1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2019 The Qt Company Ltd. |
4 | ** Copyright (C) 2018 Intel Corporation. |
5 | ** Contact: https://www.qt.io/licensing/ |
6 | ** |
7 | ** This file is part of the QtCore module of the Qt Toolkit. |
8 | ** |
9 | ** $QT_BEGIN_LICENSE:LGPL$ |
10 | ** Commercial License Usage |
11 | ** Licensees holding valid commercial Qt licenses may use this file in |
12 | ** accordance with the commercial license agreement provided with the |
13 | ** Software or, alternatively, in accordance with the terms contained in |
14 | ** a written agreement between you and The Qt Company. For licensing terms |
15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
16 | ** information use the contact form at https://www.qt.io/contact-us. |
17 | ** |
18 | ** GNU Lesser General Public License Usage |
19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
20 | ** General Public License version 3 as published by the Free Software |
21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
22 | ** packaging of this file. Please review the following information to |
23 | ** ensure the GNU Lesser General Public License version 3 requirements |
24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
25 | ** |
26 | ** GNU General Public License Usage |
27 | ** Alternatively, this file may be used under the terms of the GNU |
28 | ** General Public License version 2.0 or (at your option) the GNU General |
29 | ** Public license version 3 or any later version approved by the KDE Free |
30 | ** Qt Foundation. The licenses are as published by the Free Software |
31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
32 | ** included in the packaging of this file. Please review the following |
33 | ** information to ensure the GNU General Public License requirements will |
34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
36 | ** |
37 | ** $QT_END_LICENSE$ |
38 | ** |
39 | ****************************************************************************/ |
40 | |
41 | #ifndef QNUMERIC_P_H |
42 | #define QNUMERIC_P_H |
43 | |
44 | // |
45 | // W A R N I N G |
46 | // ------------- |
47 | // |
48 | // This file is not part of the Qt API. It exists purely as an |
49 | // implementation detail. This header file may change from version to |
50 | // version without notice, or even be removed. |
51 | // |
52 | // We mean it. |
53 | // |
54 | |
55 | #include "QtCore/private/qglobal_p.h" |
56 | #include <cmath> |
57 | #include <limits> |
58 | |
59 | #if defined(Q_CC_MSVC) |
60 | # include <intrin.h> |
61 | # include <float.h> |
62 | # if defined(Q_PROCESSOR_X86_64) || defined(Q_PROCESSOR_ARM_64) |
63 | # define Q_INTRINSIC_MUL_OVERFLOW64 |
64 | # define Q_UMULH(v1, v2) __umulh(v1, v2); |
65 | # define Q_SMULH(v1, v2) __mulh(v1, v2); |
66 | # pragma intrinsic(__umulh) |
67 | # pragma intrinsic(__mulh) |
68 | # endif |
69 | #endif |
70 | |
71 | # if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64) |
72 | #include <arm64_ghs.h> |
73 | # define Q_INTRINSIC_MUL_OVERFLOW64 |
74 | # define Q_UMULH(v1, v2) __MULUH64(v1, v2); |
75 | # define Q_SMULH(v1, v2) __MULSH64(v1, v2); |
76 | #endif |
77 | |
78 | #if !defined(Q_CC_MSVC) && (defined(Q_OS_QNX) || defined(Q_CC_INTEL)) |
79 | # include <math.h> |
80 | # ifdef isnan |
81 | # define QT_MATH_H_DEFINES_MACROS |
82 | QT_BEGIN_NAMESPACE |
83 | namespace qnumeric_std_wrapper { |
84 | // the 'using namespace std' below is cases where the stdlib already put the math.h functions in the std namespace and undefined the macros. |
85 | Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(double d) { using namespace std; return isnan(d); } |
86 | Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(double d) { using namespace std; return isinf(d); } |
87 | Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(double d) { using namespace std; return isfinite(d); } |
88 | Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(double d) { using namespace std; return fpclassify(d); } |
89 | Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(float f) { using namespace std; return isnan(f); } |
90 | Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(float f) { using namespace std; return isinf(f); } |
91 | Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(float f) { using namespace std; return isfinite(f); } |
92 | Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(float f) { using namespace std; return fpclassify(f); } |
93 | } |
94 | QT_END_NAMESPACE |
95 | // These macros from math.h conflict with the real functions in the std namespace. |
96 | # undef signbit |
97 | # undef isnan |
98 | # undef isinf |
99 | # undef isfinite |
100 | # undef fpclassify |
101 | # endif // defined(isnan) |
102 | #endif |
103 | |
104 | QT_BEGIN_NAMESPACE |
105 | |
106 | namespace qnumeric_std_wrapper { |
107 | #if defined(QT_MATH_H_DEFINES_MACROS) |
108 | # undef QT_MATH_H_DEFINES_MACROS |
109 | Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return math_h_isnan(d); } |
110 | Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return math_h_isinf(d); } |
111 | Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return math_h_isfinite(d); } |
112 | Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return math_h_fpclassify(d); } |
113 | Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return math_h_isnan(f); } |
114 | Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return math_h_isinf(f); } |
115 | Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return math_h_isfinite(f); } |
116 | Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return math_h_fpclassify(f); } |
117 | #else |
118 | Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return std::isnan(x: d); } |
119 | Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return std::isinf(x: d); } |
120 | Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return std::isfinite(x: d); } |
121 | Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return std::fpclassify(x: d); } |
122 | Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return std::isnan(x: f); } |
123 | Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return std::isinf(x: f); } |
124 | Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return std::isfinite(x: f); } |
125 | Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return std::fpclassify(x: f); } |
126 | #endif |
127 | } |
128 | |
129 | Q_DECL_CONSTEXPR Q_DECL_CONST_FUNCTION static inline double qt_inf() noexcept |
130 | { |
131 | Q_STATIC_ASSERT_X(std::numeric_limits<double>::has_infinity, |
132 | "platform has no definition for infinity for type double" ); |
133 | return std::numeric_limits<double>::infinity(); |
134 | } |
135 | |
136 | #if QT_CONFIG(signaling_nan) |
137 | Q_DECL_CONSTEXPR Q_DECL_CONST_FUNCTION static inline double qt_snan() noexcept |
138 | { |
139 | Q_STATIC_ASSERT_X(std::numeric_limits<double>::has_signaling_NaN, |
140 | "platform has no definition for signaling NaN for type double" ); |
141 | return std::numeric_limits<double>::signaling_NaN(); |
142 | } |
143 | #endif |
144 | |
145 | // Quiet NaN |
146 | Q_DECL_CONSTEXPR Q_DECL_CONST_FUNCTION static inline double qt_qnan() noexcept |
147 | { |
148 | Q_STATIC_ASSERT_X(std::numeric_limits<double>::has_quiet_NaN, |
149 | "platform has no definition for quiet NaN for type double" ); |
150 | return std::numeric_limits<double>::quiet_NaN(); |
151 | } |
152 | |
153 | Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(double d) |
154 | { |
155 | return qnumeric_std_wrapper::isinf(d); |
156 | } |
157 | |
158 | Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(double d) |
159 | { |
160 | return qnumeric_std_wrapper::isnan(d); |
161 | } |
162 | |
163 | Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(double d) |
164 | { |
165 | return qnumeric_std_wrapper::isfinite(d); |
166 | } |
167 | |
168 | Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(double d) |
169 | { |
170 | return qnumeric_std_wrapper::fpclassify(d); |
171 | } |
172 | |
173 | Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(float f) |
174 | { |
175 | return qnumeric_std_wrapper::isinf(f); |
176 | } |
177 | |
178 | Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(float f) |
179 | { |
180 | return qnumeric_std_wrapper::isnan(f); |
181 | } |
182 | |
183 | Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(float f) |
184 | { |
185 | return qnumeric_std_wrapper::isfinite(f); |
186 | } |
187 | |
188 | Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(float f) |
189 | { |
190 | return qnumeric_std_wrapper::fpclassify(f); |
191 | } |
192 | |
193 | #ifndef Q_CLANG_QDOC |
194 | namespace { |
195 | /*! |
196 | Returns true if the double \a v can be converted to type \c T, false if |
197 | it's out of range. If the conversion is successful, the converted value is |
198 | stored in \a value; if it was not successful, \a value will contain the |
199 | minimum or maximum of T, depending on the sign of \a d. If \c T is |
200 | unsigned, then \a value contains the absolute value of \a v. |
201 | |
202 | This function works for v containing infinities, but not NaN. It's the |
203 | caller's responsibility to exclude that possibility before calling it. |
204 | */ |
205 | template <typename T> static inline bool convertDoubleTo(double v, T *value) |
206 | { |
207 | Q_STATIC_ASSERT(std::numeric_limits<T>::is_integer); |
208 | |
209 | // The [conv.fpint] (7.10 Floating-integral conversions) section of the C++ |
210 | // standard says only exact conversions are guaranteed. Converting |
211 | // integrals to floating-point with loss of precision has implementation- |
212 | // defined behavior whether the next higher or next lower is returned; |
213 | // converting FP to integral is UB if it can't be represented. |
214 | // |
215 | // That means we can't write UINT64_MAX+1. Writing ldexp(1, 64) would be |
216 | // correct, but Clang, ICC and MSVC don't realize that it's a constant and |
217 | // the math call stays in the compiled code. |
218 | |
219 | double supremum; |
220 | if (std::numeric_limits<T>::is_signed) { |
221 | supremum = -1.0 * std::numeric_limits<T>::min(); // -1 * (-2^63) = 2^63, exact (for T = qint64) |
222 | *value = std::numeric_limits<T>::min(); |
223 | if (v < std::numeric_limits<T>::min()) |
224 | return false; |
225 | } else { |
226 | using ST = typename std::make_signed<T>::type; |
227 | supremum = -2.0 * std::numeric_limits<ST>::min(); // -2 * (-2^63) = 2^64, exact (for T = quint64) |
228 | v = fabs(x: v); |
229 | } |
230 | |
231 | *value = std::numeric_limits<T>::max(); |
232 | if (v >= supremum) |
233 | return false; |
234 | |
235 | // Now we can convert, these two conversions cannot be UB |
236 | *value = T(v); |
237 | |
238 | QT_WARNING_PUSH |
239 | QT_WARNING_DISABLE_GCC("-Wfloat-equal" ) |
240 | QT_WARNING_DISABLE_CLANG("-Wfloat-equal" ) |
241 | |
242 | return *value == v; |
243 | |
244 | QT_WARNING_POP |
245 | } |
246 | |
247 | // Overflow math. |
248 | // This provides efficient implementations for int, unsigned, qsizetype and |
249 | // size_t. Implementations for 8- and 16-bit types will work but may not be as |
250 | // efficient. Implementations for 64-bit may be missing on 32-bit platforms. |
251 | |
252 | #if ((defined(Q_CC_INTEL) ? (Q_CC_INTEL >= 1800 && !defined(Q_OS_WIN)) : defined(Q_CC_GNU)) \ |
253 | && Q_CC_GNU >= 500) || __has_builtin(__builtin_add_overflow) |
254 | // GCC 5, ICC 18, and Clang 3.8 have builtins to detect overflows |
255 | |
256 | template <typename T> inline |
257 | typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type |
258 | add_overflow(T v1, T v2, T *r) |
259 | { return __builtin_add_overflow(v1, v2, r); } |
260 | |
261 | template <typename T> inline |
262 | typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type |
263 | sub_overflow(T v1, T v2, T *r) |
264 | { return __builtin_sub_overflow(v1, v2, r); } |
265 | |
266 | template <typename T> inline |
267 | typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type |
268 | mul_overflow(T v1, T v2, T *r) |
269 | { return __builtin_mul_overflow(v1, v2, r); } |
270 | |
271 | #else |
272 | // Generic implementations |
273 | |
274 | template <typename T> inline typename std::enable_if<std::is_unsigned<T>::value, bool>::type |
275 | add_overflow(T v1, T v2, T *r) |
276 | { |
277 | // unsigned additions are well-defined |
278 | *r = v1 + v2; |
279 | return v1 > T(v1 + v2); |
280 | } |
281 | |
282 | template <typename T> inline typename std::enable_if<std::is_signed<T>::value, bool>::type |
283 | add_overflow(T v1, T v2, T *r) |
284 | { |
285 | // Here's how we calculate the overflow: |
286 | // 1) unsigned addition is well-defined, so we can always execute it |
287 | // 2) conversion from unsigned back to signed is implementation- |
288 | // defined and in the implementations we use, it's a no-op. |
289 | // 3) signed integer overflow happens if the sign of the two input operands |
290 | // is the same but the sign of the result is different. In other words, |
291 | // the sign of the result must be the same as the sign of either |
292 | // operand. |
293 | |
294 | using U = typename std::make_unsigned<T>::type; |
295 | *r = T(U(v1) + U(v2)); |
296 | |
297 | // If int is two's complement, assume all integer types are too. |
298 | if (std::is_same<int32_t, int>::value) { |
299 | // Two's complement equivalent (generates slightly shorter code): |
300 | // x ^ y is negative if x and y have different signs |
301 | // x & y is negative if x and y are negative |
302 | // (x ^ z) & (y ^ z) is negative if x and z have different signs |
303 | // AND y and z have different signs |
304 | return ((v1 ^ *r) & (v2 ^ *r)) < 0; |
305 | } |
306 | |
307 | bool s1 = (v1 < 0); |
308 | bool s2 = (v2 < 0); |
309 | bool sr = (*r < 0); |
310 | return s1 != sr && s2 != sr; |
311 | // also: return s1 == s2 && s1 != sr; |
312 | } |
313 | |
314 | template <typename T> inline typename std::enable_if<std::is_unsigned<T>::value, bool>::type |
315 | sub_overflow(T v1, T v2, T *r) |
316 | { |
317 | // unsigned subtractions are well-defined |
318 | *r = v1 - v2; |
319 | return v1 < v2; |
320 | } |
321 | |
322 | template <typename T> inline typename std::enable_if<std::is_signed<T>::value, bool>::type |
323 | sub_overflow(T v1, T v2, T *r) |
324 | { |
325 | // See above for explanation. This is the same with some signs reversed. |
326 | // We can't use add_overflow(v1, -v2, r) because it would be UB if |
327 | // v2 == std::numeric_limits<T>::min(). |
328 | |
329 | using U = typename std::make_unsigned<T>::type; |
330 | *r = T(U(v1) - U(v2)); |
331 | |
332 | if (std::is_same<int32_t, int>::value) |
333 | return ((v1 ^ *r) & (~v2 ^ *r)) < 0; |
334 | |
335 | bool s1 = (v1 < 0); |
336 | bool s2 = !(v2 < 0); |
337 | bool sr = (*r < 0); |
338 | return s1 != sr && s2 != sr; |
339 | // also: return s1 == s2 && s1 != sr; |
340 | } |
341 | |
342 | template <typename T> inline |
343 | typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type |
344 | mul_overflow(T v1, T v2, T *r) |
345 | { |
346 | // use the next biggest type |
347 | // Note: for 64-bit systems where __int128 isn't supported, this will cause an error. |
348 | using LargerInt = QIntegerForSize<sizeof(T) * 2>; |
349 | using Larger = typename std::conditional<std::is_signed<T>::value, |
350 | typename LargerInt::Signed, typename LargerInt::Unsigned>::type; |
351 | Larger lr = Larger(v1) * Larger(v2); |
352 | *r = T(lr); |
353 | return lr > std::numeric_limits<T>::max() || lr < std::numeric_limits<T>::min(); |
354 | } |
355 | |
356 | # if defined(Q_INTRINSIC_MUL_OVERFLOW64) |
357 | template <> inline bool mul_overflow(quint64 v1, quint64 v2, quint64 *r) |
358 | { |
359 | *r = v1 * v2; |
360 | return Q_UMULH(v1, v2); |
361 | } |
362 | template <> inline bool mul_overflow(qint64 v1, qint64 v2, qint64 *r) |
363 | { |
364 | // This is slightly more complex than the unsigned case above: the sign bit |
365 | // of 'low' must be replicated as the entire 'high', so the only valid |
366 | // values for 'high' are 0 and -1. Use unsigned multiply since it's the same |
367 | // as signed for the low bits and use a signed right shift to verify that |
368 | // 'high' is nothing but sign bits that match the sign of 'low'. |
369 | |
370 | qint64 high = Q_SMULH(v1, v2); |
371 | *r = qint64(quint64(v1) * quint64(v2)); |
372 | return (*r >> 63) != high; |
373 | } |
374 | |
375 | # if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64) |
376 | template <> inline bool mul_overflow(uint64_t v1, uint64_t v2, uint64_t *r) |
377 | { |
378 | return mul_overflow<quint64>(v1,v2,reinterpret_cast<quint64*>(r)); |
379 | } |
380 | |
381 | template <> inline bool mul_overflow(int64_t v1, int64_t v2, int64_t *r) |
382 | { |
383 | return mul_overflow<qint64>(v1,v2,reinterpret_cast<qint64*>(r)); |
384 | } |
385 | # endif // OS_INTEGRITY ARM64 |
386 | # endif // Q_INTRINSIC_MUL_OVERFLOW64 |
387 | |
388 | # if defined(Q_CC_MSVC) && defined(Q_PROCESSOR_X86) |
389 | // We can use intrinsics for the unsigned operations with MSVC |
390 | template <> inline bool add_overflow(unsigned v1, unsigned v2, unsigned *r) |
391 | { return _addcarry_u32(0, v1, v2, r); } |
392 | |
393 | // 32-bit mul_overflow is fine with the generic code above |
394 | |
395 | template <> inline bool add_overflow(quint64 v1, quint64 v2, quint64 *r) |
396 | { |
397 | # if defined(Q_PROCESSOR_X86_64) |
398 | return _addcarry_u64(0, v1, v2, reinterpret_cast<unsigned __int64 *>(r)); |
399 | # else |
400 | uint low, high; |
401 | uchar carry = _addcarry_u32(0, unsigned(v1), unsigned(v2), &low); |
402 | carry = _addcarry_u32(carry, v1 >> 32, v2 >> 32, &high); |
403 | *r = (quint64(high) << 32) | low; |
404 | return carry; |
405 | # endif // !x86-64 |
406 | } |
407 | # endif // MSVC X86 |
408 | #endif // !GCC |
409 | } |
410 | #endif // Q_CLANG_QDOC |
411 | |
412 | QT_END_NAMESPACE |
413 | |
414 | #endif // QNUMERIC_P_H |
415 | |