b=9, c=11, d=3" ) << a << b << c << d << roots.size() << roots; | 
| 110 |         roots.clear(); | 
| 111 |  | 
| 112 |         // quadratic equation with discriminant = 0 | 
| 113 |         a = 0.0f; | 
| 114 |         b = 1.0f; | 
| 115 |         c = 2.0f; | 
| 116 |         d = 1.0f; | 
| 117 |         roots.resize(asize: 1); | 
| 118 |         roots[0] = -1.f; | 
| 119 |         QTest::newRow(dataTag: "a=0, b=1, c=2, d=1" ) << a << b << c << d << roots.size() << roots; | 
| 120 |         roots.clear(); | 
| 121 |  | 
| 122 |         // quadratic equation with discriminant < 0 | 
| 123 |         a = 0.0f; | 
| 124 |         b = 1.0f; | 
| 125 |         c = 4.0f; | 
| 126 |         d = 8.0f; | 
| 127 |         roots.resize(asize: 0); | 
| 128 |         QTest::newRow(dataTag: "a=0, b=1, c=4, d=8" ) << a << b << c << d << roots.size() << roots; | 
| 129 |         roots.clear(); | 
| 130 |  | 
| 131 |         // linear equation | 
| 132 |         a = 0.0f; | 
| 133 |         b = 0.0f; | 
| 134 |         c = 2.0f; | 
| 135 |         d = 1.0f; | 
| 136 |         roots.resize(asize: 1); | 
| 137 |         roots[0] = -0.5f; | 
| 138 |         QTest::newRow(dataTag: "a=0, b=0, c=2, d=1" ) << a << b << c << d << roots.size() << roots; | 
| 139 |         roots.clear(); | 
| 140 |  | 
| 141 |         // linear equation | 
| 142 |         a = 0.0f; | 
| 143 |         b = 0.0f; | 
| 144 |         c = 8.0f; | 
| 145 |         d = -5.0f; | 
| 146 |         roots.resize(asize: 1); | 
| 147 |         roots[0] = -d/c; | 
| 148 |         QTest::newRow(dataTag: "a=0, b=0, c=8, d=-5" ) << a << b << c << d << roots.size() << roots; | 
| 149 |         roots.clear(); | 
| 150 |  | 
| 151 |         // invalid equation | 
| 152 |         a = 0.0f; | 
| 153 |         b = 0.0f; | 
| 154 |         c = 0.0f; | 
| 155 |         d = -5.0f; | 
| 156 |         roots.resize(asize: 0); | 
| 157 |         QTest::newRow(dataTag: "a=0, b=0, c=0, d=-5" ) << a << b << c << d << roots.size() << roots; | 
| 158 |         roots.clear(); | 
| 159 |  | 
| 160 |         // Invalid equation | 
| 161 |         a = 0.0f; | 
| 162 |         b = 0.0f; | 
| 163 |         c = 0.0f; | 
| 164 |         d = 42.0f; | 
| 165 |         roots.resize(asize: 0); | 
| 166 |         QTest::newRow(dataTag: "a=0, b=0, c=0, d=42" ) << a << b << c << d << roots.size() << roots; | 
| 167 |         roots.clear(); | 
| 168 |  | 
| 169 |         // almost linear equation | 
| 170 |         a = 1.90735e-06f; | 
| 171 |         b = -2.86102e-06f; | 
| 172 |         c = 5.0; | 
| 173 |         d = 0.0; | 
| 174 |         roots.resize(asize: 1); | 
| 175 |         roots[0] = -d/c; | 
| 176 |         QTest::newRow(dataTag: "a=~0, b=~0, c=5, d=0" ) << a << b << c << d << roots.size() << roots; | 
| 177 |         roots.clear(); | 
| 178 |  | 
| 179 |         // case that produces a result just below zero, that should be evaluated as zero | 
| 180 |         a = -0.75f; | 
| 181 |         b = 0.75f; | 
| 182 |         c = 2.5; | 
| 183 |         d = 0.0; | 
| 184 |         roots.resize(asize: 3); | 
| 185 |         roots[0] = 2.39297f; | 
| 186 |         roots[1] = 0.f; | 
| 187 |         roots[2] = -1.39297f; | 
| 188 |         QTest::newRow(dataTag: "a=-0.75, b=0.75, c=2.5, d=0" ) << a << b << c << d << roots.size() << roots; | 
| 189 |         roots.clear(); | 
| 190 |  | 
| 191 |         // Case that produces a discriminant that is close enough to zero that it should be | 
| 192 |         // evaluated as zero. | 
| 193 |         // Expected roots = 0.0, ~1.5 | 
| 194 |         a = -3.998f; | 
| 195 |         b = 5.997f; | 
| 196 |         c = 0.0f; | 
| 197 |         d = 0.0f; | 
| 198 |         roots.resize(asize: 2); | 
| 199 |         roots[0] = 1.5f; | 
| 200 |         roots[1] = 0.0f; | 
| 201 |         QTest::newRow(dataTag: "a=-3.998, b=5.997, c=0, d=0" ) << a << b << c << d << roots.size() << roots; | 
| 202 |         roots.clear(); | 
| 203 |     } | 
| 204 |  | 
| 205 |     void checkFindCubicRoots() | 
| 206 |     { | 
| 207 |         QFETCH(float, a); | 
| 208 |         QFETCH(float, b); | 
| 209 |         QFETCH(float, c); | 
| 210 |         QFETCH(float, d); | 
| 211 |         QFETCH(int, rootCount); | 
| 212 |         QFETCH(QVector<float>, roots); | 
| 213 |  | 
| 214 |         float coeffs[4]; | 
| 215 |         coeffs[0] = d; | 
| 216 |         coeffs[1] = c; | 
| 217 |         coeffs[2] = b; | 
| 218 |         coeffs[3] = a; | 
| 219 |  | 
| 220 |         float results[3]; | 
| 221 |         const int foundRootCount = BezierEvaluator::findCubicRoots(coefficients: coeffs, roots: results); | 
| 222 |  | 
| 223 |         QCOMPARE(foundRootCount, rootCount); | 
| 224 |         for (int i = 0; i < rootCount; ++i) | 
| 225 |             QCOMPARE(results[i], roots[i]); | 
| 226 |     } | 
| 227 |  | 
| 228 |     void checkParameterForTime_data() | 
| 229 |     { | 
| 230 |         QTest::addColumn<float>(name: "t0" ); | 
| 231 |         QTest::addColumn<Keyframe>(name: "kf0" ); | 
| 232 |         QTest::addColumn<float>(name: "t1" ); | 
| 233 |         QTest::addColumn<Keyframe>(name: "kf1" ); | 
| 234 |         QTest::addColumn<QVector<float>>(name: "times" ); | 
| 235 |         QTest::addColumn<QVector<float>>(name: "bezierParamters" ); | 
| 236 |  | 
| 237 |         { | 
| 238 |             float t0 = 0.0f; | 
| 239 |             Keyframe kf0{.value: 0.0f, .leftControlPoint: {-5.0f, 0.0f}, .rightControlPoint: {5.0f, 0.0f}, .interpolation: QKeyFrame::BezierInterpolation}; | 
| 240 |             float t1 = 50.0f; | 
| 241 |             Keyframe kf1{.value: 5.0f, .leftControlPoint: {45.0f, 5.0f}, .rightControlPoint: {55.0f, 5.0f}, .interpolation: QKeyFrame::BezierInterpolation}; | 
| 242 |             const int count = 21; | 
| 243 |             QVector<float> times = (QVector<float>() | 
| 244 |                                     << 0.0f | 
| 245 |                                     << 1.00375f | 
| 246 |                                     << 2.48f | 
| 247 |                                     << 4.37625f | 
| 248 |                                     << 6.64f | 
| 249 |                                     << 9.21875f | 
| 250 |                                     << 12.06f | 
| 251 |                                     << 15.11125f | 
| 252 |                                     << 18.32f | 
| 253 |                                     << 21.63375f | 
| 254 |                                     << 25.0f | 
| 255 |                                     << 28.36625f | 
| 256 |                                     << 31.68f | 
| 257 |                                     << 34.88875f | 
| 258 |                                     << 37.94f | 
| 259 |                                     << 40.78125f | 
| 260 |                                     << 43.36f | 
| 261 |                                     << 45.62375f | 
| 262 |                                     << 47.52f | 
| 263 |                                     << 48.99625f | 
| 264 |                                     << 50.0f); | 
| 265 |  | 
| 266 |             QVector<float> bezierParameters; | 
| 267 |             float deltaU = 1.0f / float(count - 1); | 
| 268 |             for (int i = 0; i < count; ++i) | 
| 269 |                 bezierParameters.push_back(t: float(i) * deltaU); | 
| 270 |  | 
| 271 |             QTest::newRow(dataTag: "t=0 to t=50, default easing" ) << t0 << kf0 | 
| 272 |                                                          << t1 << kf1 | 
| 273 |                                                          << times << bezierParameters; | 
| 274 |         } | 
| 275 |         { | 
| 276 |             // This test creates a case where the coefficients for finding | 
| 277 |             // the cubic roots will be a = 0, b = 0, c ~= 6.28557 d ~= -6.28557 | 
| 278 |             // Because c ~= d, the answer should be one root = 1, but | 
| 279 |             // because of numerical imprecision, it will be slightly larger. | 
| 280 |             // We have a fuzzy check in parameterForTime that takes care of this. | 
| 281 |             float t0 = 3.71443009f; | 
| 282 |             Keyframe kf0{.value: 150.0f, .leftControlPoint: {0.0f, 0.0f}, .rightControlPoint: {5.80961999f, 150.0f}, .interpolation: QKeyFrame::BezierInterpolation}; | 
| 283 |             float t1 = 10.0f; | 
| 284 |             Keyframe kf1{.value: -150.0f, .leftControlPoint: {7.904809959f, 150.0f}, .rightControlPoint: {0.f, 0.f}, .interpolation: QKeyFrame::BezierInterpolation}; | 
| 285 |             QVector<float> times = {10.f}; | 
| 286 |             QVector<float> results = {1.0f}; | 
| 287 |             QTest::newRow(dataTag: "t=0 to t=10, regression" ) << t0 << kf0 | 
| 288 |                                                      << t1 << kf1 | 
| 289 |                                                      << times << results; | 
| 290 |         } | 
| 291 |     } | 
| 292 |  | 
| 293 |     void checkParameterForTime() | 
| 294 |     { | 
| 295 |         // GIVEN | 
| 296 |         QFETCH(float, t0); | 
| 297 |         QFETCH(Keyframe, kf0); | 
| 298 |         QFETCH(float, t1); | 
| 299 |         QFETCH(Keyframe, kf1); | 
| 300 |         QFETCH(QVector<float>, times); | 
| 301 |         QFETCH(QVector<float>, bezierParamters); | 
| 302 |  | 
| 303 |         // WHEN | 
| 304 |         BezierEvaluator bezier(t0, kf0, t1, kf1); | 
| 305 |  | 
| 306 |         // THEN | 
| 307 |         for (int i = 0; i < times.size(); ++i) { | 
| 308 |             const float time = times[i]; | 
| 309 |             const float u = bezier.parameterForTime(time); | 
| 310 |             QCOMPARE(u, bezierParamters[i]); | 
| 311 |         } | 
| 312 |     } | 
| 313 |  | 
| 314 |     void checkValueForTime_data() | 
| 315 |     { | 
| 316 |         QTest::addColumn<float>(name: "t0" ); | 
| 317 |         QTest::addColumn<Keyframe>(name: "kf0" ); | 
| 318 |         QTest::addColumn<float>(name: "t1" ); | 
| 319 |         QTest::addColumn<Keyframe>(name: "kf1" ); | 
| 320 |         QTest::addColumn<QVector<float>>(name: "times" ); | 
| 321 |         QTest::addColumn<QVector<float>>(name: "values" ); | 
| 322 |  | 
| 323 |         float t0 = 0.0f; | 
| 324 |         Keyframe kf0{.value: 0.0f, .leftControlPoint: {-5.0f, 0.0f}, .rightControlPoint: {5.0f, 0.0f}, .interpolation: QKeyFrame::BezierInterpolation}; | 
| 325 |         float t1 = 50.0f; | 
| 326 |         Keyframe kf1{.value: 5.0f, .leftControlPoint: {45.0f, 5.0f}, .rightControlPoint: {55.0f, 5.0f}, .interpolation: QKeyFrame::BezierInterpolation}; | 
| 327 |         QVector<float> times = (QVector<float>() | 
| 328 |             << 0.0f | 
| 329 |             << 1.00375f | 
| 330 |             << 2.48f | 
| 331 |             << 4.37625f | 
| 332 |             << 6.64f | 
| 333 |             << 9.21875f | 
| 334 |             << 12.06f | 
| 335 |             << 15.11125f | 
| 336 |             << 18.32f | 
| 337 |             << 21.63375f | 
| 338 |             << 25.0f | 
| 339 |             << 28.36625f | 
| 340 |             << 31.68f | 
| 341 |             << 34.88875f | 
| 342 |             << 37.94f | 
| 343 |             << 40.78125f | 
| 344 |             << 43.36f | 
| 345 |             << 45.62375f | 
| 346 |             << 47.52f | 
| 347 |             << 48.99625f | 
| 348 |             << 50.0f); | 
| 349 |  | 
| 350 |         QVector<float> values = (QVector<float>() | 
| 351 |             << 0.0f | 
| 352 |             << 0.03625f | 
| 353 |             << 0.14f | 
| 354 |             << 0.30375f | 
| 355 |             << 0.52f | 
| 356 |             << 0.78125f | 
| 357 |             << 1.08f | 
| 358 |             << 1.40875f | 
| 359 |             << 1.76f | 
| 360 |             << 2.12625f | 
| 361 |             << 2.5f | 
| 362 |             << 2.87375f | 
| 363 |             << 3.24f | 
| 364 |             << 3.59125f | 
| 365 |             << 3.92f | 
| 366 |             << 4.21875f | 
| 367 |             << 4.48f | 
| 368 |             << 4.69625f | 
| 369 |             << 4.86f | 
| 370 |             << 4.96375f | 
| 371 |             << 5.0f); | 
| 372 |  | 
| 373 |         QTest::newRow(dataTag: "t=0, value=0 to t=50, value=5, default easing" ) << t0 << kf0 | 
| 374 |                                                      << t1 << kf1 | 
| 375 |                                                      << times << values; | 
| 376 |     } | 
| 377 |  | 
| 378 |     void checkValueForTime() | 
| 379 |     { | 
| 380 |         // GIVEN | 
| 381 |         QFETCH(float, t0); | 
| 382 |         QFETCH(Keyframe, kf0); | 
| 383 |         QFETCH(float, t1); | 
| 384 |         QFETCH(Keyframe, kf1); | 
| 385 |         QFETCH(QVector<float>, times); | 
| 386 |         QFETCH(QVector<float>, values); | 
| 387 |  | 
| 388 |         // WHEN | 
| 389 |         BezierEvaluator bezier(t0, kf0, t1, kf1); | 
| 390 |  | 
| 391 |         // THEN | 
| 392 |         for (int i = 0; i < times.size(); ++i) { | 
| 393 |             const float time = times[i]; | 
| 394 |             const float value = bezier.valueForTime(time); | 
| 395 |             QCOMPARE(value, values[i]); | 
| 396 |         } | 
| 397 |     } | 
| 398 | }; | 
| 399 |  | 
| 400 | QTEST_APPLESS_MAIN(tst_BezierEvaluator) | 
| 401 |  | 
| 402 | #include "tst_bezierevaluator.moc" | 
| 403 |  |