1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2017 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the examples of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:BSD$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** BSD License Usage |
18 | ** Alternatively, you may use this file under the terms of the BSD license |
19 | ** as follows: |
20 | ** |
21 | ** "Redistribution and use in source and binary forms, with or without |
22 | ** modification, are permitted provided that the following conditions are |
23 | ** met: |
24 | ** * Redistributions of source code must retain the above copyright |
25 | ** notice, this list of conditions and the following disclaimer. |
26 | ** * Redistributions in binary form must reproduce the above copyright |
27 | ** notice, this list of conditions and the following disclaimer in |
28 | ** the documentation and/or other materials provided with the |
29 | ** distribution. |
30 | ** * Neither the name of The Qt Company Ltd nor the names of its |
31 | ** contributors may be used to endorse or promote products derived |
32 | ** from this software without specific prior written permission. |
33 | ** |
34 | ** |
35 | ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
36 | ** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
37 | ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
38 | ** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
39 | ** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
40 | ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
41 | ** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
42 | ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
43 | ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
44 | ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
45 | ** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." |
46 | ** |
47 | ** $QT_END_LICENSE$ |
48 | ** |
49 | ****************************************************************************/ |
50 | |
51 | #include "hellovulkantexture.h" |
52 | #include <QVulkanFunctions> |
53 | #include <QCoreApplication> |
54 | #include <QFile> |
55 | |
56 | // Use a triangle strip to get a quad. |
57 | // |
58 | // Note that the vertex data and the projection matrix assume OpenGL. With |
59 | // Vulkan Y is negated in clip space and the near/far plane is at 0/1 instead |
60 | // of -1/1. These will be corrected for by an extra transformation when |
61 | // calculating the modelview-projection matrix. |
62 | static float vertexData[] = { // Y up, front = CW |
63 | // x, y, z, u, v |
64 | -1, -1, 0, 0, 1, |
65 | -1, 1, 0, 0, 0, |
66 | 1, -1, 0, 1, 1, |
67 | 1, 1, 0, 1, 0 |
68 | }; |
69 | |
70 | static const int UNIFORM_DATA_SIZE = 16 * sizeof(float); |
71 | |
72 | static inline VkDeviceSize aligned(VkDeviceSize v, VkDeviceSize byteAlign) |
73 | { |
74 | return (v + byteAlign - 1) & ~(byteAlign - 1); |
75 | } |
76 | |
77 | QVulkanWindowRenderer *VulkanWindow::createRenderer() |
78 | { |
79 | return new VulkanRenderer(this); |
80 | } |
81 | |
82 | VulkanRenderer::VulkanRenderer(QVulkanWindow *w) |
83 | : m_window(w) |
84 | { |
85 | } |
86 | |
87 | VkShaderModule VulkanRenderer::createShader(const QString &name) |
88 | { |
89 | QFile file(name); |
90 | if (!file.open(flags: QIODevice::ReadOnly)) { |
91 | qWarning(msg: "Failed to read shader %s" , qPrintable(name)); |
92 | return VK_NULL_HANDLE; |
93 | } |
94 | QByteArray blob = file.readAll(); |
95 | file.close(); |
96 | |
97 | VkShaderModuleCreateInfo shaderInfo; |
98 | memset(s: &shaderInfo, c: 0, n: sizeof(shaderInfo)); |
99 | shaderInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; |
100 | shaderInfo.codeSize = blob.size(); |
101 | shaderInfo.pCode = reinterpret_cast<const uint32_t *>(blob.constData()); |
102 | VkShaderModule shaderModule; |
103 | VkResult err = m_devFuncs->vkCreateShaderModule(m_window->device(), &shaderInfo, nullptr, &shaderModule); |
104 | if (err != VK_SUCCESS) { |
105 | qWarning(msg: "Failed to create shader module: %d" , err); |
106 | return VK_NULL_HANDLE; |
107 | } |
108 | |
109 | return shaderModule; |
110 | } |
111 | |
112 | bool VulkanRenderer::createTexture(const QString &name) |
113 | { |
114 | QImage img(name); |
115 | if (img.isNull()) { |
116 | qWarning(msg: "Failed to load image %s" , qPrintable(name)); |
117 | return false; |
118 | } |
119 | |
120 | // Convert to byte ordered RGBA8. Use premultiplied alpha, see pColorBlendState in the pipeline. |
121 | img = img.convertToFormat(f: QImage::Format_RGBA8888_Premultiplied); |
122 | |
123 | QVulkanFunctions *f = m_window->vulkanInstance()->functions(); |
124 | VkDevice dev = m_window->device(); |
125 | |
126 | const bool srgb = QCoreApplication::arguments().contains(QStringLiteral("--srgb" )); |
127 | if (srgb) |
128 | qDebug(msg: "sRGB swapchain was requested, making texture sRGB too" ); |
129 | |
130 | m_texFormat = srgb ? VK_FORMAT_R8G8B8A8_SRGB : VK_FORMAT_R8G8B8A8_UNORM; |
131 | |
132 | // Now we can either map and copy the image data directly, or have to go |
133 | // through a staging buffer to copy and convert into the internal optimal |
134 | // tiling format. |
135 | VkFormatProperties props; |
136 | f->vkGetPhysicalDeviceFormatProperties(m_window->physicalDevice(), m_texFormat, &props); |
137 | const bool canSampleLinear = (props.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT); |
138 | const bool canSampleOptimal = (props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT); |
139 | if (!canSampleLinear && !canSampleOptimal) { |
140 | qWarning(msg: "Neither linear nor optimal image sampling is supported for RGBA8" ); |
141 | return false; |
142 | } |
143 | |
144 | static bool alwaysStage = qEnvironmentVariableIntValue(varName: "QT_VK_FORCE_STAGE_TEX" ); |
145 | |
146 | if (canSampleLinear && !alwaysStage) { |
147 | if (!createTextureImage(size: img.size(), image: &m_texImage, mem: &m_texMem, |
148 | tiling: VK_IMAGE_TILING_LINEAR, usage: VK_IMAGE_USAGE_SAMPLED_BIT, |
149 | memIndex: m_window->hostVisibleMemoryIndex())) |
150 | return false; |
151 | |
152 | if (!writeLinearImage(img, image: m_texImage, memory: m_texMem)) |
153 | return false; |
154 | |
155 | m_texLayoutPending = true; |
156 | } else { |
157 | if (!createTextureImage(size: img.size(), image: &m_texStaging, mem: &m_texStagingMem, |
158 | tiling: VK_IMAGE_TILING_LINEAR, usage: VK_IMAGE_USAGE_TRANSFER_SRC_BIT, |
159 | memIndex: m_window->hostVisibleMemoryIndex())) |
160 | return false; |
161 | |
162 | if (!createTextureImage(size: img.size(), image: &m_texImage, mem: &m_texMem, |
163 | tiling: VK_IMAGE_TILING_OPTIMAL, usage: VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, |
164 | memIndex: m_window->deviceLocalMemoryIndex())) |
165 | return false; |
166 | |
167 | if (!writeLinearImage(img, image: m_texStaging, memory: m_texStagingMem)) |
168 | return false; |
169 | |
170 | m_texStagingPending = true; |
171 | } |
172 | |
173 | VkImageViewCreateInfo viewInfo; |
174 | memset(s: &viewInfo, c: 0, n: sizeof(viewInfo)); |
175 | viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
176 | viewInfo.image = m_texImage; |
177 | viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; |
178 | viewInfo.format = m_texFormat; |
179 | viewInfo.components.r = VK_COMPONENT_SWIZZLE_R; |
180 | viewInfo.components.g = VK_COMPONENT_SWIZZLE_G; |
181 | viewInfo.components.b = VK_COMPONENT_SWIZZLE_B; |
182 | viewInfo.components.a = VK_COMPONENT_SWIZZLE_A; |
183 | viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
184 | viewInfo.subresourceRange.levelCount = viewInfo.subresourceRange.layerCount = 1; |
185 | |
186 | VkResult err = m_devFuncs->vkCreateImageView(dev, &viewInfo, nullptr, &m_texView); |
187 | if (err != VK_SUCCESS) { |
188 | qWarning(msg: "Failed to create image view for texture: %d" , err); |
189 | return false; |
190 | } |
191 | |
192 | m_texSize = img.size(); |
193 | |
194 | return true; |
195 | } |
196 | |
197 | bool VulkanRenderer::createTextureImage(const QSize &size, VkImage *image, VkDeviceMemory *mem, |
198 | VkImageTiling tiling, VkImageUsageFlags usage, uint32_t memIndex) |
199 | { |
200 | VkDevice dev = m_window->device(); |
201 | |
202 | VkImageCreateInfo imageInfo; |
203 | memset(s: &imageInfo, c: 0, n: sizeof(imageInfo)); |
204 | imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; |
205 | imageInfo.imageType = VK_IMAGE_TYPE_2D; |
206 | imageInfo.format = m_texFormat; |
207 | imageInfo.extent.width = size.width(); |
208 | imageInfo.extent.height = size.height(); |
209 | imageInfo.extent.depth = 1; |
210 | imageInfo.mipLevels = 1; |
211 | imageInfo.arrayLayers = 1; |
212 | imageInfo.samples = VK_SAMPLE_COUNT_1_BIT; |
213 | imageInfo.tiling = tiling; |
214 | imageInfo.usage = usage; |
215 | imageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; |
216 | |
217 | VkResult err = m_devFuncs->vkCreateImage(dev, &imageInfo, nullptr, image); |
218 | if (err != VK_SUCCESS) { |
219 | qWarning(msg: "Failed to create linear image for texture: %d" , err); |
220 | return false; |
221 | } |
222 | |
223 | VkMemoryRequirements memReq; |
224 | m_devFuncs->vkGetImageMemoryRequirements(dev, *image, &memReq); |
225 | |
226 | if (!(memReq.memoryTypeBits & (1 << memIndex))) { |
227 | VkPhysicalDeviceMemoryProperties physDevMemProps; |
228 | m_window->vulkanInstance()->functions()->vkGetPhysicalDeviceMemoryProperties(m_window->physicalDevice(), &physDevMemProps); |
229 | for (uint32_t i = 0; i < physDevMemProps.memoryTypeCount; ++i) { |
230 | if (!(memReq.memoryTypeBits & (1 << i))) |
231 | continue; |
232 | memIndex = i; |
233 | } |
234 | } |
235 | |
236 | VkMemoryAllocateInfo allocInfo = { |
237 | .sType: VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, |
238 | .pNext: nullptr, |
239 | .allocationSize: memReq.size, |
240 | .memoryTypeIndex: memIndex |
241 | }; |
242 | qDebug(msg: "allocating %u bytes for texture image" , uint32_t(memReq.size)); |
243 | |
244 | err = m_devFuncs->vkAllocateMemory(dev, &allocInfo, nullptr, mem); |
245 | if (err != VK_SUCCESS) { |
246 | qWarning(msg: "Failed to allocate memory for linear image: %d" , err); |
247 | return false; |
248 | } |
249 | |
250 | err = m_devFuncs->vkBindImageMemory(dev, *image, *mem, 0); |
251 | if (err != VK_SUCCESS) { |
252 | qWarning(msg: "Failed to bind linear image memory: %d" , err); |
253 | return false; |
254 | } |
255 | |
256 | return true; |
257 | } |
258 | |
259 | bool VulkanRenderer::writeLinearImage(const QImage &img, VkImage image, VkDeviceMemory memory) |
260 | { |
261 | VkDevice dev = m_window->device(); |
262 | |
263 | VkImageSubresource subres = { |
264 | .aspectMask: VK_IMAGE_ASPECT_COLOR_BIT, |
265 | .mipLevel: 0, // mip level |
266 | .arrayLayer: 0 |
267 | }; |
268 | VkSubresourceLayout layout; |
269 | m_devFuncs->vkGetImageSubresourceLayout(dev, image, &subres, &layout); |
270 | |
271 | uchar *p; |
272 | VkResult err = m_devFuncs->vkMapMemory(dev, memory, layout.offset, layout.size, 0, reinterpret_cast<void **>(&p)); |
273 | if (err != VK_SUCCESS) { |
274 | qWarning(msg: "Failed to map memory for linear image: %d" , err); |
275 | return false; |
276 | } |
277 | |
278 | for (int y = 0; y < img.height(); ++y) { |
279 | const uchar *line = img.constScanLine(y); |
280 | memcpy(dest: p, src: line, n: img.width() * 4); |
281 | p += layout.rowPitch; |
282 | } |
283 | |
284 | m_devFuncs->vkUnmapMemory(dev, memory); |
285 | return true; |
286 | } |
287 | |
288 | void VulkanRenderer::ensureTexture() |
289 | { |
290 | if (!m_texLayoutPending && !m_texStagingPending) |
291 | return; |
292 | |
293 | Q_ASSERT(m_texLayoutPending != m_texStagingPending); |
294 | VkCommandBuffer cb = m_window->currentCommandBuffer(); |
295 | |
296 | VkImageMemoryBarrier barrier; |
297 | memset(s: &barrier, c: 0, n: sizeof(barrier)); |
298 | barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
299 | barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
300 | barrier.subresourceRange.levelCount = barrier.subresourceRange.layerCount = 1; |
301 | |
302 | if (m_texLayoutPending) { |
303 | m_texLayoutPending = false; |
304 | |
305 | barrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; |
306 | barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; |
307 | barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT; |
308 | barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; |
309 | barrier.image = m_texImage; |
310 | |
311 | m_devFuncs->vkCmdPipelineBarrier(cb, |
312 | VK_PIPELINE_STAGE_HOST_BIT, |
313 | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, |
314 | 0, 0, nullptr, 0, nullptr, |
315 | 1, &barrier); |
316 | } else { |
317 | m_texStagingPending = false; |
318 | |
319 | barrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; |
320 | barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; |
321 | barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT; |
322 | barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; |
323 | barrier.image = m_texStaging; |
324 | m_devFuncs->vkCmdPipelineBarrier(cb, |
325 | VK_PIPELINE_STAGE_HOST_BIT, |
326 | VK_PIPELINE_STAGE_TRANSFER_BIT, |
327 | 0, 0, nullptr, 0, nullptr, |
328 | 1, &barrier); |
329 | |
330 | barrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; |
331 | barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
332 | barrier.srcAccessMask = 0; |
333 | barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
334 | barrier.image = m_texImage; |
335 | m_devFuncs->vkCmdPipelineBarrier(cb, |
336 | VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
337 | VK_PIPELINE_STAGE_TRANSFER_BIT, |
338 | 0, 0, nullptr, 0, nullptr, |
339 | 1, &barrier); |
340 | |
341 | VkImageCopy copyInfo; |
342 | memset(s: ©Info, c: 0, n: sizeof(copyInfo)); |
343 | copyInfo.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
344 | copyInfo.srcSubresource.layerCount = 1; |
345 | copyInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
346 | copyInfo.dstSubresource.layerCount = 1; |
347 | copyInfo.extent.width = m_texSize.width(); |
348 | copyInfo.extent.height = m_texSize.height(); |
349 | copyInfo.extent.depth = 1; |
350 | m_devFuncs->vkCmdCopyImage(cb, m_texStaging, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
351 | m_texImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Info); |
352 | |
353 | barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
354 | barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; |
355 | barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
356 | barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; |
357 | barrier.image = m_texImage; |
358 | m_devFuncs->vkCmdPipelineBarrier(cb, |
359 | VK_PIPELINE_STAGE_TRANSFER_BIT, |
360 | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, |
361 | 0, 0, nullptr, 0, nullptr, |
362 | 1, &barrier); |
363 | } |
364 | } |
365 | |
366 | void VulkanRenderer::initResources() |
367 | { |
368 | qDebug(msg: "initResources" ); |
369 | |
370 | VkDevice dev = m_window->device(); |
371 | m_devFuncs = m_window->vulkanInstance()->deviceFunctions(device: dev); |
372 | |
373 | // The setup is similar to hellovulkantriangle. The difference is the |
374 | // presence of a second vertex attribute (texcoord), a sampler, and that we |
375 | // need blending. |
376 | |
377 | const int concurrentFrameCount = m_window->concurrentFrameCount(); |
378 | const VkPhysicalDeviceLimits *pdevLimits = &m_window->physicalDeviceProperties()->limits; |
379 | const VkDeviceSize uniAlign = pdevLimits->minUniformBufferOffsetAlignment; |
380 | qDebug(msg: "uniform buffer offset alignment is %u" , (uint) uniAlign); |
381 | VkBufferCreateInfo bufInfo; |
382 | memset(s: &bufInfo, c: 0, n: sizeof(bufInfo)); |
383 | bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; |
384 | // Our internal layout is vertex, uniform, uniform, ... with each uniform buffer start offset aligned to uniAlign. |
385 | const VkDeviceSize vertexAllocSize = aligned(v: sizeof(vertexData), byteAlign: uniAlign); |
386 | const VkDeviceSize uniformAllocSize = aligned(v: UNIFORM_DATA_SIZE, byteAlign: uniAlign); |
387 | bufInfo.size = vertexAllocSize + concurrentFrameCount * uniformAllocSize; |
388 | bufInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT; |
389 | |
390 | VkResult err = m_devFuncs->vkCreateBuffer(dev, &bufInfo, nullptr, &m_buf); |
391 | if (err != VK_SUCCESS) |
392 | qFatal(msg: "Failed to create buffer: %d" , err); |
393 | |
394 | VkMemoryRequirements memReq; |
395 | m_devFuncs->vkGetBufferMemoryRequirements(dev, m_buf, &memReq); |
396 | |
397 | VkMemoryAllocateInfo memAllocInfo = { |
398 | .sType: VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, |
399 | .pNext: nullptr, |
400 | .allocationSize: memReq.size, |
401 | .memoryTypeIndex: m_window->hostVisibleMemoryIndex() |
402 | }; |
403 | |
404 | err = m_devFuncs->vkAllocateMemory(dev, &memAllocInfo, nullptr, &m_bufMem); |
405 | if (err != VK_SUCCESS) |
406 | qFatal(msg: "Failed to allocate memory: %d" , err); |
407 | |
408 | err = m_devFuncs->vkBindBufferMemory(dev, m_buf, m_bufMem, 0); |
409 | if (err != VK_SUCCESS) |
410 | qFatal(msg: "Failed to bind buffer memory: %d" , err); |
411 | |
412 | quint8 *p; |
413 | err = m_devFuncs->vkMapMemory(dev, m_bufMem, 0, memReq.size, 0, reinterpret_cast<void **>(&p)); |
414 | if (err != VK_SUCCESS) |
415 | qFatal(msg: "Failed to map memory: %d" , err); |
416 | memcpy(dest: p, src: vertexData, n: sizeof(vertexData)); |
417 | QMatrix4x4 ident; |
418 | memset(s: m_uniformBufInfo, c: 0, n: sizeof(m_uniformBufInfo)); |
419 | for (int i = 0; i < concurrentFrameCount; ++i) { |
420 | const VkDeviceSize offset = vertexAllocSize + i * uniformAllocSize; |
421 | memcpy(dest: p + offset, src: ident.constData(), n: 16 * sizeof(float)); |
422 | m_uniformBufInfo[i].buffer = m_buf; |
423 | m_uniformBufInfo[i].offset = offset; |
424 | m_uniformBufInfo[i].range = uniformAllocSize; |
425 | } |
426 | m_devFuncs->vkUnmapMemory(dev, m_bufMem); |
427 | |
428 | VkVertexInputBindingDescription vertexBindingDesc = { |
429 | .binding: 0, // binding |
430 | .stride: 5 * sizeof(float), |
431 | .inputRate: VK_VERTEX_INPUT_RATE_VERTEX |
432 | }; |
433 | VkVertexInputAttributeDescription vertexAttrDesc[] = { |
434 | { // position |
435 | .location: 0, // location |
436 | .binding: 0, // binding |
437 | .format: VK_FORMAT_R32G32B32_SFLOAT, |
438 | .offset: 0 |
439 | }, |
440 | { // texcoord |
441 | .location: 1, |
442 | .binding: 0, |
443 | .format: VK_FORMAT_R32G32_SFLOAT, |
444 | .offset: 3 * sizeof(float) |
445 | } |
446 | }; |
447 | |
448 | VkPipelineVertexInputStateCreateInfo vertexInputInfo; |
449 | vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; |
450 | vertexInputInfo.pNext = nullptr; |
451 | vertexInputInfo.flags = 0; |
452 | vertexInputInfo.vertexBindingDescriptionCount = 1; |
453 | vertexInputInfo.pVertexBindingDescriptions = &vertexBindingDesc; |
454 | vertexInputInfo.vertexAttributeDescriptionCount = 2; |
455 | vertexInputInfo.pVertexAttributeDescriptions = vertexAttrDesc; |
456 | |
457 | // Sampler. |
458 | VkSamplerCreateInfo samplerInfo; |
459 | memset(s: &samplerInfo, c: 0, n: sizeof(samplerInfo)); |
460 | samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; |
461 | samplerInfo.magFilter = VK_FILTER_NEAREST; |
462 | samplerInfo.minFilter = VK_FILTER_NEAREST; |
463 | samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; |
464 | samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; |
465 | samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; |
466 | samplerInfo.maxAnisotropy = 1.0f; |
467 | err = m_devFuncs->vkCreateSampler(dev, &samplerInfo, nullptr, &m_sampler); |
468 | if (err != VK_SUCCESS) |
469 | qFatal(msg: "Failed to create sampler: %d" , err); |
470 | |
471 | // Texture. |
472 | if (!createTexture(QStringLiteral(":/qt256.png" ))) |
473 | qFatal(msg: "Failed to create texture" ); |
474 | |
475 | // Set up descriptor set and its layout. |
476 | VkDescriptorPoolSize descPoolSizes[2] = { |
477 | { .type: VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount: uint32_t(concurrentFrameCount) }, |
478 | { .type: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount: uint32_t(concurrentFrameCount) } |
479 | }; |
480 | VkDescriptorPoolCreateInfo descPoolInfo; |
481 | memset(s: &descPoolInfo, c: 0, n: sizeof(descPoolInfo)); |
482 | descPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; |
483 | descPoolInfo.maxSets = concurrentFrameCount; |
484 | descPoolInfo.poolSizeCount = 2; |
485 | descPoolInfo.pPoolSizes = descPoolSizes; |
486 | err = m_devFuncs->vkCreateDescriptorPool(dev, &descPoolInfo, nullptr, &m_descPool); |
487 | if (err != VK_SUCCESS) |
488 | qFatal(msg: "Failed to create descriptor pool: %d" , err); |
489 | |
490 | VkDescriptorSetLayoutBinding layoutBinding[2] = |
491 | { |
492 | { |
493 | .binding: 0, // binding |
494 | .descriptorType: VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, |
495 | .descriptorCount: 1, // descriptorCount |
496 | .stageFlags: VK_SHADER_STAGE_VERTEX_BIT, |
497 | .pImmutableSamplers: nullptr |
498 | }, |
499 | { |
500 | .binding: 1, // binding |
501 | .descriptorType: VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, |
502 | .descriptorCount: 1, // descriptorCount |
503 | .stageFlags: VK_SHADER_STAGE_FRAGMENT_BIT, |
504 | .pImmutableSamplers: nullptr |
505 | } |
506 | }; |
507 | VkDescriptorSetLayoutCreateInfo descLayoutInfo = { |
508 | .sType: VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, |
509 | .pNext: nullptr, |
510 | .flags: 0, |
511 | .bindingCount: 2, // bindingCount |
512 | .pBindings: layoutBinding |
513 | }; |
514 | err = m_devFuncs->vkCreateDescriptorSetLayout(dev, &descLayoutInfo, nullptr, &m_descSetLayout); |
515 | if (err != VK_SUCCESS) |
516 | qFatal(msg: "Failed to create descriptor set layout: %d" , err); |
517 | |
518 | for (int i = 0; i < concurrentFrameCount; ++i) { |
519 | VkDescriptorSetAllocateInfo descSetAllocInfo = { |
520 | .sType: VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, |
521 | .pNext: nullptr, |
522 | .descriptorPool: m_descPool, |
523 | .descriptorSetCount: 1, |
524 | .pSetLayouts: &m_descSetLayout |
525 | }; |
526 | err = m_devFuncs->vkAllocateDescriptorSets(dev, &descSetAllocInfo, &m_descSet[i]); |
527 | if (err != VK_SUCCESS) |
528 | qFatal(msg: "Failed to allocate descriptor set: %d" , err); |
529 | |
530 | VkWriteDescriptorSet descWrite[2]; |
531 | memset(s: descWrite, c: 0, n: sizeof(descWrite)); |
532 | descWrite[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; |
533 | descWrite[0].dstSet = m_descSet[i]; |
534 | descWrite[0].dstBinding = 0; |
535 | descWrite[0].descriptorCount = 1; |
536 | descWrite[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; |
537 | descWrite[0].pBufferInfo = &m_uniformBufInfo[i]; |
538 | |
539 | VkDescriptorImageInfo descImageInfo = { |
540 | .sampler: m_sampler, |
541 | .imageView: m_texView, |
542 | .imageLayout: VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL |
543 | }; |
544 | |
545 | descWrite[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; |
546 | descWrite[1].dstSet = m_descSet[i]; |
547 | descWrite[1].dstBinding = 1; |
548 | descWrite[1].descriptorCount = 1; |
549 | descWrite[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; |
550 | descWrite[1].pImageInfo = &descImageInfo; |
551 | |
552 | m_devFuncs->vkUpdateDescriptorSets(dev, 2, descWrite, 0, nullptr); |
553 | } |
554 | |
555 | // Pipeline cache |
556 | VkPipelineCacheCreateInfo pipelineCacheInfo; |
557 | memset(s: &pipelineCacheInfo, c: 0, n: sizeof(pipelineCacheInfo)); |
558 | pipelineCacheInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; |
559 | err = m_devFuncs->vkCreatePipelineCache(dev, &pipelineCacheInfo, nullptr, &m_pipelineCache); |
560 | if (err != VK_SUCCESS) |
561 | qFatal(msg: "Failed to create pipeline cache: %d" , err); |
562 | |
563 | // Pipeline layout |
564 | VkPipelineLayoutCreateInfo pipelineLayoutInfo; |
565 | memset(s: &pipelineLayoutInfo, c: 0, n: sizeof(pipelineLayoutInfo)); |
566 | pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; |
567 | pipelineLayoutInfo.setLayoutCount = 1; |
568 | pipelineLayoutInfo.pSetLayouts = &m_descSetLayout; |
569 | err = m_devFuncs->vkCreatePipelineLayout(dev, &pipelineLayoutInfo, nullptr, &m_pipelineLayout); |
570 | if (err != VK_SUCCESS) |
571 | qFatal(msg: "Failed to create pipeline layout: %d" , err); |
572 | |
573 | // Shaders |
574 | VkShaderModule vertShaderModule = createShader(QStringLiteral(":/texture_vert.spv" )); |
575 | VkShaderModule fragShaderModule = createShader(QStringLiteral(":/texture_frag.spv" )); |
576 | |
577 | // Graphics pipeline |
578 | VkGraphicsPipelineCreateInfo pipelineInfo; |
579 | memset(s: &pipelineInfo, c: 0, n: sizeof(pipelineInfo)); |
580 | pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; |
581 | |
582 | VkPipelineShaderStageCreateInfo shaderStages[2] = { |
583 | { |
584 | .sType: VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, |
585 | .pNext: nullptr, |
586 | .flags: 0, |
587 | .stage: VK_SHADER_STAGE_VERTEX_BIT, |
588 | .module: vertShaderModule, |
589 | .pName: "main" , |
590 | .pSpecializationInfo: nullptr |
591 | }, |
592 | { |
593 | .sType: VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, |
594 | .pNext: nullptr, |
595 | .flags: 0, |
596 | .stage: VK_SHADER_STAGE_FRAGMENT_BIT, |
597 | .module: fragShaderModule, |
598 | .pName: "main" , |
599 | .pSpecializationInfo: nullptr |
600 | } |
601 | }; |
602 | pipelineInfo.stageCount = 2; |
603 | pipelineInfo.pStages = shaderStages; |
604 | |
605 | pipelineInfo.pVertexInputState = &vertexInputInfo; |
606 | |
607 | VkPipelineInputAssemblyStateCreateInfo ia; |
608 | memset(s: &ia, c: 0, n: sizeof(ia)); |
609 | ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; |
610 | ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; |
611 | pipelineInfo.pInputAssemblyState = &ia; |
612 | |
613 | // The viewport and scissor will be set dynamically via vkCmdSetViewport/Scissor. |
614 | // This way the pipeline does not need to be touched when resizing the window. |
615 | VkPipelineViewportStateCreateInfo vp; |
616 | memset(s: &vp, c: 0, n: sizeof(vp)); |
617 | vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; |
618 | vp.viewportCount = 1; |
619 | vp.scissorCount = 1; |
620 | pipelineInfo.pViewportState = &vp; |
621 | |
622 | VkPipelineRasterizationStateCreateInfo rs; |
623 | memset(s: &rs, c: 0, n: sizeof(rs)); |
624 | rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; |
625 | rs.polygonMode = VK_POLYGON_MODE_FILL; |
626 | rs.cullMode = VK_CULL_MODE_BACK_BIT; |
627 | rs.frontFace = VK_FRONT_FACE_CLOCKWISE; |
628 | rs.lineWidth = 1.0f; |
629 | pipelineInfo.pRasterizationState = &rs; |
630 | |
631 | VkPipelineMultisampleStateCreateInfo ms; |
632 | memset(s: &ms, c: 0, n: sizeof(ms)); |
633 | ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; |
634 | ms.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; |
635 | pipelineInfo.pMultisampleState = &ms; |
636 | |
637 | VkPipelineDepthStencilStateCreateInfo ds; |
638 | memset(s: &ds, c: 0, n: sizeof(ds)); |
639 | ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; |
640 | ds.depthTestEnable = VK_TRUE; |
641 | ds.depthWriteEnable = VK_TRUE; |
642 | ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL; |
643 | pipelineInfo.pDepthStencilState = &ds; |
644 | |
645 | VkPipelineColorBlendStateCreateInfo cb; |
646 | memset(s: &cb, c: 0, n: sizeof(cb)); |
647 | cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; |
648 | // assume pre-multiplied alpha, blend, write out all of rgba |
649 | VkPipelineColorBlendAttachmentState att; |
650 | memset(s: &att, c: 0, n: sizeof(att)); |
651 | att.colorWriteMask = 0xF; |
652 | att.blendEnable = VK_TRUE; |
653 | att.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; |
654 | att.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; |
655 | att.colorBlendOp = VK_BLEND_OP_ADD; |
656 | att.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; |
657 | att.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; |
658 | att.alphaBlendOp = VK_BLEND_OP_ADD; |
659 | cb.attachmentCount = 1; |
660 | cb.pAttachments = &att; |
661 | pipelineInfo.pColorBlendState = &cb; |
662 | |
663 | VkDynamicState dynEnable[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; |
664 | VkPipelineDynamicStateCreateInfo dyn; |
665 | memset(s: &dyn, c: 0, n: sizeof(dyn)); |
666 | dyn.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; |
667 | dyn.dynamicStateCount = sizeof(dynEnable) / sizeof(VkDynamicState); |
668 | dyn.pDynamicStates = dynEnable; |
669 | pipelineInfo.pDynamicState = &dyn; |
670 | |
671 | pipelineInfo.layout = m_pipelineLayout; |
672 | pipelineInfo.renderPass = m_window->defaultRenderPass(); |
673 | |
674 | err = m_devFuncs->vkCreateGraphicsPipelines(dev, m_pipelineCache, 1, &pipelineInfo, nullptr, &m_pipeline); |
675 | if (err != VK_SUCCESS) |
676 | qFatal(msg: "Failed to create graphics pipeline: %d" , err); |
677 | |
678 | if (vertShaderModule) |
679 | m_devFuncs->vkDestroyShaderModule(dev, vertShaderModule, nullptr); |
680 | if (fragShaderModule) |
681 | m_devFuncs->vkDestroyShaderModule(dev, fragShaderModule, nullptr); |
682 | } |
683 | |
684 | void VulkanRenderer::initSwapChainResources() |
685 | { |
686 | qDebug(msg: "initSwapChainResources" ); |
687 | |
688 | // Projection matrix |
689 | m_proj = m_window->clipCorrectionMatrix(); // adjust for Vulkan-OpenGL clip space differences |
690 | const QSize sz = m_window->swapChainImageSize(); |
691 | m_proj.perspective(verticalAngle: 45.0f, aspectRatio: sz.width() / (float) sz.height(), nearPlane: 0.01f, farPlane: 100.0f); |
692 | m_proj.translate(x: 0, y: 0, z: -4); |
693 | } |
694 | |
695 | void VulkanRenderer::releaseSwapChainResources() |
696 | { |
697 | qDebug(msg: "releaseSwapChainResources" ); |
698 | } |
699 | |
700 | void VulkanRenderer::releaseResources() |
701 | { |
702 | qDebug(msg: "releaseResources" ); |
703 | |
704 | VkDevice dev = m_window->device(); |
705 | |
706 | if (m_sampler) { |
707 | m_devFuncs->vkDestroySampler(dev, m_sampler, nullptr); |
708 | m_sampler = VK_NULL_HANDLE; |
709 | } |
710 | |
711 | if (m_texStaging) { |
712 | m_devFuncs->vkDestroyImage(dev, m_texStaging, nullptr); |
713 | m_texStaging = VK_NULL_HANDLE; |
714 | } |
715 | |
716 | if (m_texStagingMem) { |
717 | m_devFuncs->vkFreeMemory(dev, m_texStagingMem, nullptr); |
718 | m_texStagingMem = VK_NULL_HANDLE; |
719 | } |
720 | |
721 | if (m_texView) { |
722 | m_devFuncs->vkDestroyImageView(dev, m_texView, nullptr); |
723 | m_texView = VK_NULL_HANDLE; |
724 | } |
725 | |
726 | if (m_texImage) { |
727 | m_devFuncs->vkDestroyImage(dev, m_texImage, nullptr); |
728 | m_texImage = VK_NULL_HANDLE; |
729 | } |
730 | |
731 | if (m_texMem) { |
732 | m_devFuncs->vkFreeMemory(dev, m_texMem, nullptr); |
733 | m_texMem = VK_NULL_HANDLE; |
734 | } |
735 | |
736 | if (m_pipeline) { |
737 | m_devFuncs->vkDestroyPipeline(dev, m_pipeline, nullptr); |
738 | m_pipeline = VK_NULL_HANDLE; |
739 | } |
740 | |
741 | if (m_pipelineLayout) { |
742 | m_devFuncs->vkDestroyPipelineLayout(dev, m_pipelineLayout, nullptr); |
743 | m_pipelineLayout = VK_NULL_HANDLE; |
744 | } |
745 | |
746 | if (m_pipelineCache) { |
747 | m_devFuncs->vkDestroyPipelineCache(dev, m_pipelineCache, nullptr); |
748 | m_pipelineCache = VK_NULL_HANDLE; |
749 | } |
750 | |
751 | if (m_descSetLayout) { |
752 | m_devFuncs->vkDestroyDescriptorSetLayout(dev, m_descSetLayout, nullptr); |
753 | m_descSetLayout = VK_NULL_HANDLE; |
754 | } |
755 | |
756 | if (m_descPool) { |
757 | m_devFuncs->vkDestroyDescriptorPool(dev, m_descPool, nullptr); |
758 | m_descPool = VK_NULL_HANDLE; |
759 | } |
760 | |
761 | if (m_buf) { |
762 | m_devFuncs->vkDestroyBuffer(dev, m_buf, nullptr); |
763 | m_buf = VK_NULL_HANDLE; |
764 | } |
765 | |
766 | if (m_bufMem) { |
767 | m_devFuncs->vkFreeMemory(dev, m_bufMem, nullptr); |
768 | m_bufMem = VK_NULL_HANDLE; |
769 | } |
770 | } |
771 | |
772 | void VulkanRenderer::startNextFrame() |
773 | { |
774 | VkDevice dev = m_window->device(); |
775 | VkCommandBuffer cb = m_window->currentCommandBuffer(); |
776 | const QSize sz = m_window->swapChainImageSize(); |
777 | |
778 | // Add the necessary barriers and do the host-linear -> device-optimal copy, if not yet done. |
779 | ensureTexture(); |
780 | |
781 | VkClearColorValue clearColor = {.float32: { 0, 0, 0, 1 }}; |
782 | VkClearDepthStencilValue clearDS = { .depth: 1, .stencil: 0 }; |
783 | VkClearValue clearValues[2]; |
784 | memset(s: clearValues, c: 0, n: sizeof(clearValues)); |
785 | clearValues[0].color = clearColor; |
786 | clearValues[1].depthStencil = clearDS; |
787 | |
788 | VkRenderPassBeginInfo rpBeginInfo; |
789 | memset(s: &rpBeginInfo, c: 0, n: sizeof(rpBeginInfo)); |
790 | rpBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; |
791 | rpBeginInfo.renderPass = m_window->defaultRenderPass(); |
792 | rpBeginInfo.framebuffer = m_window->currentFramebuffer(); |
793 | rpBeginInfo.renderArea.extent.width = sz.width(); |
794 | rpBeginInfo.renderArea.extent.height = sz.height(); |
795 | rpBeginInfo.clearValueCount = 2; |
796 | rpBeginInfo.pClearValues = clearValues; |
797 | VkCommandBuffer cmdBuf = m_window->currentCommandBuffer(); |
798 | m_devFuncs->vkCmdBeginRenderPass(cmdBuf, &rpBeginInfo, VK_SUBPASS_CONTENTS_INLINE); |
799 | |
800 | quint8 *p; |
801 | VkResult err = m_devFuncs->vkMapMemory(dev, m_bufMem, m_uniformBufInfo[m_window->currentFrame()].offset, |
802 | UNIFORM_DATA_SIZE, 0, reinterpret_cast<void **>(&p)); |
803 | if (err != VK_SUCCESS) |
804 | qFatal(msg: "Failed to map memory: %d" , err); |
805 | QMatrix4x4 m = m_proj; |
806 | m.rotate(angle: m_rotation, x: 0, y: 0, z: 1); |
807 | memcpy(dest: p, src: m.constData(), n: 16 * sizeof(float)); |
808 | m_devFuncs->vkUnmapMemory(dev, m_bufMem); |
809 | |
810 | // Not exactly a real animation system, just advance on every frame for now. |
811 | m_rotation += 1.0f; |
812 | |
813 | m_devFuncs->vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipeline); |
814 | m_devFuncs->vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipelineLayout, 0, 1, |
815 | &m_descSet[m_window->currentFrame()], 0, nullptr); |
816 | VkDeviceSize vbOffset = 0; |
817 | m_devFuncs->vkCmdBindVertexBuffers(cb, 0, 1, &m_buf, &vbOffset); |
818 | |
819 | VkViewport viewport; |
820 | viewport.x = viewport.y = 0; |
821 | viewport.width = sz.width(); |
822 | viewport.height = sz.height(); |
823 | viewport.minDepth = 0; |
824 | viewport.maxDepth = 1; |
825 | m_devFuncs->vkCmdSetViewport(cb, 0, 1, &viewport); |
826 | |
827 | VkRect2D scissor; |
828 | scissor.offset.x = scissor.offset.y = 0; |
829 | scissor.extent.width = viewport.width; |
830 | scissor.extent.height = viewport.height; |
831 | m_devFuncs->vkCmdSetScissor(cb, 0, 1, &scissor); |
832 | |
833 | m_devFuncs->vkCmdDraw(cb, 4, 1, 0, 0); |
834 | |
835 | m_devFuncs->vkCmdEndRenderPass(cmdBuf); |
836 | |
837 | m_window->frameReady(); |
838 | m_window->requestUpdate(); // render continuously, throttled by the presentation rate |
839 | } |
840 | |