1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtCore module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | /* |
41 | |
42 | | *property* | *Used for type* | |
43 | | period | QEasingCurve::{In,Out,InOut,OutIn}Elastic | |
44 | | amplitude | QEasingCurve::{In,Out,InOut,OutIn}Bounce, QEasingCurve::{In,Out,InOut,OutIn}Elastic | |
45 | | overshoot | QEasingCurve::{In,Out,InOut,OutIn}Back | |
46 | |
47 | */ |
48 | |
49 | |
50 | |
51 | |
52 | /*! |
53 | \class QEasingCurve |
54 | \inmodule QtCore |
55 | \since 4.6 |
56 | \ingroup animation |
57 | \brief The QEasingCurve class provides easing curves for controlling animation. |
58 | |
59 | Easing curves describe a function that controls how the speed of the interpolation |
60 | between 0 and 1 should be. Easing curves allow transitions from |
61 | one value to another to appear more natural than a simple constant speed would allow. |
62 | The QEasingCurve class is usually used in conjunction with the QVariantAnimation and |
63 | QPropertyAnimation classes but can be used on its own. It is usually used to accelerate |
64 | the interpolation from zero velocity (ease in) or decelerate to zero velocity (ease out). |
65 | Ease in and ease out can also be combined in the same easing curve. |
66 | |
67 | To calculate the speed of the interpolation, the easing curve provides the function |
68 | valueForProgress(), where the \a progress argument specifies the progress of the |
69 | interpolation: 0 is the start value of the interpolation, 1 is the end value of the |
70 | interpolation. The returned value is the effective progress of the interpolation. |
71 | If the returned value is the same as the input value for all input values the easing |
72 | curve is a linear curve. This is the default behaviour. |
73 | |
74 | For example, |
75 | |
76 | \snippet code/src_corelib_tools_qeasingcurve.cpp 0 |
77 | |
78 | will print the effective progress of the interpolation between 0 and 1. |
79 | |
80 | When using a QPropertyAnimation, the associated easing curve will be used to control the |
81 | progress of the interpolation between startValue and endValue: |
82 | |
83 | \snippet code/src_corelib_tools_qeasingcurve.cpp 1 |
84 | |
85 | The ability to set an amplitude, overshoot, or period depends on |
86 | the QEasingCurve type. Amplitude access is available to curves |
87 | that behave as springs such as elastic and bounce curves. Changing |
88 | the amplitude changes the height of the curve. Period access is |
89 | only available to elastic curves and setting a higher period slows |
90 | the rate of bounce. Only curves that have "boomerang" behaviors |
91 | such as the InBack, OutBack, InOutBack, and OutInBack have |
92 | overshoot settings. These curves will interpolate beyond the end |
93 | points and return to the end point, acting similar to a boomerang. |
94 | |
95 | The \l{Easing Curves Example} contains samples of QEasingCurve |
96 | types and lets you change the curve settings. |
97 | |
98 | */ |
99 | |
100 | /*! |
101 | \enum QEasingCurve::Type |
102 | |
103 | The type of easing curve. |
104 | |
105 | \value Linear \image qeasingcurve-linear.png |
106 | \caption Easing curve for a linear (t) function: |
107 | velocity is constant. |
108 | \value InQuad \image qeasingcurve-inquad.png |
109 | \caption Easing curve for a quadratic (t^2) function: |
110 | accelerating from zero velocity. |
111 | \value OutQuad \image qeasingcurve-outquad.png |
112 | \caption Easing curve for a quadratic (t^2) function: |
113 | decelerating to zero velocity. |
114 | \value InOutQuad \image qeasingcurve-inoutquad.png |
115 | \caption Easing curve for a quadratic (t^2) function: |
116 | acceleration until halfway, then deceleration. |
117 | \value OutInQuad \image qeasingcurve-outinquad.png |
118 | \caption Easing curve for a quadratic (t^2) function: |
119 | deceleration until halfway, then acceleration. |
120 | \value InCubic \image qeasingcurve-incubic.png |
121 | \caption Easing curve for a cubic (t^3) function: |
122 | accelerating from zero velocity. |
123 | \value OutCubic \image qeasingcurve-outcubic.png |
124 | \caption Easing curve for a cubic (t^3) function: |
125 | decelerating to zero velocity. |
126 | \value InOutCubic \image qeasingcurve-inoutcubic.png |
127 | \caption Easing curve for a cubic (t^3) function: |
128 | acceleration until halfway, then deceleration. |
129 | \value OutInCubic \image qeasingcurve-outincubic.png |
130 | \caption Easing curve for a cubic (t^3) function: |
131 | deceleration until halfway, then acceleration. |
132 | \value InQuart \image qeasingcurve-inquart.png |
133 | \caption Easing curve for a quartic (t^4) function: |
134 | accelerating from zero velocity. |
135 | \value OutQuart \image qeasingcurve-outquart.png |
136 | \caption |
137 | Easing curve for a quartic (t^4) function: |
138 | decelerating to zero velocity. |
139 | \value InOutQuart \image qeasingcurve-inoutquart.png |
140 | \caption |
141 | Easing curve for a quartic (t^4) function: |
142 | acceleration until halfway, then deceleration. |
143 | \value OutInQuart \image qeasingcurve-outinquart.png |
144 | \caption |
145 | Easing curve for a quartic (t^4) function: |
146 | deceleration until halfway, then acceleration. |
147 | \value InQuint \image qeasingcurve-inquint.png |
148 | \caption |
149 | Easing curve for a quintic (t^5) easing |
150 | in: accelerating from zero velocity. |
151 | \value OutQuint \image qeasingcurve-outquint.png |
152 | \caption |
153 | Easing curve for a quintic (t^5) function: |
154 | decelerating to zero velocity. |
155 | \value InOutQuint \image qeasingcurve-inoutquint.png |
156 | \caption |
157 | Easing curve for a quintic (t^5) function: |
158 | acceleration until halfway, then deceleration. |
159 | \value OutInQuint \image qeasingcurve-outinquint.png |
160 | \caption |
161 | Easing curve for a quintic (t^5) function: |
162 | deceleration until halfway, then acceleration. |
163 | \value InSine \image qeasingcurve-insine.png |
164 | \caption |
165 | Easing curve for a sinusoidal (sin(t)) function: |
166 | accelerating from zero velocity. |
167 | \value OutSine \image qeasingcurve-outsine.png |
168 | \caption |
169 | Easing curve for a sinusoidal (sin(t)) function: |
170 | decelerating to zero velocity. |
171 | \value InOutSine \image qeasingcurve-inoutsine.png |
172 | \caption |
173 | Easing curve for a sinusoidal (sin(t)) function: |
174 | acceleration until halfway, then deceleration. |
175 | \value OutInSine \image qeasingcurve-outinsine.png |
176 | \caption |
177 | Easing curve for a sinusoidal (sin(t)) function: |
178 | deceleration until halfway, then acceleration. |
179 | \value InExpo \image qeasingcurve-inexpo.png |
180 | \caption |
181 | Easing curve for an exponential (2^t) function: |
182 | accelerating from zero velocity. |
183 | \value OutExpo \image qeasingcurve-outexpo.png |
184 | \caption |
185 | Easing curve for an exponential (2^t) function: |
186 | decelerating to zero velocity. |
187 | \value InOutExpo \image qeasingcurve-inoutexpo.png |
188 | \caption |
189 | Easing curve for an exponential (2^t) function: |
190 | acceleration until halfway, then deceleration. |
191 | \value OutInExpo \image qeasingcurve-outinexpo.png |
192 | \caption |
193 | Easing curve for an exponential (2^t) function: |
194 | deceleration until halfway, then acceleration. |
195 | \value InCirc \image qeasingcurve-incirc.png |
196 | \caption |
197 | Easing curve for a circular (sqrt(1-t^2)) function: |
198 | accelerating from zero velocity. |
199 | \value OutCirc \image qeasingcurve-outcirc.png |
200 | \caption |
201 | Easing curve for a circular (sqrt(1-t^2)) function: |
202 | decelerating to zero velocity. |
203 | \value InOutCirc \image qeasingcurve-inoutcirc.png |
204 | \caption |
205 | Easing curve for a circular (sqrt(1-t^2)) function: |
206 | acceleration until halfway, then deceleration. |
207 | \value OutInCirc \image qeasingcurve-outincirc.png |
208 | \caption |
209 | Easing curve for a circular (sqrt(1-t^2)) function: |
210 | deceleration until halfway, then acceleration. |
211 | \value InElastic \image qeasingcurve-inelastic.png |
212 | \caption |
213 | Easing curve for an elastic |
214 | (exponentially decaying sine wave) function: |
215 | accelerating from zero velocity. The peak amplitude |
216 | can be set with the \e amplitude parameter, and the |
217 | period of decay by the \e period parameter. |
218 | \value OutElastic \image qeasingcurve-outelastic.png |
219 | \caption |
220 | Easing curve for an elastic |
221 | (exponentially decaying sine wave) function: |
222 | decelerating to zero velocity. The peak amplitude |
223 | can be set with the \e amplitude parameter, and the |
224 | period of decay by the \e period parameter. |
225 | \value InOutElastic \image qeasingcurve-inoutelastic.png |
226 | \caption |
227 | Easing curve for an elastic |
228 | (exponentially decaying sine wave) function: |
229 | acceleration until halfway, then deceleration. |
230 | \value OutInElastic \image qeasingcurve-outinelastic.png |
231 | \caption |
232 | Easing curve for an elastic |
233 | (exponentially decaying sine wave) function: |
234 | deceleration until halfway, then acceleration. |
235 | \value InBack \image qeasingcurve-inback.png |
236 | \caption |
237 | Easing curve for a back (overshooting |
238 | cubic function: (s+1)*t^3 - s*t^2) easing in: |
239 | accelerating from zero velocity. |
240 | \value OutBack \image qeasingcurve-outback.png |
241 | \caption |
242 | Easing curve for a back (overshooting |
243 | cubic function: (s+1)*t^3 - s*t^2) easing out: |
244 | decelerating to zero velocity. |
245 | \value InOutBack \image qeasingcurve-inoutback.png |
246 | \caption |
247 | Easing curve for a back (overshooting |
248 | cubic function: (s+1)*t^3 - s*t^2) easing in/out: |
249 | acceleration until halfway, then deceleration. |
250 | \value OutInBack \image qeasingcurve-outinback.png |
251 | \caption |
252 | Easing curve for a back (overshooting |
253 | cubic easing: (s+1)*t^3 - s*t^2) easing out/in: |
254 | deceleration until halfway, then acceleration. |
255 | \value InBounce \image qeasingcurve-inbounce.png |
256 | \caption |
257 | Easing curve for a bounce (exponentially |
258 | decaying parabolic bounce) function: accelerating |
259 | from zero velocity. |
260 | \value OutBounce \image qeasingcurve-outbounce.png |
261 | \caption |
262 | Easing curve for a bounce (exponentially |
263 | decaying parabolic bounce) function: decelerating |
264 | from zero velocity. |
265 | \value InOutBounce \image qeasingcurve-inoutbounce.png |
266 | \caption |
267 | Easing curve for a bounce (exponentially |
268 | decaying parabolic bounce) function easing in/out: |
269 | acceleration until halfway, then deceleration. |
270 | \value OutInBounce \image qeasingcurve-outinbounce.png |
271 | \caption |
272 | Easing curve for a bounce (exponentially |
273 | decaying parabolic bounce) function easing out/in: |
274 | deceleration until halfway, then acceleration. |
275 | \omitvalue InCurve |
276 | \omitvalue OutCurve |
277 | \omitvalue SineCurve |
278 | \omitvalue CosineCurve |
279 | \value BezierSpline Allows defining a custom easing curve using a cubic bezier spline |
280 | \sa addCubicBezierSegment() |
281 | \value TCBSpline Allows defining a custom easing curve using a TCB spline |
282 | \sa addTCBSegment() |
283 | \value Custom This is returned if the user specified a custom curve type with |
284 | setCustomType(). Note that you cannot call setType() with this value, |
285 | but type() can return it. |
286 | \omitvalue NCurveTypes |
287 | */ |
288 | |
289 | /*! |
290 | \typedef QEasingCurve::EasingFunction |
291 | |
292 | This is a typedef for a pointer to a function with the following |
293 | signature: |
294 | |
295 | \snippet code/src_corelib_tools_qeasingcurve.cpp typedef |
296 | */ |
297 | |
298 | #include "qeasingcurve.h" |
299 | #include <cmath> |
300 | |
301 | #ifndef QT_NO_DEBUG_STREAM |
302 | #include <QtCore/qdebug.h> |
303 | #include <QtCore/qstring.h> |
304 | #endif |
305 | |
306 | #ifndef QT_NO_DATASTREAM |
307 | #include <QtCore/qdatastream.h> |
308 | #endif |
309 | |
310 | #include <QtCore/qpoint.h> |
311 | #include <QtCore/qvector.h> |
312 | |
313 | QT_BEGIN_NAMESPACE |
314 | |
315 | static bool isConfigFunction(QEasingCurve::Type type) |
316 | { |
317 | return (type >= QEasingCurve::InElastic |
318 | && type <= QEasingCurve::OutInBounce) || |
319 | type == QEasingCurve::BezierSpline || |
320 | type == QEasingCurve::TCBSpline; |
321 | } |
322 | |
323 | struct TCBPoint { |
324 | QPointF _point; |
325 | qreal _t; |
326 | qreal _c; |
327 | qreal _b; |
328 | |
329 | TCBPoint() {} |
330 | TCBPoint(QPointF point, qreal t, qreal c, qreal b) : _point(point), _t(t), _c(c), _b(b) {} |
331 | |
332 | bool operator==(const TCBPoint &other) const |
333 | { |
334 | return _point == other._point && |
335 | qFuzzyCompare(p1: _t, p2: other._t) && |
336 | qFuzzyCompare(p1: _c, p2: other._c) && |
337 | qFuzzyCompare(p1: _b, p2: other._b); |
338 | } |
339 | }; |
340 | Q_DECLARE_TYPEINFO(TCBPoint, Q_PRIMITIVE_TYPE); |
341 | |
342 | QDataStream &operator<<(QDataStream &stream, const TCBPoint &point) |
343 | { |
344 | stream << point._point |
345 | << point._t |
346 | << point._c |
347 | << point._b; |
348 | return stream; |
349 | } |
350 | |
351 | QDataStream &operator>>(QDataStream &stream, TCBPoint &point) |
352 | { |
353 | stream >> point._point |
354 | >> point._t |
355 | >> point._c |
356 | >> point._b; |
357 | return stream; |
358 | } |
359 | |
360 | typedef QVector<TCBPoint> TCBPoints; |
361 | |
362 | class QEasingCurveFunction |
363 | { |
364 | public: |
365 | QEasingCurveFunction(QEasingCurve::Type type, qreal period = 0.3, qreal amplitude = 1.0, |
366 | qreal overshoot = 1.70158) |
367 | : _t(type), _p(period), _a(amplitude), _o(overshoot) |
368 | { } |
369 | virtual ~QEasingCurveFunction() {} |
370 | virtual qreal value(qreal t); |
371 | virtual QEasingCurveFunction *copy() const; |
372 | bool operator==(const QEasingCurveFunction &other) const; |
373 | |
374 | QEasingCurve::Type _t; |
375 | qreal _p; |
376 | qreal _a; |
377 | qreal _o; |
378 | QVector<QPointF> _bezierCurves; |
379 | TCBPoints _tcbPoints; |
380 | |
381 | }; |
382 | |
383 | QDataStream &operator<<(QDataStream &stream, QEasingCurveFunction *func) |
384 | { |
385 | if (func) { |
386 | stream << func->_p; |
387 | stream << func->_a; |
388 | stream << func->_o; |
389 | if (stream.version() > QDataStream::Qt_5_12) { |
390 | stream << func->_bezierCurves; |
391 | stream << func->_tcbPoints; |
392 | } |
393 | } |
394 | return stream; |
395 | } |
396 | |
397 | QDataStream &operator>>(QDataStream &stream, QEasingCurveFunction *func) |
398 | { |
399 | if (func) { |
400 | stream >> func->_p; |
401 | stream >> func->_a; |
402 | stream >> func->_o; |
403 | if (stream.version() > QDataStream::Qt_5_12) { |
404 | stream >> func->_bezierCurves; |
405 | stream >> func->_tcbPoints; |
406 | } |
407 | } |
408 | return stream; |
409 | } |
410 | |
411 | static QEasingCurve::EasingFunction curveToFunc(QEasingCurve::Type curve); |
412 | |
413 | qreal QEasingCurveFunction::value(qreal t) |
414 | { |
415 | QEasingCurve::EasingFunction func = curveToFunc(curve: _t); |
416 | return func(t); |
417 | } |
418 | |
419 | QEasingCurveFunction *QEasingCurveFunction::copy() const |
420 | { |
421 | QEasingCurveFunction *rv = new QEasingCurveFunction(_t, _p, _a, _o); |
422 | rv->_bezierCurves = _bezierCurves; |
423 | rv->_tcbPoints = _tcbPoints; |
424 | return rv; |
425 | } |
426 | |
427 | bool QEasingCurveFunction::operator==(const QEasingCurveFunction &other) const |
428 | { |
429 | return _t == other._t && |
430 | qFuzzyCompare(p1: _p, p2: other._p) && |
431 | qFuzzyCompare(p1: _a, p2: other._a) && |
432 | qFuzzyCompare(p1: _o, p2: other._o) && |
433 | _bezierCurves == other._bezierCurves && |
434 | _tcbPoints == other._tcbPoints; |
435 | } |
436 | |
437 | QT_BEGIN_INCLUDE_NAMESPACE |
438 | #include "../../3rdparty/easing/easing.cpp" |
439 | QT_END_INCLUDE_NAMESPACE |
440 | |
441 | class QEasingCurvePrivate |
442 | { |
443 | public: |
444 | QEasingCurvePrivate() |
445 | : type(QEasingCurve::Linear), |
446 | config(nullptr), |
447 | func(&easeNone) |
448 | { } |
449 | QEasingCurvePrivate(const QEasingCurvePrivate &other) |
450 | : type(other.type), |
451 | config(other.config ? other.config->copy() : nullptr), |
452 | func(other.func) |
453 | { } |
454 | ~QEasingCurvePrivate() { delete config; } |
455 | void setType_helper(QEasingCurve::Type); |
456 | |
457 | QEasingCurve::Type type; |
458 | QEasingCurveFunction *config; |
459 | QEasingCurve::EasingFunction func; |
460 | }; |
461 | |
462 | struct BezierEase : public QEasingCurveFunction |
463 | { |
464 | struct SingleCubicBezier { |
465 | qreal p0x, p0y; |
466 | qreal p1x, p1y; |
467 | qreal p2x, p2y; |
468 | qreal p3x, p3y; |
469 | }; |
470 | |
471 | QVector<SingleCubicBezier> _curves; |
472 | QVector<qreal> _intervals; |
473 | int _curveCount; |
474 | bool _init; |
475 | bool _valid; |
476 | |
477 | BezierEase(QEasingCurve::Type type = QEasingCurve::BezierSpline) |
478 | : QEasingCurveFunction(type), _curves(10), _intervals(10), _init(false), _valid(false) |
479 | { } |
480 | |
481 | void init() |
482 | { |
483 | if (_bezierCurves.constLast() == QPointF(1.0, 1.0)) { |
484 | _init = true; |
485 | _curveCount = _bezierCurves.count() / 3; |
486 | |
487 | for (int i=0; i < _curveCount; i++) { |
488 | _intervals[i] = _bezierCurves.at(i: i * 3 + 2).x(); |
489 | |
490 | if (i == 0) { |
491 | _curves[0].p0x = 0.0; |
492 | _curves[0].p0y = 0.0; |
493 | |
494 | _curves[0].p1x = _bezierCurves.at(i: 0).x(); |
495 | _curves[0].p1y = _bezierCurves.at(i: 0).y(); |
496 | |
497 | _curves[0].p2x = _bezierCurves.at(i: 1).x(); |
498 | _curves[0].p2y = _bezierCurves.at(i: 1).y(); |
499 | |
500 | _curves[0].p3x = _bezierCurves.at(i: 2).x(); |
501 | _curves[0].p3y = _bezierCurves.at(i: 2).y(); |
502 | |
503 | } else if (i == (_curveCount - 1)) { |
504 | _curves[i].p0x = _bezierCurves.at(i: _bezierCurves.count() - 4).x(); |
505 | _curves[i].p0y = _bezierCurves.at(i: _bezierCurves.count() - 4).y(); |
506 | |
507 | _curves[i].p1x = _bezierCurves.at(i: _bezierCurves.count() - 3).x(); |
508 | _curves[i].p1y = _bezierCurves.at(i: _bezierCurves.count() - 3).y(); |
509 | |
510 | _curves[i].p2x = _bezierCurves.at(i: _bezierCurves.count() - 2).x(); |
511 | _curves[i].p2y = _bezierCurves.at(i: _bezierCurves.count() - 2).y(); |
512 | |
513 | _curves[i].p3x = _bezierCurves.at(i: _bezierCurves.count() - 1).x(); |
514 | _curves[i].p3y = _bezierCurves.at(i: _bezierCurves.count() - 1).y(); |
515 | } else { |
516 | _curves[i].p0x = _bezierCurves.at(i: i * 3 - 1).x(); |
517 | _curves[i].p0y = _bezierCurves.at(i: i * 3 - 1).y(); |
518 | |
519 | _curves[i].p1x = _bezierCurves.at(i: i * 3).x(); |
520 | _curves[i].p1y = _bezierCurves.at(i: i * 3).y(); |
521 | |
522 | _curves[i].p2x = _bezierCurves.at(i: i * 3 + 1).x(); |
523 | _curves[i].p2y = _bezierCurves.at(i: i * 3 + 1).y(); |
524 | |
525 | _curves[i].p3x = _bezierCurves.at(i: i * 3 + 2).x(); |
526 | _curves[i].p3y = _bezierCurves.at(i: i * 3 + 2).y(); |
527 | } |
528 | } |
529 | _valid = true; |
530 | } else { |
531 | _valid = false; |
532 | } |
533 | } |
534 | |
535 | QEasingCurveFunction *copy() const override |
536 | { |
537 | BezierEase *rv = new BezierEase(); |
538 | rv->_t = _t; |
539 | rv->_p = _p; |
540 | rv->_a = _a; |
541 | rv->_o = _o; |
542 | rv->_bezierCurves = _bezierCurves; |
543 | rv->_tcbPoints = _tcbPoints; |
544 | return rv; |
545 | } |
546 | |
547 | void getBezierSegment(SingleCubicBezier * &singleCubicBezier, qreal x) |
548 | { |
549 | |
550 | int currentSegment = 0; |
551 | |
552 | while (currentSegment < _curveCount) { |
553 | if (x <= _intervals.data()[currentSegment]) |
554 | break; |
555 | currentSegment++; |
556 | } |
557 | |
558 | singleCubicBezier = &_curves.data()[currentSegment]; |
559 | } |
560 | |
561 | |
562 | qreal static inline newtonIteration(const SingleCubicBezier &singleCubicBezier, qreal t, qreal x) |
563 | { |
564 | qreal currentXValue = evaluateForX(singleCubicBezier, t); |
565 | |
566 | const qreal newT = t - (currentXValue - x) / evaluateDerivateForX(singleCubicBezier, t); |
567 | |
568 | return newT; |
569 | } |
570 | |
571 | qreal value(qreal x) override |
572 | { |
573 | Q_ASSERT(_bezierCurves.count() % 3 == 0); |
574 | |
575 | if (_bezierCurves.isEmpty()) { |
576 | return x; |
577 | } |
578 | |
579 | if (!_init) |
580 | init(); |
581 | |
582 | if (!_valid) { |
583 | qWarning(msg: "QEasingCurve: Invalid bezier curve" ); |
584 | return x; |
585 | } |
586 | |
587 | // The bezier computation is not always precise on the endpoints, so handle explicitly |
588 | if (!(x > 0)) |
589 | return 0; |
590 | if (!(x < 1)) |
591 | return 1; |
592 | |
593 | SingleCubicBezier *singleCubicBezier = nullptr; |
594 | getBezierSegment(singleCubicBezier, x); |
595 | |
596 | return evaluateSegmentForY(singleCubicBezier: *singleCubicBezier, t: findTForX(singleCubicBezier: *singleCubicBezier, x)); |
597 | } |
598 | |
599 | qreal static inline evaluateSegmentForY(const SingleCubicBezier &singleCubicBezier, qreal t) |
600 | { |
601 | const qreal p0 = singleCubicBezier.p0y; |
602 | const qreal p1 = singleCubicBezier.p1y; |
603 | const qreal p2 = singleCubicBezier.p2y; |
604 | const qreal p3 = singleCubicBezier.p3y; |
605 | |
606 | const qreal s = 1 - t; |
607 | |
608 | const qreal s_squared = s*s; |
609 | const qreal t_squared = t*t; |
610 | |
611 | const qreal s_cubic = s_squared * s; |
612 | const qreal t_cubic = t_squared * t; |
613 | |
614 | return s_cubic * p0 + 3 * s_squared * t * p1 + 3 * s * t_squared * p2 + t_cubic * p3; |
615 | } |
616 | |
617 | qreal static inline evaluateForX(const SingleCubicBezier &singleCubicBezier, qreal t) |
618 | { |
619 | const qreal p0 = singleCubicBezier.p0x; |
620 | const qreal p1 = singleCubicBezier.p1x; |
621 | const qreal p2 = singleCubicBezier.p2x; |
622 | const qreal p3 = singleCubicBezier.p3x; |
623 | |
624 | const qreal s = 1 - t; |
625 | |
626 | const qreal s_squared = s*s; |
627 | const qreal t_squared = t*t; |
628 | |
629 | const qreal s_cubic = s_squared * s; |
630 | const qreal t_cubic = t_squared * t; |
631 | |
632 | return s_cubic * p0 + 3 * s_squared * t * p1 + 3 * s * t_squared * p2 + t_cubic * p3; |
633 | } |
634 | |
635 | qreal static inline evaluateDerivateForX(const SingleCubicBezier &singleCubicBezier, qreal t) |
636 | { |
637 | const qreal p0 = singleCubicBezier.p0x; |
638 | const qreal p1 = singleCubicBezier.p1x; |
639 | const qreal p2 = singleCubicBezier.p2x; |
640 | const qreal p3 = singleCubicBezier.p3x; |
641 | |
642 | const qreal t_squared = t*t; |
643 | |
644 | return -3*p0 + 3*p1 + 6*p0*t - 12*p1*t + 6*p2*t + 3*p3*t_squared - 3*p0*t_squared + 9*p1*t_squared - 9*p2*t_squared; |
645 | } |
646 | |
647 | qreal static inline _cbrt(qreal d) |
648 | { |
649 | qreal sign = 1; |
650 | if (d < 0) |
651 | sign = -1; |
652 | d = d * sign; |
653 | |
654 | qreal t = _fast_cbrt(d); |
655 | |
656 | //one step of Halley's Method to get a better approximation |
657 | const qreal t_cubic = t * t * t; |
658 | const qreal f = t_cubic + t_cubic + d; |
659 | if (f != qreal(0.0)) |
660 | t = t * (t_cubic + d + d) / f; |
661 | |
662 | //another step |
663 | /*qreal t_i = t; |
664 | t_i_cubic = pow(t_i, 3); |
665 | t = t_i * (t_i_cubic + d + d) / (t_i_cubic + t_i_cubic + d);*/ |
666 | |
667 | return t * sign; |
668 | } |
669 | |
670 | float static inline _fast_cbrt(float x) |
671 | { |
672 | union { |
673 | float f; |
674 | quint32 i; |
675 | } ux; |
676 | |
677 | const unsigned int B1 = 709921077; |
678 | |
679 | ux.f = x; |
680 | ux.i = (ux.i / 3 + B1); |
681 | |
682 | return ux.f; |
683 | } |
684 | |
685 | double static inline _fast_cbrt(double d) |
686 | { |
687 | union { |
688 | double d; |
689 | quint32 pt[2]; |
690 | } ut, ux; |
691 | |
692 | const unsigned int B1 = 715094163; |
693 | |
694 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
695 | const int h0 = 1; |
696 | #else |
697 | const int h0 = 0; |
698 | #endif |
699 | ut.d = 0.0; |
700 | ux.d = d; |
701 | |
702 | quint32 hx = ux.pt[h0]; //high word of d |
703 | ut.pt[h0] = hx / 3 + B1; |
704 | |
705 | return ut.d; |
706 | } |
707 | |
708 | qreal static inline _acos(qreal x) |
709 | { |
710 | return std::sqrt(x: 1-x)*(1.5707963267948966192313216916398f + x*(-0.213300989f + x*(0.077980478f + x*-0.02164095f))); |
711 | } |
712 | |
713 | qreal static inline _cos(qreal x) //super fast _cos |
714 | { |
715 | const qreal pi_times2 = 2 * M_PI; |
716 | const qreal pi_neg = -1 * M_PI; |
717 | const qreal pi_by2 = M_PI / 2.0; |
718 | |
719 | x += pi_by2; //the polynom is for sin |
720 | |
721 | if (x < pi_neg) |
722 | x += pi_times2; |
723 | else if (x > M_PI) |
724 | x -= pi_times2; |
725 | |
726 | const qreal a = 0.405284735; |
727 | const qreal b = 1.27323954; |
728 | |
729 | const qreal x_squared = x * x; |
730 | |
731 | if (x < 0) { |
732 | qreal cos = b * x + a * x_squared; |
733 | |
734 | if (cos < 0) |
735 | return 0.225 * (cos * -1 * cos - cos) + cos; |
736 | return 0.225 * (cos * cos - cos) + cos; |
737 | } //else |
738 | |
739 | qreal cos = b * x - a * x_squared; |
740 | |
741 | if (cos < 0) |
742 | return 0.225 * (cos * 1 *-cos - cos) + cos; |
743 | return 0.225 * (cos * cos - cos) + cos; |
744 | } |
745 | |
746 | bool static inline inRange(qreal f) |
747 | { |
748 | return (f >= -0.01 && f <= 1.01); |
749 | } |
750 | |
751 | void static inline cosacos(qreal x, qreal &s1, qreal &s2, qreal &s3 ) |
752 | { |
753 | //This function has no proper algebraic representation in real numbers. |
754 | //We use approximations instead |
755 | |
756 | const qreal x_squared = x * x; |
757 | const qreal x_plus_one_sqrt = qSqrt(v: 1.0 + x); |
758 | const qreal one_minus_x_sqrt = qSqrt(v: 1.0 - x); |
759 | |
760 | //cos(acos(x) / 3) |
761 | //s1 = _cos(_acos(x) / 3); |
762 | s1 = 0.463614 - 0.0347815 * x + 0.00218245 * x_squared + 0.402421 * x_plus_one_sqrt; |
763 | |
764 | //cos(acos((x) - M_PI) / 3) |
765 | //s3 = _cos((_acos(x) - M_PI) / 3); |
766 | s3 = 0.463614 + 0.402421 * one_minus_x_sqrt + 0.0347815 * x + 0.00218245 * x_squared; |
767 | |
768 | //cos((acos(x) + M_PI) / 3) |
769 | //s2 = _cos((_acos(x) + M_PI) / 3); |
770 | s2 = -0.401644 * one_minus_x_sqrt - 0.0686804 * x + 0.401644 * x_plus_one_sqrt; |
771 | } |
772 | |
773 | qreal static inline singleRealSolutionForCubic(qreal a, qreal b, qreal c) |
774 | { |
775 | //returns the real solutiuon in [0..1] |
776 | //We use the Cardano formula |
777 | |
778 | //substituiton: x = z - a/3 |
779 | // z^3+pz+q=0 |
780 | |
781 | if (c < 0.000001 && c > -0.000001) |
782 | return 0; |
783 | |
784 | const qreal a_by3 = a / 3.0; |
785 | |
786 | const qreal a_cubic = a * a * a; |
787 | |
788 | const qreal p = b - a * a_by3; |
789 | const qreal q = 2.0 * a_cubic / 27.0 - a * b / 3.0 + c; |
790 | |
791 | const qreal q_squared = q * q; |
792 | const qreal p_cubic = p * p * p; |
793 | const qreal D = 0.25 * q_squared + p_cubic / 27.0; |
794 | |
795 | if (D >= 0) { |
796 | const qreal D_sqrt = qSqrt(v: D); |
797 | qreal u = _cbrt( d: -q * 0.5 + D_sqrt); |
798 | qreal v = _cbrt( d: -q * 0.5 - D_sqrt); |
799 | qreal z1 = u + v; |
800 | |
801 | qreal t1 = z1 - a_by3; |
802 | |
803 | if (inRange(f: t1)) |
804 | return t1; |
805 | qreal z2 = -1 *u; |
806 | qreal t2 = z2 - a_by3; |
807 | return t2; |
808 | } |
809 | |
810 | //casus irreducibilis |
811 | const qreal p_minus_sqrt = qSqrt(v: -p); |
812 | |
813 | //const qreal f = sqrt(4.0 / 3.0 * -p); |
814 | const qreal f = qSqrt(v: 4.0 / 3.0) * p_minus_sqrt; |
815 | |
816 | //const qreal sqrtP = sqrt(27.0 / -p_cubic); |
817 | const qreal sqrtP = -3.0*qSqrt(v: 3.0) / (p_minus_sqrt * p); |
818 | |
819 | |
820 | const qreal g = -q * 0.5 * sqrtP; |
821 | |
822 | qreal s1; |
823 | qreal s2; |
824 | qreal s3; |
825 | |
826 | cosacos(x: g, s1, s2, s3); |
827 | |
828 | qreal z1 = -1* f * s2; |
829 | qreal t1 = z1 - a_by3; |
830 | if (inRange(f: t1)) |
831 | return t1; |
832 | |
833 | qreal z2 = f * s1; |
834 | qreal t2 = z2 - a_by3; |
835 | if (inRange(f: t2)) |
836 | return t2; |
837 | |
838 | qreal z3 = -1 * f * s3; |
839 | qreal t3 = z3 - a_by3; |
840 | return t3; |
841 | } |
842 | |
843 | bool static inline almostZero(qreal value) |
844 | { |
845 | // 1e-3 might seem excessively fuzzy, but any smaller value will make the |
846 | // factors a, b, and c large enough to knock out the cubic solver. |
847 | return value > -1e-3 && value < 1e-3; |
848 | } |
849 | |
850 | qreal static inline findTForX(const SingleCubicBezier &singleCubicBezier, qreal x) |
851 | { |
852 | const qreal p0 = singleCubicBezier.p0x; |
853 | const qreal p1 = singleCubicBezier.p1x; |
854 | const qreal p2 = singleCubicBezier.p2x; |
855 | const qreal p3 = singleCubicBezier.p3x; |
856 | |
857 | const qreal factorT3 = p3 - p0 + 3 * p1 - 3 * p2; |
858 | const qreal factorT2 = 3 * p0 - 6 * p1 + 3 * p2; |
859 | const qreal factorT1 = -3 * p0 + 3 * p1; |
860 | const qreal factorT0 = p0 - x; |
861 | |
862 | // Cases for quadratic, linear and invalid equations |
863 | if (almostZero(value: factorT3)) { |
864 | if (almostZero(value: factorT2)) { |
865 | if (almostZero(value: factorT1)) |
866 | return 0.0; |
867 | |
868 | return -factorT0 / factorT1; |
869 | } |
870 | const qreal discriminant = factorT1 * factorT1 - 4.0 * factorT2 * factorT0; |
871 | if (discriminant < 0.0) |
872 | return 0.0; |
873 | |
874 | if (discriminant == 0.0) |
875 | return -factorT1 / (2.0 * factorT2); |
876 | |
877 | const qreal solution1 = (-factorT1 + std::sqrt(x: discriminant)) / (2.0 * factorT2); |
878 | if (solution1 >= 0.0 && solution1 <= 1.0) |
879 | return solution1; |
880 | |
881 | const qreal solution2 = (-factorT1 - std::sqrt(x: discriminant)) / (2.0 * factorT2); |
882 | if (solution2 >= 0.0 && solution2 <= 1.0) |
883 | return solution2; |
884 | |
885 | return 0.0; |
886 | } |
887 | |
888 | const qreal a = factorT2 / factorT3; |
889 | const qreal b = factorT1 / factorT3; |
890 | const qreal c = factorT0 / factorT3; |
891 | |
892 | return singleRealSolutionForCubic(a, b, c); |
893 | |
894 | //one new iteration to increase numeric stability |
895 | //return newtonIteration(singleCubicBezier, t, x); |
896 | } |
897 | }; |
898 | |
899 | struct TCBEase : public BezierEase |
900 | { |
901 | TCBEase() |
902 | : BezierEase(QEasingCurve::TCBSpline) |
903 | { } |
904 | |
905 | qreal value(qreal x) override |
906 | { |
907 | Q_ASSERT(_bezierCurves.count() % 3 == 0); |
908 | |
909 | if (_bezierCurves.isEmpty()) { |
910 | qWarning(msg: "QEasingCurve: Invalid tcb curve" ); |
911 | return x; |
912 | } |
913 | |
914 | return BezierEase::value(x); |
915 | } |
916 | |
917 | QEasingCurveFunction *copy() const override |
918 | { |
919 | return new TCBEase{*this}; |
920 | } |
921 | }; |
922 | |
923 | struct ElasticEase : public QEasingCurveFunction |
924 | { |
925 | ElasticEase(QEasingCurve::Type type) |
926 | : QEasingCurveFunction(type, qreal(0.3), qreal(1.0)) |
927 | { } |
928 | |
929 | QEasingCurveFunction *copy() const override |
930 | { |
931 | ElasticEase *rv = new ElasticEase(_t); |
932 | rv->_p = _p; |
933 | rv->_a = _a; |
934 | rv->_bezierCurves = _bezierCurves; |
935 | rv->_tcbPoints = _tcbPoints; |
936 | return rv; |
937 | } |
938 | |
939 | qreal value(qreal t) override |
940 | { |
941 | qreal p = (_p < 0) ? qreal(0.3) : _p; |
942 | qreal a = (_a < 0) ? qreal(1.0) : _a; |
943 | switch(_t) { |
944 | case QEasingCurve::InElastic: |
945 | return easeInElastic(t, a, p); |
946 | case QEasingCurve::OutElastic: |
947 | return easeOutElastic(t, a, p); |
948 | case QEasingCurve::InOutElastic: |
949 | return easeInOutElastic(t, a, p); |
950 | case QEasingCurve::OutInElastic: |
951 | return easeOutInElastic(t, a, p); |
952 | default: |
953 | return t; |
954 | } |
955 | } |
956 | }; |
957 | |
958 | struct BounceEase : public QEasingCurveFunction |
959 | { |
960 | BounceEase(QEasingCurve::Type type) |
961 | : QEasingCurveFunction(type, qreal(0.3), qreal(1.0)) |
962 | { } |
963 | |
964 | QEasingCurveFunction *copy() const override |
965 | { |
966 | BounceEase *rv = new BounceEase(_t); |
967 | rv->_a = _a; |
968 | rv->_bezierCurves = _bezierCurves; |
969 | rv->_tcbPoints = _tcbPoints; |
970 | return rv; |
971 | } |
972 | |
973 | qreal value(qreal t) override |
974 | { |
975 | qreal a = (_a < 0) ? qreal(1.0) : _a; |
976 | switch(_t) { |
977 | case QEasingCurve::InBounce: |
978 | return easeInBounce(t, a); |
979 | case QEasingCurve::OutBounce: |
980 | return easeOutBounce(t, a); |
981 | case QEasingCurve::InOutBounce: |
982 | return easeInOutBounce(t, a); |
983 | case QEasingCurve::OutInBounce: |
984 | return easeOutInBounce(t, a); |
985 | default: |
986 | return t; |
987 | } |
988 | } |
989 | }; |
990 | |
991 | struct BackEase : public QEasingCurveFunction |
992 | { |
993 | BackEase(QEasingCurve::Type type) |
994 | : QEasingCurveFunction(type, qreal(0.3), qreal(1.0), qreal(1.70158)) |
995 | { } |
996 | |
997 | QEasingCurveFunction *copy() const override |
998 | { |
999 | BackEase *rv = new BackEase(_t); |
1000 | rv->_o = _o; |
1001 | rv->_bezierCurves = _bezierCurves; |
1002 | rv->_tcbPoints = _tcbPoints; |
1003 | return rv; |
1004 | } |
1005 | |
1006 | qreal value(qreal t) override |
1007 | { |
1008 | // The *Back() functions are not always precise on the endpoints, so handle explicitly |
1009 | if (!(t > 0)) |
1010 | return 0; |
1011 | if (!(t < 1)) |
1012 | return 1; |
1013 | qreal o = (_o < 0) ? qreal(1.70158) : _o; |
1014 | switch(_t) { |
1015 | case QEasingCurve::InBack: |
1016 | return easeInBack(t, s: o); |
1017 | case QEasingCurve::OutBack: |
1018 | return easeOutBack(t, s: o); |
1019 | case QEasingCurve::InOutBack: |
1020 | return easeInOutBack(t, s: o); |
1021 | case QEasingCurve::OutInBack: |
1022 | return easeOutInBack(t, s: o); |
1023 | default: |
1024 | return t; |
1025 | } |
1026 | } |
1027 | }; |
1028 | |
1029 | static QEasingCurve::EasingFunction curveToFunc(QEasingCurve::Type curve) |
1030 | { |
1031 | switch(curve) { |
1032 | case QEasingCurve::Linear: |
1033 | return &easeNone; |
1034 | case QEasingCurve::InQuad: |
1035 | return &easeInQuad; |
1036 | case QEasingCurve::OutQuad: |
1037 | return &easeOutQuad; |
1038 | case QEasingCurve::InOutQuad: |
1039 | return &easeInOutQuad; |
1040 | case QEasingCurve::OutInQuad: |
1041 | return &easeOutInQuad; |
1042 | case QEasingCurve::InCubic: |
1043 | return &easeInCubic; |
1044 | case QEasingCurve::OutCubic: |
1045 | return &easeOutCubic; |
1046 | case QEasingCurve::InOutCubic: |
1047 | return &easeInOutCubic; |
1048 | case QEasingCurve::OutInCubic: |
1049 | return &easeOutInCubic; |
1050 | case QEasingCurve::InQuart: |
1051 | return &easeInQuart; |
1052 | case QEasingCurve::OutQuart: |
1053 | return &easeOutQuart; |
1054 | case QEasingCurve::InOutQuart: |
1055 | return &easeInOutQuart; |
1056 | case QEasingCurve::OutInQuart: |
1057 | return &easeOutInQuart; |
1058 | case QEasingCurve::InQuint: |
1059 | return &easeInQuint; |
1060 | case QEasingCurve::OutQuint: |
1061 | return &easeOutQuint; |
1062 | case QEasingCurve::InOutQuint: |
1063 | return &easeInOutQuint; |
1064 | case QEasingCurve::OutInQuint: |
1065 | return &easeOutInQuint; |
1066 | case QEasingCurve::InSine: |
1067 | return &easeInSine; |
1068 | case QEasingCurve::OutSine: |
1069 | return &easeOutSine; |
1070 | case QEasingCurve::InOutSine: |
1071 | return &easeInOutSine; |
1072 | case QEasingCurve::OutInSine: |
1073 | return &easeOutInSine; |
1074 | case QEasingCurve::InExpo: |
1075 | return &easeInExpo; |
1076 | case QEasingCurve::OutExpo: |
1077 | return &easeOutExpo; |
1078 | case QEasingCurve::InOutExpo: |
1079 | return &easeInOutExpo; |
1080 | case QEasingCurve::OutInExpo: |
1081 | return &easeOutInExpo; |
1082 | case QEasingCurve::InCirc: |
1083 | return &easeInCirc; |
1084 | case QEasingCurve::OutCirc: |
1085 | return &easeOutCirc; |
1086 | case QEasingCurve::InOutCirc: |
1087 | return &easeInOutCirc; |
1088 | case QEasingCurve::OutInCirc: |
1089 | return &easeOutInCirc; |
1090 | // Internal - needed for QTimeLine backward-compatibility: |
1091 | case QEasingCurve::InCurve: |
1092 | return &easeInCurve; |
1093 | case QEasingCurve::OutCurve: |
1094 | return &easeOutCurve; |
1095 | case QEasingCurve::SineCurve: |
1096 | return &easeSineCurve; |
1097 | case QEasingCurve::CosineCurve: |
1098 | return &easeCosineCurve; |
1099 | default: |
1100 | return nullptr; |
1101 | }; |
1102 | } |
1103 | |
1104 | static QEasingCurveFunction *curveToFunctionObject(QEasingCurve::Type type) |
1105 | { |
1106 | switch(type) { |
1107 | case QEasingCurve::InElastic: |
1108 | case QEasingCurve::OutElastic: |
1109 | case QEasingCurve::InOutElastic: |
1110 | case QEasingCurve::OutInElastic: |
1111 | return new ElasticEase(type); |
1112 | case QEasingCurve::OutBounce: |
1113 | case QEasingCurve::InBounce: |
1114 | case QEasingCurve::OutInBounce: |
1115 | case QEasingCurve::InOutBounce: |
1116 | return new BounceEase(type); |
1117 | case QEasingCurve::InBack: |
1118 | case QEasingCurve::OutBack: |
1119 | case QEasingCurve::InOutBack: |
1120 | case QEasingCurve::OutInBack: |
1121 | return new BackEase(type); |
1122 | case QEasingCurve::BezierSpline: |
1123 | return new BezierEase; |
1124 | case QEasingCurve::TCBSpline: |
1125 | return new TCBEase; |
1126 | default: |
1127 | return new QEasingCurveFunction(type, qreal(0.3), qreal(1.0), qreal(1.70158)); |
1128 | } |
1129 | |
1130 | return nullptr; |
1131 | } |
1132 | |
1133 | /*! |
1134 | \fn QEasingCurve::QEasingCurve(QEasingCurve &&other) |
1135 | |
1136 | Move-constructs a QEasingCurve instance, making it point at the same |
1137 | object that \a other was pointing to. |
1138 | |
1139 | \since 5.2 |
1140 | */ |
1141 | |
1142 | /*! |
1143 | Constructs an easing curve of the given \a type. |
1144 | */ |
1145 | QEasingCurve::QEasingCurve(Type type) |
1146 | : d_ptr(new QEasingCurvePrivate) |
1147 | { |
1148 | setType(type); |
1149 | } |
1150 | |
1151 | /*! |
1152 | Construct a copy of \a other. |
1153 | */ |
1154 | QEasingCurve::QEasingCurve(const QEasingCurve &other) |
1155 | : d_ptr(new QEasingCurvePrivate(*other.d_ptr)) |
1156 | { |
1157 | // ### non-atomic, requires malloc on shallow copy |
1158 | } |
1159 | |
1160 | /*! |
1161 | Destructor. |
1162 | */ |
1163 | |
1164 | QEasingCurve::~QEasingCurve() |
1165 | { |
1166 | delete d_ptr; |
1167 | } |
1168 | |
1169 | /*! |
1170 | \fn QEasingCurve &QEasingCurve::operator=(const QEasingCurve &other) |
1171 | Copy \a other. |
1172 | */ |
1173 | |
1174 | /*! |
1175 | \fn QEasingCurve &QEasingCurve::operator=(QEasingCurve &&other) |
1176 | |
1177 | Move-assigns \a other to this QEasingCurve instance. |
1178 | |
1179 | \since 5.2 |
1180 | */ |
1181 | |
1182 | /*! |
1183 | \fn void QEasingCurve::swap(QEasingCurve &other) |
1184 | \since 5.0 |
1185 | |
1186 | Swaps curve \a other with this curve. This operation is very |
1187 | fast and never fails. |
1188 | */ |
1189 | |
1190 | /*! |
1191 | Compare this easing curve with \a other and returns \c true if they are |
1192 | equal. It will also compare the properties of a curve. |
1193 | */ |
1194 | bool QEasingCurve::operator==(const QEasingCurve &other) const |
1195 | { |
1196 | bool res = d_ptr->func == other.d_ptr->func |
1197 | && d_ptr->type == other.d_ptr->type; |
1198 | if (res) { |
1199 | if (d_ptr->config && other.d_ptr->config) { |
1200 | // catch the config content |
1201 | res = d_ptr->config->operator==(other: *(other.d_ptr->config)); |
1202 | |
1203 | } else if (d_ptr->config || other.d_ptr->config) { |
1204 | // one one has a config object, which could contain default values |
1205 | res = qFuzzyCompare(p1: amplitude(), p2: other.amplitude()) && |
1206 | qFuzzyCompare(p1: period(), p2: other.period()) && |
1207 | qFuzzyCompare(p1: overshoot(), p2: other.overshoot()); |
1208 | } |
1209 | } |
1210 | return res; |
1211 | } |
1212 | |
1213 | /*! |
1214 | \fn bool QEasingCurve::operator!=(const QEasingCurve &other) const |
1215 | Compare this easing curve with \a other and returns \c true if they are not equal. |
1216 | It will also compare the properties of a curve. |
1217 | |
1218 | \sa operator==() |
1219 | */ |
1220 | |
1221 | /*! |
1222 | Returns the amplitude. This is not applicable for all curve types. |
1223 | It is only applicable for bounce and elastic curves (curves of type() |
1224 | QEasingCurve::InBounce, QEasingCurve::OutBounce, QEasingCurve::InOutBounce, |
1225 | QEasingCurve::OutInBounce, QEasingCurve::InElastic, QEasingCurve::OutElastic, |
1226 | QEasingCurve::InOutElastic or QEasingCurve::OutInElastic). |
1227 | */ |
1228 | qreal QEasingCurve::amplitude() const |
1229 | { |
1230 | return d_ptr->config ? d_ptr->config->_a : qreal(1.0); |
1231 | } |
1232 | |
1233 | /*! |
1234 | Sets the amplitude to \a amplitude. |
1235 | |
1236 | This will set the amplitude of the bounce or the amplitude of the |
1237 | elastic "spring" effect. The higher the number, the higher the amplitude. |
1238 | \sa amplitude() |
1239 | */ |
1240 | void QEasingCurve::setAmplitude(qreal amplitude) |
1241 | { |
1242 | if (!d_ptr->config) |
1243 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
1244 | d_ptr->config->_a = amplitude; |
1245 | } |
1246 | |
1247 | /*! |
1248 | Returns the period. This is not applicable for all curve types. |
1249 | It is only applicable if type() is QEasingCurve::InElastic, QEasingCurve::OutElastic, |
1250 | QEasingCurve::InOutElastic or QEasingCurve::OutInElastic. |
1251 | */ |
1252 | qreal QEasingCurve::period() const |
1253 | { |
1254 | return d_ptr->config ? d_ptr->config->_p : qreal(0.3); |
1255 | } |
1256 | |
1257 | /*! |
1258 | Sets the period to \a period. |
1259 | Setting a small period value will give a high frequency of the curve. A |
1260 | large period will give it a small frequency. |
1261 | |
1262 | \sa period() |
1263 | */ |
1264 | void QEasingCurve::setPeriod(qreal period) |
1265 | { |
1266 | if (!d_ptr->config) |
1267 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
1268 | d_ptr->config->_p = period; |
1269 | } |
1270 | |
1271 | /*! |
1272 | Returns the overshoot. This is not applicable for all curve types. |
1273 | It is only applicable if type() is QEasingCurve::InBack, QEasingCurve::OutBack, |
1274 | QEasingCurve::InOutBack or QEasingCurve::OutInBack. |
1275 | */ |
1276 | qreal QEasingCurve::overshoot() const |
1277 | { |
1278 | return d_ptr->config ? d_ptr->config->_o : qreal(1.70158) ; |
1279 | } |
1280 | |
1281 | /*! |
1282 | Sets the overshoot to \a overshoot. |
1283 | |
1284 | 0 produces no overshoot, and the default value of 1.70158 produces an overshoot of 10 percent. |
1285 | |
1286 | \sa overshoot() |
1287 | */ |
1288 | void QEasingCurve::setOvershoot(qreal overshoot) |
1289 | { |
1290 | if (!d_ptr->config) |
1291 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
1292 | d_ptr->config->_o = overshoot; |
1293 | } |
1294 | |
1295 | /*! |
1296 | Adds a segment of a cubic bezier spline to define a custom easing curve. |
1297 | It is only applicable if type() is QEasingCurve::BezierSpline. |
1298 | Note that the spline implicitly starts at (0.0, 0.0) and has to end at (1.0, 1.0) to |
1299 | be a valid easing curve. |
1300 | \a c1 and \a c2 are the control points used for drawing the curve. |
1301 | \a endPoint is the endpoint of the curve. |
1302 | */ |
1303 | void QEasingCurve::addCubicBezierSegment(const QPointF & c1, const QPointF & c2, const QPointF & endPoint) |
1304 | { |
1305 | if (!d_ptr->config) |
1306 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
1307 | d_ptr->config->_bezierCurves << c1 << c2 << endPoint; |
1308 | } |
1309 | |
1310 | QVector<QPointF> static inline tcbToBezier(const TCBPoints &tcbPoints) |
1311 | { |
1312 | const int count = tcbPoints.count(); |
1313 | QVector<QPointF> bezierPoints; |
1314 | bezierPoints.reserve(size: 3 * (count - 1)); |
1315 | |
1316 | for (int i = 1; i < count; i++) { |
1317 | const qreal t_0 = tcbPoints.at(i: i - 1)._t; |
1318 | const qreal c_0 = tcbPoints.at(i: i - 1)._c; |
1319 | qreal b_0 = -1; |
1320 | |
1321 | qreal const t_1 = tcbPoints.at(i)._t; |
1322 | qreal const c_1 = tcbPoints.at(i)._c; |
1323 | qreal b_1 = 1; |
1324 | |
1325 | QPointF c_minusOne; //P1 last segment - not available for the first point |
1326 | const QPointF c0(tcbPoints.at(i: i - 1)._point); //P0 Hermite/TBC |
1327 | const QPointF c3(tcbPoints.at(i)._point); //P1 Hermite/TBC |
1328 | QPointF c4; //P0 next segment - not available for the last point |
1329 | |
1330 | if (i > 1) { //first point no left tangent |
1331 | c_minusOne = tcbPoints.at(i: i - 2)._point; |
1332 | b_0 = tcbPoints.at(i: i - 1)._b; |
1333 | } |
1334 | |
1335 | if (i < (count - 1)) { //last point no right tangent |
1336 | c4 = tcbPoints.at(i: i + 1)._point; |
1337 | b_1 = tcbPoints.at(i)._b; |
1338 | } |
1339 | |
1340 | const qreal dx_0 = 0.5 * (1-t_0) * ((1 + b_0) * (1 + c_0) * (c0.x() - c_minusOne.x()) + (1- b_0) * (1 - c_0) * (c3.x() - c0.x())); |
1341 | const qreal dy_0 = 0.5 * (1-t_0) * ((1 + b_0) * (1 + c_0) * (c0.y() - c_minusOne.y()) + (1- b_0) * (1 - c_0) * (c3.y() - c0.y())); |
1342 | |
1343 | const qreal dx_1 = 0.5 * (1-t_1) * ((1 + b_1) * (1 - c_1) * (c3.x() - c0.x()) + (1 - b_1) * (1 + c_1) * (c4.x() - c3.x())); |
1344 | const qreal dy_1 = 0.5 * (1-t_1) * ((1 + b_1) * (1 - c_1) * (c3.y() - c0.y()) + (1 - b_1) * (1 + c_1) * (c4.y() - c3.y())); |
1345 | |
1346 | const QPointF d_0 = QPointF(dx_0, dy_0); |
1347 | const QPointF d_1 = QPointF(dx_1, dy_1); |
1348 | |
1349 | QPointF c1 = (3 * c0 + d_0) / 3; |
1350 | QPointF c2 = (3 * c3 - d_1) / 3; |
1351 | bezierPoints << c1 << c2 << c3; |
1352 | } |
1353 | return bezierPoints; |
1354 | } |
1355 | |
1356 | /*! |
1357 | Adds a segment of a TCB bezier spline to define a custom easing curve. |
1358 | It is only applicable if type() is QEasingCurve::TCBSpline. |
1359 | The spline has to start explitly at (0.0, 0.0) and has to end at (1.0, 1.0) to |
1360 | be a valid easing curve. |
1361 | The tension \a t changes the length of the tangent vector. |
1362 | The continuity \a c changes the sharpness in change between the tangents. |
1363 | The bias \a b changes the direction of the tangent vector. |
1364 | \a nextPoint is the sample position. |
1365 | All three parameters are valid between -1 and 1 and define the |
1366 | tangent of the control point. |
1367 | If all three parameters are 0 the resulting spline is a Catmull-Rom spline. |
1368 | The begin and endpoint always have a bias of -1 and 1, since the outer tangent is not defined. |
1369 | */ |
1370 | void QEasingCurve::addTCBSegment(const QPointF &nextPoint, qreal t, qreal c, qreal b) |
1371 | { |
1372 | if (!d_ptr->config) |
1373 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
1374 | |
1375 | d_ptr->config->_tcbPoints.append(t: TCBPoint(nextPoint, t, c ,b)); |
1376 | |
1377 | if (nextPoint == QPointF(1.0, 1.0)) { |
1378 | d_ptr->config->_bezierCurves = tcbToBezier(tcbPoints: d_ptr->config->_tcbPoints); |
1379 | d_ptr->config->_tcbPoints.clear(); |
1380 | } |
1381 | |
1382 | } |
1383 | |
1384 | /*! |
1385 | \fn QList<QPointF> QEasingCurve::cubicBezierSpline() const |
1386 | \obsolete Use toCubicSpline() instead. |
1387 | */ |
1388 | |
1389 | /*! |
1390 | \since 5.0 |
1391 | |
1392 | Returns the cubicBezierSpline that defines a custom easing curve. |
1393 | If the easing curve does not have a custom bezier easing curve the list |
1394 | is empty. |
1395 | */ |
1396 | QVector<QPointF> QEasingCurve::toCubicSpline() const |
1397 | { |
1398 | return d_ptr->config ? d_ptr->config->_bezierCurves : QVector<QPointF>(); |
1399 | } |
1400 | |
1401 | /*! |
1402 | Returns the type of the easing curve. |
1403 | */ |
1404 | QEasingCurve::Type QEasingCurve::type() const |
1405 | { |
1406 | return d_ptr->type; |
1407 | } |
1408 | |
1409 | void QEasingCurvePrivate::setType_helper(QEasingCurve::Type newType) |
1410 | { |
1411 | qreal amp = -1.0; |
1412 | qreal period = -1.0; |
1413 | qreal overshoot = -1.0; |
1414 | QVector<QPointF> bezierCurves; |
1415 | QVector<TCBPoint> tcbPoints; |
1416 | |
1417 | if (config) { |
1418 | amp = config->_a; |
1419 | period = config->_p; |
1420 | overshoot = config->_o; |
1421 | bezierCurves = std::move(config->_bezierCurves); |
1422 | tcbPoints = std::move(config->_tcbPoints); |
1423 | |
1424 | delete config; |
1425 | config = nullptr; |
1426 | } |
1427 | |
1428 | if (isConfigFunction(type: newType) || (amp != -1.0) || (period != -1.0) || (overshoot != -1.0) || |
1429 | !bezierCurves.isEmpty()) { |
1430 | config = curveToFunctionObject(type: newType); |
1431 | if (amp != -1.0) |
1432 | config->_a = amp; |
1433 | if (period != -1.0) |
1434 | config->_p = period; |
1435 | if (overshoot != -1.0) |
1436 | config->_o = overshoot; |
1437 | config->_bezierCurves = std::move(bezierCurves); |
1438 | config->_tcbPoints = std::move(tcbPoints); |
1439 | func = nullptr; |
1440 | } else if (newType != QEasingCurve::Custom) { |
1441 | func = curveToFunc(curve: newType); |
1442 | } |
1443 | Q_ASSERT((func == nullptr) == (config != nullptr)); |
1444 | type = newType; |
1445 | } |
1446 | |
1447 | /*! |
1448 | Sets the type of the easing curve to \a type. |
1449 | */ |
1450 | void QEasingCurve::setType(Type type) |
1451 | { |
1452 | if (d_ptr->type == type) |
1453 | return; |
1454 | if (type < Linear || type >= NCurveTypes - 1) { |
1455 | qWarning(msg: "QEasingCurve: Invalid curve type %d" , type); |
1456 | return; |
1457 | } |
1458 | |
1459 | d_ptr->setType_helper(type); |
1460 | } |
1461 | |
1462 | /*! |
1463 | Sets a custom easing curve that is defined by the user in the function \a func. |
1464 | The signature of the function is qreal myEasingFunction(qreal progress), |
1465 | where \e progress and the return value are considered to be normalized between 0 and 1. |
1466 | (In some cases the return value can be outside that range) |
1467 | After calling this function type() will return QEasingCurve::Custom. |
1468 | \a func cannot be zero. |
1469 | |
1470 | \sa customType() |
1471 | \sa valueForProgress() |
1472 | */ |
1473 | void QEasingCurve::setCustomType(EasingFunction func) |
1474 | { |
1475 | if (!func) { |
1476 | qWarning(msg: "Function pointer must not be null" ); |
1477 | return; |
1478 | } |
1479 | d_ptr->func = func; |
1480 | d_ptr->setType_helper(Custom); |
1481 | } |
1482 | |
1483 | /*! |
1484 | Returns the function pointer to the custom easing curve. |
1485 | If type() does not return QEasingCurve::Custom, this function |
1486 | will return 0. |
1487 | */ |
1488 | QEasingCurve::EasingFunction QEasingCurve::customType() const |
1489 | { |
1490 | return d_ptr->type == Custom ? d_ptr->func : nullptr; |
1491 | } |
1492 | |
1493 | /*! |
1494 | Return the effective progress for the easing curve at \a progress. |
1495 | Whereas \a progress must be between 0 and 1, the returned effective progress |
1496 | can be outside those bounds. For example, QEasingCurve::InBack will |
1497 | return negative values in the beginning of the function. |
1498 | */ |
1499 | qreal QEasingCurve::valueForProgress(qreal progress) const |
1500 | { |
1501 | progress = qBound<qreal>(min: 0, val: progress, max: 1); |
1502 | if (d_ptr->func) |
1503 | return d_ptr->func(progress); |
1504 | else if (d_ptr->config) |
1505 | return d_ptr->config->value(t: progress); |
1506 | else |
1507 | return progress; |
1508 | } |
1509 | |
1510 | #ifndef QT_NO_DEBUG_STREAM |
1511 | QDebug operator<<(QDebug debug, const QEasingCurve &item) |
1512 | { |
1513 | QDebugStateSaver saver(debug); |
1514 | debug << "type:" << item.d_ptr->type |
1515 | << "func:" << reinterpret_cast<const void *>(item.d_ptr->func); |
1516 | if (item.d_ptr->config) { |
1517 | debug << QString::fromLatin1(str: "period:%1" ).arg(a: item.d_ptr->config->_p, fieldWidth: 0, fmt: 'f', prec: 20) |
1518 | << QString::fromLatin1(str: "amp:%1" ).arg(a: item.d_ptr->config->_a, fieldWidth: 0, fmt: 'f', prec: 20) |
1519 | << QString::fromLatin1(str: "overshoot:%1" ).arg(a: item.d_ptr->config->_o, fieldWidth: 0, fmt: 'f', prec: 20); |
1520 | } |
1521 | return debug; |
1522 | } |
1523 | #endif // QT_NO_DEBUG_STREAM |
1524 | |
1525 | #ifndef QT_NO_DATASTREAM |
1526 | /*! |
1527 | \fn QDataStream &operator<<(QDataStream &stream, const QEasingCurve &easing) |
1528 | \relates QEasingCurve |
1529 | |
1530 | Writes the given \a easing curve to the given \a stream and returns a |
1531 | reference to the stream. |
1532 | |
1533 | \sa {Serializing Qt Data Types} |
1534 | */ |
1535 | |
1536 | QDataStream &operator<<(QDataStream &stream, const QEasingCurve &easing) |
1537 | { |
1538 | stream << quint8(easing.d_ptr->type); |
1539 | stream << quint64(quintptr(easing.d_ptr->func)); |
1540 | |
1541 | bool hasConfig = easing.d_ptr->config; |
1542 | stream << hasConfig; |
1543 | if (hasConfig) { |
1544 | stream << easing.d_ptr->config; |
1545 | } |
1546 | return stream; |
1547 | } |
1548 | |
1549 | /*! |
1550 | \fn QDataStream &operator>>(QDataStream &stream, QEasingCurve &easing) |
1551 | \relates QEasingCurve |
1552 | |
1553 | Reads an easing curve from the given \a stream into the given \a |
1554 | easing curve and returns a reference to the stream. |
1555 | |
1556 | \sa {Serializing Qt Data Types} |
1557 | */ |
1558 | |
1559 | QDataStream &operator>>(QDataStream &stream, QEasingCurve &easing) |
1560 | { |
1561 | QEasingCurve::Type type; |
1562 | quint8 int_type; |
1563 | stream >> int_type; |
1564 | type = static_cast<QEasingCurve::Type>(int_type); |
1565 | easing.setType(type); |
1566 | |
1567 | quint64 ptr_func; |
1568 | stream >> ptr_func; |
1569 | easing.d_ptr->func = QEasingCurve::EasingFunction(quintptr(ptr_func)); |
1570 | |
1571 | bool hasConfig; |
1572 | stream >> hasConfig; |
1573 | delete easing.d_ptr->config; |
1574 | easing.d_ptr->config = nullptr; |
1575 | if (hasConfig) { |
1576 | QEasingCurveFunction *config = curveToFunctionObject(type); |
1577 | stream >> config; |
1578 | easing.d_ptr->config = config; |
1579 | } |
1580 | return stream; |
1581 | } |
1582 | #endif // QT_NO_DATASTREAM |
1583 | |
1584 | QT_END_NAMESPACE |
1585 | |
1586 | #include "moc_qeasingcurve.cpp" |
1587 | |