1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Copyright (C) 2016 Intel Corporation. |
5 | ** Contact: https://www.qt.io/licensing/ |
6 | ** |
7 | ** This file is part of the QtCore module of the Qt Toolkit. |
8 | ** |
9 | ** $QT_BEGIN_LICENSE:LGPL$ |
10 | ** Commercial License Usage |
11 | ** Licensees holding valid commercial Qt licenses may use this file in |
12 | ** accordance with the commercial license agreement provided with the |
13 | ** Software or, alternatively, in accordance with the terms contained in |
14 | ** a written agreement between you and The Qt Company. For licensing terms |
15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
16 | ** information use the contact form at https://www.qt.io/contact-us. |
17 | ** |
18 | ** GNU Lesser General Public License Usage |
19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
20 | ** General Public License version 3 as published by the Free Software |
21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
22 | ** packaging of this file. Please review the following information to |
23 | ** ensure the GNU Lesser General Public License version 3 requirements |
24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
25 | ** |
26 | ** GNU General Public License Usage |
27 | ** Alternatively, this file may be used under the terms of the GNU |
28 | ** General Public License version 2.0 or (at your option) the GNU General |
29 | ** Public license version 3 or any later version approved by the KDE Free |
30 | ** Qt Foundation. The licenses are as published by the Free Software |
31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
32 | ** included in the packaging of this file. Please review the following |
33 | ** information to ensure the GNU General Public License requirements will |
34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
36 | ** |
37 | ** $QT_END_LICENSE$ |
38 | ** |
39 | ****************************************************************************/ |
40 | |
41 | #include <qelapsedtimer.h> |
42 | #include <qcoreapplication.h> |
43 | |
44 | #include "private/qcore_unix_p.h" |
45 | #include "private/qtimerinfo_unix_p.h" |
46 | #include "private/qobject_p.h" |
47 | #include "private/qabstracteventdispatcher_p.h" |
48 | |
49 | #ifdef QTIMERINFO_DEBUG |
50 | # include <QDebug> |
51 | # include <QThread> |
52 | #endif |
53 | |
54 | #include <sys/times.h> |
55 | |
56 | QT_BEGIN_NAMESPACE |
57 | |
58 | Q_CORE_EXPORT bool qt_disable_lowpriority_timers=false; |
59 | |
60 | /* |
61 | * Internal functions for manipulating timer data structures. The |
62 | * timerBitVec array is used for keeping track of timer identifiers. |
63 | */ |
64 | |
65 | QTimerInfoList::QTimerInfoList() |
66 | { |
67 | #if (_POSIX_MONOTONIC_CLOCK-0 <= 0) && !defined(Q_OS_MAC) && !defined(Q_OS_NACL) |
68 | if (!QElapsedTimer::isMonotonic()) { |
69 | // not using monotonic timers, initialize the timeChanged() machinery |
70 | previousTime = qt_gettime(); |
71 | |
72 | tms unused; |
73 | previousTicks = times(buffer: &unused); |
74 | |
75 | ticksPerSecond = sysconf(_SC_CLK_TCK); |
76 | msPerTick = 1000/ticksPerSecond; |
77 | } else { |
78 | // detected monotonic timers |
79 | previousTime.tv_sec = previousTime.tv_nsec = 0; |
80 | previousTicks = 0; |
81 | ticksPerSecond = 0; |
82 | msPerTick = 0; |
83 | } |
84 | #endif |
85 | |
86 | firstTimerInfo = nullptr; |
87 | } |
88 | |
89 | timespec QTimerInfoList::updateCurrentTime() |
90 | { |
91 | return (currentTime = qt_gettime()); |
92 | } |
93 | |
94 | #if ((_POSIX_MONOTONIC_CLOCK-0 <= 0) && !defined(Q_OS_MAC) && !defined(Q_OS_INTEGRITY)) || defined(QT_BOOTSTRAPPED) |
95 | |
96 | timespec qAbsTimespec(const timespec &t) |
97 | { |
98 | timespec tmp = t; |
99 | if (tmp.tv_sec < 0) { |
100 | tmp.tv_sec = -tmp.tv_sec - 1; |
101 | tmp.tv_nsec -= 1000000000; |
102 | } |
103 | if (tmp.tv_sec == 0 && tmp.tv_nsec < 0) { |
104 | tmp.tv_nsec = -tmp.tv_nsec; |
105 | } |
106 | return normalizedTimespec(t&: tmp); |
107 | } |
108 | |
109 | /* |
110 | Returns \c true if the real time clock has changed by more than 10% |
111 | relative to the processor time since the last time this function was |
112 | called. This presumably means that the system time has been changed. |
113 | |
114 | If /a delta is nonzero, delta is set to our best guess at how much the system clock was changed. |
115 | */ |
116 | bool QTimerInfoList::timeChanged(timespec *delta) |
117 | { |
118 | #ifdef Q_OS_NACL |
119 | Q_UNUSED(delta) |
120 | return false; // Calling "times" crashes. |
121 | #endif |
122 | struct tms unused; |
123 | clock_t currentTicks = times(buffer: &unused); |
124 | |
125 | clock_t elapsedTicks = currentTicks - previousTicks; |
126 | timespec elapsedTime = currentTime - previousTime; |
127 | |
128 | timespec elapsedTimeTicks; |
129 | elapsedTimeTicks.tv_sec = elapsedTicks / ticksPerSecond; |
130 | elapsedTimeTicks.tv_nsec = (((elapsedTicks * 1000) / ticksPerSecond) % 1000) * 1000 * 1000; |
131 | |
132 | timespec dummy; |
133 | if (!delta) |
134 | delta = &dummy; |
135 | *delta = elapsedTime - elapsedTimeTicks; |
136 | |
137 | previousTicks = currentTicks; |
138 | previousTime = currentTime; |
139 | |
140 | // If tick drift is more than 10% off compared to realtime, we assume that the clock has |
141 | // been set. Of course, we have to allow for the tick granularity as well. |
142 | timespec tickGranularity; |
143 | tickGranularity.tv_sec = 0; |
144 | tickGranularity.tv_nsec = msPerTick * 1000 * 1000; |
145 | return elapsedTimeTicks < ((qAbsTimespec(t: *delta) - tickGranularity) * 10); |
146 | } |
147 | |
148 | /* |
149 | repair broken timer |
150 | */ |
151 | void QTimerInfoList::timerRepair(const timespec &diff) |
152 | { |
153 | // repair all timers |
154 | for (int i = 0; i < size(); ++i) { |
155 | QTimerInfo *t = at(i); |
156 | t->timeout = t->timeout + diff; |
157 | } |
158 | } |
159 | |
160 | void QTimerInfoList::repairTimersIfNeeded() |
161 | { |
162 | if (QElapsedTimer::isMonotonic()) |
163 | return; |
164 | timespec delta; |
165 | if (timeChanged(delta: &delta)) |
166 | timerRepair(diff: delta); |
167 | } |
168 | |
169 | #else // !(_POSIX_MONOTONIC_CLOCK-0 <= 0) && !defined(QT_BOOTSTRAPPED) |
170 | |
171 | void QTimerInfoList::repairTimersIfNeeded() |
172 | { |
173 | } |
174 | |
175 | #endif |
176 | |
177 | /* |
178 | insert timer info into list |
179 | */ |
180 | void QTimerInfoList::timerInsert(QTimerInfo *ti) |
181 | { |
182 | int index = size(); |
183 | while (index--) { |
184 | const QTimerInfo * const t = at(i: index); |
185 | if (!(ti->timeout < t->timeout)) |
186 | break; |
187 | } |
188 | insert(i: index+1, t: ti); |
189 | } |
190 | |
191 | inline timespec &operator+=(timespec &t1, int ms) |
192 | { |
193 | t1.tv_sec += ms / 1000; |
194 | t1.tv_nsec += ms % 1000 * 1000 * 1000; |
195 | return normalizedTimespec(t&: t1); |
196 | } |
197 | |
198 | inline timespec operator+(const timespec &t1, int ms) |
199 | { |
200 | timespec t2 = t1; |
201 | return t2 += ms; |
202 | } |
203 | |
204 | static timespec roundToMillisecond(timespec val) |
205 | { |
206 | // always round up |
207 | // worst case scenario is that the first trigger of a 1-ms timer is 0.999 ms late |
208 | |
209 | int ns = val.tv_nsec % (1000 * 1000); |
210 | val.tv_nsec += 1000 * 1000 - ns; |
211 | return normalizedTimespec(t&: val); |
212 | } |
213 | |
214 | #ifdef QTIMERINFO_DEBUG |
215 | QDebug operator<<(QDebug s, timeval tv) |
216 | { |
217 | QDebugStateSaver saver(s); |
218 | s.nospace() << tv.tv_sec << "." << qSetFieldWidth(6) << qSetPadChar(QChar(48)) << tv.tv_usec << Qt::reset; |
219 | return s; |
220 | } |
221 | QDebug operator<<(QDebug s, Qt::TimerType t) |
222 | { |
223 | QDebugStateSaver saver(s); |
224 | s << (t == Qt::PreciseTimer ? "P" : |
225 | t == Qt::CoarseTimer ? "C" : "VC" ); |
226 | return s; |
227 | } |
228 | #endif |
229 | |
230 | static void calculateCoarseTimerTimeout(QTimerInfo *t, timespec currentTime) |
231 | { |
232 | // The coarse timer works like this: |
233 | // - interval under 40 ms: round to even |
234 | // - between 40 and 99 ms: round to multiple of 4 |
235 | // - otherwise: try to wake up at a multiple of 25 ms, with a maximum error of 5% |
236 | // |
237 | // We try to wake up at the following second-fraction, in order of preference: |
238 | // 0 ms |
239 | // 500 ms |
240 | // 250 ms or 750 ms |
241 | // 200, 400, 600, 800 ms |
242 | // other multiples of 100 |
243 | // other multiples of 50 |
244 | // other multiples of 25 |
245 | // |
246 | // The objective is to make most timers wake up at the same time, thereby reducing CPU wakeups. |
247 | |
248 | uint interval = uint(t->interval); |
249 | uint msec = uint(t->timeout.tv_nsec) / 1000 / 1000; |
250 | Q_ASSERT(interval >= 20); |
251 | |
252 | // Calculate how much we can round and still keep within 5% error |
253 | uint absMaxRounding = interval / 20; |
254 | |
255 | if (interval < 100 && interval != 25 && interval != 50 && interval != 75) { |
256 | // special mode for timers of less than 100 ms |
257 | if (interval < 50) { |
258 | // round to even |
259 | // round towards multiples of 50 ms |
260 | bool roundUp = (msec % 50) >= 25; |
261 | msec >>= 1; |
262 | msec |= uint(roundUp); |
263 | msec <<= 1; |
264 | } else { |
265 | // round to multiple of 4 |
266 | // round towards multiples of 100 ms |
267 | bool roundUp = (msec % 100) >= 50; |
268 | msec >>= 2; |
269 | msec |= uint(roundUp); |
270 | msec <<= 2; |
271 | } |
272 | } else { |
273 | uint min = qMax<int>(a: 0, b: msec - absMaxRounding); |
274 | uint max = qMin(a: 1000u, b: msec + absMaxRounding); |
275 | |
276 | // find the boundary that we want, according to the rules above |
277 | // extra rules: |
278 | // 1) whatever the interval, we'll take any round-to-the-second timeout |
279 | if (min == 0) { |
280 | msec = 0; |
281 | goto recalculate; |
282 | } else if (max == 1000) { |
283 | msec = 1000; |
284 | goto recalculate; |
285 | } |
286 | |
287 | uint wantedBoundaryMultiple; |
288 | |
289 | // 2) if the interval is a multiple of 500 ms and > 5000 ms, we'll always round |
290 | // towards a round-to-the-second |
291 | // 3) if the interval is a multiple of 500 ms, we'll round towards the nearest |
292 | // multiple of 500 ms |
293 | if ((interval % 500) == 0) { |
294 | if (interval >= 5000) { |
295 | msec = msec >= 500 ? max : min; |
296 | goto recalculate; |
297 | } else { |
298 | wantedBoundaryMultiple = 500; |
299 | } |
300 | } else if ((interval % 50) == 0) { |
301 | // 4) same for multiples of 250, 200, 100, 50 |
302 | uint mult50 = interval / 50; |
303 | if ((mult50 % 4) == 0) { |
304 | // multiple of 200 |
305 | wantedBoundaryMultiple = 200; |
306 | } else if ((mult50 % 2) == 0) { |
307 | // multiple of 100 |
308 | wantedBoundaryMultiple = 100; |
309 | } else if ((mult50 % 5) == 0) { |
310 | // multiple of 250 |
311 | wantedBoundaryMultiple = 250; |
312 | } else { |
313 | // multiple of 50 |
314 | wantedBoundaryMultiple = 50; |
315 | } |
316 | } else { |
317 | wantedBoundaryMultiple = 25; |
318 | } |
319 | |
320 | uint base = msec / wantedBoundaryMultiple * wantedBoundaryMultiple; |
321 | uint middlepoint = base + wantedBoundaryMultiple / 2; |
322 | if (msec < middlepoint) |
323 | msec = qMax(a: base, b: min); |
324 | else |
325 | msec = qMin(a: base + wantedBoundaryMultiple, b: max); |
326 | } |
327 | |
328 | recalculate: |
329 | if (msec == 1000u) { |
330 | ++t->timeout.tv_sec; |
331 | t->timeout.tv_nsec = 0; |
332 | } else { |
333 | t->timeout.tv_nsec = msec * 1000 * 1000; |
334 | } |
335 | |
336 | if (t->timeout < currentTime) |
337 | t->timeout += interval; |
338 | } |
339 | |
340 | static void calculateNextTimeout(QTimerInfo *t, timespec currentTime) |
341 | { |
342 | switch (t->timerType) { |
343 | case Qt::PreciseTimer: |
344 | case Qt::CoarseTimer: |
345 | t->timeout += t->interval; |
346 | if (t->timeout < currentTime) { |
347 | t->timeout = currentTime; |
348 | t->timeout += t->interval; |
349 | } |
350 | #ifdef QTIMERINFO_DEBUG |
351 | t->expected += t->interval; |
352 | if (t->expected < currentTime) { |
353 | t->expected = currentTime; |
354 | t->expected += t->interval; |
355 | } |
356 | #endif |
357 | if (t->timerType == Qt::CoarseTimer) |
358 | calculateCoarseTimerTimeout(t, currentTime); |
359 | return; |
360 | |
361 | case Qt::VeryCoarseTimer: |
362 | // we don't need to take care of the microsecond component of t->interval |
363 | t->timeout.tv_sec += t->interval; |
364 | if (t->timeout.tv_sec <= currentTime.tv_sec) |
365 | t->timeout.tv_sec = currentTime.tv_sec + t->interval; |
366 | #ifdef QTIMERINFO_DEBUG |
367 | t->expected.tv_sec += t->interval; |
368 | if (t->expected.tv_sec <= currentTime.tv_sec) |
369 | t->expected.tv_sec = currentTime.tv_sec + t->interval; |
370 | #endif |
371 | return; |
372 | } |
373 | |
374 | #ifdef QTIMERINFO_DEBUG |
375 | if (t->timerType != Qt::PreciseTimer) |
376 | qDebug() << "timer" << t->timerType << Qt::hex << t->id << Qt::dec << "interval" << t->interval |
377 | << "originally expected at" << t->expected << "will fire at" << t->timeout |
378 | << "or" << (t->timeout - t->expected) << "s late" ; |
379 | #endif |
380 | } |
381 | |
382 | /* |
383 | Returns the time to wait for the next timer, or null if no timers |
384 | are waiting. |
385 | */ |
386 | bool QTimerInfoList::timerWait(timespec &tm) |
387 | { |
388 | timespec currentTime = updateCurrentTime(); |
389 | repairTimersIfNeeded(); |
390 | |
391 | // Find first waiting timer not already active |
392 | QTimerInfo *t = nullptr; |
393 | for (QTimerInfoList::const_iterator it = constBegin(); it != constEnd(); ++it) { |
394 | if (!(*it)->activateRef) { |
395 | t = *it; |
396 | break; |
397 | } |
398 | } |
399 | |
400 | if (!t) |
401 | return false; |
402 | |
403 | if (currentTime < t->timeout) { |
404 | // time to wait |
405 | tm = roundToMillisecond(val: t->timeout - currentTime); |
406 | } else { |
407 | // no time to wait |
408 | tm.tv_sec = 0; |
409 | tm.tv_nsec = 0; |
410 | } |
411 | |
412 | return true; |
413 | } |
414 | |
415 | /* |
416 | Returns the timer's remaining time in milliseconds with the given timerId, or |
417 | null if there is nothing left. If the timer id is not found in the list, the |
418 | returned value will be -1. If the timer is overdue, the returned value will be 0. |
419 | */ |
420 | int QTimerInfoList::timerRemainingTime(int timerId) |
421 | { |
422 | timespec currentTime = updateCurrentTime(); |
423 | repairTimersIfNeeded(); |
424 | timespec tm = {.tv_sec: 0, .tv_nsec: 0}; |
425 | |
426 | for (int i = 0; i < count(); ++i) { |
427 | QTimerInfo *t = at(i); |
428 | if (t->id == timerId) { |
429 | if (currentTime < t->timeout) { |
430 | // time to wait |
431 | tm = roundToMillisecond(val: t->timeout - currentTime); |
432 | return tm.tv_sec*1000 + tm.tv_nsec/1000/1000; |
433 | } else { |
434 | return 0; |
435 | } |
436 | } |
437 | } |
438 | |
439 | #ifndef QT_NO_DEBUG |
440 | qWarning(msg: "QTimerInfoList::timerRemainingTime: timer id %i not found" , timerId); |
441 | #endif |
442 | |
443 | return -1; |
444 | } |
445 | |
446 | void QTimerInfoList::registerTimer(int timerId, int interval, Qt::TimerType timerType, QObject *object) |
447 | { |
448 | QTimerInfo *t = new QTimerInfo; |
449 | t->id = timerId; |
450 | t->interval = interval; |
451 | t->timerType = timerType; |
452 | t->obj = object; |
453 | t->activateRef = nullptr; |
454 | |
455 | timespec expected = updateCurrentTime() + interval; |
456 | |
457 | switch (timerType) { |
458 | case Qt::PreciseTimer: |
459 | // high precision timer is based on millisecond precision |
460 | // so no adjustment is necessary |
461 | t->timeout = expected; |
462 | break; |
463 | |
464 | case Qt::CoarseTimer: |
465 | // this timer has up to 5% coarseness |
466 | // so our boundaries are 20 ms and 20 s |
467 | // below 20 ms, 5% inaccuracy is below 1 ms, so we convert to high precision |
468 | // above 20 s, 5% inaccuracy is above 1 s, so we convert to VeryCoarseTimer |
469 | if (interval >= 20000) { |
470 | t->timerType = Qt::VeryCoarseTimer; |
471 | } else { |
472 | t->timeout = expected; |
473 | if (interval <= 20) { |
474 | t->timerType = Qt::PreciseTimer; |
475 | // no adjustment is necessary |
476 | } else if (interval <= 20000) { |
477 | calculateCoarseTimerTimeout(t, currentTime); |
478 | } |
479 | break; |
480 | } |
481 | Q_FALLTHROUGH(); |
482 | case Qt::VeryCoarseTimer: |
483 | // the very coarse timer is based on full second precision, |
484 | // so we keep the interval in seconds (round to closest second) |
485 | t->interval /= 500; |
486 | t->interval += 1; |
487 | t->interval >>= 1; |
488 | t->timeout.tv_sec = currentTime.tv_sec + t->interval; |
489 | t->timeout.tv_nsec = 0; |
490 | |
491 | // if we're past the half-second mark, increase the timeout again |
492 | if (currentTime.tv_nsec > 500*1000*1000) |
493 | ++t->timeout.tv_sec; |
494 | } |
495 | |
496 | timerInsert(ti: t); |
497 | |
498 | #ifdef QTIMERINFO_DEBUG |
499 | t->expected = expected; |
500 | t->cumulativeError = 0; |
501 | t->count = 0; |
502 | if (t->timerType != Qt::PreciseTimer) |
503 | qDebug() << "timer" << t->timerType << Qt::hex <<t->id << Qt::dec << "interval" << t->interval << "expected at" |
504 | << t->expected << "will fire first at" << t->timeout; |
505 | #endif |
506 | } |
507 | |
508 | bool QTimerInfoList::unregisterTimer(int timerId) |
509 | { |
510 | // set timer inactive |
511 | for (int i = 0; i < count(); ++i) { |
512 | QTimerInfo *t = at(i); |
513 | if (t->id == timerId) { |
514 | // found it |
515 | removeAt(i); |
516 | if (t == firstTimerInfo) |
517 | firstTimerInfo = nullptr; |
518 | if (t->activateRef) |
519 | *(t->activateRef) = nullptr; |
520 | delete t; |
521 | return true; |
522 | } |
523 | } |
524 | // id not found |
525 | return false; |
526 | } |
527 | |
528 | bool QTimerInfoList::unregisterTimers(QObject *object) |
529 | { |
530 | if (isEmpty()) |
531 | return false; |
532 | for (int i = 0; i < count(); ++i) { |
533 | QTimerInfo *t = at(i); |
534 | if (t->obj == object) { |
535 | // object found |
536 | removeAt(i); |
537 | if (t == firstTimerInfo) |
538 | firstTimerInfo = nullptr; |
539 | if (t->activateRef) |
540 | *(t->activateRef) = nullptr; |
541 | delete t; |
542 | // move back one so that we don't skip the new current item |
543 | --i; |
544 | } |
545 | } |
546 | return true; |
547 | } |
548 | |
549 | QList<QAbstractEventDispatcher::TimerInfo> QTimerInfoList::registeredTimers(QObject *object) const |
550 | { |
551 | QList<QAbstractEventDispatcher::TimerInfo> list; |
552 | for (int i = 0; i < count(); ++i) { |
553 | const QTimerInfo * const t = at(i); |
554 | if (t->obj == object) { |
555 | list << QAbstractEventDispatcher::TimerInfo(t->id, |
556 | (t->timerType == Qt::VeryCoarseTimer |
557 | ? t->interval * 1000 |
558 | : t->interval), |
559 | t->timerType); |
560 | } |
561 | } |
562 | return list; |
563 | } |
564 | |
565 | /* |
566 | Activate pending timers, returning how many where activated. |
567 | */ |
568 | int QTimerInfoList::activateTimers() |
569 | { |
570 | if (qt_disable_lowpriority_timers || isEmpty()) |
571 | return 0; // nothing to do |
572 | |
573 | int n_act = 0, maxCount = 0; |
574 | firstTimerInfo = nullptr; |
575 | |
576 | timespec currentTime = updateCurrentTime(); |
577 | // qDebug() << "Thread" << QThread::currentThreadId() << "woken up at" << currentTime; |
578 | repairTimersIfNeeded(); |
579 | |
580 | |
581 | // Find out how many timer have expired |
582 | for (QTimerInfoList::const_iterator it = constBegin(); it != constEnd(); ++it) { |
583 | if (currentTime < (*it)->timeout) |
584 | break; |
585 | maxCount++; |
586 | } |
587 | |
588 | //fire the timers. |
589 | while (maxCount--) { |
590 | if (isEmpty()) |
591 | break; |
592 | |
593 | QTimerInfo *currentTimerInfo = constFirst(); |
594 | if (currentTime < currentTimerInfo->timeout) |
595 | break; // no timer has expired |
596 | |
597 | if (!firstTimerInfo) { |
598 | firstTimerInfo = currentTimerInfo; |
599 | } else if (firstTimerInfo == currentTimerInfo) { |
600 | // avoid sending the same timer multiple times |
601 | break; |
602 | } else if (currentTimerInfo->interval < firstTimerInfo->interval |
603 | || currentTimerInfo->interval == firstTimerInfo->interval) { |
604 | firstTimerInfo = currentTimerInfo; |
605 | } |
606 | |
607 | // remove from list |
608 | removeFirst(); |
609 | |
610 | #ifdef QTIMERINFO_DEBUG |
611 | float diff; |
612 | if (currentTime < currentTimerInfo->expected) { |
613 | // early |
614 | timeval early = currentTimerInfo->expected - currentTime; |
615 | diff = -(early.tv_sec + early.tv_usec / 1000000.0); |
616 | } else { |
617 | timeval late = currentTime - currentTimerInfo->expected; |
618 | diff = late.tv_sec + late.tv_usec / 1000000.0; |
619 | } |
620 | currentTimerInfo->cumulativeError += diff; |
621 | ++currentTimerInfo->count; |
622 | if (currentTimerInfo->timerType != Qt::PreciseTimer) |
623 | qDebug() << "timer" << currentTimerInfo->timerType << Qt::hex << currentTimerInfo->id << Qt::dec << "interval" |
624 | << currentTimerInfo->interval << "firing at" << currentTime |
625 | << "(orig" << currentTimerInfo->expected << "scheduled at" << currentTimerInfo->timeout |
626 | << ") off by" << diff << "activation" << currentTimerInfo->count |
627 | << "avg error" << (currentTimerInfo->cumulativeError / currentTimerInfo->count); |
628 | #endif |
629 | |
630 | // determine next timeout time |
631 | calculateNextTimeout(t: currentTimerInfo, currentTime); |
632 | |
633 | // reinsert timer |
634 | timerInsert(ti: currentTimerInfo); |
635 | if (currentTimerInfo->interval > 0) |
636 | n_act++; |
637 | |
638 | if (!currentTimerInfo->activateRef) { |
639 | // send event, but don't allow it to recurse |
640 | currentTimerInfo->activateRef = ¤tTimerInfo; |
641 | |
642 | QTimerEvent e(currentTimerInfo->id); |
643 | QCoreApplication::sendEvent(receiver: currentTimerInfo->obj, event: &e); |
644 | |
645 | if (currentTimerInfo) |
646 | currentTimerInfo->activateRef = nullptr; |
647 | } |
648 | } |
649 | |
650 | firstTimerInfo = nullptr; |
651 | // qDebug() << "Thread" << QThread::currentThreadId() << "activated" << n_act << "timers"; |
652 | return n_act; |
653 | } |
654 | |
655 | QT_END_NAMESPACE |
656 | |