| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2016 The Qt Company Ltd. |
| 4 | ** Copyright (C) 2016 Intel Corporation. |
| 5 | ** Contact: https://www.qt.io/licensing/ |
| 6 | ** |
| 7 | ** This file is part of the QtCore module of the Qt Toolkit. |
| 8 | ** |
| 9 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 10 | ** Commercial License Usage |
| 11 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 12 | ** accordance with the commercial license agreement provided with the |
| 13 | ** Software or, alternatively, in accordance with the terms contained in |
| 14 | ** a written agreement between you and The Qt Company. For licensing terms |
| 15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 16 | ** information use the contact form at https://www.qt.io/contact-us. |
| 17 | ** |
| 18 | ** GNU Lesser General Public License Usage |
| 19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 20 | ** General Public License version 3 as published by the Free Software |
| 21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 22 | ** packaging of this file. Please review the following information to |
| 23 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 25 | ** |
| 26 | ** GNU General Public License Usage |
| 27 | ** Alternatively, this file may be used under the terms of the GNU |
| 28 | ** General Public License version 2.0 or (at your option) the GNU General |
| 29 | ** Public license version 3 or any later version approved by the KDE Free |
| 30 | ** Qt Foundation. The licenses are as published by the Free Software |
| 31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 32 | ** included in the packaging of this file. Please review the following |
| 33 | ** information to ensure the GNU General Public License requirements will |
| 34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 36 | ** |
| 37 | ** $QT_END_LICENSE$ |
| 38 | ** |
| 39 | ****************************************************************************/ |
| 40 | |
| 41 | #include <qelapsedtimer.h> |
| 42 | #include <qcoreapplication.h> |
| 43 | |
| 44 | #include "private/qcore_unix_p.h" |
| 45 | #include "private/qtimerinfo_unix_p.h" |
| 46 | #include "private/qobject_p.h" |
| 47 | #include "private/qabstracteventdispatcher_p.h" |
| 48 | |
| 49 | #ifdef QTIMERINFO_DEBUG |
| 50 | # include <QDebug> |
| 51 | # include <QThread> |
| 52 | #endif |
| 53 | |
| 54 | #include <sys/times.h> |
| 55 | |
| 56 | QT_BEGIN_NAMESPACE |
| 57 | |
| 58 | Q_CORE_EXPORT bool qt_disable_lowpriority_timers=false; |
| 59 | |
| 60 | /* |
| 61 | * Internal functions for manipulating timer data structures. The |
| 62 | * timerBitVec array is used for keeping track of timer identifiers. |
| 63 | */ |
| 64 | |
| 65 | QTimerInfoList::QTimerInfoList() |
| 66 | { |
| 67 | #if (_POSIX_MONOTONIC_CLOCK-0 <= 0) && !defined(Q_OS_MAC) && !defined(Q_OS_NACL) |
| 68 | if (!QElapsedTimer::isMonotonic()) { |
| 69 | // not using monotonic timers, initialize the timeChanged() machinery |
| 70 | previousTime = qt_gettime(); |
| 71 | |
| 72 | tms unused; |
| 73 | previousTicks = times(buffer: &unused); |
| 74 | |
| 75 | ticksPerSecond = sysconf(_SC_CLK_TCK); |
| 76 | msPerTick = 1000/ticksPerSecond; |
| 77 | } else { |
| 78 | // detected monotonic timers |
| 79 | previousTime.tv_sec = previousTime.tv_nsec = 0; |
| 80 | previousTicks = 0; |
| 81 | ticksPerSecond = 0; |
| 82 | msPerTick = 0; |
| 83 | } |
| 84 | #endif |
| 85 | |
| 86 | firstTimerInfo = nullptr; |
| 87 | } |
| 88 | |
| 89 | timespec QTimerInfoList::updateCurrentTime() |
| 90 | { |
| 91 | return (currentTime = qt_gettime()); |
| 92 | } |
| 93 | |
| 94 | #if ((_POSIX_MONOTONIC_CLOCK-0 <= 0) && !defined(Q_OS_MAC) && !defined(Q_OS_INTEGRITY)) || defined(QT_BOOTSTRAPPED) |
| 95 | |
| 96 | timespec qAbsTimespec(const timespec &t) |
| 97 | { |
| 98 | timespec tmp = t; |
| 99 | if (tmp.tv_sec < 0) { |
| 100 | tmp.tv_sec = -tmp.tv_sec - 1; |
| 101 | tmp.tv_nsec -= 1000000000; |
| 102 | } |
| 103 | if (tmp.tv_sec == 0 && tmp.tv_nsec < 0) { |
| 104 | tmp.tv_nsec = -tmp.tv_nsec; |
| 105 | } |
| 106 | return normalizedTimespec(t&: tmp); |
| 107 | } |
| 108 | |
| 109 | /* |
| 110 | Returns \c true if the real time clock has changed by more than 10% |
| 111 | relative to the processor time since the last time this function was |
| 112 | called. This presumably means that the system time has been changed. |
| 113 | |
| 114 | If /a delta is nonzero, delta is set to our best guess at how much the system clock was changed. |
| 115 | */ |
| 116 | bool QTimerInfoList::timeChanged(timespec *delta) |
| 117 | { |
| 118 | #ifdef Q_OS_NACL |
| 119 | Q_UNUSED(delta) |
| 120 | return false; // Calling "times" crashes. |
| 121 | #endif |
| 122 | struct tms unused; |
| 123 | clock_t currentTicks = times(buffer: &unused); |
| 124 | |
| 125 | clock_t elapsedTicks = currentTicks - previousTicks; |
| 126 | timespec elapsedTime = currentTime - previousTime; |
| 127 | |
| 128 | timespec elapsedTimeTicks; |
| 129 | elapsedTimeTicks.tv_sec = elapsedTicks / ticksPerSecond; |
| 130 | elapsedTimeTicks.tv_nsec = (((elapsedTicks * 1000) / ticksPerSecond) % 1000) * 1000 * 1000; |
| 131 | |
| 132 | timespec dummy; |
| 133 | if (!delta) |
| 134 | delta = &dummy; |
| 135 | *delta = elapsedTime - elapsedTimeTicks; |
| 136 | |
| 137 | previousTicks = currentTicks; |
| 138 | previousTime = currentTime; |
| 139 | |
| 140 | // If tick drift is more than 10% off compared to realtime, we assume that the clock has |
| 141 | // been set. Of course, we have to allow for the tick granularity as well. |
| 142 | timespec tickGranularity; |
| 143 | tickGranularity.tv_sec = 0; |
| 144 | tickGranularity.tv_nsec = msPerTick * 1000 * 1000; |
| 145 | return elapsedTimeTicks < ((qAbsTimespec(t: *delta) - tickGranularity) * 10); |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | repair broken timer |
| 150 | */ |
| 151 | void QTimerInfoList::timerRepair(const timespec &diff) |
| 152 | { |
| 153 | // repair all timers |
| 154 | for (int i = 0; i < size(); ++i) { |
| 155 | QTimerInfo *t = at(i); |
| 156 | t->timeout = t->timeout + diff; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | void QTimerInfoList::repairTimersIfNeeded() |
| 161 | { |
| 162 | if (QElapsedTimer::isMonotonic()) |
| 163 | return; |
| 164 | timespec delta; |
| 165 | if (timeChanged(delta: &delta)) |
| 166 | timerRepair(diff: delta); |
| 167 | } |
| 168 | |
| 169 | #else // !(_POSIX_MONOTONIC_CLOCK-0 <= 0) && !defined(QT_BOOTSTRAPPED) |
| 170 | |
| 171 | void QTimerInfoList::repairTimersIfNeeded() |
| 172 | { |
| 173 | } |
| 174 | |
| 175 | #endif |
| 176 | |
| 177 | /* |
| 178 | insert timer info into list |
| 179 | */ |
| 180 | void QTimerInfoList::timerInsert(QTimerInfo *ti) |
| 181 | { |
| 182 | int index = size(); |
| 183 | while (index--) { |
| 184 | const QTimerInfo * const t = at(i: index); |
| 185 | if (!(ti->timeout < t->timeout)) |
| 186 | break; |
| 187 | } |
| 188 | insert(i: index+1, t: ti); |
| 189 | } |
| 190 | |
| 191 | inline timespec &operator+=(timespec &t1, int ms) |
| 192 | { |
| 193 | t1.tv_sec += ms / 1000; |
| 194 | t1.tv_nsec += ms % 1000 * 1000 * 1000; |
| 195 | return normalizedTimespec(t&: t1); |
| 196 | } |
| 197 | |
| 198 | inline timespec operator+(const timespec &t1, int ms) |
| 199 | { |
| 200 | timespec t2 = t1; |
| 201 | return t2 += ms; |
| 202 | } |
| 203 | |
| 204 | static timespec roundToMillisecond(timespec val) |
| 205 | { |
| 206 | // always round up |
| 207 | // worst case scenario is that the first trigger of a 1-ms timer is 0.999 ms late |
| 208 | |
| 209 | int ns = val.tv_nsec % (1000 * 1000); |
| 210 | val.tv_nsec += 1000 * 1000 - ns; |
| 211 | return normalizedTimespec(t&: val); |
| 212 | } |
| 213 | |
| 214 | #ifdef QTIMERINFO_DEBUG |
| 215 | QDebug operator<<(QDebug s, timeval tv) |
| 216 | { |
| 217 | QDebugStateSaver saver(s); |
| 218 | s.nospace() << tv.tv_sec << "." << qSetFieldWidth(6) << qSetPadChar(QChar(48)) << tv.tv_usec << Qt::reset; |
| 219 | return s; |
| 220 | } |
| 221 | QDebug operator<<(QDebug s, Qt::TimerType t) |
| 222 | { |
| 223 | QDebugStateSaver saver(s); |
| 224 | s << (t == Qt::PreciseTimer ? "P" : |
| 225 | t == Qt::CoarseTimer ? "C" : "VC" ); |
| 226 | return s; |
| 227 | } |
| 228 | #endif |
| 229 | |
| 230 | static void calculateCoarseTimerTimeout(QTimerInfo *t, timespec currentTime) |
| 231 | { |
| 232 | // The coarse timer works like this: |
| 233 | // - interval under 40 ms: round to even |
| 234 | // - between 40 and 99 ms: round to multiple of 4 |
| 235 | // - otherwise: try to wake up at a multiple of 25 ms, with a maximum error of 5% |
| 236 | // |
| 237 | // We try to wake up at the following second-fraction, in order of preference: |
| 238 | // 0 ms |
| 239 | // 500 ms |
| 240 | // 250 ms or 750 ms |
| 241 | // 200, 400, 600, 800 ms |
| 242 | // other multiples of 100 |
| 243 | // other multiples of 50 |
| 244 | // other multiples of 25 |
| 245 | // |
| 246 | // The objective is to make most timers wake up at the same time, thereby reducing CPU wakeups. |
| 247 | |
| 248 | uint interval = uint(t->interval); |
| 249 | uint msec = uint(t->timeout.tv_nsec) / 1000 / 1000; |
| 250 | Q_ASSERT(interval >= 20); |
| 251 | |
| 252 | // Calculate how much we can round and still keep within 5% error |
| 253 | uint absMaxRounding = interval / 20; |
| 254 | |
| 255 | if (interval < 100 && interval != 25 && interval != 50 && interval != 75) { |
| 256 | // special mode for timers of less than 100 ms |
| 257 | if (interval < 50) { |
| 258 | // round to even |
| 259 | // round towards multiples of 50 ms |
| 260 | bool roundUp = (msec % 50) >= 25; |
| 261 | msec >>= 1; |
| 262 | msec |= uint(roundUp); |
| 263 | msec <<= 1; |
| 264 | } else { |
| 265 | // round to multiple of 4 |
| 266 | // round towards multiples of 100 ms |
| 267 | bool roundUp = (msec % 100) >= 50; |
| 268 | msec >>= 2; |
| 269 | msec |= uint(roundUp); |
| 270 | msec <<= 2; |
| 271 | } |
| 272 | } else { |
| 273 | uint min = qMax<int>(a: 0, b: msec - absMaxRounding); |
| 274 | uint max = qMin(a: 1000u, b: msec + absMaxRounding); |
| 275 | |
| 276 | // find the boundary that we want, according to the rules above |
| 277 | // extra rules: |
| 278 | // 1) whatever the interval, we'll take any round-to-the-second timeout |
| 279 | if (min == 0) { |
| 280 | msec = 0; |
| 281 | goto recalculate; |
| 282 | } else if (max == 1000) { |
| 283 | msec = 1000; |
| 284 | goto recalculate; |
| 285 | } |
| 286 | |
| 287 | uint wantedBoundaryMultiple; |
| 288 | |
| 289 | // 2) if the interval is a multiple of 500 ms and > 5000 ms, we'll always round |
| 290 | // towards a round-to-the-second |
| 291 | // 3) if the interval is a multiple of 500 ms, we'll round towards the nearest |
| 292 | // multiple of 500 ms |
| 293 | if ((interval % 500) == 0) { |
| 294 | if (interval >= 5000) { |
| 295 | msec = msec >= 500 ? max : min; |
| 296 | goto recalculate; |
| 297 | } else { |
| 298 | wantedBoundaryMultiple = 500; |
| 299 | } |
| 300 | } else if ((interval % 50) == 0) { |
| 301 | // 4) same for multiples of 250, 200, 100, 50 |
| 302 | uint mult50 = interval / 50; |
| 303 | if ((mult50 % 4) == 0) { |
| 304 | // multiple of 200 |
| 305 | wantedBoundaryMultiple = 200; |
| 306 | } else if ((mult50 % 2) == 0) { |
| 307 | // multiple of 100 |
| 308 | wantedBoundaryMultiple = 100; |
| 309 | } else if ((mult50 % 5) == 0) { |
| 310 | // multiple of 250 |
| 311 | wantedBoundaryMultiple = 250; |
| 312 | } else { |
| 313 | // multiple of 50 |
| 314 | wantedBoundaryMultiple = 50; |
| 315 | } |
| 316 | } else { |
| 317 | wantedBoundaryMultiple = 25; |
| 318 | } |
| 319 | |
| 320 | uint base = msec / wantedBoundaryMultiple * wantedBoundaryMultiple; |
| 321 | uint middlepoint = base + wantedBoundaryMultiple / 2; |
| 322 | if (msec < middlepoint) |
| 323 | msec = qMax(a: base, b: min); |
| 324 | else |
| 325 | msec = qMin(a: base + wantedBoundaryMultiple, b: max); |
| 326 | } |
| 327 | |
| 328 | recalculate: |
| 329 | if (msec == 1000u) { |
| 330 | ++t->timeout.tv_sec; |
| 331 | t->timeout.tv_nsec = 0; |
| 332 | } else { |
| 333 | t->timeout.tv_nsec = msec * 1000 * 1000; |
| 334 | } |
| 335 | |
| 336 | if (t->timeout < currentTime) |
| 337 | t->timeout += interval; |
| 338 | } |
| 339 | |
| 340 | static void calculateNextTimeout(QTimerInfo *t, timespec currentTime) |
| 341 | { |
| 342 | switch (t->timerType) { |
| 343 | case Qt::PreciseTimer: |
| 344 | case Qt::CoarseTimer: |
| 345 | t->timeout += t->interval; |
| 346 | if (t->timeout < currentTime) { |
| 347 | t->timeout = currentTime; |
| 348 | t->timeout += t->interval; |
| 349 | } |
| 350 | #ifdef QTIMERINFO_DEBUG |
| 351 | t->expected += t->interval; |
| 352 | if (t->expected < currentTime) { |
| 353 | t->expected = currentTime; |
| 354 | t->expected += t->interval; |
| 355 | } |
| 356 | #endif |
| 357 | if (t->timerType == Qt::CoarseTimer) |
| 358 | calculateCoarseTimerTimeout(t, currentTime); |
| 359 | return; |
| 360 | |
| 361 | case Qt::VeryCoarseTimer: |
| 362 | // we don't need to take care of the microsecond component of t->interval |
| 363 | t->timeout.tv_sec += t->interval; |
| 364 | if (t->timeout.tv_sec <= currentTime.tv_sec) |
| 365 | t->timeout.tv_sec = currentTime.tv_sec + t->interval; |
| 366 | #ifdef QTIMERINFO_DEBUG |
| 367 | t->expected.tv_sec += t->interval; |
| 368 | if (t->expected.tv_sec <= currentTime.tv_sec) |
| 369 | t->expected.tv_sec = currentTime.tv_sec + t->interval; |
| 370 | #endif |
| 371 | return; |
| 372 | } |
| 373 | |
| 374 | #ifdef QTIMERINFO_DEBUG |
| 375 | if (t->timerType != Qt::PreciseTimer) |
| 376 | qDebug() << "timer" << t->timerType << Qt::hex << t->id << Qt::dec << "interval" << t->interval |
| 377 | << "originally expected at" << t->expected << "will fire at" << t->timeout |
| 378 | << "or" << (t->timeout - t->expected) << "s late" ; |
| 379 | #endif |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | Returns the time to wait for the next timer, or null if no timers |
| 384 | are waiting. |
| 385 | */ |
| 386 | bool QTimerInfoList::timerWait(timespec &tm) |
| 387 | { |
| 388 | timespec currentTime = updateCurrentTime(); |
| 389 | repairTimersIfNeeded(); |
| 390 | |
| 391 | // Find first waiting timer not already active |
| 392 | QTimerInfo *t = nullptr; |
| 393 | for (QTimerInfoList::const_iterator it = constBegin(); it != constEnd(); ++it) { |
| 394 | if (!(*it)->activateRef) { |
| 395 | t = *it; |
| 396 | break; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | if (!t) |
| 401 | return false; |
| 402 | |
| 403 | if (currentTime < t->timeout) { |
| 404 | // time to wait |
| 405 | tm = roundToMillisecond(val: t->timeout - currentTime); |
| 406 | } else { |
| 407 | // no time to wait |
| 408 | tm.tv_sec = 0; |
| 409 | tm.tv_nsec = 0; |
| 410 | } |
| 411 | |
| 412 | return true; |
| 413 | } |
| 414 | |
| 415 | /* |
| 416 | Returns the timer's remaining time in milliseconds with the given timerId, or |
| 417 | null if there is nothing left. If the timer id is not found in the list, the |
| 418 | returned value will be -1. If the timer is overdue, the returned value will be 0. |
| 419 | */ |
| 420 | int QTimerInfoList::timerRemainingTime(int timerId) |
| 421 | { |
| 422 | timespec currentTime = updateCurrentTime(); |
| 423 | repairTimersIfNeeded(); |
| 424 | timespec tm = {.tv_sec: 0, .tv_nsec: 0}; |
| 425 | |
| 426 | for (int i = 0; i < count(); ++i) { |
| 427 | QTimerInfo *t = at(i); |
| 428 | if (t->id == timerId) { |
| 429 | if (currentTime < t->timeout) { |
| 430 | // time to wait |
| 431 | tm = roundToMillisecond(val: t->timeout - currentTime); |
| 432 | return tm.tv_sec*1000 + tm.tv_nsec/1000/1000; |
| 433 | } else { |
| 434 | return 0; |
| 435 | } |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | #ifndef QT_NO_DEBUG |
| 440 | qWarning(msg: "QTimerInfoList::timerRemainingTime: timer id %i not found" , timerId); |
| 441 | #endif |
| 442 | |
| 443 | return -1; |
| 444 | } |
| 445 | |
| 446 | void QTimerInfoList::registerTimer(int timerId, int interval, Qt::TimerType timerType, QObject *object) |
| 447 | { |
| 448 | QTimerInfo *t = new QTimerInfo; |
| 449 | t->id = timerId; |
| 450 | t->interval = interval; |
| 451 | t->timerType = timerType; |
| 452 | t->obj = object; |
| 453 | t->activateRef = nullptr; |
| 454 | |
| 455 | timespec expected = updateCurrentTime() + interval; |
| 456 | |
| 457 | switch (timerType) { |
| 458 | case Qt::PreciseTimer: |
| 459 | // high precision timer is based on millisecond precision |
| 460 | // so no adjustment is necessary |
| 461 | t->timeout = expected; |
| 462 | break; |
| 463 | |
| 464 | case Qt::CoarseTimer: |
| 465 | // this timer has up to 5% coarseness |
| 466 | // so our boundaries are 20 ms and 20 s |
| 467 | // below 20 ms, 5% inaccuracy is below 1 ms, so we convert to high precision |
| 468 | // above 20 s, 5% inaccuracy is above 1 s, so we convert to VeryCoarseTimer |
| 469 | if (interval >= 20000) { |
| 470 | t->timerType = Qt::VeryCoarseTimer; |
| 471 | } else { |
| 472 | t->timeout = expected; |
| 473 | if (interval <= 20) { |
| 474 | t->timerType = Qt::PreciseTimer; |
| 475 | // no adjustment is necessary |
| 476 | } else if (interval <= 20000) { |
| 477 | calculateCoarseTimerTimeout(t, currentTime); |
| 478 | } |
| 479 | break; |
| 480 | } |
| 481 | Q_FALLTHROUGH(); |
| 482 | case Qt::VeryCoarseTimer: |
| 483 | // the very coarse timer is based on full second precision, |
| 484 | // so we keep the interval in seconds (round to closest second) |
| 485 | t->interval /= 500; |
| 486 | t->interval += 1; |
| 487 | t->interval >>= 1; |
| 488 | t->timeout.tv_sec = currentTime.tv_sec + t->interval; |
| 489 | t->timeout.tv_nsec = 0; |
| 490 | |
| 491 | // if we're past the half-second mark, increase the timeout again |
| 492 | if (currentTime.tv_nsec > 500*1000*1000) |
| 493 | ++t->timeout.tv_sec; |
| 494 | } |
| 495 | |
| 496 | timerInsert(ti: t); |
| 497 | |
| 498 | #ifdef QTIMERINFO_DEBUG |
| 499 | t->expected = expected; |
| 500 | t->cumulativeError = 0; |
| 501 | t->count = 0; |
| 502 | if (t->timerType != Qt::PreciseTimer) |
| 503 | qDebug() << "timer" << t->timerType << Qt::hex <<t->id << Qt::dec << "interval" << t->interval << "expected at" |
| 504 | << t->expected << "will fire first at" << t->timeout; |
| 505 | #endif |
| 506 | } |
| 507 | |
| 508 | bool QTimerInfoList::unregisterTimer(int timerId) |
| 509 | { |
| 510 | // set timer inactive |
| 511 | for (int i = 0; i < count(); ++i) { |
| 512 | QTimerInfo *t = at(i); |
| 513 | if (t->id == timerId) { |
| 514 | // found it |
| 515 | removeAt(i); |
| 516 | if (t == firstTimerInfo) |
| 517 | firstTimerInfo = nullptr; |
| 518 | if (t->activateRef) |
| 519 | *(t->activateRef) = nullptr; |
| 520 | delete t; |
| 521 | return true; |
| 522 | } |
| 523 | } |
| 524 | // id not found |
| 525 | return false; |
| 526 | } |
| 527 | |
| 528 | bool QTimerInfoList::unregisterTimers(QObject *object) |
| 529 | { |
| 530 | if (isEmpty()) |
| 531 | return false; |
| 532 | for (int i = 0; i < count(); ++i) { |
| 533 | QTimerInfo *t = at(i); |
| 534 | if (t->obj == object) { |
| 535 | // object found |
| 536 | removeAt(i); |
| 537 | if (t == firstTimerInfo) |
| 538 | firstTimerInfo = nullptr; |
| 539 | if (t->activateRef) |
| 540 | *(t->activateRef) = nullptr; |
| 541 | delete t; |
| 542 | // move back one so that we don't skip the new current item |
| 543 | --i; |
| 544 | } |
| 545 | } |
| 546 | return true; |
| 547 | } |
| 548 | |
| 549 | QList<QAbstractEventDispatcher::TimerInfo> QTimerInfoList::registeredTimers(QObject *object) const |
| 550 | { |
| 551 | QList<QAbstractEventDispatcher::TimerInfo> list; |
| 552 | for (int i = 0; i < count(); ++i) { |
| 553 | const QTimerInfo * const t = at(i); |
| 554 | if (t->obj == object) { |
| 555 | list << QAbstractEventDispatcher::TimerInfo(t->id, |
| 556 | (t->timerType == Qt::VeryCoarseTimer |
| 557 | ? t->interval * 1000 |
| 558 | : t->interval), |
| 559 | t->timerType); |
| 560 | } |
| 561 | } |
| 562 | return list; |
| 563 | } |
| 564 | |
| 565 | /* |
| 566 | Activate pending timers, returning how many where activated. |
| 567 | */ |
| 568 | int QTimerInfoList::activateTimers() |
| 569 | { |
| 570 | if (qt_disable_lowpriority_timers || isEmpty()) |
| 571 | return 0; // nothing to do |
| 572 | |
| 573 | int n_act = 0, maxCount = 0; |
| 574 | firstTimerInfo = nullptr; |
| 575 | |
| 576 | timespec currentTime = updateCurrentTime(); |
| 577 | // qDebug() << "Thread" << QThread::currentThreadId() << "woken up at" << currentTime; |
| 578 | repairTimersIfNeeded(); |
| 579 | |
| 580 | |
| 581 | // Find out how many timer have expired |
| 582 | for (QTimerInfoList::const_iterator it = constBegin(); it != constEnd(); ++it) { |
| 583 | if (currentTime < (*it)->timeout) |
| 584 | break; |
| 585 | maxCount++; |
| 586 | } |
| 587 | |
| 588 | //fire the timers. |
| 589 | while (maxCount--) { |
| 590 | if (isEmpty()) |
| 591 | break; |
| 592 | |
| 593 | QTimerInfo *currentTimerInfo = constFirst(); |
| 594 | if (currentTime < currentTimerInfo->timeout) |
| 595 | break; // no timer has expired |
| 596 | |
| 597 | if (!firstTimerInfo) { |
| 598 | firstTimerInfo = currentTimerInfo; |
| 599 | } else if (firstTimerInfo == currentTimerInfo) { |
| 600 | // avoid sending the same timer multiple times |
| 601 | break; |
| 602 | } else if (currentTimerInfo->interval < firstTimerInfo->interval |
| 603 | || currentTimerInfo->interval == firstTimerInfo->interval) { |
| 604 | firstTimerInfo = currentTimerInfo; |
| 605 | } |
| 606 | |
| 607 | // remove from list |
| 608 | removeFirst(); |
| 609 | |
| 610 | #ifdef QTIMERINFO_DEBUG |
| 611 | float diff; |
| 612 | if (currentTime < currentTimerInfo->expected) { |
| 613 | // early |
| 614 | timeval early = currentTimerInfo->expected - currentTime; |
| 615 | diff = -(early.tv_sec + early.tv_usec / 1000000.0); |
| 616 | } else { |
| 617 | timeval late = currentTime - currentTimerInfo->expected; |
| 618 | diff = late.tv_sec + late.tv_usec / 1000000.0; |
| 619 | } |
| 620 | currentTimerInfo->cumulativeError += diff; |
| 621 | ++currentTimerInfo->count; |
| 622 | if (currentTimerInfo->timerType != Qt::PreciseTimer) |
| 623 | qDebug() << "timer" << currentTimerInfo->timerType << Qt::hex << currentTimerInfo->id << Qt::dec << "interval" |
| 624 | << currentTimerInfo->interval << "firing at" << currentTime |
| 625 | << "(orig" << currentTimerInfo->expected << "scheduled at" << currentTimerInfo->timeout |
| 626 | << ") off by" << diff << "activation" << currentTimerInfo->count |
| 627 | << "avg error" << (currentTimerInfo->cumulativeError / currentTimerInfo->count); |
| 628 | #endif |
| 629 | |
| 630 | // determine next timeout time |
| 631 | calculateNextTimeout(t: currentTimerInfo, currentTime); |
| 632 | |
| 633 | // reinsert timer |
| 634 | timerInsert(ti: currentTimerInfo); |
| 635 | if (currentTimerInfo->interval > 0) |
| 636 | n_act++; |
| 637 | |
| 638 | if (!currentTimerInfo->activateRef) { |
| 639 | // send event, but don't allow it to recurse |
| 640 | currentTimerInfo->activateRef = ¤tTimerInfo; |
| 641 | |
| 642 | QTimerEvent e(currentTimerInfo->id); |
| 643 | QCoreApplication::sendEvent(receiver: currentTimerInfo->obj, event: &e); |
| 644 | |
| 645 | if (currentTimerInfo) |
| 646 | currentTimerInfo->activateRef = nullptr; |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | firstTimerInfo = nullptr; |
| 651 | // qDebug() << "Thread" << QThread::currentThreadId() << "activated" << n_act << "timers"; |
| 652 | return n_act; |
| 653 | } |
| 654 | |
| 655 | QT_END_NAMESPACE |
| 656 | |