1 | /* |
2 | * This code implements the MD5 message-digest algorithm. |
3 | * The algorithm is due to Ron Rivest. This code was |
4 | * written by Colin Plumb in 1993, no copyright is claimed. |
5 | * This code is in the public domain; do with it what you wish. |
6 | * |
7 | * Equivalent code is available from RSA Data Security, Inc. |
8 | * This code has been tested against that, and is equivalent, |
9 | * except that you don't need to include two pages of legalese |
10 | * with every copy. |
11 | * |
12 | * To compute the message digest of a chunk of bytes, declare an |
13 | * MD5Context structure, pass it to MD5Init, call MD5Update as |
14 | * needed on buffers full of bytes, and then call MD5Final, which |
15 | * will fill a supplied 16-byte array with the digest. |
16 | * |
17 | * Changed so as no longer to depend on Colin Plumb's `usual.h' header |
18 | * definitions; now uses stuff from dpkg's config.h. |
19 | * - Ian Jackson <ian@chiark.greenend.org.uk>. |
20 | * Still in the public domain. |
21 | */ |
22 | |
23 | #include <string.h> /* for memcpy() */ |
24 | #ifndef _WIN32_WCE |
25 | #include <sys/types.h> /* for stupid systems */ |
26 | #else |
27 | #include <windef.h> |
28 | #include <types.h> |
29 | #endif |
30 | |
31 | #include "md5.h" |
32 | |
33 | QT_BEGIN_NAMESPACE |
34 | |
35 | static void |
36 | byteSwap(UWORD32 *buf, unsigned words) |
37 | { |
38 | const quint32 byteOrderTest = 0x1; |
39 | if (((const char *)&byteOrderTest)[0] == 0) { |
40 | md5byte *p = (md5byte *)buf; |
41 | |
42 | do { |
43 | *buf++ = (UWORD32)((unsigned)p[3] << 8 | p[2]) << 16 | |
44 | ((unsigned)p[1] << 8 | p[0]); |
45 | p += 4; |
46 | } while (--words); |
47 | } |
48 | } |
49 | |
50 | /* |
51 | * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
52 | * initialization constants. |
53 | */ |
54 | static void |
55 | MD5Init(struct MD5Context *ctx) |
56 | { |
57 | ctx->buf[0] = 0x67452301; |
58 | ctx->buf[1] = 0xefcdab89; |
59 | ctx->buf[2] = 0x98badcfe; |
60 | ctx->buf[3] = 0x10325476; |
61 | |
62 | ctx->bytes[0] = 0; |
63 | ctx->bytes[1] = 0; |
64 | } |
65 | |
66 | /* |
67 | * Update context to reflect the concatenation of another buffer full |
68 | * of bytes. |
69 | */ |
70 | static void |
71 | MD5Update(struct MD5Context *ctx, md5byte const *buf, unsigned len) |
72 | { |
73 | UWORD32 t; |
74 | |
75 | /* Update byte count */ |
76 | |
77 | t = ctx->bytes[0]; |
78 | if ((ctx->bytes[0] = t + len) < t) |
79 | ctx->bytes[1]++; /* Carry from low to high */ |
80 | |
81 | t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ |
82 | if (t > len) { |
83 | memcpy(dest: (md5byte *)ctx->in + 64 - t, src: buf, n: len); |
84 | return; |
85 | } |
86 | /* First chunk is an odd size */ |
87 | memcpy(dest: (md5byte *)ctx->in + 64 - t, src: buf, n: t); |
88 | byteSwap(buf: ctx->in, words: 16); |
89 | MD5Transform(buf: ctx->buf, in: ctx->in); |
90 | buf += t; |
91 | len -= t; |
92 | |
93 | /* Process data in 64-byte chunks */ |
94 | while (len >= 64) { |
95 | memcpy(dest: ctx->in, src: buf, n: 64); |
96 | byteSwap(buf: ctx->in, words: 16); |
97 | MD5Transform(buf: ctx->buf, in: ctx->in); |
98 | buf += 64; |
99 | len -= 64; |
100 | } |
101 | |
102 | /* Handle any remaining bytes of data. */ |
103 | memcpy(dest: ctx->in, src: buf, n: len); |
104 | } |
105 | |
106 | /* |
107 | * Final wrapup - pad to 64-byte boundary with the bit pattern |
108 | * 1 0* (64-bit count of bits processed, MSB-first) |
109 | */ |
110 | static void |
111 | MD5Final(struct MD5Context *ctx, md5byte digest[16]) |
112 | { |
113 | int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ |
114 | md5byte *p = (md5byte *)ctx->in + count; |
115 | |
116 | /* Set the first char of padding to 0x80. There is always room. */ |
117 | *p++ = 0x80; |
118 | |
119 | /* Bytes of padding needed to make 56 bytes (-8..55) */ |
120 | count = 56 - 1 - count; |
121 | |
122 | if (count < 0) { /* Padding forces an extra block */ |
123 | memset(s: p, c: 0, n: count + 8); |
124 | byteSwap(buf: ctx->in, words: 16); |
125 | MD5Transform(buf: ctx->buf, in: ctx->in); |
126 | p = (md5byte *)ctx->in; |
127 | count = 56; |
128 | } |
129 | memset(s: p, c: 0, n: count); |
130 | byteSwap(buf: ctx->in, words: 14); |
131 | |
132 | /* Append length in bits and transform */ |
133 | ctx->in[14] = ctx->bytes[0] << 3; |
134 | ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; |
135 | MD5Transform(buf: ctx->buf, in: ctx->in); |
136 | |
137 | byteSwap(buf: ctx->buf, words: 4); |
138 | memcpy(dest: digest, src: ctx->buf, n: 16); |
139 | memset(s: ctx, c: 0, n: sizeof(*ctx)); /* In case it's sensitive */ |
140 | } |
141 | |
142 | #ifndef ASM_MD5 |
143 | |
144 | /* The four core functions - F1 is optimized somewhat */ |
145 | |
146 | /* #define F1(x, y, z) (x & y | ~x & z) */ |
147 | #define F1(x, y, z) (z ^ (x & (y ^ z))) |
148 | #define F2(x, y, z) F1(z, x, y) |
149 | #define F3(x, y, z) (x ^ y ^ z) |
150 | #define F4(x, y, z) (y ^ (x | ~z)) |
151 | |
152 | /* This is the central step in the MD5 algorithm. */ |
153 | #define MD5STEP(f,w,x,y,z,in,s) \ |
154 | (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x) |
155 | |
156 | /* |
157 | * The core of the MD5 algorithm, this alters an existing MD5 hash to |
158 | * reflect the addition of 16 longwords of new data. MD5Update blocks |
159 | * the data and converts bytes into longwords for this routine. |
160 | */ |
161 | static void |
162 | MD5Transform(UWORD32 buf[4], UWORD32 const in[16]) |
163 | { |
164 | UWORD32 a, b, c, d; |
165 | |
166 | a = buf[0]; |
167 | b = buf[1]; |
168 | c = buf[2]; |
169 | d = buf[3]; |
170 | |
171 | MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
172 | MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
173 | MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
174 | MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
175 | MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
176 | MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
177 | MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
178 | MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
179 | MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
180 | MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
181 | MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
182 | MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
183 | MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
184 | MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
185 | MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
186 | MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
187 | |
188 | MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
189 | MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
190 | MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
191 | MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
192 | MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
193 | MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
194 | MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
195 | MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
196 | MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
197 | MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
198 | MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
199 | MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
200 | MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
201 | MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
202 | MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
203 | MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
204 | |
205 | MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
206 | MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
207 | MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
208 | MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
209 | MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
210 | MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
211 | MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
212 | MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
213 | MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
214 | MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
215 | MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
216 | MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
217 | MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
218 | MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
219 | MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
220 | MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
221 | |
222 | MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
223 | MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
224 | MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
225 | MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
226 | MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
227 | MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
228 | MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
229 | MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
230 | MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
231 | MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
232 | MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
233 | MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
234 | MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
235 | MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
236 | MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
237 | MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
238 | |
239 | buf[0] += a; |
240 | buf[1] += b; |
241 | buf[2] += c; |
242 | buf[3] += d; |
243 | } |
244 | |
245 | #endif |
246 | |
247 | QT_END_NAMESPACE |
248 | |