1 | // Copyright 2012 the V8 project authors. All rights reserved. |
2 | // Redistribution and use in source and binary forms, with or without |
3 | // modification, are permitted provided that the following conditions are |
4 | // met: |
5 | // |
6 | // * Redistributions of source code must retain the above copyright |
7 | // notice, this list of conditions and the following disclaimer. |
8 | // * Redistributions in binary form must reproduce the above |
9 | // copyright notice, this list of conditions and the following |
10 | // disclaimer in the documentation and/or other materials provided |
11 | // with the distribution. |
12 | // * Neither the name of Google Inc. nor the names of its |
13 | // contributors may be used to endorse or promote products derived |
14 | // from this software without specific prior written permission. |
15 | // |
16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | |
28 | #ifndef DOUBLE_CONVERSION_DOUBLE_H_ |
29 | #define DOUBLE_CONVERSION_DOUBLE_H_ |
30 | |
31 | #include <double-conversion/diy-fp.h> |
32 | |
33 | namespace double_conversion { |
34 | |
35 | // We assume that doubles and uint64_t have the same endianness. |
36 | static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(source: d); } |
37 | static double uint64_to_double(uint64_t d64) { return BitCast<double>(source: d64); } |
38 | static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(source: f); } |
39 | static float uint32_to_float(uint32_t d32) { return BitCast<float>(source: d32); } |
40 | |
41 | // Helper functions for doubles. |
42 | class Double { |
43 | public: |
44 | static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000); |
45 | static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000); |
46 | static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF); |
47 | static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000); |
48 | static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit. |
49 | static const int kSignificandSize = 53; |
50 | static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; |
51 | static const int kMaxExponent = 0x7FF - kExponentBias; |
52 | |
53 | Double() : d64_(0) {} |
54 | explicit Double(double d) : d64_(double_to_uint64(d)) {} |
55 | explicit Double(uint64_t d64) : d64_(d64) {} |
56 | explicit Double(DiyFp diy_fp) |
57 | : d64_(DiyFpToUint64(diy_fp)) {} |
58 | |
59 | // The value encoded by this Double must be greater or equal to +0.0. |
60 | // It must not be special (infinity, or NaN). |
61 | DiyFp AsDiyFp() const { |
62 | ASSERT(Sign() > 0); |
63 | ASSERT(!IsSpecial()); |
64 | return DiyFp(Significand(), Exponent()); |
65 | } |
66 | |
67 | // The value encoded by this Double must be strictly greater than 0. |
68 | DiyFp AsNormalizedDiyFp() const { |
69 | ASSERT(value() > 0.0); |
70 | uint64_t f = Significand(); |
71 | int e = Exponent(); |
72 | |
73 | // The current double could be a denormal. |
74 | while ((f & kHiddenBit) == 0) { |
75 | f <<= 1; |
76 | e--; |
77 | } |
78 | // Do the final shifts in one go. |
79 | f <<= DiyFp::kSignificandSize - kSignificandSize; |
80 | e -= DiyFp::kSignificandSize - kSignificandSize; |
81 | return DiyFp(f, e); |
82 | } |
83 | |
84 | // Returns the double's bit as uint64. |
85 | uint64_t AsUint64() const { |
86 | return d64_; |
87 | } |
88 | |
89 | // Returns the next greater double. Returns +infinity on input +infinity. |
90 | double NextDouble() const { |
91 | if (d64_ == kInfinity) return Double(kInfinity).value(); |
92 | if (Sign() < 0 && Significand() == 0) { |
93 | // -0.0 |
94 | return 0.0; |
95 | } |
96 | if (Sign() < 0) { |
97 | return Double(d64_ - 1).value(); |
98 | } else { |
99 | return Double(d64_ + 1).value(); |
100 | } |
101 | } |
102 | |
103 | double PreviousDouble() const { |
104 | if (d64_ == (kInfinity | kSignMask)) return -Infinity(); |
105 | if (Sign() < 0) { |
106 | return Double(d64_ + 1).value(); |
107 | } else { |
108 | if (Significand() == 0) return -0.0; |
109 | return Double(d64_ - 1).value(); |
110 | } |
111 | } |
112 | |
113 | int Exponent() const { |
114 | if (IsDenormal()) return kDenormalExponent; |
115 | |
116 | uint64_t d64 = AsUint64(); |
117 | int biased_e = |
118 | static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); |
119 | return biased_e - kExponentBias; |
120 | } |
121 | |
122 | uint64_t Significand() const { |
123 | uint64_t d64 = AsUint64(); |
124 | uint64_t significand = d64 & kSignificandMask; |
125 | if (!IsDenormal()) { |
126 | return significand + kHiddenBit; |
127 | } else { |
128 | return significand; |
129 | } |
130 | } |
131 | |
132 | // Returns true if the double is a denormal. |
133 | bool IsDenormal() const { |
134 | uint64_t d64 = AsUint64(); |
135 | return (d64 & kExponentMask) == 0; |
136 | } |
137 | |
138 | // We consider denormals not to be special. |
139 | // Hence only Infinity and NaN are special. |
140 | bool IsSpecial() const { |
141 | uint64_t d64 = AsUint64(); |
142 | return (d64 & kExponentMask) == kExponentMask; |
143 | } |
144 | |
145 | bool IsNan() const { |
146 | uint64_t d64 = AsUint64(); |
147 | return ((d64 & kExponentMask) == kExponentMask) && |
148 | ((d64 & kSignificandMask) != 0); |
149 | } |
150 | |
151 | bool IsInfinite() const { |
152 | uint64_t d64 = AsUint64(); |
153 | return ((d64 & kExponentMask) == kExponentMask) && |
154 | ((d64 & kSignificandMask) == 0); |
155 | } |
156 | |
157 | int Sign() const { |
158 | uint64_t d64 = AsUint64(); |
159 | return (d64 & kSignMask) == 0? 1: -1; |
160 | } |
161 | |
162 | // Precondition: the value encoded by this Double must be greater or equal |
163 | // than +0.0. |
164 | DiyFp UpperBoundary() const { |
165 | ASSERT(Sign() > 0); |
166 | return DiyFp(Significand() * 2 + 1, Exponent() - 1); |
167 | } |
168 | |
169 | // Computes the two boundaries of this. |
170 | // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
171 | // exponent as m_plus. |
172 | // Precondition: the value encoded by this Double must be greater than 0. |
173 | void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
174 | ASSERT(value() > 0.0); |
175 | DiyFp v = this->AsDiyFp(); |
176 | DiyFp m_plus = DiyFp::Normalize(a: DiyFp((v.f() << 1) + 1, v.e() - 1)); |
177 | DiyFp m_minus; |
178 | if (LowerBoundaryIsCloser()) { |
179 | m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
180 | } else { |
181 | m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
182 | } |
183 | m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
184 | m_minus.set_e(m_plus.e()); |
185 | *out_m_plus = m_plus; |
186 | *out_m_minus = m_minus; |
187 | } |
188 | |
189 | bool LowerBoundaryIsCloser() const { |
190 | // The boundary is closer if the significand is of the form f == 2^p-1 then |
191 | // the lower boundary is closer. |
192 | // Think of v = 1000e10 and v- = 9999e9. |
193 | // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
194 | // at a distance of 1e8. |
195 | // The only exception is for the smallest normal: the largest denormal is |
196 | // at the same distance as its successor. |
197 | // Note: denormals have the same exponent as the smallest normals. |
198 | bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); |
199 | return physical_significand_is_zero && (Exponent() != kDenormalExponent); |
200 | } |
201 | |
202 | double value() const { return uint64_to_double(d64: d64_); } |
203 | |
204 | // Returns the significand size for a given order of magnitude. |
205 | // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. |
206 | // This function returns the number of significant binary digits v will have |
207 | // once it's encoded into a double. In almost all cases this is equal to |
208 | // kSignificandSize. The only exceptions are denormals. They start with |
209 | // leading zeroes and their effective significand-size is hence smaller. |
210 | static int SignificandSizeForOrderOfMagnitude(int order) { |
211 | if (order >= (kDenormalExponent + kSignificandSize)) { |
212 | return kSignificandSize; |
213 | } |
214 | if (order <= kDenormalExponent) return 0; |
215 | return order - kDenormalExponent; |
216 | } |
217 | |
218 | static double Infinity() { |
219 | return Double(kInfinity).value(); |
220 | } |
221 | |
222 | static double NaN() { |
223 | return Double(kNaN).value(); |
224 | } |
225 | |
226 | private: |
227 | static const int kDenormalExponent = -kExponentBias + 1; |
228 | static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000); |
229 | static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000); |
230 | |
231 | const uint64_t d64_; |
232 | |
233 | static uint64_t DiyFpToUint64(DiyFp diy_fp) { |
234 | uint64_t significand = diy_fp.f(); |
235 | int exponent = diy_fp.e(); |
236 | while (significand > kHiddenBit + kSignificandMask) { |
237 | significand >>= 1; |
238 | exponent++; |
239 | } |
240 | if (exponent >= kMaxExponent) { |
241 | return kInfinity; |
242 | } |
243 | if (exponent < kDenormalExponent) { |
244 | return 0; |
245 | } |
246 | while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { |
247 | significand <<= 1; |
248 | exponent--; |
249 | } |
250 | uint64_t biased_exponent; |
251 | if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { |
252 | biased_exponent = 0; |
253 | } else { |
254 | biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); |
255 | } |
256 | return (significand & kSignificandMask) | |
257 | (biased_exponent << kPhysicalSignificandSize); |
258 | } |
259 | |
260 | DC_DISALLOW_COPY_AND_ASSIGN(Double); |
261 | }; |
262 | |
263 | class Single { |
264 | public: |
265 | static const uint32_t kSignMask = 0x80000000; |
266 | static const uint32_t kExponentMask = 0x7F800000; |
267 | static const uint32_t kSignificandMask = 0x007FFFFF; |
268 | static const uint32_t kHiddenBit = 0x00800000; |
269 | static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit. |
270 | static const int kSignificandSize = 24; |
271 | |
272 | Single() : d32_(0) {} |
273 | explicit Single(float f) : d32_(float_to_uint32(f)) {} |
274 | explicit Single(uint32_t d32) : d32_(d32) {} |
275 | |
276 | // The value encoded by this Single must be greater or equal to +0.0. |
277 | // It must not be special (infinity, or NaN). |
278 | DiyFp AsDiyFp() const { |
279 | ASSERT(Sign() > 0); |
280 | ASSERT(!IsSpecial()); |
281 | return DiyFp(Significand(), Exponent()); |
282 | } |
283 | |
284 | // Returns the single's bit as uint64. |
285 | uint32_t AsUint32() const { |
286 | return d32_; |
287 | } |
288 | |
289 | int Exponent() const { |
290 | if (IsDenormal()) return kDenormalExponent; |
291 | |
292 | uint32_t d32 = AsUint32(); |
293 | int biased_e = |
294 | static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize); |
295 | return biased_e - kExponentBias; |
296 | } |
297 | |
298 | uint32_t Significand() const { |
299 | uint32_t d32 = AsUint32(); |
300 | uint32_t significand = d32 & kSignificandMask; |
301 | if (!IsDenormal()) { |
302 | return significand + kHiddenBit; |
303 | } else { |
304 | return significand; |
305 | } |
306 | } |
307 | |
308 | // Returns true if the single is a denormal. |
309 | bool IsDenormal() const { |
310 | uint32_t d32 = AsUint32(); |
311 | return (d32 & kExponentMask) == 0; |
312 | } |
313 | |
314 | // We consider denormals not to be special. |
315 | // Hence only Infinity and NaN are special. |
316 | bool IsSpecial() const { |
317 | uint32_t d32 = AsUint32(); |
318 | return (d32 & kExponentMask) == kExponentMask; |
319 | } |
320 | |
321 | bool IsNan() const { |
322 | uint32_t d32 = AsUint32(); |
323 | return ((d32 & kExponentMask) == kExponentMask) && |
324 | ((d32 & kSignificandMask) != 0); |
325 | } |
326 | |
327 | bool IsInfinite() const { |
328 | uint32_t d32 = AsUint32(); |
329 | return ((d32 & kExponentMask) == kExponentMask) && |
330 | ((d32 & kSignificandMask) == 0); |
331 | } |
332 | |
333 | int Sign() const { |
334 | uint32_t d32 = AsUint32(); |
335 | return (d32 & kSignMask) == 0? 1: -1; |
336 | } |
337 | |
338 | // Computes the two boundaries of this. |
339 | // The bigger boundary (m_plus) is normalized. The lower boundary has the same |
340 | // exponent as m_plus. |
341 | // Precondition: the value encoded by this Single must be greater than 0. |
342 | void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { |
343 | ASSERT(value() > 0.0); |
344 | DiyFp v = this->AsDiyFp(); |
345 | DiyFp m_plus = DiyFp::Normalize(a: DiyFp((v.f() << 1) + 1, v.e() - 1)); |
346 | DiyFp m_minus; |
347 | if (LowerBoundaryIsCloser()) { |
348 | m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); |
349 | } else { |
350 | m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); |
351 | } |
352 | m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); |
353 | m_minus.set_e(m_plus.e()); |
354 | *out_m_plus = m_plus; |
355 | *out_m_minus = m_minus; |
356 | } |
357 | |
358 | // Precondition: the value encoded by this Single must be greater or equal |
359 | // than +0.0. |
360 | DiyFp UpperBoundary() const { |
361 | ASSERT(Sign() > 0); |
362 | return DiyFp(Significand() * 2 + 1, Exponent() - 1); |
363 | } |
364 | |
365 | bool LowerBoundaryIsCloser() const { |
366 | // The boundary is closer if the significand is of the form f == 2^p-1 then |
367 | // the lower boundary is closer. |
368 | // Think of v = 1000e10 and v- = 9999e9. |
369 | // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but |
370 | // at a distance of 1e8. |
371 | // The only exception is for the smallest normal: the largest denormal is |
372 | // at the same distance as its successor. |
373 | // Note: denormals have the same exponent as the smallest normals. |
374 | bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0); |
375 | return physical_significand_is_zero && (Exponent() != kDenormalExponent); |
376 | } |
377 | |
378 | float value() const { return uint32_to_float(d32: d32_); } |
379 | |
380 | static float Infinity() { |
381 | return Single(kInfinity).value(); |
382 | } |
383 | |
384 | static float NaN() { |
385 | return Single(kNaN).value(); |
386 | } |
387 | |
388 | private: |
389 | static const int kExponentBias = 0x7F + kPhysicalSignificandSize; |
390 | static const int kDenormalExponent = -kExponentBias + 1; |
391 | static const int kMaxExponent = 0xFF - kExponentBias; |
392 | static const uint32_t kInfinity = 0x7F800000; |
393 | static const uint32_t kNaN = 0x7FC00000; |
394 | |
395 | const uint32_t d32_; |
396 | |
397 | DC_DISALLOW_COPY_AND_ASSIGN(Single); |
398 | }; |
399 | |
400 | } // namespace double_conversion |
401 | |
402 | #endif // DOUBLE_CONVERSION_DOUBLE_H_ |
403 | |