| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2016 The Qt Company Ltd. |
| 4 | ** Contact: https://www.qt.io/licensing/ |
| 5 | ** |
| 6 | ** This file is part of the QtCore module of the Qt Toolkit. |
| 7 | ** |
| 8 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 9 | ** Commercial License Usage |
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 11 | ** accordance with the commercial license agreement provided with the |
| 12 | ** Software or, alternatively, in accordance with the terms contained in |
| 13 | ** a written agreement between you and The Qt Company. For licensing terms |
| 14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 15 | ** information use the contact form at https://www.qt.io/contact-us. |
| 16 | ** |
| 17 | ** GNU Lesser General Public License Usage |
| 18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 19 | ** General Public License version 3 as published by the Free Software |
| 20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 21 | ** packaging of this file. Please review the following information to |
| 22 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 24 | ** |
| 25 | ** GNU General Public License Usage |
| 26 | ** Alternatively, this file may be used under the terms of the GNU |
| 27 | ** General Public License version 2.0 or (at your option) the GNU General |
| 28 | ** Public license version 3 or any later version approved by the KDE Free |
| 29 | ** Qt Foundation. The licenses are as published by the Free Software |
| 30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 31 | ** included in the packaging of this file. Please review the following |
| 32 | ** information to ensure the GNU General Public License requirements will |
| 33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 35 | ** |
| 36 | ** $QT_END_LICENSE$ |
| 37 | ** |
| 38 | ****************************************************************************/ |
| 39 | |
| 40 | /* |
| 41 | |
| 42 | | *property* | *Used for type* | |
| 43 | | period | QEasingCurve::{In,Out,InOut,OutIn}Elastic | |
| 44 | | amplitude | QEasingCurve::{In,Out,InOut,OutIn}Bounce, QEasingCurve::{In,Out,InOut,OutIn}Elastic | |
| 45 | | overshoot | QEasingCurve::{In,Out,InOut,OutIn}Back | |
| 46 | |
| 47 | */ |
| 48 | |
| 49 | |
| 50 | |
| 51 | |
| 52 | /*! |
| 53 | \class QEasingCurve |
| 54 | \inmodule QtCore |
| 55 | \since 4.6 |
| 56 | \ingroup animation |
| 57 | \brief The QEasingCurve class provides easing curves for controlling animation. |
| 58 | |
| 59 | Easing curves describe a function that controls how the speed of the interpolation |
| 60 | between 0 and 1 should be. Easing curves allow transitions from |
| 61 | one value to another to appear more natural than a simple constant speed would allow. |
| 62 | The QEasingCurve class is usually used in conjunction with the QVariantAnimation and |
| 63 | QPropertyAnimation classes but can be used on its own. It is usually used to accelerate |
| 64 | the interpolation from zero velocity (ease in) or decelerate to zero velocity (ease out). |
| 65 | Ease in and ease out can also be combined in the same easing curve. |
| 66 | |
| 67 | To calculate the speed of the interpolation, the easing curve provides the function |
| 68 | valueForProgress(), where the \a progress argument specifies the progress of the |
| 69 | interpolation: 0 is the start value of the interpolation, 1 is the end value of the |
| 70 | interpolation. The returned value is the effective progress of the interpolation. |
| 71 | If the returned value is the same as the input value for all input values the easing |
| 72 | curve is a linear curve. This is the default behaviour. |
| 73 | |
| 74 | For example, |
| 75 | |
| 76 | \snippet code/src_corelib_tools_qeasingcurve.cpp 0 |
| 77 | |
| 78 | will print the effective progress of the interpolation between 0 and 1. |
| 79 | |
| 80 | When using a QPropertyAnimation, the associated easing curve will be used to control the |
| 81 | progress of the interpolation between startValue and endValue: |
| 82 | |
| 83 | \snippet code/src_corelib_tools_qeasingcurve.cpp 1 |
| 84 | |
| 85 | The ability to set an amplitude, overshoot, or period depends on |
| 86 | the QEasingCurve type. Amplitude access is available to curves |
| 87 | that behave as springs such as elastic and bounce curves. Changing |
| 88 | the amplitude changes the height of the curve. Period access is |
| 89 | only available to elastic curves and setting a higher period slows |
| 90 | the rate of bounce. Only curves that have "boomerang" behaviors |
| 91 | such as the InBack, OutBack, InOutBack, and OutInBack have |
| 92 | overshoot settings. These curves will interpolate beyond the end |
| 93 | points and return to the end point, acting similar to a boomerang. |
| 94 | |
| 95 | The \l{Easing Curves Example} contains samples of QEasingCurve |
| 96 | types and lets you change the curve settings. |
| 97 | |
| 98 | */ |
| 99 | |
| 100 | /*! |
| 101 | \enum QEasingCurve::Type |
| 102 | |
| 103 | The type of easing curve. |
| 104 | |
| 105 | \value Linear \image qeasingcurve-linear.png |
| 106 | \caption Easing curve for a linear (t) function: |
| 107 | velocity is constant. |
| 108 | \value InQuad \image qeasingcurve-inquad.png |
| 109 | \caption Easing curve for a quadratic (t^2) function: |
| 110 | accelerating from zero velocity. |
| 111 | \value OutQuad \image qeasingcurve-outquad.png |
| 112 | \caption Easing curve for a quadratic (t^2) function: |
| 113 | decelerating to zero velocity. |
| 114 | \value InOutQuad \image qeasingcurve-inoutquad.png |
| 115 | \caption Easing curve for a quadratic (t^2) function: |
| 116 | acceleration until halfway, then deceleration. |
| 117 | \value OutInQuad \image qeasingcurve-outinquad.png |
| 118 | \caption Easing curve for a quadratic (t^2) function: |
| 119 | deceleration until halfway, then acceleration. |
| 120 | \value InCubic \image qeasingcurve-incubic.png |
| 121 | \caption Easing curve for a cubic (t^3) function: |
| 122 | accelerating from zero velocity. |
| 123 | \value OutCubic \image qeasingcurve-outcubic.png |
| 124 | \caption Easing curve for a cubic (t^3) function: |
| 125 | decelerating to zero velocity. |
| 126 | \value InOutCubic \image qeasingcurve-inoutcubic.png |
| 127 | \caption Easing curve for a cubic (t^3) function: |
| 128 | acceleration until halfway, then deceleration. |
| 129 | \value OutInCubic \image qeasingcurve-outincubic.png |
| 130 | \caption Easing curve for a cubic (t^3) function: |
| 131 | deceleration until halfway, then acceleration. |
| 132 | \value InQuart \image qeasingcurve-inquart.png |
| 133 | \caption Easing curve for a quartic (t^4) function: |
| 134 | accelerating from zero velocity. |
| 135 | \value OutQuart \image qeasingcurve-outquart.png |
| 136 | \caption |
| 137 | Easing curve for a quartic (t^4) function: |
| 138 | decelerating to zero velocity. |
| 139 | \value InOutQuart \image qeasingcurve-inoutquart.png |
| 140 | \caption |
| 141 | Easing curve for a quartic (t^4) function: |
| 142 | acceleration until halfway, then deceleration. |
| 143 | \value OutInQuart \image qeasingcurve-outinquart.png |
| 144 | \caption |
| 145 | Easing curve for a quartic (t^4) function: |
| 146 | deceleration until halfway, then acceleration. |
| 147 | \value InQuint \image qeasingcurve-inquint.png |
| 148 | \caption |
| 149 | Easing curve for a quintic (t^5) easing |
| 150 | in: accelerating from zero velocity. |
| 151 | \value OutQuint \image qeasingcurve-outquint.png |
| 152 | \caption |
| 153 | Easing curve for a quintic (t^5) function: |
| 154 | decelerating to zero velocity. |
| 155 | \value InOutQuint \image qeasingcurve-inoutquint.png |
| 156 | \caption |
| 157 | Easing curve for a quintic (t^5) function: |
| 158 | acceleration until halfway, then deceleration. |
| 159 | \value OutInQuint \image qeasingcurve-outinquint.png |
| 160 | \caption |
| 161 | Easing curve for a quintic (t^5) function: |
| 162 | deceleration until halfway, then acceleration. |
| 163 | \value InSine \image qeasingcurve-insine.png |
| 164 | \caption |
| 165 | Easing curve for a sinusoidal (sin(t)) function: |
| 166 | accelerating from zero velocity. |
| 167 | \value OutSine \image qeasingcurve-outsine.png |
| 168 | \caption |
| 169 | Easing curve for a sinusoidal (sin(t)) function: |
| 170 | decelerating to zero velocity. |
| 171 | \value InOutSine \image qeasingcurve-inoutsine.png |
| 172 | \caption |
| 173 | Easing curve for a sinusoidal (sin(t)) function: |
| 174 | acceleration until halfway, then deceleration. |
| 175 | \value OutInSine \image qeasingcurve-outinsine.png |
| 176 | \caption |
| 177 | Easing curve for a sinusoidal (sin(t)) function: |
| 178 | deceleration until halfway, then acceleration. |
| 179 | \value InExpo \image qeasingcurve-inexpo.png |
| 180 | \caption |
| 181 | Easing curve for an exponential (2^t) function: |
| 182 | accelerating from zero velocity. |
| 183 | \value OutExpo \image qeasingcurve-outexpo.png |
| 184 | \caption |
| 185 | Easing curve for an exponential (2^t) function: |
| 186 | decelerating to zero velocity. |
| 187 | \value InOutExpo \image qeasingcurve-inoutexpo.png |
| 188 | \caption |
| 189 | Easing curve for an exponential (2^t) function: |
| 190 | acceleration until halfway, then deceleration. |
| 191 | \value OutInExpo \image qeasingcurve-outinexpo.png |
| 192 | \caption |
| 193 | Easing curve for an exponential (2^t) function: |
| 194 | deceleration until halfway, then acceleration. |
| 195 | \value InCirc \image qeasingcurve-incirc.png |
| 196 | \caption |
| 197 | Easing curve for a circular (sqrt(1-t^2)) function: |
| 198 | accelerating from zero velocity. |
| 199 | \value OutCirc \image qeasingcurve-outcirc.png |
| 200 | \caption |
| 201 | Easing curve for a circular (sqrt(1-t^2)) function: |
| 202 | decelerating to zero velocity. |
| 203 | \value InOutCirc \image qeasingcurve-inoutcirc.png |
| 204 | \caption |
| 205 | Easing curve for a circular (sqrt(1-t^2)) function: |
| 206 | acceleration until halfway, then deceleration. |
| 207 | \value OutInCirc \image qeasingcurve-outincirc.png |
| 208 | \caption |
| 209 | Easing curve for a circular (sqrt(1-t^2)) function: |
| 210 | deceleration until halfway, then acceleration. |
| 211 | \value InElastic \image qeasingcurve-inelastic.png |
| 212 | \caption |
| 213 | Easing curve for an elastic |
| 214 | (exponentially decaying sine wave) function: |
| 215 | accelerating from zero velocity. The peak amplitude |
| 216 | can be set with the \e amplitude parameter, and the |
| 217 | period of decay by the \e period parameter. |
| 218 | \value OutElastic \image qeasingcurve-outelastic.png |
| 219 | \caption |
| 220 | Easing curve for an elastic |
| 221 | (exponentially decaying sine wave) function: |
| 222 | decelerating to zero velocity. The peak amplitude |
| 223 | can be set with the \e amplitude parameter, and the |
| 224 | period of decay by the \e period parameter. |
| 225 | \value InOutElastic \image qeasingcurve-inoutelastic.png |
| 226 | \caption |
| 227 | Easing curve for an elastic |
| 228 | (exponentially decaying sine wave) function: |
| 229 | acceleration until halfway, then deceleration. |
| 230 | \value OutInElastic \image qeasingcurve-outinelastic.png |
| 231 | \caption |
| 232 | Easing curve for an elastic |
| 233 | (exponentially decaying sine wave) function: |
| 234 | deceleration until halfway, then acceleration. |
| 235 | \value InBack \image qeasingcurve-inback.png |
| 236 | \caption |
| 237 | Easing curve for a back (overshooting |
| 238 | cubic function: (s+1)*t^3 - s*t^2) easing in: |
| 239 | accelerating from zero velocity. |
| 240 | \value OutBack \image qeasingcurve-outback.png |
| 241 | \caption |
| 242 | Easing curve for a back (overshooting |
| 243 | cubic function: (s+1)*t^3 - s*t^2) easing out: |
| 244 | decelerating to zero velocity. |
| 245 | \value InOutBack \image qeasingcurve-inoutback.png |
| 246 | \caption |
| 247 | Easing curve for a back (overshooting |
| 248 | cubic function: (s+1)*t^3 - s*t^2) easing in/out: |
| 249 | acceleration until halfway, then deceleration. |
| 250 | \value OutInBack \image qeasingcurve-outinback.png |
| 251 | \caption |
| 252 | Easing curve for a back (overshooting |
| 253 | cubic easing: (s+1)*t^3 - s*t^2) easing out/in: |
| 254 | deceleration until halfway, then acceleration. |
| 255 | \value InBounce \image qeasingcurve-inbounce.png |
| 256 | \caption |
| 257 | Easing curve for a bounce (exponentially |
| 258 | decaying parabolic bounce) function: accelerating |
| 259 | from zero velocity. |
| 260 | \value OutBounce \image qeasingcurve-outbounce.png |
| 261 | \caption |
| 262 | Easing curve for a bounce (exponentially |
| 263 | decaying parabolic bounce) function: decelerating |
| 264 | from zero velocity. |
| 265 | \value InOutBounce \image qeasingcurve-inoutbounce.png |
| 266 | \caption |
| 267 | Easing curve for a bounce (exponentially |
| 268 | decaying parabolic bounce) function easing in/out: |
| 269 | acceleration until halfway, then deceleration. |
| 270 | \value OutInBounce \image qeasingcurve-outinbounce.png |
| 271 | \caption |
| 272 | Easing curve for a bounce (exponentially |
| 273 | decaying parabolic bounce) function easing out/in: |
| 274 | deceleration until halfway, then acceleration. |
| 275 | \omitvalue InCurve |
| 276 | \omitvalue OutCurve |
| 277 | \omitvalue SineCurve |
| 278 | \omitvalue CosineCurve |
| 279 | \value BezierSpline Allows defining a custom easing curve using a cubic bezier spline |
| 280 | \sa addCubicBezierSegment() |
| 281 | \value TCBSpline Allows defining a custom easing curve using a TCB spline |
| 282 | \sa addTCBSegment() |
| 283 | \value Custom This is returned if the user specified a custom curve type with |
| 284 | setCustomType(). Note that you cannot call setType() with this value, |
| 285 | but type() can return it. |
| 286 | \omitvalue NCurveTypes |
| 287 | */ |
| 288 | |
| 289 | /*! |
| 290 | \typedef QEasingCurve::EasingFunction |
| 291 | |
| 292 | This is a typedef for a pointer to a function with the following |
| 293 | signature: |
| 294 | |
| 295 | \snippet code/src_corelib_tools_qeasingcurve.cpp typedef |
| 296 | */ |
| 297 | |
| 298 | #include "qeasingcurve.h" |
| 299 | #include <cmath> |
| 300 | |
| 301 | #ifndef QT_NO_DEBUG_STREAM |
| 302 | #include <QtCore/qdebug.h> |
| 303 | #include <QtCore/qstring.h> |
| 304 | #endif |
| 305 | |
| 306 | #ifndef QT_NO_DATASTREAM |
| 307 | #include <QtCore/qdatastream.h> |
| 308 | #endif |
| 309 | |
| 310 | #include <QtCore/qpoint.h> |
| 311 | #include <QtCore/qvector.h> |
| 312 | |
| 313 | QT_BEGIN_NAMESPACE |
| 314 | |
| 315 | static bool isConfigFunction(QEasingCurve::Type type) |
| 316 | { |
| 317 | return (type >= QEasingCurve::InElastic |
| 318 | && type <= QEasingCurve::OutInBounce) || |
| 319 | type == QEasingCurve::BezierSpline || |
| 320 | type == QEasingCurve::TCBSpline; |
| 321 | } |
| 322 | |
| 323 | struct TCBPoint { |
| 324 | QPointF _point; |
| 325 | qreal _t; |
| 326 | qreal _c; |
| 327 | qreal _b; |
| 328 | |
| 329 | TCBPoint() {} |
| 330 | TCBPoint(QPointF point, qreal t, qreal c, qreal b) : _point(point), _t(t), _c(c), _b(b) {} |
| 331 | |
| 332 | bool operator==(const TCBPoint &other) const |
| 333 | { |
| 334 | return _point == other._point && |
| 335 | qFuzzyCompare(p1: _t, p2: other._t) && |
| 336 | qFuzzyCompare(p1: _c, p2: other._c) && |
| 337 | qFuzzyCompare(p1: _b, p2: other._b); |
| 338 | } |
| 339 | }; |
| 340 | Q_DECLARE_TYPEINFO(TCBPoint, Q_PRIMITIVE_TYPE); |
| 341 | |
| 342 | QDataStream &operator<<(QDataStream &stream, const TCBPoint &point) |
| 343 | { |
| 344 | stream << point._point |
| 345 | << point._t |
| 346 | << point._c |
| 347 | << point._b; |
| 348 | return stream; |
| 349 | } |
| 350 | |
| 351 | QDataStream &operator>>(QDataStream &stream, TCBPoint &point) |
| 352 | { |
| 353 | stream >> point._point |
| 354 | >> point._t |
| 355 | >> point._c |
| 356 | >> point._b; |
| 357 | return stream; |
| 358 | } |
| 359 | |
| 360 | typedef QVector<TCBPoint> TCBPoints; |
| 361 | |
| 362 | class QEasingCurveFunction |
| 363 | { |
| 364 | public: |
| 365 | QEasingCurveFunction(QEasingCurve::Type type, qreal period = 0.3, qreal amplitude = 1.0, |
| 366 | qreal overshoot = 1.70158) |
| 367 | : _t(type), _p(period), _a(amplitude), _o(overshoot) |
| 368 | { } |
| 369 | virtual ~QEasingCurveFunction() {} |
| 370 | virtual qreal value(qreal t); |
| 371 | virtual QEasingCurveFunction *copy() const; |
| 372 | bool operator==(const QEasingCurveFunction &other) const; |
| 373 | |
| 374 | QEasingCurve::Type _t; |
| 375 | qreal _p; |
| 376 | qreal _a; |
| 377 | qreal _o; |
| 378 | QVector<QPointF> _bezierCurves; |
| 379 | TCBPoints _tcbPoints; |
| 380 | |
| 381 | }; |
| 382 | |
| 383 | QDataStream &operator<<(QDataStream &stream, QEasingCurveFunction *func) |
| 384 | { |
| 385 | if (func) { |
| 386 | stream << func->_p; |
| 387 | stream << func->_a; |
| 388 | stream << func->_o; |
| 389 | if (stream.version() > QDataStream::Qt_5_12) { |
| 390 | stream << func->_bezierCurves; |
| 391 | stream << func->_tcbPoints; |
| 392 | } |
| 393 | } |
| 394 | return stream; |
| 395 | } |
| 396 | |
| 397 | QDataStream &operator>>(QDataStream &stream, QEasingCurveFunction *func) |
| 398 | { |
| 399 | if (func) { |
| 400 | stream >> func->_p; |
| 401 | stream >> func->_a; |
| 402 | stream >> func->_o; |
| 403 | if (stream.version() > QDataStream::Qt_5_12) { |
| 404 | stream >> func->_bezierCurves; |
| 405 | stream >> func->_tcbPoints; |
| 406 | } |
| 407 | } |
| 408 | return stream; |
| 409 | } |
| 410 | |
| 411 | static QEasingCurve::EasingFunction curveToFunc(QEasingCurve::Type curve); |
| 412 | |
| 413 | qreal QEasingCurveFunction::value(qreal t) |
| 414 | { |
| 415 | QEasingCurve::EasingFunction func = curveToFunc(curve: _t); |
| 416 | return func(t); |
| 417 | } |
| 418 | |
| 419 | QEasingCurveFunction *QEasingCurveFunction::copy() const |
| 420 | { |
| 421 | QEasingCurveFunction *rv = new QEasingCurveFunction(_t, _p, _a, _o); |
| 422 | rv->_bezierCurves = _bezierCurves; |
| 423 | rv->_tcbPoints = _tcbPoints; |
| 424 | return rv; |
| 425 | } |
| 426 | |
| 427 | bool QEasingCurveFunction::operator==(const QEasingCurveFunction &other) const |
| 428 | { |
| 429 | return _t == other._t && |
| 430 | qFuzzyCompare(p1: _p, p2: other._p) && |
| 431 | qFuzzyCompare(p1: _a, p2: other._a) && |
| 432 | qFuzzyCompare(p1: _o, p2: other._o) && |
| 433 | _bezierCurves == other._bezierCurves && |
| 434 | _tcbPoints == other._tcbPoints; |
| 435 | } |
| 436 | |
| 437 | QT_BEGIN_INCLUDE_NAMESPACE |
| 438 | #include "../../3rdparty/easing/easing.cpp" |
| 439 | QT_END_INCLUDE_NAMESPACE |
| 440 | |
| 441 | class QEasingCurvePrivate |
| 442 | { |
| 443 | public: |
| 444 | QEasingCurvePrivate() |
| 445 | : type(QEasingCurve::Linear), |
| 446 | config(nullptr), |
| 447 | func(&easeNone) |
| 448 | { } |
| 449 | QEasingCurvePrivate(const QEasingCurvePrivate &other) |
| 450 | : type(other.type), |
| 451 | config(other.config ? other.config->copy() : nullptr), |
| 452 | func(other.func) |
| 453 | { } |
| 454 | ~QEasingCurvePrivate() { delete config; } |
| 455 | void setType_helper(QEasingCurve::Type); |
| 456 | |
| 457 | QEasingCurve::Type type; |
| 458 | QEasingCurveFunction *config; |
| 459 | QEasingCurve::EasingFunction func; |
| 460 | }; |
| 461 | |
| 462 | struct BezierEase : public QEasingCurveFunction |
| 463 | { |
| 464 | struct SingleCubicBezier { |
| 465 | qreal p0x, p0y; |
| 466 | qreal p1x, p1y; |
| 467 | qreal p2x, p2y; |
| 468 | qreal p3x, p3y; |
| 469 | }; |
| 470 | |
| 471 | QVector<SingleCubicBezier> _curves; |
| 472 | QVector<qreal> _intervals; |
| 473 | int _curveCount; |
| 474 | bool _init; |
| 475 | bool _valid; |
| 476 | |
| 477 | BezierEase(QEasingCurve::Type type = QEasingCurve::BezierSpline) |
| 478 | : QEasingCurveFunction(type), _curves(10), _intervals(10), _init(false), _valid(false) |
| 479 | { } |
| 480 | |
| 481 | void init() |
| 482 | { |
| 483 | if (_bezierCurves.constLast() == QPointF(1.0, 1.0)) { |
| 484 | _init = true; |
| 485 | _curveCount = _bezierCurves.count() / 3; |
| 486 | |
| 487 | for (int i=0; i < _curveCount; i++) { |
| 488 | _intervals[i] = _bezierCurves.at(i: i * 3 + 2).x(); |
| 489 | |
| 490 | if (i == 0) { |
| 491 | _curves[0].p0x = 0.0; |
| 492 | _curves[0].p0y = 0.0; |
| 493 | |
| 494 | _curves[0].p1x = _bezierCurves.at(i: 0).x(); |
| 495 | _curves[0].p1y = _bezierCurves.at(i: 0).y(); |
| 496 | |
| 497 | _curves[0].p2x = _bezierCurves.at(i: 1).x(); |
| 498 | _curves[0].p2y = _bezierCurves.at(i: 1).y(); |
| 499 | |
| 500 | _curves[0].p3x = _bezierCurves.at(i: 2).x(); |
| 501 | _curves[0].p3y = _bezierCurves.at(i: 2).y(); |
| 502 | |
| 503 | } else if (i == (_curveCount - 1)) { |
| 504 | _curves[i].p0x = _bezierCurves.at(i: _bezierCurves.count() - 4).x(); |
| 505 | _curves[i].p0y = _bezierCurves.at(i: _bezierCurves.count() - 4).y(); |
| 506 | |
| 507 | _curves[i].p1x = _bezierCurves.at(i: _bezierCurves.count() - 3).x(); |
| 508 | _curves[i].p1y = _bezierCurves.at(i: _bezierCurves.count() - 3).y(); |
| 509 | |
| 510 | _curves[i].p2x = _bezierCurves.at(i: _bezierCurves.count() - 2).x(); |
| 511 | _curves[i].p2y = _bezierCurves.at(i: _bezierCurves.count() - 2).y(); |
| 512 | |
| 513 | _curves[i].p3x = _bezierCurves.at(i: _bezierCurves.count() - 1).x(); |
| 514 | _curves[i].p3y = _bezierCurves.at(i: _bezierCurves.count() - 1).y(); |
| 515 | } else { |
| 516 | _curves[i].p0x = _bezierCurves.at(i: i * 3 - 1).x(); |
| 517 | _curves[i].p0y = _bezierCurves.at(i: i * 3 - 1).y(); |
| 518 | |
| 519 | _curves[i].p1x = _bezierCurves.at(i: i * 3).x(); |
| 520 | _curves[i].p1y = _bezierCurves.at(i: i * 3).y(); |
| 521 | |
| 522 | _curves[i].p2x = _bezierCurves.at(i: i * 3 + 1).x(); |
| 523 | _curves[i].p2y = _bezierCurves.at(i: i * 3 + 1).y(); |
| 524 | |
| 525 | _curves[i].p3x = _bezierCurves.at(i: i * 3 + 2).x(); |
| 526 | _curves[i].p3y = _bezierCurves.at(i: i * 3 + 2).y(); |
| 527 | } |
| 528 | } |
| 529 | _valid = true; |
| 530 | } else { |
| 531 | _valid = false; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | QEasingCurveFunction *copy() const override |
| 536 | { |
| 537 | BezierEase *rv = new BezierEase(); |
| 538 | rv->_t = _t; |
| 539 | rv->_p = _p; |
| 540 | rv->_a = _a; |
| 541 | rv->_o = _o; |
| 542 | rv->_bezierCurves = _bezierCurves; |
| 543 | rv->_tcbPoints = _tcbPoints; |
| 544 | return rv; |
| 545 | } |
| 546 | |
| 547 | void getBezierSegment(SingleCubicBezier * &singleCubicBezier, qreal x) |
| 548 | { |
| 549 | |
| 550 | int currentSegment = 0; |
| 551 | |
| 552 | while (currentSegment < _curveCount) { |
| 553 | if (x <= _intervals.data()[currentSegment]) |
| 554 | break; |
| 555 | currentSegment++; |
| 556 | } |
| 557 | |
| 558 | singleCubicBezier = &_curves.data()[currentSegment]; |
| 559 | } |
| 560 | |
| 561 | |
| 562 | qreal static inline newtonIteration(const SingleCubicBezier &singleCubicBezier, qreal t, qreal x) |
| 563 | { |
| 564 | qreal currentXValue = evaluateForX(singleCubicBezier, t); |
| 565 | |
| 566 | const qreal newT = t - (currentXValue - x) / evaluateDerivateForX(singleCubicBezier, t); |
| 567 | |
| 568 | return newT; |
| 569 | } |
| 570 | |
| 571 | qreal value(qreal x) override |
| 572 | { |
| 573 | Q_ASSERT(_bezierCurves.count() % 3 == 0); |
| 574 | |
| 575 | if (_bezierCurves.isEmpty()) { |
| 576 | return x; |
| 577 | } |
| 578 | |
| 579 | if (!_init) |
| 580 | init(); |
| 581 | |
| 582 | if (!_valid) { |
| 583 | qWarning(msg: "QEasingCurve: Invalid bezier curve" ); |
| 584 | return x; |
| 585 | } |
| 586 | |
| 587 | // The bezier computation is not always precise on the endpoints, so handle explicitly |
| 588 | if (!(x > 0)) |
| 589 | return 0; |
| 590 | if (!(x < 1)) |
| 591 | return 1; |
| 592 | |
| 593 | SingleCubicBezier *singleCubicBezier = nullptr; |
| 594 | getBezierSegment(singleCubicBezier, x); |
| 595 | |
| 596 | return evaluateSegmentForY(singleCubicBezier: *singleCubicBezier, t: findTForX(singleCubicBezier: *singleCubicBezier, x)); |
| 597 | } |
| 598 | |
| 599 | qreal static inline evaluateSegmentForY(const SingleCubicBezier &singleCubicBezier, qreal t) |
| 600 | { |
| 601 | const qreal p0 = singleCubicBezier.p0y; |
| 602 | const qreal p1 = singleCubicBezier.p1y; |
| 603 | const qreal p2 = singleCubicBezier.p2y; |
| 604 | const qreal p3 = singleCubicBezier.p3y; |
| 605 | |
| 606 | const qreal s = 1 - t; |
| 607 | |
| 608 | const qreal s_squared = s*s; |
| 609 | const qreal t_squared = t*t; |
| 610 | |
| 611 | const qreal s_cubic = s_squared * s; |
| 612 | const qreal t_cubic = t_squared * t; |
| 613 | |
| 614 | return s_cubic * p0 + 3 * s_squared * t * p1 + 3 * s * t_squared * p2 + t_cubic * p3; |
| 615 | } |
| 616 | |
| 617 | qreal static inline evaluateForX(const SingleCubicBezier &singleCubicBezier, qreal t) |
| 618 | { |
| 619 | const qreal p0 = singleCubicBezier.p0x; |
| 620 | const qreal p1 = singleCubicBezier.p1x; |
| 621 | const qreal p2 = singleCubicBezier.p2x; |
| 622 | const qreal p3 = singleCubicBezier.p3x; |
| 623 | |
| 624 | const qreal s = 1 - t; |
| 625 | |
| 626 | const qreal s_squared = s*s; |
| 627 | const qreal t_squared = t*t; |
| 628 | |
| 629 | const qreal s_cubic = s_squared * s; |
| 630 | const qreal t_cubic = t_squared * t; |
| 631 | |
| 632 | return s_cubic * p0 + 3 * s_squared * t * p1 + 3 * s * t_squared * p2 + t_cubic * p3; |
| 633 | } |
| 634 | |
| 635 | qreal static inline evaluateDerivateForX(const SingleCubicBezier &singleCubicBezier, qreal t) |
| 636 | { |
| 637 | const qreal p0 = singleCubicBezier.p0x; |
| 638 | const qreal p1 = singleCubicBezier.p1x; |
| 639 | const qreal p2 = singleCubicBezier.p2x; |
| 640 | const qreal p3 = singleCubicBezier.p3x; |
| 641 | |
| 642 | const qreal t_squared = t*t; |
| 643 | |
| 644 | return -3*p0 + 3*p1 + 6*p0*t - 12*p1*t + 6*p2*t + 3*p3*t_squared - 3*p0*t_squared + 9*p1*t_squared - 9*p2*t_squared; |
| 645 | } |
| 646 | |
| 647 | qreal static inline _cbrt(qreal d) |
| 648 | { |
| 649 | qreal sign = 1; |
| 650 | if (d < 0) |
| 651 | sign = -1; |
| 652 | d = d * sign; |
| 653 | |
| 654 | qreal t = _fast_cbrt(d); |
| 655 | |
| 656 | //one step of Halley's Method to get a better approximation |
| 657 | const qreal t_cubic = t * t * t; |
| 658 | const qreal f = t_cubic + t_cubic + d; |
| 659 | if (f != qreal(0.0)) |
| 660 | t = t * (t_cubic + d + d) / f; |
| 661 | |
| 662 | //another step |
| 663 | /*qreal t_i = t; |
| 664 | t_i_cubic = pow(t_i, 3); |
| 665 | t = t_i * (t_i_cubic + d + d) / (t_i_cubic + t_i_cubic + d);*/ |
| 666 | |
| 667 | return t * sign; |
| 668 | } |
| 669 | |
| 670 | float static inline _fast_cbrt(float x) |
| 671 | { |
| 672 | union { |
| 673 | float f; |
| 674 | quint32 i; |
| 675 | } ux; |
| 676 | |
| 677 | const unsigned int B1 = 709921077; |
| 678 | |
| 679 | ux.f = x; |
| 680 | ux.i = (ux.i / 3 + B1); |
| 681 | |
| 682 | return ux.f; |
| 683 | } |
| 684 | |
| 685 | double static inline _fast_cbrt(double d) |
| 686 | { |
| 687 | union { |
| 688 | double d; |
| 689 | quint32 pt[2]; |
| 690 | } ut, ux; |
| 691 | |
| 692 | const unsigned int B1 = 715094163; |
| 693 | |
| 694 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
| 695 | const int h0 = 1; |
| 696 | #else |
| 697 | const int h0 = 0; |
| 698 | #endif |
| 699 | ut.d = 0.0; |
| 700 | ux.d = d; |
| 701 | |
| 702 | quint32 hx = ux.pt[h0]; //high word of d |
| 703 | ut.pt[h0] = hx / 3 + B1; |
| 704 | |
| 705 | return ut.d; |
| 706 | } |
| 707 | |
| 708 | qreal static inline _acos(qreal x) |
| 709 | { |
| 710 | return std::sqrt(x: 1-x)*(1.5707963267948966192313216916398f + x*(-0.213300989f + x*(0.077980478f + x*-0.02164095f))); |
| 711 | } |
| 712 | |
| 713 | qreal static inline _cos(qreal x) //super fast _cos |
| 714 | { |
| 715 | const qreal pi_times2 = 2 * M_PI; |
| 716 | const qreal pi_neg = -1 * M_PI; |
| 717 | const qreal pi_by2 = M_PI / 2.0; |
| 718 | |
| 719 | x += pi_by2; //the polynom is for sin |
| 720 | |
| 721 | if (x < pi_neg) |
| 722 | x += pi_times2; |
| 723 | else if (x > M_PI) |
| 724 | x -= pi_times2; |
| 725 | |
| 726 | const qreal a = 0.405284735; |
| 727 | const qreal b = 1.27323954; |
| 728 | |
| 729 | const qreal x_squared = x * x; |
| 730 | |
| 731 | if (x < 0) { |
| 732 | qreal cos = b * x + a * x_squared; |
| 733 | |
| 734 | if (cos < 0) |
| 735 | return 0.225 * (cos * -1 * cos - cos) + cos; |
| 736 | return 0.225 * (cos * cos - cos) + cos; |
| 737 | } //else |
| 738 | |
| 739 | qreal cos = b * x - a * x_squared; |
| 740 | |
| 741 | if (cos < 0) |
| 742 | return 0.225 * (cos * 1 *-cos - cos) + cos; |
| 743 | return 0.225 * (cos * cos - cos) + cos; |
| 744 | } |
| 745 | |
| 746 | bool static inline inRange(qreal f) |
| 747 | { |
| 748 | return (f >= -0.01 && f <= 1.01); |
| 749 | } |
| 750 | |
| 751 | void static inline cosacos(qreal x, qreal &s1, qreal &s2, qreal &s3 ) |
| 752 | { |
| 753 | //This function has no proper algebraic representation in real numbers. |
| 754 | //We use approximations instead |
| 755 | |
| 756 | const qreal x_squared = x * x; |
| 757 | const qreal x_plus_one_sqrt = qSqrt(v: 1.0 + x); |
| 758 | const qreal one_minus_x_sqrt = qSqrt(v: 1.0 - x); |
| 759 | |
| 760 | //cos(acos(x) / 3) |
| 761 | //s1 = _cos(_acos(x) / 3); |
| 762 | s1 = 0.463614 - 0.0347815 * x + 0.00218245 * x_squared + 0.402421 * x_plus_one_sqrt; |
| 763 | |
| 764 | //cos(acos((x) - M_PI) / 3) |
| 765 | //s3 = _cos((_acos(x) - M_PI) / 3); |
| 766 | s3 = 0.463614 + 0.402421 * one_minus_x_sqrt + 0.0347815 * x + 0.00218245 * x_squared; |
| 767 | |
| 768 | //cos((acos(x) + M_PI) / 3) |
| 769 | //s2 = _cos((_acos(x) + M_PI) / 3); |
| 770 | s2 = -0.401644 * one_minus_x_sqrt - 0.0686804 * x + 0.401644 * x_plus_one_sqrt; |
| 771 | } |
| 772 | |
| 773 | qreal static inline singleRealSolutionForCubic(qreal a, qreal b, qreal c) |
| 774 | { |
| 775 | //returns the real solutiuon in [0..1] |
| 776 | //We use the Cardano formula |
| 777 | |
| 778 | //substituiton: x = z - a/3 |
| 779 | // z^3+pz+q=0 |
| 780 | |
| 781 | if (c < 0.000001 && c > -0.000001) |
| 782 | return 0; |
| 783 | |
| 784 | const qreal a_by3 = a / 3.0; |
| 785 | |
| 786 | const qreal a_cubic = a * a * a; |
| 787 | |
| 788 | const qreal p = b - a * a_by3; |
| 789 | const qreal q = 2.0 * a_cubic / 27.0 - a * b / 3.0 + c; |
| 790 | |
| 791 | const qreal q_squared = q * q; |
| 792 | const qreal p_cubic = p * p * p; |
| 793 | const qreal D = 0.25 * q_squared + p_cubic / 27.0; |
| 794 | |
| 795 | if (D >= 0) { |
| 796 | const qreal D_sqrt = qSqrt(v: D); |
| 797 | qreal u = _cbrt( d: -q * 0.5 + D_sqrt); |
| 798 | qreal v = _cbrt( d: -q * 0.5 - D_sqrt); |
| 799 | qreal z1 = u + v; |
| 800 | |
| 801 | qreal t1 = z1 - a_by3; |
| 802 | |
| 803 | if (inRange(f: t1)) |
| 804 | return t1; |
| 805 | qreal z2 = -1 *u; |
| 806 | qreal t2 = z2 - a_by3; |
| 807 | return t2; |
| 808 | } |
| 809 | |
| 810 | //casus irreducibilis |
| 811 | const qreal p_minus_sqrt = qSqrt(v: -p); |
| 812 | |
| 813 | //const qreal f = sqrt(4.0 / 3.0 * -p); |
| 814 | const qreal f = qSqrt(v: 4.0 / 3.0) * p_minus_sqrt; |
| 815 | |
| 816 | //const qreal sqrtP = sqrt(27.0 / -p_cubic); |
| 817 | const qreal sqrtP = -3.0*qSqrt(v: 3.0) / (p_minus_sqrt * p); |
| 818 | |
| 819 | |
| 820 | const qreal g = -q * 0.5 * sqrtP; |
| 821 | |
| 822 | qreal s1; |
| 823 | qreal s2; |
| 824 | qreal s3; |
| 825 | |
| 826 | cosacos(x: g, s1, s2, s3); |
| 827 | |
| 828 | qreal z1 = -1* f * s2; |
| 829 | qreal t1 = z1 - a_by3; |
| 830 | if (inRange(f: t1)) |
| 831 | return t1; |
| 832 | |
| 833 | qreal z2 = f * s1; |
| 834 | qreal t2 = z2 - a_by3; |
| 835 | if (inRange(f: t2)) |
| 836 | return t2; |
| 837 | |
| 838 | qreal z3 = -1 * f * s3; |
| 839 | qreal t3 = z3 - a_by3; |
| 840 | return t3; |
| 841 | } |
| 842 | |
| 843 | bool static inline almostZero(qreal value) |
| 844 | { |
| 845 | // 1e-3 might seem excessively fuzzy, but any smaller value will make the |
| 846 | // factors a, b, and c large enough to knock out the cubic solver. |
| 847 | return value > -1e-3 && value < 1e-3; |
| 848 | } |
| 849 | |
| 850 | qreal static inline findTForX(const SingleCubicBezier &singleCubicBezier, qreal x) |
| 851 | { |
| 852 | const qreal p0 = singleCubicBezier.p0x; |
| 853 | const qreal p1 = singleCubicBezier.p1x; |
| 854 | const qreal p2 = singleCubicBezier.p2x; |
| 855 | const qreal p3 = singleCubicBezier.p3x; |
| 856 | |
| 857 | const qreal factorT3 = p3 - p0 + 3 * p1 - 3 * p2; |
| 858 | const qreal factorT2 = 3 * p0 - 6 * p1 + 3 * p2; |
| 859 | const qreal factorT1 = -3 * p0 + 3 * p1; |
| 860 | const qreal factorT0 = p0 - x; |
| 861 | |
| 862 | // Cases for quadratic, linear and invalid equations |
| 863 | if (almostZero(value: factorT3)) { |
| 864 | if (almostZero(value: factorT2)) { |
| 865 | if (almostZero(value: factorT1)) |
| 866 | return 0.0; |
| 867 | |
| 868 | return -factorT0 / factorT1; |
| 869 | } |
| 870 | const qreal discriminant = factorT1 * factorT1 - 4.0 * factorT2 * factorT0; |
| 871 | if (discriminant < 0.0) |
| 872 | return 0.0; |
| 873 | |
| 874 | if (discriminant == 0.0) |
| 875 | return -factorT1 / (2.0 * factorT2); |
| 876 | |
| 877 | const qreal solution1 = (-factorT1 + std::sqrt(x: discriminant)) / (2.0 * factorT2); |
| 878 | if (solution1 >= 0.0 && solution1 <= 1.0) |
| 879 | return solution1; |
| 880 | |
| 881 | const qreal solution2 = (-factorT1 - std::sqrt(x: discriminant)) / (2.0 * factorT2); |
| 882 | if (solution2 >= 0.0 && solution2 <= 1.0) |
| 883 | return solution2; |
| 884 | |
| 885 | return 0.0; |
| 886 | } |
| 887 | |
| 888 | const qreal a = factorT2 / factorT3; |
| 889 | const qreal b = factorT1 / factorT3; |
| 890 | const qreal c = factorT0 / factorT3; |
| 891 | |
| 892 | return singleRealSolutionForCubic(a, b, c); |
| 893 | |
| 894 | //one new iteration to increase numeric stability |
| 895 | //return newtonIteration(singleCubicBezier, t, x); |
| 896 | } |
| 897 | }; |
| 898 | |
| 899 | struct TCBEase : public BezierEase |
| 900 | { |
| 901 | TCBEase() |
| 902 | : BezierEase(QEasingCurve::TCBSpline) |
| 903 | { } |
| 904 | |
| 905 | qreal value(qreal x) override |
| 906 | { |
| 907 | Q_ASSERT(_bezierCurves.count() % 3 == 0); |
| 908 | |
| 909 | if (_bezierCurves.isEmpty()) { |
| 910 | qWarning(msg: "QEasingCurve: Invalid tcb curve" ); |
| 911 | return x; |
| 912 | } |
| 913 | |
| 914 | return BezierEase::value(x); |
| 915 | } |
| 916 | |
| 917 | QEasingCurveFunction *copy() const override |
| 918 | { |
| 919 | return new TCBEase{*this}; |
| 920 | } |
| 921 | }; |
| 922 | |
| 923 | struct ElasticEase : public QEasingCurveFunction |
| 924 | { |
| 925 | ElasticEase(QEasingCurve::Type type) |
| 926 | : QEasingCurveFunction(type, qreal(0.3), qreal(1.0)) |
| 927 | { } |
| 928 | |
| 929 | QEasingCurveFunction *copy() const override |
| 930 | { |
| 931 | ElasticEase *rv = new ElasticEase(_t); |
| 932 | rv->_p = _p; |
| 933 | rv->_a = _a; |
| 934 | rv->_bezierCurves = _bezierCurves; |
| 935 | rv->_tcbPoints = _tcbPoints; |
| 936 | return rv; |
| 937 | } |
| 938 | |
| 939 | qreal value(qreal t) override |
| 940 | { |
| 941 | qreal p = (_p < 0) ? qreal(0.3) : _p; |
| 942 | qreal a = (_a < 0) ? qreal(1.0) : _a; |
| 943 | switch(_t) { |
| 944 | case QEasingCurve::InElastic: |
| 945 | return easeInElastic(t, a, p); |
| 946 | case QEasingCurve::OutElastic: |
| 947 | return easeOutElastic(t, a, p); |
| 948 | case QEasingCurve::InOutElastic: |
| 949 | return easeInOutElastic(t, a, p); |
| 950 | case QEasingCurve::OutInElastic: |
| 951 | return easeOutInElastic(t, a, p); |
| 952 | default: |
| 953 | return t; |
| 954 | } |
| 955 | } |
| 956 | }; |
| 957 | |
| 958 | struct BounceEase : public QEasingCurveFunction |
| 959 | { |
| 960 | BounceEase(QEasingCurve::Type type) |
| 961 | : QEasingCurveFunction(type, qreal(0.3), qreal(1.0)) |
| 962 | { } |
| 963 | |
| 964 | QEasingCurveFunction *copy() const override |
| 965 | { |
| 966 | BounceEase *rv = new BounceEase(_t); |
| 967 | rv->_a = _a; |
| 968 | rv->_bezierCurves = _bezierCurves; |
| 969 | rv->_tcbPoints = _tcbPoints; |
| 970 | return rv; |
| 971 | } |
| 972 | |
| 973 | qreal value(qreal t) override |
| 974 | { |
| 975 | qreal a = (_a < 0) ? qreal(1.0) : _a; |
| 976 | switch(_t) { |
| 977 | case QEasingCurve::InBounce: |
| 978 | return easeInBounce(t, a); |
| 979 | case QEasingCurve::OutBounce: |
| 980 | return easeOutBounce(t, a); |
| 981 | case QEasingCurve::InOutBounce: |
| 982 | return easeInOutBounce(t, a); |
| 983 | case QEasingCurve::OutInBounce: |
| 984 | return easeOutInBounce(t, a); |
| 985 | default: |
| 986 | return t; |
| 987 | } |
| 988 | } |
| 989 | }; |
| 990 | |
| 991 | struct BackEase : public QEasingCurveFunction |
| 992 | { |
| 993 | BackEase(QEasingCurve::Type type) |
| 994 | : QEasingCurveFunction(type, qreal(0.3), qreal(1.0), qreal(1.70158)) |
| 995 | { } |
| 996 | |
| 997 | QEasingCurveFunction *copy() const override |
| 998 | { |
| 999 | BackEase *rv = new BackEase(_t); |
| 1000 | rv->_o = _o; |
| 1001 | rv->_bezierCurves = _bezierCurves; |
| 1002 | rv->_tcbPoints = _tcbPoints; |
| 1003 | return rv; |
| 1004 | } |
| 1005 | |
| 1006 | qreal value(qreal t) override |
| 1007 | { |
| 1008 | // The *Back() functions are not always precise on the endpoints, so handle explicitly |
| 1009 | if (!(t > 0)) |
| 1010 | return 0; |
| 1011 | if (!(t < 1)) |
| 1012 | return 1; |
| 1013 | qreal o = (_o < 0) ? qreal(1.70158) : _o; |
| 1014 | switch(_t) { |
| 1015 | case QEasingCurve::InBack: |
| 1016 | return easeInBack(t, s: o); |
| 1017 | case QEasingCurve::OutBack: |
| 1018 | return easeOutBack(t, s: o); |
| 1019 | case QEasingCurve::InOutBack: |
| 1020 | return easeInOutBack(t, s: o); |
| 1021 | case QEasingCurve::OutInBack: |
| 1022 | return easeOutInBack(t, s: o); |
| 1023 | default: |
| 1024 | return t; |
| 1025 | } |
| 1026 | } |
| 1027 | }; |
| 1028 | |
| 1029 | static QEasingCurve::EasingFunction curveToFunc(QEasingCurve::Type curve) |
| 1030 | { |
| 1031 | switch(curve) { |
| 1032 | case QEasingCurve::Linear: |
| 1033 | return &easeNone; |
| 1034 | case QEasingCurve::InQuad: |
| 1035 | return &easeInQuad; |
| 1036 | case QEasingCurve::OutQuad: |
| 1037 | return &easeOutQuad; |
| 1038 | case QEasingCurve::InOutQuad: |
| 1039 | return &easeInOutQuad; |
| 1040 | case QEasingCurve::OutInQuad: |
| 1041 | return &easeOutInQuad; |
| 1042 | case QEasingCurve::InCubic: |
| 1043 | return &easeInCubic; |
| 1044 | case QEasingCurve::OutCubic: |
| 1045 | return &easeOutCubic; |
| 1046 | case QEasingCurve::InOutCubic: |
| 1047 | return &easeInOutCubic; |
| 1048 | case QEasingCurve::OutInCubic: |
| 1049 | return &easeOutInCubic; |
| 1050 | case QEasingCurve::InQuart: |
| 1051 | return &easeInQuart; |
| 1052 | case QEasingCurve::OutQuart: |
| 1053 | return &easeOutQuart; |
| 1054 | case QEasingCurve::InOutQuart: |
| 1055 | return &easeInOutQuart; |
| 1056 | case QEasingCurve::OutInQuart: |
| 1057 | return &easeOutInQuart; |
| 1058 | case QEasingCurve::InQuint: |
| 1059 | return &easeInQuint; |
| 1060 | case QEasingCurve::OutQuint: |
| 1061 | return &easeOutQuint; |
| 1062 | case QEasingCurve::InOutQuint: |
| 1063 | return &easeInOutQuint; |
| 1064 | case QEasingCurve::OutInQuint: |
| 1065 | return &easeOutInQuint; |
| 1066 | case QEasingCurve::InSine: |
| 1067 | return &easeInSine; |
| 1068 | case QEasingCurve::OutSine: |
| 1069 | return &easeOutSine; |
| 1070 | case QEasingCurve::InOutSine: |
| 1071 | return &easeInOutSine; |
| 1072 | case QEasingCurve::OutInSine: |
| 1073 | return &easeOutInSine; |
| 1074 | case QEasingCurve::InExpo: |
| 1075 | return &easeInExpo; |
| 1076 | case QEasingCurve::OutExpo: |
| 1077 | return &easeOutExpo; |
| 1078 | case QEasingCurve::InOutExpo: |
| 1079 | return &easeInOutExpo; |
| 1080 | case QEasingCurve::OutInExpo: |
| 1081 | return &easeOutInExpo; |
| 1082 | case QEasingCurve::InCirc: |
| 1083 | return &easeInCirc; |
| 1084 | case QEasingCurve::OutCirc: |
| 1085 | return &easeOutCirc; |
| 1086 | case QEasingCurve::InOutCirc: |
| 1087 | return &easeInOutCirc; |
| 1088 | case QEasingCurve::OutInCirc: |
| 1089 | return &easeOutInCirc; |
| 1090 | // Internal - needed for QTimeLine backward-compatibility: |
| 1091 | case QEasingCurve::InCurve: |
| 1092 | return &easeInCurve; |
| 1093 | case QEasingCurve::OutCurve: |
| 1094 | return &easeOutCurve; |
| 1095 | case QEasingCurve::SineCurve: |
| 1096 | return &easeSineCurve; |
| 1097 | case QEasingCurve::CosineCurve: |
| 1098 | return &easeCosineCurve; |
| 1099 | default: |
| 1100 | return nullptr; |
| 1101 | }; |
| 1102 | } |
| 1103 | |
| 1104 | static QEasingCurveFunction *curveToFunctionObject(QEasingCurve::Type type) |
| 1105 | { |
| 1106 | switch(type) { |
| 1107 | case QEasingCurve::InElastic: |
| 1108 | case QEasingCurve::OutElastic: |
| 1109 | case QEasingCurve::InOutElastic: |
| 1110 | case QEasingCurve::OutInElastic: |
| 1111 | return new ElasticEase(type); |
| 1112 | case QEasingCurve::OutBounce: |
| 1113 | case QEasingCurve::InBounce: |
| 1114 | case QEasingCurve::OutInBounce: |
| 1115 | case QEasingCurve::InOutBounce: |
| 1116 | return new BounceEase(type); |
| 1117 | case QEasingCurve::InBack: |
| 1118 | case QEasingCurve::OutBack: |
| 1119 | case QEasingCurve::InOutBack: |
| 1120 | case QEasingCurve::OutInBack: |
| 1121 | return new BackEase(type); |
| 1122 | case QEasingCurve::BezierSpline: |
| 1123 | return new BezierEase; |
| 1124 | case QEasingCurve::TCBSpline: |
| 1125 | return new TCBEase; |
| 1126 | default: |
| 1127 | return new QEasingCurveFunction(type, qreal(0.3), qreal(1.0), qreal(1.70158)); |
| 1128 | } |
| 1129 | |
| 1130 | return nullptr; |
| 1131 | } |
| 1132 | |
| 1133 | /*! |
| 1134 | \fn QEasingCurve::QEasingCurve(QEasingCurve &&other) |
| 1135 | |
| 1136 | Move-constructs a QEasingCurve instance, making it point at the same |
| 1137 | object that \a other was pointing to. |
| 1138 | |
| 1139 | \since 5.2 |
| 1140 | */ |
| 1141 | |
| 1142 | /*! |
| 1143 | Constructs an easing curve of the given \a type. |
| 1144 | */ |
| 1145 | QEasingCurve::QEasingCurve(Type type) |
| 1146 | : d_ptr(new QEasingCurvePrivate) |
| 1147 | { |
| 1148 | setType(type); |
| 1149 | } |
| 1150 | |
| 1151 | /*! |
| 1152 | Construct a copy of \a other. |
| 1153 | */ |
| 1154 | QEasingCurve::QEasingCurve(const QEasingCurve &other) |
| 1155 | : d_ptr(new QEasingCurvePrivate(*other.d_ptr)) |
| 1156 | { |
| 1157 | // ### non-atomic, requires malloc on shallow copy |
| 1158 | } |
| 1159 | |
| 1160 | /*! |
| 1161 | Destructor. |
| 1162 | */ |
| 1163 | |
| 1164 | QEasingCurve::~QEasingCurve() |
| 1165 | { |
| 1166 | delete d_ptr; |
| 1167 | } |
| 1168 | |
| 1169 | /*! |
| 1170 | \fn QEasingCurve &QEasingCurve::operator=(const QEasingCurve &other) |
| 1171 | Copy \a other. |
| 1172 | */ |
| 1173 | |
| 1174 | /*! |
| 1175 | \fn QEasingCurve &QEasingCurve::operator=(QEasingCurve &&other) |
| 1176 | |
| 1177 | Move-assigns \a other to this QEasingCurve instance. |
| 1178 | |
| 1179 | \since 5.2 |
| 1180 | */ |
| 1181 | |
| 1182 | /*! |
| 1183 | \fn void QEasingCurve::swap(QEasingCurve &other) |
| 1184 | \since 5.0 |
| 1185 | |
| 1186 | Swaps curve \a other with this curve. This operation is very |
| 1187 | fast and never fails. |
| 1188 | */ |
| 1189 | |
| 1190 | /*! |
| 1191 | Compare this easing curve with \a other and returns \c true if they are |
| 1192 | equal. It will also compare the properties of a curve. |
| 1193 | */ |
| 1194 | bool QEasingCurve::operator==(const QEasingCurve &other) const |
| 1195 | { |
| 1196 | bool res = d_ptr->func == other.d_ptr->func |
| 1197 | && d_ptr->type == other.d_ptr->type; |
| 1198 | if (res) { |
| 1199 | if (d_ptr->config && other.d_ptr->config) { |
| 1200 | // catch the config content |
| 1201 | res = d_ptr->config->operator==(other: *(other.d_ptr->config)); |
| 1202 | |
| 1203 | } else if (d_ptr->config || other.d_ptr->config) { |
| 1204 | // one one has a config object, which could contain default values |
| 1205 | res = qFuzzyCompare(p1: amplitude(), p2: other.amplitude()) && |
| 1206 | qFuzzyCompare(p1: period(), p2: other.period()) && |
| 1207 | qFuzzyCompare(p1: overshoot(), p2: other.overshoot()); |
| 1208 | } |
| 1209 | } |
| 1210 | return res; |
| 1211 | } |
| 1212 | |
| 1213 | /*! |
| 1214 | \fn bool QEasingCurve::operator!=(const QEasingCurve &other) const |
| 1215 | Compare this easing curve with \a other and returns \c true if they are not equal. |
| 1216 | It will also compare the properties of a curve. |
| 1217 | |
| 1218 | \sa operator==() |
| 1219 | */ |
| 1220 | |
| 1221 | /*! |
| 1222 | Returns the amplitude. This is not applicable for all curve types. |
| 1223 | It is only applicable for bounce and elastic curves (curves of type() |
| 1224 | QEasingCurve::InBounce, QEasingCurve::OutBounce, QEasingCurve::InOutBounce, |
| 1225 | QEasingCurve::OutInBounce, QEasingCurve::InElastic, QEasingCurve::OutElastic, |
| 1226 | QEasingCurve::InOutElastic or QEasingCurve::OutInElastic). |
| 1227 | */ |
| 1228 | qreal QEasingCurve::amplitude() const |
| 1229 | { |
| 1230 | return d_ptr->config ? d_ptr->config->_a : qreal(1.0); |
| 1231 | } |
| 1232 | |
| 1233 | /*! |
| 1234 | Sets the amplitude to \a amplitude. |
| 1235 | |
| 1236 | This will set the amplitude of the bounce or the amplitude of the |
| 1237 | elastic "spring" effect. The higher the number, the higher the amplitude. |
| 1238 | \sa amplitude() |
| 1239 | */ |
| 1240 | void QEasingCurve::setAmplitude(qreal amplitude) |
| 1241 | { |
| 1242 | if (!d_ptr->config) |
| 1243 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
| 1244 | d_ptr->config->_a = amplitude; |
| 1245 | } |
| 1246 | |
| 1247 | /*! |
| 1248 | Returns the period. This is not applicable for all curve types. |
| 1249 | It is only applicable if type() is QEasingCurve::InElastic, QEasingCurve::OutElastic, |
| 1250 | QEasingCurve::InOutElastic or QEasingCurve::OutInElastic. |
| 1251 | */ |
| 1252 | qreal QEasingCurve::period() const |
| 1253 | { |
| 1254 | return d_ptr->config ? d_ptr->config->_p : qreal(0.3); |
| 1255 | } |
| 1256 | |
| 1257 | /*! |
| 1258 | Sets the period to \a period. |
| 1259 | Setting a small period value will give a high frequency of the curve. A |
| 1260 | large period will give it a small frequency. |
| 1261 | |
| 1262 | \sa period() |
| 1263 | */ |
| 1264 | void QEasingCurve::setPeriod(qreal period) |
| 1265 | { |
| 1266 | if (!d_ptr->config) |
| 1267 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
| 1268 | d_ptr->config->_p = period; |
| 1269 | } |
| 1270 | |
| 1271 | /*! |
| 1272 | Returns the overshoot. This is not applicable for all curve types. |
| 1273 | It is only applicable if type() is QEasingCurve::InBack, QEasingCurve::OutBack, |
| 1274 | QEasingCurve::InOutBack or QEasingCurve::OutInBack. |
| 1275 | */ |
| 1276 | qreal QEasingCurve::overshoot() const |
| 1277 | { |
| 1278 | return d_ptr->config ? d_ptr->config->_o : qreal(1.70158) ; |
| 1279 | } |
| 1280 | |
| 1281 | /*! |
| 1282 | Sets the overshoot to \a overshoot. |
| 1283 | |
| 1284 | 0 produces no overshoot, and the default value of 1.70158 produces an overshoot of 10 percent. |
| 1285 | |
| 1286 | \sa overshoot() |
| 1287 | */ |
| 1288 | void QEasingCurve::setOvershoot(qreal overshoot) |
| 1289 | { |
| 1290 | if (!d_ptr->config) |
| 1291 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
| 1292 | d_ptr->config->_o = overshoot; |
| 1293 | } |
| 1294 | |
| 1295 | /*! |
| 1296 | Adds a segment of a cubic bezier spline to define a custom easing curve. |
| 1297 | It is only applicable if type() is QEasingCurve::BezierSpline. |
| 1298 | Note that the spline implicitly starts at (0.0, 0.0) and has to end at (1.0, 1.0) to |
| 1299 | be a valid easing curve. |
| 1300 | \a c1 and \a c2 are the control points used for drawing the curve. |
| 1301 | \a endPoint is the endpoint of the curve. |
| 1302 | */ |
| 1303 | void QEasingCurve::addCubicBezierSegment(const QPointF & c1, const QPointF & c2, const QPointF & endPoint) |
| 1304 | { |
| 1305 | if (!d_ptr->config) |
| 1306 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
| 1307 | d_ptr->config->_bezierCurves << c1 << c2 << endPoint; |
| 1308 | } |
| 1309 | |
| 1310 | QVector<QPointF> static inline tcbToBezier(const TCBPoints &tcbPoints) |
| 1311 | { |
| 1312 | const int count = tcbPoints.count(); |
| 1313 | QVector<QPointF> bezierPoints; |
| 1314 | bezierPoints.reserve(size: 3 * (count - 1)); |
| 1315 | |
| 1316 | for (int i = 1; i < count; i++) { |
| 1317 | const qreal t_0 = tcbPoints.at(i: i - 1)._t; |
| 1318 | const qreal c_0 = tcbPoints.at(i: i - 1)._c; |
| 1319 | qreal b_0 = -1; |
| 1320 | |
| 1321 | qreal const t_1 = tcbPoints.at(i)._t; |
| 1322 | qreal const c_1 = tcbPoints.at(i)._c; |
| 1323 | qreal b_1 = 1; |
| 1324 | |
| 1325 | QPointF c_minusOne; //P1 last segment - not available for the first point |
| 1326 | const QPointF c0(tcbPoints.at(i: i - 1)._point); //P0 Hermite/TBC |
| 1327 | const QPointF c3(tcbPoints.at(i)._point); //P1 Hermite/TBC |
| 1328 | QPointF c4; //P0 next segment - not available for the last point |
| 1329 | |
| 1330 | if (i > 1) { //first point no left tangent |
| 1331 | c_minusOne = tcbPoints.at(i: i - 2)._point; |
| 1332 | b_0 = tcbPoints.at(i: i - 1)._b; |
| 1333 | } |
| 1334 | |
| 1335 | if (i < (count - 1)) { //last point no right tangent |
| 1336 | c4 = tcbPoints.at(i: i + 1)._point; |
| 1337 | b_1 = tcbPoints.at(i)._b; |
| 1338 | } |
| 1339 | |
| 1340 | const qreal dx_0 = 0.5 * (1-t_0) * ((1 + b_0) * (1 + c_0) * (c0.x() - c_minusOne.x()) + (1- b_0) * (1 - c_0) * (c3.x() - c0.x())); |
| 1341 | const qreal dy_0 = 0.5 * (1-t_0) * ((1 + b_0) * (1 + c_0) * (c0.y() - c_minusOne.y()) + (1- b_0) * (1 - c_0) * (c3.y() - c0.y())); |
| 1342 | |
| 1343 | const qreal dx_1 = 0.5 * (1-t_1) * ((1 + b_1) * (1 - c_1) * (c3.x() - c0.x()) + (1 - b_1) * (1 + c_1) * (c4.x() - c3.x())); |
| 1344 | const qreal dy_1 = 0.5 * (1-t_1) * ((1 + b_1) * (1 - c_1) * (c3.y() - c0.y()) + (1 - b_1) * (1 + c_1) * (c4.y() - c3.y())); |
| 1345 | |
| 1346 | const QPointF d_0 = QPointF(dx_0, dy_0); |
| 1347 | const QPointF d_1 = QPointF(dx_1, dy_1); |
| 1348 | |
| 1349 | QPointF c1 = (3 * c0 + d_0) / 3; |
| 1350 | QPointF c2 = (3 * c3 - d_1) / 3; |
| 1351 | bezierPoints << c1 << c2 << c3; |
| 1352 | } |
| 1353 | return bezierPoints; |
| 1354 | } |
| 1355 | |
| 1356 | /*! |
| 1357 | Adds a segment of a TCB bezier spline to define a custom easing curve. |
| 1358 | It is only applicable if type() is QEasingCurve::TCBSpline. |
| 1359 | The spline has to start explitly at (0.0, 0.0) and has to end at (1.0, 1.0) to |
| 1360 | be a valid easing curve. |
| 1361 | The tension \a t changes the length of the tangent vector. |
| 1362 | The continuity \a c changes the sharpness in change between the tangents. |
| 1363 | The bias \a b changes the direction of the tangent vector. |
| 1364 | \a nextPoint is the sample position. |
| 1365 | All three parameters are valid between -1 and 1 and define the |
| 1366 | tangent of the control point. |
| 1367 | If all three parameters are 0 the resulting spline is a Catmull-Rom spline. |
| 1368 | The begin and endpoint always have a bias of -1 and 1, since the outer tangent is not defined. |
| 1369 | */ |
| 1370 | void QEasingCurve::addTCBSegment(const QPointF &nextPoint, qreal t, qreal c, qreal b) |
| 1371 | { |
| 1372 | if (!d_ptr->config) |
| 1373 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
| 1374 | |
| 1375 | d_ptr->config->_tcbPoints.append(t: TCBPoint(nextPoint, t, c ,b)); |
| 1376 | |
| 1377 | if (nextPoint == QPointF(1.0, 1.0)) { |
| 1378 | d_ptr->config->_bezierCurves = tcbToBezier(tcbPoints: d_ptr->config->_tcbPoints); |
| 1379 | d_ptr->config->_tcbPoints.clear(); |
| 1380 | } |
| 1381 | |
| 1382 | } |
| 1383 | |
| 1384 | /*! |
| 1385 | \fn QList<QPointF> QEasingCurve::cubicBezierSpline() const |
| 1386 | \obsolete Use toCubicSpline() instead. |
| 1387 | */ |
| 1388 | |
| 1389 | /*! |
| 1390 | \since 5.0 |
| 1391 | |
| 1392 | Returns the cubicBezierSpline that defines a custom easing curve. |
| 1393 | If the easing curve does not have a custom bezier easing curve the list |
| 1394 | is empty. |
| 1395 | */ |
| 1396 | QVector<QPointF> QEasingCurve::toCubicSpline() const |
| 1397 | { |
| 1398 | return d_ptr->config ? d_ptr->config->_bezierCurves : QVector<QPointF>(); |
| 1399 | } |
| 1400 | |
| 1401 | /*! |
| 1402 | Returns the type of the easing curve. |
| 1403 | */ |
| 1404 | QEasingCurve::Type QEasingCurve::type() const |
| 1405 | { |
| 1406 | return d_ptr->type; |
| 1407 | } |
| 1408 | |
| 1409 | void QEasingCurvePrivate::setType_helper(QEasingCurve::Type newType) |
| 1410 | { |
| 1411 | qreal amp = -1.0; |
| 1412 | qreal period = -1.0; |
| 1413 | qreal overshoot = -1.0; |
| 1414 | QVector<QPointF> bezierCurves; |
| 1415 | QVector<TCBPoint> tcbPoints; |
| 1416 | |
| 1417 | if (config) { |
| 1418 | amp = config->_a; |
| 1419 | period = config->_p; |
| 1420 | overshoot = config->_o; |
| 1421 | bezierCurves = std::move(config->_bezierCurves); |
| 1422 | tcbPoints = std::move(config->_tcbPoints); |
| 1423 | |
| 1424 | delete config; |
| 1425 | config = nullptr; |
| 1426 | } |
| 1427 | |
| 1428 | if (isConfigFunction(type: newType) || (amp != -1.0) || (period != -1.0) || (overshoot != -1.0) || |
| 1429 | !bezierCurves.isEmpty()) { |
| 1430 | config = curveToFunctionObject(type: newType); |
| 1431 | if (amp != -1.0) |
| 1432 | config->_a = amp; |
| 1433 | if (period != -1.0) |
| 1434 | config->_p = period; |
| 1435 | if (overshoot != -1.0) |
| 1436 | config->_o = overshoot; |
| 1437 | config->_bezierCurves = std::move(bezierCurves); |
| 1438 | config->_tcbPoints = std::move(tcbPoints); |
| 1439 | func = nullptr; |
| 1440 | } else if (newType != QEasingCurve::Custom) { |
| 1441 | func = curveToFunc(curve: newType); |
| 1442 | } |
| 1443 | Q_ASSERT((func == nullptr) == (config != nullptr)); |
| 1444 | type = newType; |
| 1445 | } |
| 1446 | |
| 1447 | /*! |
| 1448 | Sets the type of the easing curve to \a type. |
| 1449 | */ |
| 1450 | void QEasingCurve::setType(Type type) |
| 1451 | { |
| 1452 | if (d_ptr->type == type) |
| 1453 | return; |
| 1454 | if (type < Linear || type >= NCurveTypes - 1) { |
| 1455 | qWarning(msg: "QEasingCurve: Invalid curve type %d" , type); |
| 1456 | return; |
| 1457 | } |
| 1458 | |
| 1459 | d_ptr->setType_helper(type); |
| 1460 | } |
| 1461 | |
| 1462 | /*! |
| 1463 | Sets a custom easing curve that is defined by the user in the function \a func. |
| 1464 | The signature of the function is qreal myEasingFunction(qreal progress), |
| 1465 | where \e progress and the return value are considered to be normalized between 0 and 1. |
| 1466 | (In some cases the return value can be outside that range) |
| 1467 | After calling this function type() will return QEasingCurve::Custom. |
| 1468 | \a func cannot be zero. |
| 1469 | |
| 1470 | \sa customType() |
| 1471 | \sa valueForProgress() |
| 1472 | */ |
| 1473 | void QEasingCurve::setCustomType(EasingFunction func) |
| 1474 | { |
| 1475 | if (!func) { |
| 1476 | qWarning(msg: "Function pointer must not be null" ); |
| 1477 | return; |
| 1478 | } |
| 1479 | d_ptr->func = func; |
| 1480 | d_ptr->setType_helper(Custom); |
| 1481 | } |
| 1482 | |
| 1483 | /*! |
| 1484 | Returns the function pointer to the custom easing curve. |
| 1485 | If type() does not return QEasingCurve::Custom, this function |
| 1486 | will return 0. |
| 1487 | */ |
| 1488 | QEasingCurve::EasingFunction QEasingCurve::customType() const |
| 1489 | { |
| 1490 | return d_ptr->type == Custom ? d_ptr->func : nullptr; |
| 1491 | } |
| 1492 | |
| 1493 | /*! |
| 1494 | Return the effective progress for the easing curve at \a progress. |
| 1495 | Whereas \a progress must be between 0 and 1, the returned effective progress |
| 1496 | can be outside those bounds. For example, QEasingCurve::InBack will |
| 1497 | return negative values in the beginning of the function. |
| 1498 | */ |
| 1499 | qreal QEasingCurve::valueForProgress(qreal progress) const |
| 1500 | { |
| 1501 | progress = qBound<qreal>(min: 0, val: progress, max: 1); |
| 1502 | if (d_ptr->func) |
| 1503 | return d_ptr->func(progress); |
| 1504 | else if (d_ptr->config) |
| 1505 | return d_ptr->config->value(t: progress); |
| 1506 | else |
| 1507 | return progress; |
| 1508 | } |
| 1509 | |
| 1510 | #ifndef QT_NO_DEBUG_STREAM |
| 1511 | QDebug operator<<(QDebug debug, const QEasingCurve &item) |
| 1512 | { |
| 1513 | QDebugStateSaver saver(debug); |
| 1514 | debug << "type:" << item.d_ptr->type |
| 1515 | << "func:" << reinterpret_cast<const void *>(item.d_ptr->func); |
| 1516 | if (item.d_ptr->config) { |
| 1517 | debug << QString::fromLatin1(str: "period:%1" ).arg(a: item.d_ptr->config->_p, fieldWidth: 0, fmt: 'f', prec: 20) |
| 1518 | << QString::fromLatin1(str: "amp:%1" ).arg(a: item.d_ptr->config->_a, fieldWidth: 0, fmt: 'f', prec: 20) |
| 1519 | << QString::fromLatin1(str: "overshoot:%1" ).arg(a: item.d_ptr->config->_o, fieldWidth: 0, fmt: 'f', prec: 20); |
| 1520 | } |
| 1521 | return debug; |
| 1522 | } |
| 1523 | #endif // QT_NO_DEBUG_STREAM |
| 1524 | |
| 1525 | #ifndef QT_NO_DATASTREAM |
| 1526 | /*! |
| 1527 | \fn QDataStream &operator<<(QDataStream &stream, const QEasingCurve &easing) |
| 1528 | \relates QEasingCurve |
| 1529 | |
| 1530 | Writes the given \a easing curve to the given \a stream and returns a |
| 1531 | reference to the stream. |
| 1532 | |
| 1533 | \sa {Serializing Qt Data Types} |
| 1534 | */ |
| 1535 | |
| 1536 | QDataStream &operator<<(QDataStream &stream, const QEasingCurve &easing) |
| 1537 | { |
| 1538 | stream << quint8(easing.d_ptr->type); |
| 1539 | stream << quint64(quintptr(easing.d_ptr->func)); |
| 1540 | |
| 1541 | bool hasConfig = easing.d_ptr->config; |
| 1542 | stream << hasConfig; |
| 1543 | if (hasConfig) { |
| 1544 | stream << easing.d_ptr->config; |
| 1545 | } |
| 1546 | return stream; |
| 1547 | } |
| 1548 | |
| 1549 | /*! |
| 1550 | \fn QDataStream &operator>>(QDataStream &stream, QEasingCurve &easing) |
| 1551 | \relates QEasingCurve |
| 1552 | |
| 1553 | Reads an easing curve from the given \a stream into the given \a |
| 1554 | easing curve and returns a reference to the stream. |
| 1555 | |
| 1556 | \sa {Serializing Qt Data Types} |
| 1557 | */ |
| 1558 | |
| 1559 | QDataStream &operator>>(QDataStream &stream, QEasingCurve &easing) |
| 1560 | { |
| 1561 | QEasingCurve::Type type; |
| 1562 | quint8 int_type; |
| 1563 | stream >> int_type; |
| 1564 | type = static_cast<QEasingCurve::Type>(int_type); |
| 1565 | easing.setType(type); |
| 1566 | |
| 1567 | quint64 ptr_func; |
| 1568 | stream >> ptr_func; |
| 1569 | easing.d_ptr->func = QEasingCurve::EasingFunction(quintptr(ptr_func)); |
| 1570 | |
| 1571 | bool hasConfig; |
| 1572 | stream >> hasConfig; |
| 1573 | delete easing.d_ptr->config; |
| 1574 | easing.d_ptr->config = nullptr; |
| 1575 | if (hasConfig) { |
| 1576 | QEasingCurveFunction *config = curveToFunctionObject(type); |
| 1577 | stream >> config; |
| 1578 | easing.d_ptr->config = config; |
| 1579 | } |
| 1580 | return stream; |
| 1581 | } |
| 1582 | #endif // QT_NO_DATASTREAM |
| 1583 | |
| 1584 | QT_END_NAMESPACE |
| 1585 | |
| 1586 | #include "moc_qeasingcurve.cpp" |
| 1587 | |