| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2016 The Qt Company Ltd. |
| 4 | ** Copyright (C) 2018 Intel Corporation. |
| 5 | ** Contact: https://www.qt.io/licensing/ |
| 6 | ** |
| 7 | ** This file is part of the QtCore module of the Qt Toolkit. |
| 8 | ** |
| 9 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 10 | ** Commercial License Usage |
| 11 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 12 | ** accordance with the commercial license agreement provided with the |
| 13 | ** Software or, alternatively, in accordance with the terms contained in |
| 14 | ** a written agreement between you and The Qt Company. For licensing terms |
| 15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 16 | ** information use the contact form at https://www.qt.io/contact-us. |
| 17 | ** |
| 18 | ** GNU Lesser General Public License Usage |
| 19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 20 | ** General Public License version 3 as published by the Free Software |
| 21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 22 | ** packaging of this file. Please review the following information to |
| 23 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 25 | ** |
| 26 | ** GNU General Public License Usage |
| 27 | ** Alternatively, this file may be used under the terms of the GNU |
| 28 | ** General Public License version 2.0 or (at your option) the GNU General |
| 29 | ** Public license version 3 or any later version approved by the KDE Free |
| 30 | ** Qt Foundation. The licenses are as published by the Free Software |
| 31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 32 | ** included in the packaging of this file. Please review the following |
| 33 | ** information to ensure the GNU General Public License requirements will |
| 34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 36 | ** |
| 37 | ** $QT_END_LICENSE$ |
| 38 | ** |
| 39 | ****************************************************************************/ |
| 40 | |
| 41 | #include "qutfcodec_p.h" |
| 42 | #include "qlist.h" |
| 43 | #include "qendian.h" |
| 44 | #include "qchar.h" |
| 45 | |
| 46 | #include "private/qsimd_p.h" |
| 47 | #include "private/qstringiterator_p.h" |
| 48 | |
| 49 | QT_BEGIN_NAMESPACE |
| 50 | |
| 51 | enum { Endian = 0, Data = 1 }; |
| 52 | |
| 53 | static const uchar utf8bom[] = { 0xef, 0xbb, 0xbf }; |
| 54 | |
| 55 | #if (defined(__SSE2__) && defined(QT_COMPILER_SUPPORTS_SSE2)) \ |
| 56 | || (defined(__ARM_NEON__) && defined(Q_PROCESSOR_ARM_64)) |
| 57 | static Q_ALWAYS_INLINE uint qBitScanReverse(unsigned v) noexcept |
| 58 | { |
| 59 | uint result = qCountLeadingZeroBits(v); |
| 60 | // Now Invert the result: clz will count *down* from the msb to the lsb, so the msb index is 31 |
| 61 | // and the lsb index is 0. The result for _bit_scan_reverse is expected to be the index when |
| 62 | // counting up: msb index is 0 (because it starts there), and the lsb index is 31. |
| 63 | result ^= sizeof(unsigned) * 8 - 1; |
| 64 | return result; |
| 65 | } |
| 66 | #endif |
| 67 | |
| 68 | #if defined(__SSE2__) && defined(QT_COMPILER_SUPPORTS_SSE2) |
| 69 | static inline bool simdEncodeAscii(uchar *&dst, const ushort *&nextAscii, const ushort *&src, const ushort *end) |
| 70 | { |
| 71 | // do sixteen characters at a time |
| 72 | for ( ; end - src >= 16; src += 16, dst += 16) { |
| 73 | # ifdef __AVX2__ |
| 74 | __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src)); |
| 75 | __m128i data1 = _mm256_castsi256_si128(data); |
| 76 | __m128i data2 = _mm256_extracti128_si256(data, 1); |
| 77 | # else |
| 78 | __m128i data1 = _mm_loadu_si128(p: (const __m128i*)src); |
| 79 | __m128i data2 = _mm_loadu_si128(p: 1+(const __m128i*)src); |
| 80 | # endif |
| 81 | |
| 82 | // check if everything is ASCII |
| 83 | // the highest ASCII value is U+007F |
| 84 | // Do the packing directly: |
| 85 | // The PACKUSWB instruction has packs a signed 16-bit integer to an unsigned 8-bit |
| 86 | // with saturation. That is, anything from 0x0100 to 0x7fff is saturated to 0xff, |
| 87 | // while all negatives (0x8000 to 0xffff) get saturated to 0x00. To detect non-ASCII, |
| 88 | // we simply do a signed greater-than comparison to 0x00. That means we detect NULs as |
| 89 | // "non-ASCII", but it's an acceptable compromise. |
| 90 | __m128i packed = _mm_packus_epi16(a: data1, b: data2); |
| 91 | __m128i nonAscii = _mm_cmpgt_epi8(a: packed, b: _mm_setzero_si128()); |
| 92 | |
| 93 | // store, even if there are non-ASCII characters here |
| 94 | _mm_storeu_si128(p: (__m128i*)dst, b: packed); |
| 95 | |
| 96 | // n will contain 1 bit set per character in [data1, data2] that is non-ASCII (or NUL) |
| 97 | ushort n = ~_mm_movemask_epi8(a: nonAscii); |
| 98 | if (n) { |
| 99 | // find the next probable ASCII character |
| 100 | // we don't want to load 32 bytes again in this loop if we know there are non-ASCII |
| 101 | // characters still coming |
| 102 | nextAscii = src + qBitScanReverse(v: n) + 1; |
| 103 | |
| 104 | n = qCountTrailingZeroBits(v: n); |
| 105 | dst += n; |
| 106 | src += n; |
| 107 | return false; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | if (end - src >= 8) { |
| 112 | // do eight characters at a time |
| 113 | __m128i data = _mm_loadu_si128(p: reinterpret_cast<const __m128i *>(src)); |
| 114 | __m128i packed = _mm_packus_epi16(a: data, b: data); |
| 115 | __m128i nonAscii = _mm_cmpgt_epi8(a: packed, b: _mm_setzero_si128()); |
| 116 | |
| 117 | // store even non-ASCII |
| 118 | _mm_storel_epi64(p: reinterpret_cast<__m128i *>(dst), a: packed); |
| 119 | |
| 120 | uchar n = ~_mm_movemask_epi8(a: nonAscii); |
| 121 | if (n) { |
| 122 | nextAscii = src + qBitScanReverse(v: n) + 1; |
| 123 | n = qCountTrailingZeroBits(v: n); |
| 124 | dst += n; |
| 125 | src += n; |
| 126 | return false; |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | return src == end; |
| 131 | } |
| 132 | |
| 133 | static inline bool simdDecodeAscii(ushort *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end) |
| 134 | { |
| 135 | // do sixteen characters at a time |
| 136 | for ( ; end - src >= 16; src += 16, dst += 16) { |
| 137 | __m128i data = _mm_loadu_si128(p: (const __m128i*)src); |
| 138 | |
| 139 | #ifdef __AVX2__ |
| 140 | const int BitSpacing = 2; |
| 141 | // load and zero extend to an YMM register |
| 142 | const __m256i extended = _mm256_cvtepu8_epi16(data); |
| 143 | |
| 144 | uint n = _mm256_movemask_epi8(extended); |
| 145 | if (!n) { |
| 146 | // store |
| 147 | _mm256_storeu_si256((__m256i*)dst, extended); |
| 148 | continue; |
| 149 | } |
| 150 | #else |
| 151 | const int BitSpacing = 1; |
| 152 | |
| 153 | // check if everything is ASCII |
| 154 | // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII |
| 155 | uint n = _mm_movemask_epi8(a: data); |
| 156 | if (!n) { |
| 157 | // unpack |
| 158 | _mm_storeu_si128(p: (__m128i*)dst, b: _mm_unpacklo_epi8(a: data, b: _mm_setzero_si128())); |
| 159 | _mm_storeu_si128(p: 1+(__m128i*)dst, b: _mm_unpackhi_epi8(a: data, b: _mm_setzero_si128())); |
| 160 | continue; |
| 161 | } |
| 162 | #endif |
| 163 | |
| 164 | // copy the front part that is still ASCII |
| 165 | while (!(n & 1)) { |
| 166 | *dst++ = *src++; |
| 167 | n >>= BitSpacing; |
| 168 | } |
| 169 | |
| 170 | // find the next probable ASCII character |
| 171 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
| 172 | // characters still coming |
| 173 | n = qBitScanReverse(v: n); |
| 174 | nextAscii = src + (n / BitSpacing) + 1; |
| 175 | return false; |
| 176 | |
| 177 | } |
| 178 | |
| 179 | if (end - src >= 8) { |
| 180 | __m128i data = _mm_loadl_epi64(p: reinterpret_cast<const __m128i *>(src)); |
| 181 | uint n = _mm_movemask_epi8(a: data) & 0xff; |
| 182 | if (!n) { |
| 183 | // unpack and store |
| 184 | _mm_storeu_si128(p: reinterpret_cast<__m128i *>(dst), b: _mm_unpacklo_epi8(a: data, b: _mm_setzero_si128())); |
| 185 | } else { |
| 186 | while (!(n & 1)) { |
| 187 | *dst++ = *src++; |
| 188 | n >>= 1; |
| 189 | } |
| 190 | |
| 191 | n = qBitScanReverse(v: n); |
| 192 | nextAscii = src + n + 1; |
| 193 | return false; |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | return src == end; |
| 198 | } |
| 199 | |
| 200 | static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii) |
| 201 | { |
| 202 | #ifdef __AVX2__ |
| 203 | // do 32 characters at a time |
| 204 | // (this is similar to simdTestMask in qstring.cpp) |
| 205 | const __m256i mask = _mm256_set1_epi8(0x80); |
| 206 | for ( ; end - src >= 32; src += 32) { |
| 207 | __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src)); |
| 208 | if (_mm256_testz_si256(mask, data)) |
| 209 | continue; |
| 210 | |
| 211 | uint n = _mm256_movemask_epi8(data); |
| 212 | Q_ASSUME(n); |
| 213 | |
| 214 | // find the next probable ASCII character |
| 215 | // we don't want to load 32 bytes again in this loop if we know there are non-ASCII |
| 216 | // characters still coming |
| 217 | nextAscii = src + qBitScanReverse(n) + 1; |
| 218 | |
| 219 | // return the non-ASCII character |
| 220 | return src + qCountTrailingZeroBits(n); |
| 221 | } |
| 222 | #endif |
| 223 | |
| 224 | // do sixteen characters at a time |
| 225 | for ( ; end - src >= 16; src += 16) { |
| 226 | __m128i data = _mm_loadu_si128(p: reinterpret_cast<const __m128i*>(src)); |
| 227 | |
| 228 | // check if everything is ASCII |
| 229 | // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII |
| 230 | uint n = _mm_movemask_epi8(a: data); |
| 231 | if (!n) |
| 232 | continue; |
| 233 | |
| 234 | // find the next probable ASCII character |
| 235 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
| 236 | // characters still coming |
| 237 | nextAscii = src + qBitScanReverse(v: n) + 1; |
| 238 | |
| 239 | // return the non-ASCII character |
| 240 | return src + qCountTrailingZeroBits(v: n); |
| 241 | } |
| 242 | |
| 243 | // do four characters at a time |
| 244 | for ( ; end - src >= 4; src += 4) { |
| 245 | quint32 data = qFromUnaligned<quint32>(src); |
| 246 | data &= 0x80808080U; |
| 247 | if (!data) |
| 248 | continue; |
| 249 | |
| 250 | // We don't try to guess which of the three bytes is ASCII and which |
| 251 | // one isn't. The chance that at least two of them are non-ASCII is |
| 252 | // better than 75%. |
| 253 | nextAscii = src; |
| 254 | return src; |
| 255 | } |
| 256 | nextAscii = end; |
| 257 | return src; |
| 258 | } |
| 259 | #elif defined(__ARM_NEON__) && defined(Q_PROCESSOR_ARM_64) // vaddv is only available on Aarch64 |
| 260 | static inline bool simdEncodeAscii(uchar *&dst, const ushort *&nextAscii, const ushort *&src, const ushort *end) |
| 261 | { |
| 262 | uint16x8_t maxAscii = vdupq_n_u16(0x7f); |
| 263 | uint16x8_t mask1 = { 1, 1 << 2, 1 << 4, 1 << 6, 1 << 8, 1 << 10, 1 << 12, 1 << 14 }; |
| 264 | uint16x8_t mask2 = vshlq_n_u16(mask1, 1); |
| 265 | |
| 266 | // do sixteen characters at a time |
| 267 | for ( ; end - src >= 16; src += 16, dst += 16) { |
| 268 | // load 2 lanes (or: "load interleaved") |
| 269 | uint16x8x2_t in = vld2q_u16(src); |
| 270 | |
| 271 | // check if any of the elements > 0x7f, select 1 bit per element (element 0 -> bit 0, element 1 -> bit 1, etc), |
| 272 | // add those together into a scalar, and merge the scalars. |
| 273 | uint16_t nonAscii = vaddvq_u16(vandq_u16(vcgtq_u16(in.val[0], maxAscii), mask1)) |
| 274 | | vaddvq_u16(vandq_u16(vcgtq_u16(in.val[1], maxAscii), mask2)); |
| 275 | |
| 276 | // merge the two lanes by shifting the values of the second by 8 and inserting them |
| 277 | uint16x8_t out = vsliq_n_u16(in.val[0], in.val[1], 8); |
| 278 | |
| 279 | // store, even if there are non-ASCII characters here |
| 280 | vst1q_u8(dst, vreinterpretq_u8_u16(out)); |
| 281 | |
| 282 | if (nonAscii) { |
| 283 | // find the next probable ASCII character |
| 284 | // we don't want to load 32 bytes again in this loop if we know there are non-ASCII |
| 285 | // characters still coming |
| 286 | nextAscii = src + qBitScanReverse(nonAscii) + 1; |
| 287 | |
| 288 | nonAscii = qCountTrailingZeroBits(nonAscii); |
| 289 | dst += nonAscii; |
| 290 | src += nonAscii; |
| 291 | return false; |
| 292 | } |
| 293 | } |
| 294 | return src == end; |
| 295 | } |
| 296 | |
| 297 | static inline bool simdDecodeAscii(ushort *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end) |
| 298 | { |
| 299 | // do eight characters at a time |
| 300 | uint8x8_t msb_mask = vdup_n_u8(0x80); |
| 301 | uint8x8_t add_mask = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 }; |
| 302 | for ( ; end - src >= 8; src += 8, dst += 8) { |
| 303 | uint8x8_t c = vld1_u8(src); |
| 304 | uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask)); |
| 305 | if (!n) { |
| 306 | // store |
| 307 | vst1q_u16(dst, vmovl_u8(c)); |
| 308 | continue; |
| 309 | } |
| 310 | |
| 311 | // copy the front part that is still ASCII |
| 312 | while (!(n & 1)) { |
| 313 | *dst++ = *src++; |
| 314 | n >>= 1; |
| 315 | } |
| 316 | |
| 317 | // find the next probable ASCII character |
| 318 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
| 319 | // characters still coming |
| 320 | n = qBitScanReverse(n); |
| 321 | nextAscii = src + n + 1; |
| 322 | return false; |
| 323 | |
| 324 | } |
| 325 | return src == end; |
| 326 | } |
| 327 | |
| 328 | static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii) |
| 329 | { |
| 330 | // The SIMD code below is untested, so just force an early return until |
| 331 | // we've had the time to verify it works. |
| 332 | nextAscii = end; |
| 333 | return src; |
| 334 | |
| 335 | // do eight characters at a time |
| 336 | uint8x8_t msb_mask = vdup_n_u8(0x80); |
| 337 | uint8x8_t add_mask = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 }; |
| 338 | for ( ; end - src >= 8; src += 8) { |
| 339 | uint8x8_t c = vld1_u8(src); |
| 340 | uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask)); |
| 341 | if (!n) |
| 342 | continue; |
| 343 | |
| 344 | // find the next probable ASCII character |
| 345 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
| 346 | // characters still coming |
| 347 | nextAscii = src + qBitScanReverse(n) + 1; |
| 348 | |
| 349 | // return the non-ASCII character |
| 350 | return src + qCountTrailingZeroBits(n); |
| 351 | } |
| 352 | nextAscii = end; |
| 353 | return src; |
| 354 | } |
| 355 | #else |
| 356 | static inline bool simdEncodeAscii(uchar *, const ushort *, const ushort *, const ushort *) |
| 357 | { |
| 358 | return false; |
| 359 | } |
| 360 | |
| 361 | static inline bool simdDecodeAscii(ushort *, const uchar *, const uchar *, const uchar *) |
| 362 | { |
| 363 | return false; |
| 364 | } |
| 365 | |
| 366 | static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii) |
| 367 | { |
| 368 | nextAscii = end; |
| 369 | return src; |
| 370 | } |
| 371 | #endif |
| 372 | |
| 373 | QByteArray QUtf8::convertFromUnicode(const QChar *uc, int len) |
| 374 | { |
| 375 | // create a QByteArray with the worst case scenario size |
| 376 | QByteArray result(len * 3, Qt::Uninitialized); |
| 377 | uchar *dst = reinterpret_cast<uchar *>(const_cast<char *>(result.constData())); |
| 378 | const ushort *src = reinterpret_cast<const ushort *>(uc); |
| 379 | const ushort *const end = src + len; |
| 380 | |
| 381 | while (src != end) { |
| 382 | const ushort *nextAscii = end; |
| 383 | if (simdEncodeAscii(dst, nextAscii, src, end)) |
| 384 | break; |
| 385 | |
| 386 | do { |
| 387 | ushort uc = *src++; |
| 388 | int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(u: uc, dst, src, end); |
| 389 | if (res < 0) { |
| 390 | // encoding error - append '?' |
| 391 | *dst++ = '?'; |
| 392 | } |
| 393 | } while (src < nextAscii); |
| 394 | } |
| 395 | |
| 396 | result.truncate(pos: dst - reinterpret_cast<uchar *>(const_cast<char *>(result.constData()))); |
| 397 | return result; |
| 398 | } |
| 399 | |
| 400 | QByteArray QUtf8::convertFromUnicode(const QChar *uc, int len, QTextCodec::ConverterState *state) |
| 401 | { |
| 402 | uchar replacement = '?'; |
| 403 | int rlen = 3*len; |
| 404 | int surrogate_high = -1; |
| 405 | if (state) { |
| 406 | if (state->flags & QTextCodec::ConvertInvalidToNull) |
| 407 | replacement = 0; |
| 408 | if (!(state->flags & QTextCodec::IgnoreHeader)) |
| 409 | rlen += 3; |
| 410 | if (state->remainingChars) |
| 411 | surrogate_high = state->state_data[0]; |
| 412 | } |
| 413 | |
| 414 | |
| 415 | QByteArray rstr(rlen, Qt::Uninitialized); |
| 416 | uchar *cursor = reinterpret_cast<uchar *>(const_cast<char *>(rstr.constData())); |
| 417 | const ushort *src = reinterpret_cast<const ushort *>(uc); |
| 418 | const ushort *const end = src + len; |
| 419 | |
| 420 | int invalid = 0; |
| 421 | if (state && !(state->flags & QTextCodec::IgnoreHeader)) { |
| 422 | // append UTF-8 BOM |
| 423 | *cursor++ = utf8bom[0]; |
| 424 | *cursor++ = utf8bom[1]; |
| 425 | *cursor++ = utf8bom[2]; |
| 426 | } |
| 427 | |
| 428 | const ushort *nextAscii = src; |
| 429 | while (src != end) { |
| 430 | int res; |
| 431 | ushort uc; |
| 432 | if (surrogate_high != -1) { |
| 433 | uc = surrogate_high; |
| 434 | surrogate_high = -1; |
| 435 | res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(u: uc, dst&: cursor, src, end); |
| 436 | } else { |
| 437 | if (src >= nextAscii && simdEncodeAscii(dst&: cursor, nextAscii, src, end)) |
| 438 | break; |
| 439 | |
| 440 | uc = *src++; |
| 441 | res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(u: uc, dst&: cursor, src, end); |
| 442 | } |
| 443 | if (Q_LIKELY(res >= 0)) |
| 444 | continue; |
| 445 | |
| 446 | if (res == QUtf8BaseTraits::Error) { |
| 447 | // encoding error |
| 448 | ++invalid; |
| 449 | *cursor++ = replacement; |
| 450 | } else if (res == QUtf8BaseTraits::EndOfString) { |
| 451 | surrogate_high = uc; |
| 452 | break; |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | rstr.resize(size: cursor - (const uchar*)rstr.constData()); |
| 457 | if (state) { |
| 458 | state->invalidChars += invalid; |
| 459 | state->flags |= QTextCodec::IgnoreHeader; |
| 460 | state->remainingChars = 0; |
| 461 | if (surrogate_high >= 0) { |
| 462 | state->remainingChars = 1; |
| 463 | state->state_data[0] = surrogate_high; |
| 464 | } |
| 465 | } |
| 466 | return rstr; |
| 467 | } |
| 468 | |
| 469 | QString QUtf8::convertToUnicode(const char *chars, int len) |
| 470 | { |
| 471 | // UTF-8 to UTF-16 always needs the exact same number of words or less: |
| 472 | // UTF-8 UTF-16 |
| 473 | // 1 byte 1 word |
| 474 | // 2 bytes 1 word |
| 475 | // 3 bytes 1 word |
| 476 | // 4 bytes 2 words (one surrogate pair) |
| 477 | // That is, we'll use the full buffer if the input is US-ASCII (1-byte UTF-8), |
| 478 | // half the buffer for U+0080-U+07FF text (e.g., Greek, Cyrillic, Arabic) or |
| 479 | // non-BMP text, and one third of the buffer for U+0800-U+FFFF text (e.g, CJK). |
| 480 | // |
| 481 | // The table holds for invalid sequences too: we'll insert one replacement char |
| 482 | // per invalid byte. |
| 483 | QString result(len, Qt::Uninitialized); |
| 484 | QChar *data = const_cast<QChar*>(result.constData()); // we know we're not shared |
| 485 | const QChar *end = convertToUnicode(data, chars, len); |
| 486 | result.truncate(pos: end - data); |
| 487 | return result; |
| 488 | } |
| 489 | |
| 490 | /*! |
| 491 | \since 5.7 |
| 492 | \overload |
| 493 | |
| 494 | Converts the UTF-8 sequence of \a len octets beginning at \a chars to |
| 495 | a sequence of QChar starting at \a buffer. The buffer is expected to be |
| 496 | large enough to hold the result. An upper bound for the size of the |
| 497 | buffer is \a len QChars. |
| 498 | |
| 499 | If, during decoding, an error occurs, a QChar::ReplacementCharacter is |
| 500 | written. |
| 501 | |
| 502 | Returns a pointer to one past the last QChar written. |
| 503 | |
| 504 | This function never throws. |
| 505 | */ |
| 506 | |
| 507 | QChar *QUtf8::convertToUnicode(QChar *buffer, const char *chars, int len) noexcept |
| 508 | { |
| 509 | ushort *dst = reinterpret_cast<ushort *>(buffer); |
| 510 | const uchar *src = reinterpret_cast<const uchar *>(chars); |
| 511 | const uchar *end = src + len; |
| 512 | |
| 513 | // attempt to do a full decoding in SIMD |
| 514 | const uchar *nextAscii = end; |
| 515 | if (!simdDecodeAscii(dst, nextAscii, src, end)) { |
| 516 | // at least one non-ASCII entry |
| 517 | // check if we failed to decode the UTF-8 BOM; if so, skip it |
| 518 | if (Q_UNLIKELY(src == reinterpret_cast<const uchar *>(chars)) |
| 519 | && end - src >= 3 |
| 520 | && Q_UNLIKELY(src[0] == utf8bom[0] && src[1] == utf8bom[1] && src[2] == utf8bom[2])) { |
| 521 | src += 3; |
| 522 | } |
| 523 | |
| 524 | while (src < end) { |
| 525 | nextAscii = end; |
| 526 | if (simdDecodeAscii(dst, nextAscii, src, end)) |
| 527 | break; |
| 528 | |
| 529 | do { |
| 530 | uchar b = *src++; |
| 531 | int res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst, src, end); |
| 532 | if (res < 0) { |
| 533 | // decoding error |
| 534 | *dst++ = QChar::ReplacementCharacter; |
| 535 | } |
| 536 | } while (src < nextAscii); |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | return reinterpret_cast<QChar *>(dst); |
| 541 | } |
| 542 | |
| 543 | QString QUtf8::convertToUnicode(const char *chars, int len, QTextCodec::ConverterState *state) |
| 544 | { |
| 545 | bool = false; |
| 546 | ushort replacement = QChar::ReplacementCharacter; |
| 547 | int invalid = 0; |
| 548 | int res; |
| 549 | uchar ch = 0; |
| 550 | |
| 551 | // See above for buffer requirements for stateless decoding. However, that |
| 552 | // fails if the state is not empty. The following situations can add to the |
| 553 | // requirements: |
| 554 | // state contains chars starts with requirement |
| 555 | // 1 of 2 bytes valid continuation 0 |
| 556 | // 2 of 3 bytes same 0 |
| 557 | // 3 bytes of 4 same +1 (need to insert surrogate pair) |
| 558 | // 1 of 2 bytes invalid continuation +1 (need to insert replacement and restart) |
| 559 | // 2 of 3 bytes same +1 (same) |
| 560 | // 3 of 4 bytes same +1 (same) |
| 561 | QString result(len + 1, Qt::Uninitialized); |
| 562 | |
| 563 | ushort *dst = reinterpret_cast<ushort *>(const_cast<QChar *>(result.constData())); |
| 564 | const uchar *src = reinterpret_cast<const uchar *>(chars); |
| 565 | const uchar *end = src + len; |
| 566 | |
| 567 | if (state) { |
| 568 | if (state->flags & QTextCodec::IgnoreHeader) |
| 569 | headerdone = true; |
| 570 | if (state->flags & QTextCodec::ConvertInvalidToNull) |
| 571 | replacement = QChar::Null; |
| 572 | if (state->remainingChars) { |
| 573 | // handle incoming state first |
| 574 | uchar remainingCharsData[4]; // longest UTF-8 sequence possible |
| 575 | int remainingCharsCount = state->remainingChars; |
| 576 | int newCharsToCopy = qMin<int>(a: sizeof(remainingCharsData) - remainingCharsCount, b: end - src); |
| 577 | |
| 578 | memset(s: remainingCharsData, c: 0, n: sizeof(remainingCharsData)); |
| 579 | memcpy(dest: remainingCharsData, src: &state->state_data[0], n: remainingCharsCount); |
| 580 | memcpy(dest: remainingCharsData + remainingCharsCount, src: src, n: newCharsToCopy); |
| 581 | |
| 582 | const uchar *begin = &remainingCharsData[1]; |
| 583 | res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b: remainingCharsData[0], dst, src&: begin, |
| 584 | end: static_cast<const uchar *>(remainingCharsData) + remainingCharsCount + newCharsToCopy); |
| 585 | if (res == QUtf8BaseTraits::Error || (res == QUtf8BaseTraits::EndOfString && len == 0)) { |
| 586 | // special case for len == 0: |
| 587 | // if we were supplied an empty string, terminate the previous, unfinished sequence with error |
| 588 | ++invalid; |
| 589 | *dst++ = replacement; |
| 590 | } else if (res == QUtf8BaseTraits::EndOfString) { |
| 591 | // if we got EndOfString again, then there were too few bytes in src; |
| 592 | // copy to our state and return |
| 593 | state->remainingChars = remainingCharsCount + newCharsToCopy; |
| 594 | memcpy(dest: &state->state_data[0], src: remainingCharsData, n: state->remainingChars); |
| 595 | return QString(); |
| 596 | } else if (!headerdone && res >= 0) { |
| 597 | // eat the UTF-8 BOM |
| 598 | headerdone = true; |
| 599 | if (dst[-1] == 0xfeff) |
| 600 | --dst; |
| 601 | } |
| 602 | |
| 603 | // adjust src now that we have maybe consumed a few chars |
| 604 | if (res >= 0) { |
| 605 | Q_ASSERT(res > remainingCharsCount); |
| 606 | src += res - remainingCharsCount; |
| 607 | } |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | // main body, stateless decoding |
| 612 | res = 0; |
| 613 | const uchar *nextAscii = src; |
| 614 | const uchar *start = src; |
| 615 | while (res >= 0 && src < end) { |
| 616 | if (src >= nextAscii && simdDecodeAscii(dst, nextAscii, src, end)) |
| 617 | break; |
| 618 | |
| 619 | ch = *src++; |
| 620 | res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b: ch, dst, src, end); |
| 621 | if (!headerdone && res >= 0) { |
| 622 | headerdone = true; |
| 623 | if (src == start + 3) { // 3 == sizeof(utf8-bom) |
| 624 | // eat the UTF-8 BOM (it can only appear at the beginning of the string). |
| 625 | if (dst[-1] == 0xfeff) |
| 626 | --dst; |
| 627 | } |
| 628 | } |
| 629 | if (res == QUtf8BaseTraits::Error) { |
| 630 | res = 0; |
| 631 | ++invalid; |
| 632 | *dst++ = replacement; |
| 633 | } |
| 634 | } |
| 635 | |
| 636 | if (!state && res == QUtf8BaseTraits::EndOfString) { |
| 637 | // unterminated UTF sequence |
| 638 | *dst++ = QChar::ReplacementCharacter; |
| 639 | while (src++ < end) |
| 640 | *dst++ = QChar::ReplacementCharacter; |
| 641 | } |
| 642 | |
| 643 | result.truncate(pos: dst - (const ushort *)result.unicode()); |
| 644 | if (state) { |
| 645 | state->invalidChars += invalid; |
| 646 | if (headerdone) |
| 647 | state->flags |= QTextCodec::IgnoreHeader; |
| 648 | if (res == QUtf8BaseTraits::EndOfString) { |
| 649 | --src; // unread the byte in ch |
| 650 | state->remainingChars = end - src; |
| 651 | memcpy(dest: &state->state_data[0], src: src, n: end - src); |
| 652 | } else { |
| 653 | state->remainingChars = 0; |
| 654 | } |
| 655 | } |
| 656 | return result; |
| 657 | } |
| 658 | |
| 659 | struct QUtf8NoOutputTraits : public QUtf8BaseTraitsNoAscii |
| 660 | { |
| 661 | struct NoOutput {}; |
| 662 | static void appendUtf16(const NoOutput &, ushort) {} |
| 663 | static void appendUcs4(const NoOutput &, uint) {} |
| 664 | }; |
| 665 | |
| 666 | QUtf8::ValidUtf8Result QUtf8::isValidUtf8(const char *chars, qsizetype len) |
| 667 | { |
| 668 | const uchar *src = reinterpret_cast<const uchar *>(chars); |
| 669 | const uchar *end = src + len; |
| 670 | const uchar *nextAscii = src; |
| 671 | bool isValidAscii = true; |
| 672 | |
| 673 | while (src < end) { |
| 674 | if (src >= nextAscii) |
| 675 | src = simdFindNonAscii(src, end, nextAscii); |
| 676 | if (src == end) |
| 677 | break; |
| 678 | |
| 679 | do { |
| 680 | uchar b = *src++; |
| 681 | if ((b & 0x80) == 0) |
| 682 | continue; |
| 683 | |
| 684 | isValidAscii = false; |
| 685 | QUtf8NoOutputTraits::NoOutput output; |
| 686 | int res = QUtf8Functions::fromUtf8<QUtf8NoOutputTraits>(b, dst&: output, src, end); |
| 687 | if (res < 0) { |
| 688 | // decoding error |
| 689 | return { .isValidUtf8: false, .isValidAscii: false }; |
| 690 | } |
| 691 | } while (src < nextAscii); |
| 692 | } |
| 693 | |
| 694 | return { .isValidUtf8: true, .isValidAscii: isValidAscii }; |
| 695 | } |
| 696 | |
| 697 | int QUtf8::compareUtf8(const char *utf8, qsizetype u8len, const QChar *utf16, int u16len) |
| 698 | { |
| 699 | uint uc1, uc2; |
| 700 | auto src1 = reinterpret_cast<const uchar *>(utf8); |
| 701 | auto end1 = src1 + u8len; |
| 702 | QStringIterator src2(utf16, utf16 + u16len); |
| 703 | |
| 704 | while (src1 < end1 && src2.hasNext()) { |
| 705 | uchar b = *src1++; |
| 706 | uint *output = &uc1; |
| 707 | int res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst&: output, src&: src1, end: end1); |
| 708 | if (res < 0) { |
| 709 | // decoding error |
| 710 | uc1 = QChar::ReplacementCharacter; |
| 711 | } |
| 712 | |
| 713 | uc2 = src2.next(); |
| 714 | if (uc1 != uc2) |
| 715 | return int(uc1) - int(uc2); |
| 716 | } |
| 717 | |
| 718 | // the shorter string sorts first |
| 719 | return (end1 > src1) - int(src2.hasNext()); |
| 720 | } |
| 721 | |
| 722 | int QUtf8::compareUtf8(const char *utf8, qsizetype u8len, QLatin1String s) |
| 723 | { |
| 724 | uint uc1; |
| 725 | auto src1 = reinterpret_cast<const uchar *>(utf8); |
| 726 | auto end1 = src1 + u8len; |
| 727 | auto src2 = reinterpret_cast<const uchar *>(s.latin1()); |
| 728 | auto end2 = src2 + s.size(); |
| 729 | |
| 730 | while (src1 < end1 && src2 < end2) { |
| 731 | uchar b = *src1++; |
| 732 | uint *output = &uc1; |
| 733 | int res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst&: output, src&: src1, end: end1); |
| 734 | if (res < 0) { |
| 735 | // decoding error |
| 736 | uc1 = QChar::ReplacementCharacter; |
| 737 | } |
| 738 | |
| 739 | uint uc2 = *src2++; |
| 740 | if (uc1 != uc2) |
| 741 | return int(uc1) - int(uc2); |
| 742 | } |
| 743 | |
| 744 | // the shorter string sorts first |
| 745 | return (end1 > src1) - (end2 > src2); |
| 746 | } |
| 747 | |
| 748 | QByteArray QUtf16::convertFromUnicode(const QChar *uc, int len, QTextCodec::ConverterState *state, DataEndianness e) |
| 749 | { |
| 750 | DataEndianness endian = e; |
| 751 | int length = 2*len; |
| 752 | if (!state || (!(state->flags & QTextCodec::IgnoreHeader))) { |
| 753 | length += 2; |
| 754 | } |
| 755 | if (e == DetectEndianness) { |
| 756 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
| 757 | } |
| 758 | |
| 759 | QByteArray d; |
| 760 | d.resize(size: length); |
| 761 | char *data = d.data(); |
| 762 | if (!state || !(state->flags & QTextCodec::IgnoreHeader)) { |
| 763 | QChar bom(QChar::ByteOrderMark); |
| 764 | if (endian == BigEndianness) |
| 765 | qToBigEndian(src: bom.unicode(), dest: data); |
| 766 | else |
| 767 | qToLittleEndian(src: bom.unicode(), dest: data); |
| 768 | data += 2; |
| 769 | } |
| 770 | if (endian == BigEndianness) |
| 771 | qToBigEndian<ushort>(source: uc, count: len, dest: data); |
| 772 | else |
| 773 | qToLittleEndian<ushort>(source: uc, count: len, dest: data); |
| 774 | |
| 775 | if (state) { |
| 776 | state->remainingChars = 0; |
| 777 | state->flags |= QTextCodec::IgnoreHeader; |
| 778 | } |
| 779 | return d; |
| 780 | } |
| 781 | |
| 782 | QString QUtf16::convertToUnicode(const char *chars, int len, QTextCodec::ConverterState *state, DataEndianness e) |
| 783 | { |
| 784 | DataEndianness endian = e; |
| 785 | bool half = false; |
| 786 | uchar buf = 0; |
| 787 | bool = false; |
| 788 | if (state) { |
| 789 | headerdone = state->flags & QTextCodec::IgnoreHeader; |
| 790 | if (endian == DetectEndianness) |
| 791 | endian = (DataEndianness)state->state_data[Endian]; |
| 792 | if (state->remainingChars) { |
| 793 | half = true; |
| 794 | buf = state->state_data[Data]; |
| 795 | } |
| 796 | } |
| 797 | if (headerdone && endian == DetectEndianness) |
| 798 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
| 799 | |
| 800 | QString result(len, Qt::Uninitialized); // worst case |
| 801 | QChar *qch = (QChar *)result.data(); |
| 802 | while (len--) { |
| 803 | if (half) { |
| 804 | QChar ch; |
| 805 | if (endian == LittleEndianness) { |
| 806 | ch.setRow(*chars++); |
| 807 | ch.setCell(buf); |
| 808 | } else { |
| 809 | ch.setRow(buf); |
| 810 | ch.setCell(*chars++); |
| 811 | } |
| 812 | if (!headerdone) { |
| 813 | headerdone = true; |
| 814 | if (endian == DetectEndianness) { |
| 815 | if (ch == QChar::ByteOrderSwapped) { |
| 816 | endian = LittleEndianness; |
| 817 | } else if (ch == QChar::ByteOrderMark) { |
| 818 | endian = BigEndianness; |
| 819 | } else { |
| 820 | if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { |
| 821 | endian = BigEndianness; |
| 822 | } else { |
| 823 | endian = LittleEndianness; |
| 824 | ch = QChar((ch.unicode() >> 8) | ((ch.unicode() & 0xff) << 8)); |
| 825 | } |
| 826 | *qch++ = ch; |
| 827 | } |
| 828 | } else if (ch != QChar::ByteOrderMark) { |
| 829 | *qch++ = ch; |
| 830 | } |
| 831 | } else { |
| 832 | *qch++ = ch; |
| 833 | } |
| 834 | half = false; |
| 835 | } else { |
| 836 | buf = *chars++; |
| 837 | half = true; |
| 838 | } |
| 839 | } |
| 840 | result.truncate(pos: qch - result.unicode()); |
| 841 | |
| 842 | if (state) { |
| 843 | if (headerdone) |
| 844 | state->flags |= QTextCodec::IgnoreHeader; |
| 845 | state->state_data[Endian] = endian; |
| 846 | if (half) { |
| 847 | state->remainingChars = 1; |
| 848 | state->state_data[Data] = buf; |
| 849 | } else { |
| 850 | state->remainingChars = 0; |
| 851 | state->state_data[Data] = 0; |
| 852 | } |
| 853 | } |
| 854 | return result; |
| 855 | } |
| 856 | |
| 857 | QByteArray QUtf32::convertFromUnicode(const QChar *uc, int len, QTextCodec::ConverterState *state, DataEndianness e) |
| 858 | { |
| 859 | DataEndianness endian = e; |
| 860 | int length = 4*len; |
| 861 | if (!state || (!(state->flags & QTextCodec::IgnoreHeader))) { |
| 862 | length += 4; |
| 863 | } |
| 864 | if (e == DetectEndianness) { |
| 865 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
| 866 | } |
| 867 | |
| 868 | QByteArray d(length, Qt::Uninitialized); |
| 869 | char *data = d.data(); |
| 870 | if (!state || !(state->flags & QTextCodec::IgnoreHeader)) { |
| 871 | if (endian == BigEndianness) { |
| 872 | data[0] = 0; |
| 873 | data[1] = 0; |
| 874 | data[2] = (char)0xfe; |
| 875 | data[3] = (char)0xff; |
| 876 | } else { |
| 877 | data[0] = (char)0xff; |
| 878 | data[1] = (char)0xfe; |
| 879 | data[2] = 0; |
| 880 | data[3] = 0; |
| 881 | } |
| 882 | data += 4; |
| 883 | } |
| 884 | |
| 885 | QStringIterator i(uc, uc + len); |
| 886 | if (endian == BigEndianness) { |
| 887 | while (i.hasNext()) { |
| 888 | uint cp = i.next(); |
| 889 | qToBigEndian(src: cp, dest: data); |
| 890 | data += 4; |
| 891 | } |
| 892 | } else { |
| 893 | while (i.hasNext()) { |
| 894 | uint cp = i.next(); |
| 895 | qToLittleEndian(src: cp, dest: data); |
| 896 | data += 4; |
| 897 | } |
| 898 | } |
| 899 | |
| 900 | if (state) { |
| 901 | state->remainingChars = 0; |
| 902 | state->flags |= QTextCodec::IgnoreHeader; |
| 903 | } |
| 904 | return d; |
| 905 | } |
| 906 | |
| 907 | QString QUtf32::convertToUnicode(const char *chars, int len, QTextCodec::ConverterState *state, DataEndianness e) |
| 908 | { |
| 909 | DataEndianness endian = e; |
| 910 | uchar tuple[4]; |
| 911 | int num = 0; |
| 912 | bool = false; |
| 913 | if (state) { |
| 914 | headerdone = state->flags & QTextCodec::IgnoreHeader; |
| 915 | if (endian == DetectEndianness) { |
| 916 | endian = (DataEndianness)state->state_data[Endian]; |
| 917 | } |
| 918 | num = state->remainingChars; |
| 919 | memcpy(dest: tuple, src: &state->state_data[Data], n: 4); |
| 920 | } |
| 921 | if (headerdone && endian == DetectEndianness) |
| 922 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
| 923 | |
| 924 | QString result; |
| 925 | result.resize(size: (num + len) >> 2 << 1); // worst case |
| 926 | QChar *qch = (QChar *)result.data(); |
| 927 | |
| 928 | const char *end = chars + len; |
| 929 | while (chars < end) { |
| 930 | tuple[num++] = *chars++; |
| 931 | if (num == 4) { |
| 932 | if (!headerdone) { |
| 933 | headerdone = true; |
| 934 | if (endian == DetectEndianness) { |
| 935 | if (tuple[0] == 0xff && tuple[1] == 0xfe && tuple[2] == 0 && tuple[3] == 0 && endian != BigEndianness) { |
| 936 | endian = LittleEndianness; |
| 937 | num = 0; |
| 938 | continue; |
| 939 | } else if (tuple[0] == 0 && tuple[1] == 0 && tuple[2] == 0xfe && tuple[3] == 0xff && endian != LittleEndianness) { |
| 940 | endian = BigEndianness; |
| 941 | num = 0; |
| 942 | continue; |
| 943 | } else if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { |
| 944 | endian = BigEndianness; |
| 945 | } else { |
| 946 | endian = LittleEndianness; |
| 947 | } |
| 948 | } else if (((endian == BigEndianness) ? qFromBigEndian<quint32>(src: tuple) : qFromLittleEndian<quint32>(src: tuple)) == QChar::ByteOrderMark) { |
| 949 | num = 0; |
| 950 | continue; |
| 951 | } |
| 952 | } |
| 953 | uint code = (endian == BigEndianness) ? qFromBigEndian<quint32>(src: tuple) : qFromLittleEndian<quint32>(src: tuple); |
| 954 | if (QChar::requiresSurrogates(ucs4: code)) { |
| 955 | *qch++ = QChar(QChar::highSurrogate(ucs4: code)); |
| 956 | *qch++ = QChar(QChar::lowSurrogate(ucs4: code)); |
| 957 | } else { |
| 958 | *qch++ = QChar(code); |
| 959 | } |
| 960 | num = 0; |
| 961 | } |
| 962 | } |
| 963 | result.truncate(pos: qch - result.unicode()); |
| 964 | |
| 965 | if (state) { |
| 966 | if (headerdone) |
| 967 | state->flags |= QTextCodec::IgnoreHeader; |
| 968 | state->state_data[Endian] = endian; |
| 969 | state->remainingChars = num; |
| 970 | memcpy(dest: &state->state_data[Data], src: tuple, n: 4); |
| 971 | } |
| 972 | return result; |
| 973 | } |
| 974 | |
| 975 | |
| 976 | #if QT_CONFIG(textcodec) |
| 977 | |
| 978 | QUtf8Codec::~QUtf8Codec() |
| 979 | { |
| 980 | } |
| 981 | |
| 982 | QByteArray QUtf8Codec::convertFromUnicode(const QChar *uc, int len, ConverterState *state) const |
| 983 | { |
| 984 | return QUtf8::convertFromUnicode(uc, len, state); |
| 985 | } |
| 986 | |
| 987 | void QUtf8Codec::convertToUnicode(QString *target, const char *chars, int len, ConverterState *state) const |
| 988 | { |
| 989 | *target += QUtf8::convertToUnicode(chars, len, state); |
| 990 | } |
| 991 | |
| 992 | QString QUtf8Codec::convertToUnicode(const char *chars, int len, ConverterState *state) const |
| 993 | { |
| 994 | return QUtf8::convertToUnicode(chars, len, state); |
| 995 | } |
| 996 | |
| 997 | QByteArray QUtf8Codec::name() const |
| 998 | { |
| 999 | return "UTF-8" ; |
| 1000 | } |
| 1001 | |
| 1002 | int QUtf8Codec::mibEnum() const |
| 1003 | { |
| 1004 | return 106; |
| 1005 | } |
| 1006 | |
| 1007 | QUtf16Codec::~QUtf16Codec() |
| 1008 | { |
| 1009 | } |
| 1010 | |
| 1011 | QByteArray QUtf16Codec::convertFromUnicode(const QChar *uc, int len, ConverterState *state) const |
| 1012 | { |
| 1013 | return QUtf16::convertFromUnicode(uc, len, state, e); |
| 1014 | } |
| 1015 | |
| 1016 | QString QUtf16Codec::convertToUnicode(const char *chars, int len, ConverterState *state) const |
| 1017 | { |
| 1018 | return QUtf16::convertToUnicode(chars, len, state, e); |
| 1019 | } |
| 1020 | |
| 1021 | int QUtf16Codec::mibEnum() const |
| 1022 | { |
| 1023 | return 1015; |
| 1024 | } |
| 1025 | |
| 1026 | QByteArray QUtf16Codec::name() const |
| 1027 | { |
| 1028 | return "UTF-16" ; |
| 1029 | } |
| 1030 | |
| 1031 | QList<QByteArray> QUtf16Codec::aliases() const |
| 1032 | { |
| 1033 | return QList<QByteArray>(); |
| 1034 | } |
| 1035 | |
| 1036 | int QUtf16BECodec::mibEnum() const |
| 1037 | { |
| 1038 | return 1013; |
| 1039 | } |
| 1040 | |
| 1041 | QByteArray QUtf16BECodec::name() const |
| 1042 | { |
| 1043 | return "UTF-16BE" ; |
| 1044 | } |
| 1045 | |
| 1046 | QList<QByteArray> QUtf16BECodec::aliases() const |
| 1047 | { |
| 1048 | QList<QByteArray> list; |
| 1049 | return list; |
| 1050 | } |
| 1051 | |
| 1052 | int QUtf16LECodec::mibEnum() const |
| 1053 | { |
| 1054 | return 1014; |
| 1055 | } |
| 1056 | |
| 1057 | QByteArray QUtf16LECodec::name() const |
| 1058 | { |
| 1059 | return "UTF-16LE" ; |
| 1060 | } |
| 1061 | |
| 1062 | QList<QByteArray> QUtf16LECodec::aliases() const |
| 1063 | { |
| 1064 | QList<QByteArray> list; |
| 1065 | return list; |
| 1066 | } |
| 1067 | |
| 1068 | QUtf32Codec::~QUtf32Codec() |
| 1069 | { |
| 1070 | } |
| 1071 | |
| 1072 | QByteArray QUtf32Codec::convertFromUnicode(const QChar *uc, int len, ConverterState *state) const |
| 1073 | { |
| 1074 | return QUtf32::convertFromUnicode(uc, len, state, e); |
| 1075 | } |
| 1076 | |
| 1077 | QString QUtf32Codec::convertToUnicode(const char *chars, int len, ConverterState *state) const |
| 1078 | { |
| 1079 | return QUtf32::convertToUnicode(chars, len, state, e); |
| 1080 | } |
| 1081 | |
| 1082 | int QUtf32Codec::mibEnum() const |
| 1083 | { |
| 1084 | return 1017; |
| 1085 | } |
| 1086 | |
| 1087 | QByteArray QUtf32Codec::name() const |
| 1088 | { |
| 1089 | return "UTF-32" ; |
| 1090 | } |
| 1091 | |
| 1092 | QList<QByteArray> QUtf32Codec::aliases() const |
| 1093 | { |
| 1094 | QList<QByteArray> list; |
| 1095 | return list; |
| 1096 | } |
| 1097 | |
| 1098 | int QUtf32BECodec::mibEnum() const |
| 1099 | { |
| 1100 | return 1018; |
| 1101 | } |
| 1102 | |
| 1103 | QByteArray QUtf32BECodec::name() const |
| 1104 | { |
| 1105 | return "UTF-32BE" ; |
| 1106 | } |
| 1107 | |
| 1108 | QList<QByteArray> QUtf32BECodec::aliases() const |
| 1109 | { |
| 1110 | QList<QByteArray> list; |
| 1111 | return list; |
| 1112 | } |
| 1113 | |
| 1114 | int QUtf32LECodec::mibEnum() const |
| 1115 | { |
| 1116 | return 1019; |
| 1117 | } |
| 1118 | |
| 1119 | QByteArray QUtf32LECodec::name() const |
| 1120 | { |
| 1121 | return "UTF-32LE" ; |
| 1122 | } |
| 1123 | |
| 1124 | QList<QByteArray> QUtf32LECodec::aliases() const |
| 1125 | { |
| 1126 | QList<QByteArray> list; |
| 1127 | return list; |
| 1128 | } |
| 1129 | |
| 1130 | #endif // textcodec |
| 1131 | |
| 1132 | QT_END_NAMESPACE |
| 1133 | |