1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qmatrix4x4.h" |
41 | #include <QtCore/qmath.h> |
42 | #include <QtCore/qvariant.h> |
43 | #include <QtGui/qmatrix.h> |
44 | #include <QtGui/qtransform.h> |
45 | |
46 | #include <cmath> |
47 | |
48 | QT_BEGIN_NAMESPACE |
49 | |
50 | #ifndef QT_NO_MATRIX4X4 |
51 | |
52 | /*! |
53 | \class QMatrix4x4 |
54 | \brief The QMatrix4x4 class represents a 4x4 transformation matrix in 3D space. |
55 | \since 4.6 |
56 | \ingroup painting-3D |
57 | \inmodule QtGui |
58 | |
59 | The QMatrix4x4 class in general is treated as a row-major matrix, in that the |
60 | constructors and operator() functions take data in row-major format, as is |
61 | familiar in C-style usage. |
62 | |
63 | Internally the data is stored as column-major format, so as to be optimal for |
64 | passing to OpenGL functions, which expect column-major data. |
65 | |
66 | When using these functions be aware that they return data in \b{column-major} |
67 | format: |
68 | \list |
69 | \li data() |
70 | \li constData() |
71 | \endlist |
72 | |
73 | \sa QVector3D, QGenericMatrix |
74 | */ |
75 | |
76 | static const float inv_dist_to_plane = 1.0f / 1024.0f; |
77 | |
78 | /*! |
79 | \fn QMatrix4x4::QMatrix4x4() |
80 | |
81 | Constructs an identity matrix. |
82 | */ |
83 | |
84 | /*! |
85 | \fn QMatrix4x4::QMatrix4x4(Qt::Initialization) |
86 | \since 5.5 |
87 | \internal |
88 | |
89 | Constructs a matrix without initializing the contents. |
90 | */ |
91 | |
92 | /*! |
93 | Constructs a matrix from the given 16 floating-point \a values. |
94 | The contents of the array \a values is assumed to be in |
95 | row-major order. |
96 | |
97 | If the matrix has a special type (identity, translate, scale, etc), |
98 | the programmer should follow this constructor with a call to |
99 | optimize() if they wish QMatrix4x4 to optimize further |
100 | calls to translate(), scale(), etc. |
101 | |
102 | \sa copyDataTo(), optimize() |
103 | */ |
104 | QMatrix4x4::QMatrix4x4(const float *values) |
105 | { |
106 | for (int row = 0; row < 4; ++row) |
107 | for (int col = 0; col < 4; ++col) |
108 | m[col][row] = values[row * 4 + col]; |
109 | flagBits = General; |
110 | } |
111 | |
112 | /*! |
113 | \fn QMatrix4x4::QMatrix4x4(float m11, float m12, float m13, float m14, float m21, float m22, float m23, float m24, float m31, float m32, float m33, float m34, float m41, float m42, float m43, float m44) |
114 | |
115 | Constructs a matrix from the 16 elements \a m11, \a m12, \a m13, \a m14, |
116 | \a m21, \a m22, \a m23, \a m24, \a m31, \a m32, \a m33, \a m34, |
117 | \a m41, \a m42, \a m43, and \a m44. The elements are specified in |
118 | row-major order. |
119 | |
120 | If the matrix has a special type (identity, translate, scale, etc), |
121 | the programmer should follow this constructor with a call to |
122 | optimize() if they wish QMatrix4x4 to optimize further |
123 | calls to translate(), scale(), etc. |
124 | |
125 | \sa optimize() |
126 | */ |
127 | |
128 | /*! |
129 | \fn template <int N, int M> QMatrix4x4::QMatrix4x4(const QGenericMatrix<N, M, float>& matrix) |
130 | |
131 | Constructs a 4x4 matrix from the left-most 4 columns and top-most |
132 | 4 rows of \a matrix. If \a matrix has less than 4 columns or rows, |
133 | the remaining elements are filled with elements from the identity |
134 | matrix. |
135 | |
136 | \sa toGenericMatrix() |
137 | */ |
138 | |
139 | /*! |
140 | \fn QGenericMatrix<N, M, float> QMatrix4x4::toGenericMatrix() const |
141 | |
142 | Constructs a NxM generic matrix from the left-most N columns and |
143 | top-most M rows of this 4x4 matrix. If N or M is greater than 4, |
144 | then the remaining elements are filled with elements from the |
145 | identity matrix. |
146 | */ |
147 | |
148 | /*! |
149 | \fn template <int N, int M> QMatrix4x4 qGenericMatrixToMatrix4x4(const QGenericMatrix<N, M, float>& matrix) |
150 | \relates QMatrix4x4 |
151 | \obsolete |
152 | |
153 | Returns a 4x4 matrix constructed from the left-most 4 columns and |
154 | top-most 4 rows of \a matrix. If \a matrix has less than 4 columns |
155 | or rows, the remaining elements are filled with elements from the |
156 | identity matrix. |
157 | */ |
158 | |
159 | /*! |
160 | \fn QGenericMatrix<N, M, float> qGenericMatrixFromMatrix4x4(const QMatrix4x4& matrix) |
161 | \relates QMatrix4x4 |
162 | \obsolete |
163 | |
164 | Returns a NxM generic matrix constructed from the left-most N columns |
165 | and top-most M rows of \a matrix. If N or M is greater than 4, |
166 | then the remaining elements are filled with elements from the |
167 | identity matrix. |
168 | |
169 | \sa QMatrix4x4::toGenericMatrix() |
170 | */ |
171 | |
172 | /*! |
173 | \internal |
174 | */ |
175 | QMatrix4x4::QMatrix4x4(const float *values, int cols, int rows) |
176 | { |
177 | for (int col = 0; col < 4; ++col) { |
178 | for (int row = 0; row < 4; ++row) { |
179 | if (col < cols && row < rows) |
180 | m[col][row] = values[col * rows + row]; |
181 | else if (col == row) |
182 | m[col][row] = 1.0f; |
183 | else |
184 | m[col][row] = 0.0f; |
185 | } |
186 | } |
187 | flagBits = General; |
188 | } |
189 | |
190 | #if QT_DEPRECATED_SINCE(5, 15) |
191 | /*! |
192 | \obsolete |
193 | |
194 | Constructs a 4x4 matrix from a conventional Qt 2D affine |
195 | transformation \a matrix. |
196 | |
197 | If \a matrix has a special type (identity, translate, scale, etc), |
198 | the programmer should follow this constructor with a call to |
199 | optimize() if they wish QMatrix4x4 to optimize further |
200 | calls to translate(), scale(), etc. |
201 | |
202 | \sa toAffine(), optimize() |
203 | */ |
204 | QMatrix4x4::QMatrix4x4(const QMatrix& matrix) |
205 | { |
206 | m[0][0] = matrix.m11(); |
207 | m[0][1] = matrix.m12(); |
208 | m[0][2] = 0.0f; |
209 | m[0][3] = 0.0f; |
210 | m[1][0] = matrix.m21(); |
211 | m[1][1] = matrix.m22(); |
212 | m[1][2] = 0.0f; |
213 | m[1][3] = 0.0f; |
214 | m[2][0] = 0.0f; |
215 | m[2][1] = 0.0f; |
216 | m[2][2] = 1.0f; |
217 | m[2][3] = 0.0f; |
218 | m[3][0] = matrix.dx(); |
219 | m[3][1] = matrix.dy(); |
220 | m[3][2] = 0.0f; |
221 | m[3][3] = 1.0f; |
222 | flagBits = Translation | Scale | Rotation2D; |
223 | } |
224 | #endif // QT_DEPRECATED_SINCE(5, 15) |
225 | |
226 | /*! |
227 | Constructs a 4x4 matrix from the conventional Qt 2D |
228 | transformation matrix \a transform. |
229 | |
230 | If \a transform has a special type (identity, translate, scale, etc), |
231 | the programmer should follow this constructor with a call to |
232 | optimize() if they wish QMatrix4x4 to optimize further |
233 | calls to translate(), scale(), etc. |
234 | |
235 | \sa toTransform(), optimize() |
236 | */ |
237 | QMatrix4x4::QMatrix4x4(const QTransform& transform) |
238 | { |
239 | m[0][0] = transform.m11(); |
240 | m[0][1] = transform.m12(); |
241 | m[0][2] = 0.0f; |
242 | m[0][3] = transform.m13(); |
243 | m[1][0] = transform.m21(); |
244 | m[1][1] = transform.m22(); |
245 | m[1][2] = 0.0f; |
246 | m[1][3] = transform.m23(); |
247 | m[2][0] = 0.0f; |
248 | m[2][1] = 0.0f; |
249 | m[2][2] = 1.0f; |
250 | m[2][3] = 0.0f; |
251 | m[3][0] = transform.dx(); |
252 | m[3][1] = transform.dy(); |
253 | m[3][2] = 0.0f; |
254 | m[3][3] = transform.m33(); |
255 | flagBits = General; |
256 | } |
257 | |
258 | /*! |
259 | \fn const float& QMatrix4x4::operator()(int row, int column) const |
260 | |
261 | Returns a constant reference to the element at position |
262 | (\a row, \a column) in this matrix. |
263 | |
264 | \sa column(), row() |
265 | */ |
266 | |
267 | /*! |
268 | \fn float& QMatrix4x4::operator()(int row, int column) |
269 | |
270 | Returns a reference to the element at position (\a row, \a column) |
271 | in this matrix so that the element can be assigned to. |
272 | |
273 | \sa optimize(), setColumn(), setRow() |
274 | */ |
275 | |
276 | /*! |
277 | \fn QVector4D QMatrix4x4::column(int index) const |
278 | |
279 | Returns the elements of column \a index as a 4D vector. |
280 | |
281 | \sa setColumn(), row() |
282 | */ |
283 | |
284 | /*! |
285 | \fn void QMatrix4x4::setColumn(int index, const QVector4D& value) |
286 | |
287 | Sets the elements of column \a index to the components of \a value. |
288 | |
289 | \sa column(), setRow() |
290 | */ |
291 | |
292 | /*! |
293 | \fn QVector4D QMatrix4x4::row(int index) const |
294 | |
295 | Returns the elements of row \a index as a 4D vector. |
296 | |
297 | \sa setRow(), column() |
298 | */ |
299 | |
300 | /*! |
301 | \fn void QMatrix4x4::setRow(int index, const QVector4D& value) |
302 | |
303 | Sets the elements of row \a index to the components of \a value. |
304 | |
305 | \sa row(), setColumn() |
306 | */ |
307 | |
308 | /*! |
309 | \fn bool QMatrix4x4::isAffine() const |
310 | \since 5.5 |
311 | |
312 | Returns \c true if this matrix is affine matrix; false otherwise. |
313 | |
314 | An affine matrix is a 4x4 matrix with row 3 equal to (0, 0, 0, 1), |
315 | e.g. no projective coefficients. |
316 | |
317 | \sa isIdentity() |
318 | */ |
319 | |
320 | /*! |
321 | \fn bool QMatrix4x4::isIdentity() const |
322 | |
323 | Returns \c true if this matrix is the identity; false otherwise. |
324 | |
325 | \sa setToIdentity() |
326 | */ |
327 | |
328 | /*! |
329 | \fn void QMatrix4x4::setToIdentity() |
330 | |
331 | Sets this matrix to the identity. |
332 | |
333 | \sa isIdentity() |
334 | */ |
335 | |
336 | /*! |
337 | \fn void QMatrix4x4::fill(float value) |
338 | |
339 | Fills all elements of this matrx with \a value. |
340 | */ |
341 | |
342 | static inline double matrixDet2(const double m[4][4], int col0, int col1, int row0, int row1) |
343 | { |
344 | return m[col0][row0] * m[col1][row1] - m[col0][row1] * m[col1][row0]; |
345 | } |
346 | |
347 | |
348 | // The 4x4 matrix inverse algorithm is based on that described at: |
349 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q24 |
350 | // Some optimization has been done to avoid making copies of 3x3 |
351 | // sub-matrices and to unroll the loops. |
352 | |
353 | // Calculate the determinant of a 3x3 sub-matrix. |
354 | // | A B C | |
355 | // M = | D E F | det(M) = A * (EI - HF) - B * (DI - GF) + C * (DH - GE) |
356 | // | G H I | |
357 | static inline double matrixDet3 |
358 | (const double m[4][4], int col0, int col1, int col2, |
359 | int row0, int row1, int row2) |
360 | { |
361 | return m[col0][row0] * matrixDet2(m, col0: col1, col1: col2, row0: row1, row1: row2) |
362 | - m[col1][row0] * matrixDet2(m, col0, col1: col2, row0: row1, row1: row2) |
363 | + m[col2][row0] * matrixDet2(m, col0, col1, row0: row1, row1: row2); |
364 | } |
365 | |
366 | // Calculate the determinant of a 4x4 matrix. |
367 | static inline double matrixDet4(const double m[4][4]) |
368 | { |
369 | double det; |
370 | det = m[0][0] * matrixDet3(m, col0: 1, col1: 2, col2: 3, row0: 1, row1: 2, row2: 3); |
371 | det -= m[1][0] * matrixDet3(m, col0: 0, col1: 2, col2: 3, row0: 1, row1: 2, row2: 3); |
372 | det += m[2][0] * matrixDet3(m, col0: 0, col1: 1, col2: 3, row0: 1, row1: 2, row2: 3); |
373 | det -= m[3][0] * matrixDet3(m, col0: 0, col1: 1, col2: 2, row0: 1, row1: 2, row2: 3); |
374 | return det; |
375 | } |
376 | |
377 | static inline void copyToDoubles(const float m[4][4], double mm[4][4]) |
378 | { |
379 | for (int i = 0; i < 4; ++i) |
380 | for (int j = 0; j < 4; ++j) |
381 | mm[i][j] = double(m[i][j]); |
382 | } |
383 | |
384 | /*! |
385 | Returns the determinant of this matrix. |
386 | */ |
387 | double QMatrix4x4::determinant() const |
388 | { |
389 | if ((flagBits & ~(Translation | Rotation2D | Rotation)) == Identity) |
390 | return 1.0; |
391 | |
392 | double mm[4][4]; |
393 | copyToDoubles(m, mm); |
394 | if (flagBits < Rotation2D) |
395 | return mm[0][0] * mm[1][1] * mm[2][2]; // Translation | Scale |
396 | if (flagBits < Perspective) |
397 | return matrixDet3(m: mm, col0: 0, col1: 1, col2: 2, row0: 0, row1: 1, row2: 2); |
398 | return matrixDet4(m: mm); |
399 | } |
400 | |
401 | /*! |
402 | Returns the inverse of this matrix. Returns the identity if |
403 | this matrix cannot be inverted; i.e. determinant() is zero. |
404 | If \a invertible is not null, then true will be written to |
405 | that location if the matrix can be inverted; false otherwise. |
406 | |
407 | If the matrix is recognized as the identity or an orthonormal |
408 | matrix, then this function will quickly invert the matrix |
409 | using optimized routines. |
410 | |
411 | \sa determinant(), normalMatrix() |
412 | */ |
413 | QMatrix4x4 QMatrix4x4::inverted(bool *invertible) const |
414 | { |
415 | // Handle some of the easy cases first. |
416 | if (flagBits == Identity) { |
417 | if (invertible) |
418 | *invertible = true; |
419 | return QMatrix4x4(); |
420 | } else if (flagBits == Translation) { |
421 | QMatrix4x4 inv; |
422 | inv.m[3][0] = -m[3][0]; |
423 | inv.m[3][1] = -m[3][1]; |
424 | inv.m[3][2] = -m[3][2]; |
425 | inv.flagBits = Translation; |
426 | if (invertible) |
427 | *invertible = true; |
428 | return inv; |
429 | } else if (flagBits < Rotation2D) { |
430 | // Translation | Scale |
431 | if (m[0][0] == 0 || m[1][1] == 0 || m[2][2] == 0) { |
432 | if (invertible) |
433 | *invertible = false; |
434 | return QMatrix4x4(); |
435 | } |
436 | QMatrix4x4 inv; |
437 | inv.m[0][0] = 1.0f / m[0][0]; |
438 | inv.m[1][1] = 1.0f / m[1][1]; |
439 | inv.m[2][2] = 1.0f / m[2][2]; |
440 | inv.m[3][0] = -m[3][0] * inv.m[0][0]; |
441 | inv.m[3][1] = -m[3][1] * inv.m[1][1]; |
442 | inv.m[3][2] = -m[3][2] * inv.m[2][2]; |
443 | inv.flagBits = flagBits; |
444 | |
445 | if (invertible) |
446 | *invertible = true; |
447 | return inv; |
448 | } else if ((flagBits & ~(Translation | Rotation2D | Rotation)) == Identity) { |
449 | if (invertible) |
450 | *invertible = true; |
451 | return orthonormalInverse(); |
452 | } else if (flagBits < Perspective) { |
453 | QMatrix4x4 inv(1); // The "1" says to not load the identity. |
454 | |
455 | double mm[4][4]; |
456 | copyToDoubles(m, mm); |
457 | |
458 | double det = matrixDet3(m: mm, col0: 0, col1: 1, col2: 2, row0: 0, row1: 1, row2: 2); |
459 | if (det == 0.0f) { |
460 | if (invertible) |
461 | *invertible = false; |
462 | return QMatrix4x4(); |
463 | } |
464 | det = 1.0f / det; |
465 | |
466 | inv.m[0][0] = matrixDet2(m: mm, col0: 1, col1: 2, row0: 1, row1: 2) * det; |
467 | inv.m[0][1] = -matrixDet2(m: mm, col0: 0, col1: 2, row0: 1, row1: 2) * det; |
468 | inv.m[0][2] = matrixDet2(m: mm, col0: 0, col1: 1, row0: 1, row1: 2) * det; |
469 | inv.m[0][3] = 0; |
470 | inv.m[1][0] = -matrixDet2(m: mm, col0: 1, col1: 2, row0: 0, row1: 2) * det; |
471 | inv.m[1][1] = matrixDet2(m: mm, col0: 0, col1: 2, row0: 0, row1: 2) * det; |
472 | inv.m[1][2] = -matrixDet2(m: mm, col0: 0, col1: 1, row0: 0, row1: 2) * det; |
473 | inv.m[1][3] = 0; |
474 | inv.m[2][0] = matrixDet2(m: mm, col0: 1, col1: 2, row0: 0, row1: 1) * det; |
475 | inv.m[2][1] = -matrixDet2(m: mm, col0: 0, col1: 2, row0: 0, row1: 1) * det; |
476 | inv.m[2][2] = matrixDet2(m: mm, col0: 0, col1: 1, row0: 0, row1: 1) * det; |
477 | inv.m[2][3] = 0; |
478 | inv.m[3][0] = -inv.m[0][0] * m[3][0] - inv.m[1][0] * m[3][1] - inv.m[2][0] * m[3][2]; |
479 | inv.m[3][1] = -inv.m[0][1] * m[3][0] - inv.m[1][1] * m[3][1] - inv.m[2][1] * m[3][2]; |
480 | inv.m[3][2] = -inv.m[0][2] * m[3][0] - inv.m[1][2] * m[3][1] - inv.m[2][2] * m[3][2]; |
481 | inv.m[3][3] = 1; |
482 | inv.flagBits = flagBits; |
483 | |
484 | if (invertible) |
485 | *invertible = true; |
486 | return inv; |
487 | } |
488 | |
489 | QMatrix4x4 inv(1); // The "1" says to not load the identity. |
490 | |
491 | double mm[4][4]; |
492 | copyToDoubles(m, mm); |
493 | |
494 | double det = matrixDet4(m: mm); |
495 | if (det == 0.0f) { |
496 | if (invertible) |
497 | *invertible = false; |
498 | return QMatrix4x4(); |
499 | } |
500 | det = 1.0f / det; |
501 | |
502 | inv.m[0][0] = matrixDet3(m: mm, col0: 1, col1: 2, col2: 3, row0: 1, row1: 2, row2: 3) * det; |
503 | inv.m[0][1] = -matrixDet3(m: mm, col0: 0, col1: 2, col2: 3, row0: 1, row1: 2, row2: 3) * det; |
504 | inv.m[0][2] = matrixDet3(m: mm, col0: 0, col1: 1, col2: 3, row0: 1, row1: 2, row2: 3) * det; |
505 | inv.m[0][3] = -matrixDet3(m: mm, col0: 0, col1: 1, col2: 2, row0: 1, row1: 2, row2: 3) * det; |
506 | inv.m[1][0] = -matrixDet3(m: mm, col0: 1, col1: 2, col2: 3, row0: 0, row1: 2, row2: 3) * det; |
507 | inv.m[1][1] = matrixDet3(m: mm, col0: 0, col1: 2, col2: 3, row0: 0, row1: 2, row2: 3) * det; |
508 | inv.m[1][2] = -matrixDet3(m: mm, col0: 0, col1: 1, col2: 3, row0: 0, row1: 2, row2: 3) * det; |
509 | inv.m[1][3] = matrixDet3(m: mm, col0: 0, col1: 1, col2: 2, row0: 0, row1: 2, row2: 3) * det; |
510 | inv.m[2][0] = matrixDet3(m: mm, col0: 1, col1: 2, col2: 3, row0: 0, row1: 1, row2: 3) * det; |
511 | inv.m[2][1] = -matrixDet3(m: mm, col0: 0, col1: 2, col2: 3, row0: 0, row1: 1, row2: 3) * det; |
512 | inv.m[2][2] = matrixDet3(m: mm, col0: 0, col1: 1, col2: 3, row0: 0, row1: 1, row2: 3) * det; |
513 | inv.m[2][3] = -matrixDet3(m: mm, col0: 0, col1: 1, col2: 2, row0: 0, row1: 1, row2: 3) * det; |
514 | inv.m[3][0] = -matrixDet3(m: mm, col0: 1, col1: 2, col2: 3, row0: 0, row1: 1, row2: 2) * det; |
515 | inv.m[3][1] = matrixDet3(m: mm, col0: 0, col1: 2, col2: 3, row0: 0, row1: 1, row2: 2) * det; |
516 | inv.m[3][2] = -matrixDet3(m: mm, col0: 0, col1: 1, col2: 3, row0: 0, row1: 1, row2: 2) * det; |
517 | inv.m[3][3] = matrixDet3(m: mm, col0: 0, col1: 1, col2: 2, row0: 0, row1: 1, row2: 2) * det; |
518 | inv.flagBits = flagBits; |
519 | |
520 | if (invertible) |
521 | *invertible = true; |
522 | return inv; |
523 | } |
524 | |
525 | /*! |
526 | Returns the normal matrix corresponding to this 4x4 transformation. |
527 | The normal matrix is the transpose of the inverse of the top-left |
528 | 3x3 part of this 4x4 matrix. If the 3x3 sub-matrix is not invertible, |
529 | this function returns the identity. |
530 | |
531 | \sa inverted() |
532 | */ |
533 | QMatrix3x3 QMatrix4x4::normalMatrix() const |
534 | { |
535 | QMatrix3x3 inv; |
536 | |
537 | // Handle the simple cases first. |
538 | if (flagBits < Scale) { |
539 | // Translation |
540 | return inv; |
541 | } else if (flagBits < Rotation2D) { |
542 | // Translation | Scale |
543 | if (m[0][0] == 0.0f || m[1][1] == 0.0f || m[2][2] == 0.0f) |
544 | return inv; |
545 | inv.data()[0] = 1.0f / m[0][0]; |
546 | inv.data()[4] = 1.0f / m[1][1]; |
547 | inv.data()[8] = 1.0f / m[2][2]; |
548 | return inv; |
549 | } else if ((flagBits & ~(Translation | Rotation2D | Rotation)) == Identity) { |
550 | float *invm = inv.data(); |
551 | invm[0 + 0 * 3] = m[0][0]; |
552 | invm[1 + 0 * 3] = m[0][1]; |
553 | invm[2 + 0 * 3] = m[0][2]; |
554 | invm[0 + 1 * 3] = m[1][0]; |
555 | invm[1 + 1 * 3] = m[1][1]; |
556 | invm[2 + 1 * 3] = m[1][2]; |
557 | invm[0 + 2 * 3] = m[2][0]; |
558 | invm[1 + 2 * 3] = m[2][1]; |
559 | invm[2 + 2 * 3] = m[2][2]; |
560 | return inv; |
561 | } |
562 | |
563 | double mm[4][4]; |
564 | copyToDoubles(m, mm); |
565 | double det = matrixDet3(m: mm, col0: 0, col1: 1, col2: 2, row0: 0, row1: 1, row2: 2); |
566 | if (det == 0.0f) |
567 | return inv; |
568 | det = 1.0f / det; |
569 | |
570 | float *invm = inv.data(); |
571 | |
572 | // Invert and transpose in a single step. |
573 | invm[0 + 0 * 3] = (mm[1][1] * mm[2][2] - mm[2][1] * mm[1][2]) * det; |
574 | invm[1 + 0 * 3] = -(mm[1][0] * mm[2][2] - mm[1][2] * mm[2][0]) * det; |
575 | invm[2 + 0 * 3] = (mm[1][0] * mm[2][1] - mm[1][1] * mm[2][0]) * det; |
576 | invm[0 + 1 * 3] = -(mm[0][1] * mm[2][2] - mm[2][1] * mm[0][2]) * det; |
577 | invm[1 + 1 * 3] = (mm[0][0] * mm[2][2] - mm[0][2] * mm[2][0]) * det; |
578 | invm[2 + 1 * 3] = -(mm[0][0] * mm[2][1] - mm[0][1] * mm[2][0]) * det; |
579 | invm[0 + 2 * 3] = (mm[0][1] * mm[1][2] - mm[0][2] * mm[1][1]) * det; |
580 | invm[1 + 2 * 3] = -(mm[0][0] * mm[1][2] - mm[0][2] * mm[1][0]) * det; |
581 | invm[2 + 2 * 3] = (mm[0][0] * mm[1][1] - mm[1][0] * mm[0][1]) * det; |
582 | |
583 | return inv; |
584 | } |
585 | |
586 | /*! |
587 | Returns this matrix, transposed about its diagonal. |
588 | */ |
589 | QMatrix4x4 QMatrix4x4::transposed() const |
590 | { |
591 | QMatrix4x4 result(1); // The "1" says to not load the identity. |
592 | for (int row = 0; row < 4; ++row) { |
593 | for (int col = 0; col < 4; ++col) { |
594 | result.m[col][row] = m[row][col]; |
595 | } |
596 | } |
597 | // When a translation is transposed, it becomes a perspective transformation. |
598 | result.flagBits = (flagBits & Translation ? General : flagBits); |
599 | return result; |
600 | } |
601 | |
602 | /*! |
603 | \fn QMatrix4x4& QMatrix4x4::operator+=(const QMatrix4x4& other) |
604 | |
605 | Adds the contents of \a other to this matrix. |
606 | */ |
607 | |
608 | /*! |
609 | \fn QMatrix4x4& QMatrix4x4::operator-=(const QMatrix4x4& other) |
610 | |
611 | Subtracts the contents of \a other from this matrix. |
612 | */ |
613 | |
614 | /*! |
615 | \fn QMatrix4x4& QMatrix4x4::operator*=(const QMatrix4x4& other) |
616 | |
617 | Multiplies the contents of \a other by this matrix. |
618 | */ |
619 | |
620 | /*! |
621 | \fn QMatrix4x4& QMatrix4x4::operator*=(float factor) |
622 | \overload |
623 | |
624 | Multiplies all elements of this matrix by \a factor. |
625 | */ |
626 | |
627 | /*! |
628 | \overload |
629 | |
630 | Divides all elements of this matrix by \a divisor. |
631 | */ |
632 | QMatrix4x4& QMatrix4x4::operator/=(float divisor) |
633 | { |
634 | m[0][0] /= divisor; |
635 | m[0][1] /= divisor; |
636 | m[0][2] /= divisor; |
637 | m[0][3] /= divisor; |
638 | m[1][0] /= divisor; |
639 | m[1][1] /= divisor; |
640 | m[1][2] /= divisor; |
641 | m[1][3] /= divisor; |
642 | m[2][0] /= divisor; |
643 | m[2][1] /= divisor; |
644 | m[2][2] /= divisor; |
645 | m[2][3] /= divisor; |
646 | m[3][0] /= divisor; |
647 | m[3][1] /= divisor; |
648 | m[3][2] /= divisor; |
649 | m[3][3] /= divisor; |
650 | flagBits = General; |
651 | return *this; |
652 | } |
653 | |
654 | /*! |
655 | \fn bool QMatrix4x4::operator==(const QMatrix4x4& other) const |
656 | |
657 | Returns \c true if this matrix is identical to \a other; false otherwise. |
658 | This operator uses an exact floating-point comparison. |
659 | */ |
660 | |
661 | /*! |
662 | \fn bool QMatrix4x4::operator!=(const QMatrix4x4& other) const |
663 | |
664 | Returns \c true if this matrix is not identical to \a other; false otherwise. |
665 | This operator uses an exact floating-point comparison. |
666 | */ |
667 | |
668 | /*! |
669 | \fn QMatrix4x4 operator+(const QMatrix4x4& m1, const QMatrix4x4& m2) |
670 | \relates QMatrix4x4 |
671 | |
672 | Returns the sum of \a m1 and \a m2. |
673 | */ |
674 | |
675 | /*! |
676 | \fn QMatrix4x4 operator-(const QMatrix4x4& m1, const QMatrix4x4& m2) |
677 | \relates QMatrix4x4 |
678 | |
679 | Returns the difference of \a m1 and \a m2. |
680 | */ |
681 | |
682 | /*! |
683 | \fn QMatrix4x4 operator*(const QMatrix4x4& m1, const QMatrix4x4& m2) |
684 | \relates QMatrix4x4 |
685 | |
686 | Returns the product of \a m1 and \a m2. |
687 | */ |
688 | |
689 | #ifndef QT_NO_VECTOR3D |
690 | |
691 | /*! |
692 | \fn QVector3D operator*(const QVector3D& vector, const QMatrix4x4& matrix) |
693 | \relates QMatrix4x4 |
694 | |
695 | Returns the result of transforming \a vector according to \a matrix, |
696 | with the matrix applied post-vector. |
697 | */ |
698 | |
699 | /*! |
700 | \fn QVector3D operator*(const QMatrix4x4& matrix, const QVector3D& vector) |
701 | \relates QMatrix4x4 |
702 | |
703 | Returns the result of transforming \a vector according to \a matrix, |
704 | with the matrix applied pre-vector. |
705 | */ |
706 | |
707 | #endif |
708 | |
709 | #ifndef QT_NO_VECTOR4D |
710 | |
711 | /*! |
712 | \fn QVector4D operator*(const QVector4D& vector, const QMatrix4x4& matrix) |
713 | \relates QMatrix4x4 |
714 | |
715 | Returns the result of transforming \a vector according to \a matrix, |
716 | with the matrix applied post-vector. |
717 | */ |
718 | |
719 | /*! |
720 | \fn QVector4D operator*(const QMatrix4x4& matrix, const QVector4D& vector) |
721 | \relates QMatrix4x4 |
722 | |
723 | Returns the result of transforming \a vector according to \a matrix, |
724 | with the matrix applied pre-vector. |
725 | */ |
726 | |
727 | #endif |
728 | |
729 | /*! |
730 | \fn QPoint operator*(const QPoint& point, const QMatrix4x4& matrix) |
731 | \relates QMatrix4x4 |
732 | |
733 | Returns the result of transforming \a point according to \a matrix, |
734 | with the matrix applied post-point. |
735 | */ |
736 | |
737 | /*! |
738 | \fn QPointF operator*(const QPointF& point, const QMatrix4x4& matrix) |
739 | \relates QMatrix4x4 |
740 | |
741 | Returns the result of transforming \a point according to \a matrix, |
742 | with the matrix applied post-point. |
743 | */ |
744 | |
745 | /*! |
746 | \fn QPoint operator*(const QMatrix4x4& matrix, const QPoint& point) |
747 | \relates QMatrix4x4 |
748 | |
749 | Returns the result of transforming \a point according to \a matrix, |
750 | with the matrix applied pre-point. |
751 | */ |
752 | |
753 | /*! |
754 | \fn QPointF operator*(const QMatrix4x4& matrix, const QPointF& point) |
755 | \relates QMatrix4x4 |
756 | |
757 | Returns the result of transforming \a point according to \a matrix, |
758 | with the matrix applied pre-point. |
759 | */ |
760 | |
761 | /*! |
762 | \fn QMatrix4x4 operator-(const QMatrix4x4& matrix) |
763 | \overload |
764 | \relates QMatrix4x4 |
765 | |
766 | Returns the negation of \a matrix. |
767 | */ |
768 | |
769 | /*! |
770 | \fn QMatrix4x4 operator*(float factor, const QMatrix4x4& matrix) |
771 | \relates QMatrix4x4 |
772 | |
773 | Returns the result of multiplying all elements of \a matrix by \a factor. |
774 | */ |
775 | |
776 | /*! |
777 | \fn QMatrix4x4 operator*(const QMatrix4x4& matrix, float factor) |
778 | \relates QMatrix4x4 |
779 | |
780 | Returns the result of multiplying all elements of \a matrix by \a factor. |
781 | */ |
782 | |
783 | /*! |
784 | \relates QMatrix4x4 |
785 | |
786 | Returns the result of dividing all elements of \a matrix by \a divisor. |
787 | */ |
788 | QMatrix4x4 operator/(const QMatrix4x4& matrix, float divisor) |
789 | { |
790 | QMatrix4x4 m(1); // The "1" says to not load the identity. |
791 | m.m[0][0] = matrix.m[0][0] / divisor; |
792 | m.m[0][1] = matrix.m[0][1] / divisor; |
793 | m.m[0][2] = matrix.m[0][2] / divisor; |
794 | m.m[0][3] = matrix.m[0][3] / divisor; |
795 | m.m[1][0] = matrix.m[1][0] / divisor; |
796 | m.m[1][1] = matrix.m[1][1] / divisor; |
797 | m.m[1][2] = matrix.m[1][2] / divisor; |
798 | m.m[1][3] = matrix.m[1][3] / divisor; |
799 | m.m[2][0] = matrix.m[2][0] / divisor; |
800 | m.m[2][1] = matrix.m[2][1] / divisor; |
801 | m.m[2][2] = matrix.m[2][2] / divisor; |
802 | m.m[2][3] = matrix.m[2][3] / divisor; |
803 | m.m[3][0] = matrix.m[3][0] / divisor; |
804 | m.m[3][1] = matrix.m[3][1] / divisor; |
805 | m.m[3][2] = matrix.m[3][2] / divisor; |
806 | m.m[3][3] = matrix.m[3][3] / divisor; |
807 | m.flagBits = QMatrix4x4::General; |
808 | return m; |
809 | } |
810 | |
811 | /*! |
812 | \fn bool qFuzzyCompare(const QMatrix4x4& m1, const QMatrix4x4& m2) |
813 | \relates QMatrix4x4 |
814 | |
815 | Returns \c true if \a m1 and \a m2 are equal, allowing for a small |
816 | fuzziness factor for floating-point comparisons; false otherwise. |
817 | */ |
818 | |
819 | #ifndef QT_NO_VECTOR3D |
820 | |
821 | /*! |
822 | Multiplies this matrix by another that scales coordinates by |
823 | the components of \a vector. |
824 | |
825 | \sa translate(), rotate() |
826 | */ |
827 | void QMatrix4x4::scale(const QVector3D& vector) |
828 | { |
829 | float vx = vector.x(); |
830 | float vy = vector.y(); |
831 | float vz = vector.z(); |
832 | if (flagBits < Scale) { |
833 | m[0][0] = vx; |
834 | m[1][1] = vy; |
835 | m[2][2] = vz; |
836 | } else if (flagBits < Rotation2D) { |
837 | m[0][0] *= vx; |
838 | m[1][1] *= vy; |
839 | m[2][2] *= vz; |
840 | } else if (flagBits < Rotation) { |
841 | m[0][0] *= vx; |
842 | m[0][1] *= vx; |
843 | m[1][0] *= vy; |
844 | m[1][1] *= vy; |
845 | m[2][2] *= vz; |
846 | } else { |
847 | m[0][0] *= vx; |
848 | m[0][1] *= vx; |
849 | m[0][2] *= vx; |
850 | m[0][3] *= vx; |
851 | m[1][0] *= vy; |
852 | m[1][1] *= vy; |
853 | m[1][2] *= vy; |
854 | m[1][3] *= vy; |
855 | m[2][0] *= vz; |
856 | m[2][1] *= vz; |
857 | m[2][2] *= vz; |
858 | m[2][3] *= vz; |
859 | } |
860 | flagBits |= Scale; |
861 | } |
862 | |
863 | #endif |
864 | |
865 | /*! |
866 | \overload |
867 | |
868 | Multiplies this matrix by another that scales coordinates by the |
869 | components \a x, and \a y. |
870 | |
871 | \sa translate(), rotate() |
872 | */ |
873 | void QMatrix4x4::scale(float x, float y) |
874 | { |
875 | if (flagBits < Scale) { |
876 | m[0][0] = x; |
877 | m[1][1] = y; |
878 | } else if (flagBits < Rotation2D) { |
879 | m[0][0] *= x; |
880 | m[1][1] *= y; |
881 | } else if (flagBits < Rotation) { |
882 | m[0][0] *= x; |
883 | m[0][1] *= x; |
884 | m[1][0] *= y; |
885 | m[1][1] *= y; |
886 | } else { |
887 | m[0][0] *= x; |
888 | m[0][1] *= x; |
889 | m[0][2] *= x; |
890 | m[0][3] *= x; |
891 | m[1][0] *= y; |
892 | m[1][1] *= y; |
893 | m[1][2] *= y; |
894 | m[1][3] *= y; |
895 | } |
896 | flagBits |= Scale; |
897 | } |
898 | |
899 | /*! |
900 | \overload |
901 | |
902 | Multiplies this matrix by another that scales coordinates by the |
903 | components \a x, \a y, and \a z. |
904 | |
905 | \sa translate(), rotate() |
906 | */ |
907 | void QMatrix4x4::scale(float x, float y, float z) |
908 | { |
909 | if (flagBits < Scale) { |
910 | m[0][0] = x; |
911 | m[1][1] = y; |
912 | m[2][2] = z; |
913 | } else if (flagBits < Rotation2D) { |
914 | m[0][0] *= x; |
915 | m[1][1] *= y; |
916 | m[2][2] *= z; |
917 | } else if (flagBits < Rotation) { |
918 | m[0][0] *= x; |
919 | m[0][1] *= x; |
920 | m[1][0] *= y; |
921 | m[1][1] *= y; |
922 | m[2][2] *= z; |
923 | } else { |
924 | m[0][0] *= x; |
925 | m[0][1] *= x; |
926 | m[0][2] *= x; |
927 | m[0][3] *= x; |
928 | m[1][0] *= y; |
929 | m[1][1] *= y; |
930 | m[1][2] *= y; |
931 | m[1][3] *= y; |
932 | m[2][0] *= z; |
933 | m[2][1] *= z; |
934 | m[2][2] *= z; |
935 | m[2][3] *= z; |
936 | } |
937 | flagBits |= Scale; |
938 | } |
939 | |
940 | /*! |
941 | \overload |
942 | |
943 | Multiplies this matrix by another that scales coordinates by the |
944 | given \a factor. |
945 | |
946 | \sa translate(), rotate() |
947 | */ |
948 | void QMatrix4x4::scale(float factor) |
949 | { |
950 | if (flagBits < Scale) { |
951 | m[0][0] = factor; |
952 | m[1][1] = factor; |
953 | m[2][2] = factor; |
954 | } else if (flagBits < Rotation2D) { |
955 | m[0][0] *= factor; |
956 | m[1][1] *= factor; |
957 | m[2][2] *= factor; |
958 | } else if (flagBits < Rotation) { |
959 | m[0][0] *= factor; |
960 | m[0][1] *= factor; |
961 | m[1][0] *= factor; |
962 | m[1][1] *= factor; |
963 | m[2][2] *= factor; |
964 | } else { |
965 | m[0][0] *= factor; |
966 | m[0][1] *= factor; |
967 | m[0][2] *= factor; |
968 | m[0][3] *= factor; |
969 | m[1][0] *= factor; |
970 | m[1][1] *= factor; |
971 | m[1][2] *= factor; |
972 | m[1][3] *= factor; |
973 | m[2][0] *= factor; |
974 | m[2][1] *= factor; |
975 | m[2][2] *= factor; |
976 | m[2][3] *= factor; |
977 | } |
978 | flagBits |= Scale; |
979 | } |
980 | |
981 | #ifndef QT_NO_VECTOR3D |
982 | /*! |
983 | Multiplies this matrix by another that translates coordinates by |
984 | the components of \a vector. |
985 | |
986 | \sa scale(), rotate() |
987 | */ |
988 | |
989 | void QMatrix4x4::translate(const QVector3D& vector) |
990 | { |
991 | float vx = vector.x(); |
992 | float vy = vector.y(); |
993 | float vz = vector.z(); |
994 | if (flagBits == Identity) { |
995 | m[3][0] = vx; |
996 | m[3][1] = vy; |
997 | m[3][2] = vz; |
998 | } else if (flagBits == Translation) { |
999 | m[3][0] += vx; |
1000 | m[3][1] += vy; |
1001 | m[3][2] += vz; |
1002 | } else if (flagBits == Scale) { |
1003 | m[3][0] = m[0][0] * vx; |
1004 | m[3][1] = m[1][1] * vy; |
1005 | m[3][2] = m[2][2] * vz; |
1006 | } else if (flagBits == (Translation | Scale)) { |
1007 | m[3][0] += m[0][0] * vx; |
1008 | m[3][1] += m[1][1] * vy; |
1009 | m[3][2] += m[2][2] * vz; |
1010 | } else if (flagBits < Rotation) { |
1011 | m[3][0] += m[0][0] * vx + m[1][0] * vy; |
1012 | m[3][1] += m[0][1] * vx + m[1][1] * vy; |
1013 | m[3][2] += m[2][2] * vz; |
1014 | } else { |
1015 | m[3][0] += m[0][0] * vx + m[1][0] * vy + m[2][0] * vz; |
1016 | m[3][1] += m[0][1] * vx + m[1][1] * vy + m[2][1] * vz; |
1017 | m[3][2] += m[0][2] * vx + m[1][2] * vy + m[2][2] * vz; |
1018 | m[3][3] += m[0][3] * vx + m[1][3] * vy + m[2][3] * vz; |
1019 | } |
1020 | flagBits |= Translation; |
1021 | } |
1022 | #endif |
1023 | |
1024 | /*! |
1025 | \overload |
1026 | |
1027 | Multiplies this matrix by another that translates coordinates |
1028 | by the components \a x, and \a y. |
1029 | |
1030 | \sa scale(), rotate() |
1031 | */ |
1032 | void QMatrix4x4::translate(float x, float y) |
1033 | { |
1034 | if (flagBits == Identity) { |
1035 | m[3][0] = x; |
1036 | m[3][1] = y; |
1037 | } else if (flagBits == Translation) { |
1038 | m[3][0] += x; |
1039 | m[3][1] += y; |
1040 | } else if (flagBits == Scale) { |
1041 | m[3][0] = m[0][0] * x; |
1042 | m[3][1] = m[1][1] * y; |
1043 | } else if (flagBits == (Translation | Scale)) { |
1044 | m[3][0] += m[0][0] * x; |
1045 | m[3][1] += m[1][1] * y; |
1046 | } else if (flagBits < Rotation) { |
1047 | m[3][0] += m[0][0] * x + m[1][0] * y; |
1048 | m[3][1] += m[0][1] * x + m[1][1] * y; |
1049 | } else { |
1050 | m[3][0] += m[0][0] * x + m[1][0] * y; |
1051 | m[3][1] += m[0][1] * x + m[1][1] * y; |
1052 | m[3][2] += m[0][2] * x + m[1][2] * y; |
1053 | m[3][3] += m[0][3] * x + m[1][3] * y; |
1054 | } |
1055 | flagBits |= Translation; |
1056 | } |
1057 | |
1058 | /*! |
1059 | \overload |
1060 | |
1061 | Multiplies this matrix by another that translates coordinates |
1062 | by the components \a x, \a y, and \a z. |
1063 | |
1064 | \sa scale(), rotate() |
1065 | */ |
1066 | void QMatrix4x4::translate(float x, float y, float z) |
1067 | { |
1068 | if (flagBits == Identity) { |
1069 | m[3][0] = x; |
1070 | m[3][1] = y; |
1071 | m[3][2] = z; |
1072 | } else if (flagBits == Translation) { |
1073 | m[3][0] += x; |
1074 | m[3][1] += y; |
1075 | m[3][2] += z; |
1076 | } else if (flagBits == Scale) { |
1077 | m[3][0] = m[0][0] * x; |
1078 | m[3][1] = m[1][1] * y; |
1079 | m[3][2] = m[2][2] * z; |
1080 | } else if (flagBits == (Translation | Scale)) { |
1081 | m[3][0] += m[0][0] * x; |
1082 | m[3][1] += m[1][1] * y; |
1083 | m[3][2] += m[2][2] * z; |
1084 | } else if (flagBits < Rotation) { |
1085 | m[3][0] += m[0][0] * x + m[1][0] * y; |
1086 | m[3][1] += m[0][1] * x + m[1][1] * y; |
1087 | m[3][2] += m[2][2] * z; |
1088 | } else { |
1089 | m[3][0] += m[0][0] * x + m[1][0] * y + m[2][0] * z; |
1090 | m[3][1] += m[0][1] * x + m[1][1] * y + m[2][1] * z; |
1091 | m[3][2] += m[0][2] * x + m[1][2] * y + m[2][2] * z; |
1092 | m[3][3] += m[0][3] * x + m[1][3] * y + m[2][3] * z; |
1093 | } |
1094 | flagBits |= Translation; |
1095 | } |
1096 | |
1097 | #ifndef QT_NO_VECTOR3D |
1098 | /*! |
1099 | Multiples this matrix by another that rotates coordinates through |
1100 | \a angle degrees about \a vector. |
1101 | |
1102 | \sa scale(), translate() |
1103 | */ |
1104 | |
1105 | void QMatrix4x4::rotate(float angle, const QVector3D& vector) |
1106 | { |
1107 | rotate(angle, x: vector.x(), y: vector.y(), z: vector.z()); |
1108 | } |
1109 | |
1110 | #endif |
1111 | |
1112 | /*! |
1113 | \overload |
1114 | |
1115 | Multiplies this matrix by another that rotates coordinates through |
1116 | \a angle degrees about the vector (\a x, \a y, \a z). |
1117 | |
1118 | \sa scale(), translate() |
1119 | */ |
1120 | void QMatrix4x4::rotate(float angle, float x, float y, float z) |
1121 | { |
1122 | if (angle == 0.0f) |
1123 | return; |
1124 | float c, s; |
1125 | if (angle == 90.0f || angle == -270.0f) { |
1126 | s = 1.0f; |
1127 | c = 0.0f; |
1128 | } else if (angle == -90.0f || angle == 270.0f) { |
1129 | s = -1.0f; |
1130 | c = 0.0f; |
1131 | } else if (angle == 180.0f || angle == -180.0f) { |
1132 | s = 0.0f; |
1133 | c = -1.0f; |
1134 | } else { |
1135 | float a = qDegreesToRadians(degrees: angle); |
1136 | c = std::cos(x: a); |
1137 | s = std::sin(x: a); |
1138 | } |
1139 | if (x == 0.0f) { |
1140 | if (y == 0.0f) { |
1141 | if (z != 0.0f) { |
1142 | // Rotate around the Z axis. |
1143 | if (z < 0) |
1144 | s = -s; |
1145 | float tmp; |
1146 | m[0][0] = (tmp = m[0][0]) * c + m[1][0] * s; |
1147 | m[1][0] = m[1][0] * c - tmp * s; |
1148 | m[0][1] = (tmp = m[0][1]) * c + m[1][1] * s; |
1149 | m[1][1] = m[1][1] * c - tmp * s; |
1150 | m[0][2] = (tmp = m[0][2]) * c + m[1][2] * s; |
1151 | m[1][2] = m[1][2] * c - tmp * s; |
1152 | m[0][3] = (tmp = m[0][3]) * c + m[1][3] * s; |
1153 | m[1][3] = m[1][3] * c - tmp * s; |
1154 | |
1155 | flagBits |= Rotation2D; |
1156 | return; |
1157 | } |
1158 | } else if (z == 0.0f) { |
1159 | // Rotate around the Y axis. |
1160 | if (y < 0) |
1161 | s = -s; |
1162 | float tmp; |
1163 | m[2][0] = (tmp = m[2][0]) * c + m[0][0] * s; |
1164 | m[0][0] = m[0][0] * c - tmp * s; |
1165 | m[2][1] = (tmp = m[2][1]) * c + m[0][1] * s; |
1166 | m[0][1] = m[0][1] * c - tmp * s; |
1167 | m[2][2] = (tmp = m[2][2]) * c + m[0][2] * s; |
1168 | m[0][2] = m[0][2] * c - tmp * s; |
1169 | m[2][3] = (tmp = m[2][3]) * c + m[0][3] * s; |
1170 | m[0][3] = m[0][3] * c - tmp * s; |
1171 | |
1172 | flagBits |= Rotation; |
1173 | return; |
1174 | } |
1175 | } else if (y == 0.0f && z == 0.0f) { |
1176 | // Rotate around the X axis. |
1177 | if (x < 0) |
1178 | s = -s; |
1179 | float tmp; |
1180 | m[1][0] = (tmp = m[1][0]) * c + m[2][0] * s; |
1181 | m[2][0] = m[2][0] * c - tmp * s; |
1182 | m[1][1] = (tmp = m[1][1]) * c + m[2][1] * s; |
1183 | m[2][1] = m[2][1] * c - tmp * s; |
1184 | m[1][2] = (tmp = m[1][2]) * c + m[2][2] * s; |
1185 | m[2][2] = m[2][2] * c - tmp * s; |
1186 | m[1][3] = (tmp = m[1][3]) * c + m[2][3] * s; |
1187 | m[2][3] = m[2][3] * c - tmp * s; |
1188 | |
1189 | flagBits |= Rotation; |
1190 | return; |
1191 | } |
1192 | |
1193 | double len = double(x) * double(x) + |
1194 | double(y) * double(y) + |
1195 | double(z) * double(z); |
1196 | if (!qFuzzyCompare(p1: len, p2: 1.0) && !qFuzzyIsNull(d: len)) { |
1197 | len = std::sqrt(x: len); |
1198 | x = float(double(x) / len); |
1199 | y = float(double(y) / len); |
1200 | z = float(double(z) / len); |
1201 | } |
1202 | float ic = 1.0f - c; |
1203 | QMatrix4x4 rot(1); // The "1" says to not load the identity. |
1204 | rot.m[0][0] = x * x * ic + c; |
1205 | rot.m[1][0] = x * y * ic - z * s; |
1206 | rot.m[2][0] = x * z * ic + y * s; |
1207 | rot.m[3][0] = 0.0f; |
1208 | rot.m[0][1] = y * x * ic + z * s; |
1209 | rot.m[1][1] = y * y * ic + c; |
1210 | rot.m[2][1] = y * z * ic - x * s; |
1211 | rot.m[3][1] = 0.0f; |
1212 | rot.m[0][2] = x * z * ic - y * s; |
1213 | rot.m[1][2] = y * z * ic + x * s; |
1214 | rot.m[2][2] = z * z * ic + c; |
1215 | rot.m[3][2] = 0.0f; |
1216 | rot.m[0][3] = 0.0f; |
1217 | rot.m[1][3] = 0.0f; |
1218 | rot.m[2][3] = 0.0f; |
1219 | rot.m[3][3] = 1.0f; |
1220 | rot.flagBits = Rotation; |
1221 | *this *= rot; |
1222 | } |
1223 | |
1224 | /*! |
1225 | \internal |
1226 | */ |
1227 | void QMatrix4x4::projectedRotate(float angle, float x, float y, float z) |
1228 | { |
1229 | // Used by QGraphicsRotation::applyTo() to perform a rotation |
1230 | // and projection back to 2D in a single step. |
1231 | if (angle == 0.0f) |
1232 | return; |
1233 | float c, s; |
1234 | if (angle == 90.0f || angle == -270.0f) { |
1235 | s = 1.0f; |
1236 | c = 0.0f; |
1237 | } else if (angle == -90.0f || angle == 270.0f) { |
1238 | s = -1.0f; |
1239 | c = 0.0f; |
1240 | } else if (angle == 180.0f || angle == -180.0f) { |
1241 | s = 0.0f; |
1242 | c = -1.0f; |
1243 | } else { |
1244 | float a = qDegreesToRadians(degrees: angle); |
1245 | c = std::cos(x: a); |
1246 | s = std::sin(x: a); |
1247 | } |
1248 | if (x == 0.0f) { |
1249 | if (y == 0.0f) { |
1250 | if (z != 0.0f) { |
1251 | // Rotate around the Z axis. |
1252 | if (z < 0) |
1253 | s = -s; |
1254 | float tmp; |
1255 | m[0][0] = (tmp = m[0][0]) * c + m[1][0] * s; |
1256 | m[1][0] = m[1][0] * c - tmp * s; |
1257 | m[0][1] = (tmp = m[0][1]) * c + m[1][1] * s; |
1258 | m[1][1] = m[1][1] * c - tmp * s; |
1259 | m[0][2] = (tmp = m[0][2]) * c + m[1][2] * s; |
1260 | m[1][2] = m[1][2] * c - tmp * s; |
1261 | m[0][3] = (tmp = m[0][3]) * c + m[1][3] * s; |
1262 | m[1][3] = m[1][3] * c - tmp * s; |
1263 | |
1264 | flagBits |= Rotation2D; |
1265 | return; |
1266 | } |
1267 | } else if (z == 0.0f) { |
1268 | // Rotate around the Y axis. |
1269 | if (y < 0) |
1270 | s = -s; |
1271 | m[0][0] = m[0][0] * c + m[3][0] * s * inv_dist_to_plane; |
1272 | m[0][1] = m[0][1] * c + m[3][1] * s * inv_dist_to_plane; |
1273 | m[0][2] = m[0][2] * c + m[3][2] * s * inv_dist_to_plane; |
1274 | m[0][3] = m[0][3] * c + m[3][3] * s * inv_dist_to_plane; |
1275 | flagBits = General; |
1276 | return; |
1277 | } |
1278 | } else if (y == 0.0f && z == 0.0f) { |
1279 | // Rotate around the X axis. |
1280 | if (x < 0) |
1281 | s = -s; |
1282 | m[1][0] = m[1][0] * c - m[3][0] * s * inv_dist_to_plane; |
1283 | m[1][1] = m[1][1] * c - m[3][1] * s * inv_dist_to_plane; |
1284 | m[1][2] = m[1][2] * c - m[3][2] * s * inv_dist_to_plane; |
1285 | m[1][3] = m[1][3] * c - m[3][3] * s * inv_dist_to_plane; |
1286 | flagBits = General; |
1287 | return; |
1288 | } |
1289 | double len = double(x) * double(x) + |
1290 | double(y) * double(y) + |
1291 | double(z) * double(z); |
1292 | if (!qFuzzyCompare(p1: len, p2: 1.0) && !qFuzzyIsNull(d: len)) { |
1293 | len = std::sqrt(x: len); |
1294 | x = float(double(x) / len); |
1295 | y = float(double(y) / len); |
1296 | z = float(double(z) / len); |
1297 | } |
1298 | float ic = 1.0f - c; |
1299 | QMatrix4x4 rot(1); // The "1" says to not load the identity. |
1300 | rot.m[0][0] = x * x * ic + c; |
1301 | rot.m[1][0] = x * y * ic - z * s; |
1302 | rot.m[2][0] = 0.0f; |
1303 | rot.m[3][0] = 0.0f; |
1304 | rot.m[0][1] = y * x * ic + z * s; |
1305 | rot.m[1][1] = y * y * ic + c; |
1306 | rot.m[2][1] = 0.0f; |
1307 | rot.m[3][1] = 0.0f; |
1308 | rot.m[0][2] = 0.0f; |
1309 | rot.m[1][2] = 0.0f; |
1310 | rot.m[2][2] = 1.0f; |
1311 | rot.m[3][2] = 0.0f; |
1312 | rot.m[0][3] = (x * z * ic - y * s) * -inv_dist_to_plane; |
1313 | rot.m[1][3] = (y * z * ic + x * s) * -inv_dist_to_plane; |
1314 | rot.m[2][3] = 0.0f; |
1315 | rot.m[3][3] = 1.0f; |
1316 | rot.flagBits = General; |
1317 | *this *= rot; |
1318 | } |
1319 | |
1320 | #ifndef QT_NO_QUATERNION |
1321 | |
1322 | /*! |
1323 | Multiples this matrix by another that rotates coordinates according |
1324 | to a specified \a quaternion. The \a quaternion is assumed to have |
1325 | been normalized. |
1326 | |
1327 | \sa scale(), translate(), QQuaternion |
1328 | */ |
1329 | void QMatrix4x4::rotate(const QQuaternion& quaternion) |
1330 | { |
1331 | // Algorithm from: |
1332 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q54 |
1333 | |
1334 | QMatrix4x4 m(Qt::Uninitialized); |
1335 | |
1336 | const float f2x = quaternion.x() + quaternion.x(); |
1337 | const float f2y = quaternion.y() + quaternion.y(); |
1338 | const float f2z = quaternion.z() + quaternion.z(); |
1339 | const float f2xw = f2x * quaternion.scalar(); |
1340 | const float f2yw = f2y * quaternion.scalar(); |
1341 | const float f2zw = f2z * quaternion.scalar(); |
1342 | const float f2xx = f2x * quaternion.x(); |
1343 | const float f2xy = f2x * quaternion.y(); |
1344 | const float f2xz = f2x * quaternion.z(); |
1345 | const float f2yy = f2y * quaternion.y(); |
1346 | const float f2yz = f2y * quaternion.z(); |
1347 | const float f2zz = f2z * quaternion.z(); |
1348 | |
1349 | m.m[0][0] = 1.0f - (f2yy + f2zz); |
1350 | m.m[1][0] = f2xy - f2zw; |
1351 | m.m[2][0] = f2xz + f2yw; |
1352 | m.m[3][0] = 0.0f; |
1353 | m.m[0][1] = f2xy + f2zw; |
1354 | m.m[1][1] = 1.0f - (f2xx + f2zz); |
1355 | m.m[2][1] = f2yz - f2xw; |
1356 | m.m[3][1] = 0.0f; |
1357 | m.m[0][2] = f2xz - f2yw; |
1358 | m.m[1][2] = f2yz + f2xw; |
1359 | m.m[2][2] = 1.0f - (f2xx + f2yy); |
1360 | m.m[3][2] = 0.0f; |
1361 | m.m[0][3] = 0.0f; |
1362 | m.m[1][3] = 0.0f; |
1363 | m.m[2][3] = 0.0f; |
1364 | m.m[3][3] = 1.0f; |
1365 | m.flagBits = Rotation; |
1366 | *this *= m; |
1367 | } |
1368 | |
1369 | #endif |
1370 | |
1371 | /*! |
1372 | \overload |
1373 | |
1374 | Multiplies this matrix by another that applies an orthographic |
1375 | projection for a window with boundaries specified by \a rect. |
1376 | The near and far clipping planes will be -1 and 1 respectively. |
1377 | |
1378 | \sa frustum(), perspective() |
1379 | */ |
1380 | void QMatrix4x4::ortho(const QRect& rect) |
1381 | { |
1382 | // Note: rect.right() and rect.bottom() subtract 1 in QRect, |
1383 | // which gives the location of a pixel within the rectangle, |
1384 | // instead of the extent of the rectangle. We want the extent. |
1385 | // QRectF expresses the extent properly. |
1386 | ortho(left: rect.x(), right: rect.x() + rect.width(), bottom: rect.y() + rect.height(), top: rect.y(), nearPlane: -1.0f, farPlane: 1.0f); |
1387 | } |
1388 | |
1389 | /*! |
1390 | \overload |
1391 | |
1392 | Multiplies this matrix by another that applies an orthographic |
1393 | projection for a window with boundaries specified by \a rect. |
1394 | The near and far clipping planes will be -1 and 1 respectively. |
1395 | |
1396 | \sa frustum(), perspective() |
1397 | */ |
1398 | void QMatrix4x4::ortho(const QRectF& rect) |
1399 | { |
1400 | ortho(left: rect.left(), right: rect.right(), bottom: rect.bottom(), top: rect.top(), nearPlane: -1.0f, farPlane: 1.0f); |
1401 | } |
1402 | |
1403 | /*! |
1404 | Multiplies this matrix by another that applies an orthographic |
1405 | projection for a window with lower-left corner (\a left, \a bottom), |
1406 | upper-right corner (\a right, \a top), and the specified \a nearPlane |
1407 | and \a farPlane clipping planes. |
1408 | |
1409 | \sa frustum(), perspective() |
1410 | */ |
1411 | void QMatrix4x4::ortho(float left, float right, float bottom, float top, float nearPlane, float farPlane) |
1412 | { |
1413 | // Bail out if the projection volume is zero-sized. |
1414 | if (left == right || bottom == top || nearPlane == farPlane) |
1415 | return; |
1416 | |
1417 | // Construct the projection. |
1418 | float width = right - left; |
1419 | float invheight = top - bottom; |
1420 | float clip = farPlane - nearPlane; |
1421 | QMatrix4x4 m(1); |
1422 | m.m[0][0] = 2.0f / width; |
1423 | m.m[1][0] = 0.0f; |
1424 | m.m[2][0] = 0.0f; |
1425 | m.m[3][0] = -(left + right) / width; |
1426 | m.m[0][1] = 0.0f; |
1427 | m.m[1][1] = 2.0f / invheight; |
1428 | m.m[2][1] = 0.0f; |
1429 | m.m[3][1] = -(top + bottom) / invheight; |
1430 | m.m[0][2] = 0.0f; |
1431 | m.m[1][2] = 0.0f; |
1432 | m.m[2][2] = -2.0f / clip; |
1433 | m.m[3][2] = -(nearPlane + farPlane) / clip; |
1434 | m.m[0][3] = 0.0f; |
1435 | m.m[1][3] = 0.0f; |
1436 | m.m[2][3] = 0.0f; |
1437 | m.m[3][3] = 1.0f; |
1438 | m.flagBits = Translation | Scale; |
1439 | |
1440 | // Apply the projection. |
1441 | *this *= m; |
1442 | } |
1443 | |
1444 | /*! |
1445 | Multiplies this matrix by another that applies a perspective |
1446 | frustum projection for a window with lower-left corner (\a left, \a bottom), |
1447 | upper-right corner (\a right, \a top), and the specified \a nearPlane |
1448 | and \a farPlane clipping planes. |
1449 | |
1450 | \sa ortho(), perspective() |
1451 | */ |
1452 | void QMatrix4x4::frustum(float left, float right, float bottom, float top, float nearPlane, float farPlane) |
1453 | { |
1454 | // Bail out if the projection volume is zero-sized. |
1455 | if (left == right || bottom == top || nearPlane == farPlane) |
1456 | return; |
1457 | |
1458 | // Construct the projection. |
1459 | QMatrix4x4 m(1); |
1460 | float width = right - left; |
1461 | float invheight = top - bottom; |
1462 | float clip = farPlane - nearPlane; |
1463 | m.m[0][0] = 2.0f * nearPlane / width; |
1464 | m.m[1][0] = 0.0f; |
1465 | m.m[2][0] = (left + right) / width; |
1466 | m.m[3][0] = 0.0f; |
1467 | m.m[0][1] = 0.0f; |
1468 | m.m[1][1] = 2.0f * nearPlane / invheight; |
1469 | m.m[2][1] = (top + bottom) / invheight; |
1470 | m.m[3][1] = 0.0f; |
1471 | m.m[0][2] = 0.0f; |
1472 | m.m[1][2] = 0.0f; |
1473 | m.m[2][2] = -(nearPlane + farPlane) / clip; |
1474 | m.m[3][2] = -2.0f * nearPlane * farPlane / clip; |
1475 | m.m[0][3] = 0.0f; |
1476 | m.m[1][3] = 0.0f; |
1477 | m.m[2][3] = -1.0f; |
1478 | m.m[3][3] = 0.0f; |
1479 | m.flagBits = General; |
1480 | |
1481 | // Apply the projection. |
1482 | *this *= m; |
1483 | } |
1484 | |
1485 | /*! |
1486 | Multiplies this matrix by another that applies a perspective |
1487 | projection. The vertical field of view will be \a verticalAngle degrees |
1488 | within a window with a given \a aspectRatio that determines the horizontal |
1489 | field of view. |
1490 | The projection will have the specified \a nearPlane and \a farPlane clipping |
1491 | planes which are the distances from the viewer to the corresponding planes. |
1492 | |
1493 | \sa ortho(), frustum() |
1494 | */ |
1495 | void QMatrix4x4::perspective(float verticalAngle, float aspectRatio, float nearPlane, float farPlane) |
1496 | { |
1497 | // Bail out if the projection volume is zero-sized. |
1498 | if (nearPlane == farPlane || aspectRatio == 0.0f) |
1499 | return; |
1500 | |
1501 | // Construct the projection. |
1502 | QMatrix4x4 m(1); |
1503 | float radians = qDegreesToRadians(degrees: verticalAngle / 2.0f); |
1504 | float sine = std::sin(x: radians); |
1505 | if (sine == 0.0f) |
1506 | return; |
1507 | float cotan = std::cos(x: radians) / sine; |
1508 | float clip = farPlane - nearPlane; |
1509 | m.m[0][0] = cotan / aspectRatio; |
1510 | m.m[1][0] = 0.0f; |
1511 | m.m[2][0] = 0.0f; |
1512 | m.m[3][0] = 0.0f; |
1513 | m.m[0][1] = 0.0f; |
1514 | m.m[1][1] = cotan; |
1515 | m.m[2][1] = 0.0f; |
1516 | m.m[3][1] = 0.0f; |
1517 | m.m[0][2] = 0.0f; |
1518 | m.m[1][2] = 0.0f; |
1519 | m.m[2][2] = -(nearPlane + farPlane) / clip; |
1520 | m.m[3][2] = -(2.0f * nearPlane * farPlane) / clip; |
1521 | m.m[0][3] = 0.0f; |
1522 | m.m[1][3] = 0.0f; |
1523 | m.m[2][3] = -1.0f; |
1524 | m.m[3][3] = 0.0f; |
1525 | m.flagBits = General; |
1526 | |
1527 | // Apply the projection. |
1528 | *this *= m; |
1529 | } |
1530 | |
1531 | #ifndef QT_NO_VECTOR3D |
1532 | |
1533 | /*! |
1534 | Multiplies this matrix by a viewing matrix derived from an eye |
1535 | point. The \a center value indicates the center of the view that |
1536 | the \a eye is looking at. The \a up value indicates which direction |
1537 | should be considered up with respect to the \a eye. |
1538 | |
1539 | \note The \a up vector must not be parallel to the line of sight |
1540 | from \a eye to \a center. |
1541 | */ |
1542 | void QMatrix4x4::lookAt(const QVector3D& eye, const QVector3D& center, const QVector3D& up) |
1543 | { |
1544 | QVector3D forward = center - eye; |
1545 | if (qFuzzyIsNull(f: forward.x()) && qFuzzyIsNull(f: forward.y()) && qFuzzyIsNull(f: forward.z())) |
1546 | return; |
1547 | |
1548 | forward.normalize(); |
1549 | QVector3D side = QVector3D::crossProduct(v1: forward, v2: up).normalized(); |
1550 | QVector3D upVector = QVector3D::crossProduct(v1: side, v2: forward); |
1551 | |
1552 | QMatrix4x4 m(1); |
1553 | m.m[0][0] = side.x(); |
1554 | m.m[1][0] = side.y(); |
1555 | m.m[2][0] = side.z(); |
1556 | m.m[3][0] = 0.0f; |
1557 | m.m[0][1] = upVector.x(); |
1558 | m.m[1][1] = upVector.y(); |
1559 | m.m[2][1] = upVector.z(); |
1560 | m.m[3][1] = 0.0f; |
1561 | m.m[0][2] = -forward.x(); |
1562 | m.m[1][2] = -forward.y(); |
1563 | m.m[2][2] = -forward.z(); |
1564 | m.m[3][2] = 0.0f; |
1565 | m.m[0][3] = 0.0f; |
1566 | m.m[1][3] = 0.0f; |
1567 | m.m[2][3] = 0.0f; |
1568 | m.m[3][3] = 1.0f; |
1569 | m.flagBits = Rotation; |
1570 | |
1571 | *this *= m; |
1572 | translate(vector: -eye); |
1573 | } |
1574 | |
1575 | #endif |
1576 | |
1577 | /*! |
1578 | \fn void QMatrix4x4::viewport(const QRectF &rect) |
1579 | \overload |
1580 | |
1581 | Sets up viewport transform for viewport bounded by \a rect and with near and far set |
1582 | to 0 and 1 respectively. |
1583 | */ |
1584 | |
1585 | /*! |
1586 | Multiplies this matrix by another that performs the scale and bias |
1587 | transformation used by OpenGL to transform from normalized device |
1588 | coordinates (NDC) to viewport (window) coordinates. That is it maps |
1589 | points from the cube ranging over [-1, 1] in each dimension to the |
1590 | viewport with it's near-lower-left corner at (\a left, \a bottom, \a nearPlane) |
1591 | and with size (\a width, \a height, \a farPlane - \a nearPlane). |
1592 | |
1593 | This matches the transform used by the fixed function OpenGL viewport |
1594 | transform controlled by the functions glViewport() and glDepthRange(). |
1595 | */ |
1596 | void QMatrix4x4::viewport(float left, float bottom, float width, float height, float nearPlane, float farPlane) |
1597 | { |
1598 | const float w2 = width / 2.0f; |
1599 | const float h2 = height / 2.0f; |
1600 | |
1601 | QMatrix4x4 m(1); |
1602 | m.m[0][0] = w2; |
1603 | m.m[1][0] = 0.0f; |
1604 | m.m[2][0] = 0.0f; |
1605 | m.m[3][0] = left + w2; |
1606 | m.m[0][1] = 0.0f; |
1607 | m.m[1][1] = h2; |
1608 | m.m[2][1] = 0.0f; |
1609 | m.m[3][1] = bottom + h2; |
1610 | m.m[0][2] = 0.0f; |
1611 | m.m[1][2] = 0.0f; |
1612 | m.m[2][2] = (farPlane - nearPlane) / 2.0f; |
1613 | m.m[3][2] = (nearPlane + farPlane) / 2.0f; |
1614 | m.m[0][3] = 0.0f; |
1615 | m.m[1][3] = 0.0f; |
1616 | m.m[2][3] = 0.0f; |
1617 | m.m[3][3] = 1.0f; |
1618 | m.flagBits = General; |
1619 | |
1620 | *this *= m; |
1621 | } |
1622 | |
1623 | /*! |
1624 | \deprecated |
1625 | |
1626 | Flips between right-handed and left-handed coordinate systems |
1627 | by multiplying the y and z co-ordinates by -1. This is normally |
1628 | used to create a left-handed orthographic view without scaling |
1629 | the viewport as ortho() does. |
1630 | |
1631 | \sa ortho() |
1632 | */ |
1633 | void QMatrix4x4::flipCoordinates() |
1634 | { |
1635 | // Multiplying the y and z coordinates with -1 does NOT flip between right-handed and |
1636 | // left-handed coordinate systems, it just rotates 180 degrees around the x axis, so |
1637 | // I'm deprecating this function. |
1638 | if (flagBits < Rotation2D) { |
1639 | // Translation | Scale |
1640 | m[1][1] = -m[1][1]; |
1641 | m[2][2] = -m[2][2]; |
1642 | } else { |
1643 | m[1][0] = -m[1][0]; |
1644 | m[1][1] = -m[1][1]; |
1645 | m[1][2] = -m[1][2]; |
1646 | m[1][3] = -m[1][3]; |
1647 | m[2][0] = -m[2][0]; |
1648 | m[2][1] = -m[2][1]; |
1649 | m[2][2] = -m[2][2]; |
1650 | m[2][3] = -m[2][3]; |
1651 | } |
1652 | flagBits |= Scale; |
1653 | } |
1654 | |
1655 | /*! |
1656 | Retrieves the 16 items in this matrix and copies them to \a values |
1657 | in row-major order. |
1658 | */ |
1659 | void QMatrix4x4::copyDataTo(float *values) const |
1660 | { |
1661 | for (int row = 0; row < 4; ++row) |
1662 | for (int col = 0; col < 4; ++col) |
1663 | values[row * 4 + col] = float(m[col][row]); |
1664 | } |
1665 | |
1666 | #if QT_DEPRECATED_SINCE(5, 15) |
1667 | /*! |
1668 | \obsolete |
1669 | |
1670 | Use toTransform() instead. |
1671 | |
1672 | Returns the conventional Qt 2D affine transformation matrix that |
1673 | corresponds to this matrix. It is assumed that this matrix |
1674 | only contains 2D affine transformation elements. |
1675 | |
1676 | \sa toTransform() |
1677 | */ |
1678 | QMatrix QMatrix4x4::toAffine() const |
1679 | { |
1680 | return QMatrix(m[0][0], m[0][1], |
1681 | m[1][0], m[1][1], |
1682 | m[3][0], m[3][1]); |
1683 | } |
1684 | #endif // QT_DEPRECATED_SINCE(5, 15) |
1685 | |
1686 | /*! |
1687 | Returns the conventional Qt 2D transformation matrix that |
1688 | corresponds to this matrix. |
1689 | |
1690 | The returned QTransform is formed by simply dropping the |
1691 | third row and third column of the QMatrix4x4. This is suitable |
1692 | for implementing orthographic projections where the z co-ordinate |
1693 | should be dropped rather than projected. |
1694 | |
1695 | \sa toAffine() |
1696 | */ |
1697 | QTransform QMatrix4x4::toTransform() const |
1698 | { |
1699 | return QTransform(m[0][0], m[0][1], m[0][3], |
1700 | m[1][0], m[1][1], m[1][3], |
1701 | m[3][0], m[3][1], m[3][3]); |
1702 | } |
1703 | |
1704 | /*! |
1705 | Returns the conventional Qt 2D transformation matrix that |
1706 | corresponds to this matrix. |
1707 | |
1708 | If \a distanceToPlane is non-zero, it indicates a projection |
1709 | factor to use to adjust for the z co-ordinate. The value of |
1710 | 1024 corresponds to the projection factor used |
1711 | by QTransform::rotate() for the x and y axes. |
1712 | |
1713 | If \a distanceToPlane is zero, then the returned QTransform |
1714 | is formed by simply dropping the third row and third column |
1715 | of the QMatrix4x4. This is suitable for implementing |
1716 | orthographic projections where the z co-ordinate should |
1717 | be dropped rather than projected. |
1718 | |
1719 | \sa toAffine() |
1720 | */ |
1721 | QTransform QMatrix4x4::toTransform(float distanceToPlane) const |
1722 | { |
1723 | if (distanceToPlane == 1024.0f) { |
1724 | // Optimize the common case with constants. |
1725 | return QTransform(m[0][0], m[0][1], m[0][3] - m[0][2] * inv_dist_to_plane, |
1726 | m[1][0], m[1][1], m[1][3] - m[1][2] * inv_dist_to_plane, |
1727 | m[3][0], m[3][1], m[3][3] - m[3][2] * inv_dist_to_plane); |
1728 | } else if (distanceToPlane != 0.0f) { |
1729 | // The following projection matrix is pre-multiplied with "matrix": |
1730 | // | 1 0 0 0 | |
1731 | // | 0 1 0 0 | |
1732 | // | 0 0 1 0 | |
1733 | // | 0 0 d 1 | |
1734 | // where d = -1 / distanceToPlane. After projection, row 3 and |
1735 | // column 3 are dropped to form the final QTransform. |
1736 | float d = 1.0f / distanceToPlane; |
1737 | return QTransform(m[0][0], m[0][1], m[0][3] - m[0][2] * d, |
1738 | m[1][0], m[1][1], m[1][3] - m[1][2] * d, |
1739 | m[3][0], m[3][1], m[3][3] - m[3][2] * d); |
1740 | } else { |
1741 | // Orthographic projection: drop row 3 and column 3. |
1742 | return QTransform(m[0][0], m[0][1], m[0][3], |
1743 | m[1][0], m[1][1], m[1][3], |
1744 | m[3][0], m[3][1], m[3][3]); |
1745 | } |
1746 | } |
1747 | |
1748 | /*! |
1749 | \fn QPoint QMatrix4x4::map(const QPoint& point) const |
1750 | |
1751 | Maps \a point by multiplying this matrix by \a point. |
1752 | |
1753 | \sa mapRect() |
1754 | */ |
1755 | |
1756 | /*! |
1757 | \fn QPointF QMatrix4x4::map(const QPointF& point) const |
1758 | |
1759 | Maps \a point by multiplying this matrix by \a point. |
1760 | |
1761 | \sa mapRect() |
1762 | */ |
1763 | |
1764 | #ifndef QT_NO_VECTOR3D |
1765 | |
1766 | /*! |
1767 | \fn QVector3D QMatrix4x4::map(const QVector3D& point) const |
1768 | |
1769 | Maps \a point by multiplying this matrix by \a point. |
1770 | |
1771 | \sa mapRect(), mapVector() |
1772 | */ |
1773 | |
1774 | /*! |
1775 | \fn QVector3D QMatrix4x4::mapVector(const QVector3D& vector) const |
1776 | |
1777 | Maps \a vector by multiplying the top 3x3 portion of this matrix |
1778 | by \a vector. The translation and projection components of |
1779 | this matrix are ignored. |
1780 | |
1781 | \sa map() |
1782 | */ |
1783 | |
1784 | #endif |
1785 | |
1786 | #ifndef QT_NO_VECTOR4D |
1787 | |
1788 | /*! |
1789 | \fn QVector4D QMatrix4x4::map(const QVector4D& point) const; |
1790 | |
1791 | Maps \a point by multiplying this matrix by \a point. |
1792 | |
1793 | \sa mapRect() |
1794 | */ |
1795 | |
1796 | #endif |
1797 | |
1798 | /*! |
1799 | Maps \a rect by multiplying this matrix by the corners |
1800 | of \a rect and then forming a new rectangle from the results. |
1801 | The returned rectangle will be an ordinary 2D rectangle |
1802 | with sides parallel to the horizontal and vertical axes. |
1803 | |
1804 | \sa map() |
1805 | */ |
1806 | QRect QMatrix4x4::mapRect(const QRect& rect) const |
1807 | { |
1808 | if (flagBits < Scale) { |
1809 | // Translation |
1810 | return QRect(qRound(d: rect.x() + m[3][0]), |
1811 | qRound(d: rect.y() + m[3][1]), |
1812 | rect.width(), rect.height()); |
1813 | } else if (flagBits < Rotation2D) { |
1814 | // Translation | Scale |
1815 | float x = rect.x() * m[0][0] + m[3][0]; |
1816 | float y = rect.y() * m[1][1] + m[3][1]; |
1817 | float w = rect.width() * m[0][0]; |
1818 | float h = rect.height() * m[1][1]; |
1819 | if (w < 0) { |
1820 | w = -w; |
1821 | x -= w; |
1822 | } |
1823 | if (h < 0) { |
1824 | h = -h; |
1825 | y -= h; |
1826 | } |
1827 | return QRect(qRound(d: x), qRound(d: y), qRound(d: w), qRound(d: h)); |
1828 | } |
1829 | |
1830 | QPoint tl = map(point: rect.topLeft()); |
1831 | QPoint tr = map(point: QPoint(rect.x() + rect.width(), rect.y())); |
1832 | QPoint bl = map(point: QPoint(rect.x(), rect.y() + rect.height())); |
1833 | QPoint br = map(point: QPoint(rect.x() + rect.width(), |
1834 | rect.y() + rect.height())); |
1835 | |
1836 | int xmin = qMin(a: qMin(a: tl.x(), b: tr.x()), b: qMin(a: bl.x(), b: br.x())); |
1837 | int xmax = qMax(a: qMax(a: tl.x(), b: tr.x()), b: qMax(a: bl.x(), b: br.x())); |
1838 | int ymin = qMin(a: qMin(a: tl.y(), b: tr.y()), b: qMin(a: bl.y(), b: br.y())); |
1839 | int ymax = qMax(a: qMax(a: tl.y(), b: tr.y()), b: qMax(a: bl.y(), b: br.y())); |
1840 | |
1841 | return QRect(xmin, ymin, xmax - xmin, ymax - ymin); |
1842 | } |
1843 | |
1844 | /*! |
1845 | Maps \a rect by multiplying this matrix by the corners |
1846 | of \a rect and then forming a new rectangle from the results. |
1847 | The returned rectangle will be an ordinary 2D rectangle |
1848 | with sides parallel to the horizontal and vertical axes. |
1849 | |
1850 | \sa map() |
1851 | */ |
1852 | QRectF QMatrix4x4::mapRect(const QRectF& rect) const |
1853 | { |
1854 | if (flagBits < Scale) { |
1855 | // Translation |
1856 | return rect.translated(dx: m[3][0], dy: m[3][1]); |
1857 | } else if (flagBits < Rotation2D) { |
1858 | // Translation | Scale |
1859 | float x = rect.x() * m[0][0] + m[3][0]; |
1860 | float y = rect.y() * m[1][1] + m[3][1]; |
1861 | float w = rect.width() * m[0][0]; |
1862 | float h = rect.height() * m[1][1]; |
1863 | if (w < 0) { |
1864 | w = -w; |
1865 | x -= w; |
1866 | } |
1867 | if (h < 0) { |
1868 | h = -h; |
1869 | y -= h; |
1870 | } |
1871 | return QRectF(x, y, w, h); |
1872 | } |
1873 | |
1874 | QPointF tl = map(point: rect.topLeft()); QPointF tr = map(point: rect.topRight()); |
1875 | QPointF bl = map(point: rect.bottomLeft()); QPointF br = map(point: rect.bottomRight()); |
1876 | |
1877 | float xmin = qMin(a: qMin(a: tl.x(), b: tr.x()), b: qMin(a: bl.x(), b: br.x())); |
1878 | float xmax = qMax(a: qMax(a: tl.x(), b: tr.x()), b: qMax(a: bl.x(), b: br.x())); |
1879 | float ymin = qMin(a: qMin(a: tl.y(), b: tr.y()), b: qMin(a: bl.y(), b: br.y())); |
1880 | float ymax = qMax(a: qMax(a: tl.y(), b: tr.y()), b: qMax(a: bl.y(), b: br.y())); |
1881 | |
1882 | return QRectF(QPointF(xmin, ymin), QPointF(xmax, ymax)); |
1883 | } |
1884 | |
1885 | /*! |
1886 | \fn float *QMatrix4x4::data() |
1887 | |
1888 | Returns a pointer to the raw data of this matrix. |
1889 | |
1890 | \sa constData(), optimize() |
1891 | */ |
1892 | |
1893 | /*! |
1894 | \fn const float *QMatrix4x4::data() const |
1895 | |
1896 | Returns a constant pointer to the raw data of this matrix. |
1897 | This raw data is stored in column-major format. |
1898 | |
1899 | \sa constData() |
1900 | */ |
1901 | |
1902 | /*! |
1903 | \fn const float *QMatrix4x4::constData() const |
1904 | |
1905 | Returns a constant pointer to the raw data of this matrix. |
1906 | This raw data is stored in column-major format. |
1907 | |
1908 | \sa data() |
1909 | */ |
1910 | |
1911 | // Helper routine for inverting orthonormal matrices that consist |
1912 | // of just rotations and translations. |
1913 | QMatrix4x4 QMatrix4x4::orthonormalInverse() const |
1914 | { |
1915 | QMatrix4x4 result(1); // The '1' says not to load identity |
1916 | |
1917 | result.m[0][0] = m[0][0]; |
1918 | result.m[1][0] = m[0][1]; |
1919 | result.m[2][0] = m[0][2]; |
1920 | |
1921 | result.m[0][1] = m[1][0]; |
1922 | result.m[1][1] = m[1][1]; |
1923 | result.m[2][1] = m[1][2]; |
1924 | |
1925 | result.m[0][2] = m[2][0]; |
1926 | result.m[1][2] = m[2][1]; |
1927 | result.m[2][2] = m[2][2]; |
1928 | |
1929 | result.m[0][3] = 0.0f; |
1930 | result.m[1][3] = 0.0f; |
1931 | result.m[2][3] = 0.0f; |
1932 | |
1933 | result.m[3][0] = -(result.m[0][0] * m[3][0] + result.m[1][0] * m[3][1] + result.m[2][0] * m[3][2]); |
1934 | result.m[3][1] = -(result.m[0][1] * m[3][0] + result.m[1][1] * m[3][1] + result.m[2][1] * m[3][2]); |
1935 | result.m[3][2] = -(result.m[0][2] * m[3][0] + result.m[1][2] * m[3][1] + result.m[2][2] * m[3][2]); |
1936 | result.m[3][3] = 1.0f; |
1937 | |
1938 | result.flagBits = flagBits; |
1939 | |
1940 | return result; |
1941 | } |
1942 | |
1943 | /*! |
1944 | Optimize the usage of this matrix from its current elements. |
1945 | |
1946 | Some operations such as translate(), scale(), and rotate() can be |
1947 | performed more efficiently if the matrix being modified is already |
1948 | known to be the identity, a previous translate(), a previous |
1949 | scale(), etc. |
1950 | |
1951 | Normally the QMatrix4x4 class keeps track of this special type internally |
1952 | as operations are performed. However, if the matrix is modified |
1953 | directly with \l {QMatrix4x4::}{operator()()} or data(), then |
1954 | QMatrix4x4 will lose track of the special type and will revert to the |
1955 | safest but least efficient operations thereafter. |
1956 | |
1957 | By calling optimize() after directly modifying the matrix, |
1958 | the programmer can force QMatrix4x4 to recover the special type if |
1959 | the elements appear to conform to one of the known optimized types. |
1960 | |
1961 | \sa {QMatrix4x4::}{operator()()}, data(), translate() |
1962 | */ |
1963 | void QMatrix4x4::optimize() |
1964 | { |
1965 | // If the last row is not (0, 0, 0, 1), the matrix is not a special type. |
1966 | flagBits = General; |
1967 | if (m[0][3] != 0 || m[1][3] != 0 || m[2][3] != 0 || m[3][3] != 1) |
1968 | return; |
1969 | |
1970 | flagBits &= ~Perspective; |
1971 | |
1972 | // If the last column is (0, 0, 0, 1), then there is no translation. |
1973 | if (m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0) |
1974 | flagBits &= ~Translation; |
1975 | |
1976 | // If the two first elements of row 3 and column 3 are 0, then any rotation must be about Z. |
1977 | if (!m[0][2] && !m[1][2] && !m[2][0] && !m[2][1]) { |
1978 | flagBits &= ~Rotation; |
1979 | // If the six non-diagonal elements in the top left 3x3 matrix are 0, there is no rotation. |
1980 | if (!m[0][1] && !m[1][0]) { |
1981 | flagBits &= ~Rotation2D; |
1982 | // Check for identity. |
1983 | if (m[0][0] == 1 && m[1][1] == 1 && m[2][2] == 1) |
1984 | flagBits &= ~Scale; |
1985 | } else { |
1986 | // If the columns are orthonormal and form a right-handed system, then there is no scale. |
1987 | double mm[4][4]; |
1988 | copyToDoubles(m, mm); |
1989 | double det = matrixDet2(m: mm, col0: 0, col1: 1, row0: 0, row1: 1); |
1990 | double lenX = mm[0][0] * mm[0][0] + mm[0][1] * mm[0][1]; |
1991 | double lenY = mm[1][0] * mm[1][0] + mm[1][1] * mm[1][1]; |
1992 | double lenZ = mm[2][2]; |
1993 | if (qFuzzyCompare(p1: det, p2: 1.0) && qFuzzyCompare(p1: lenX, p2: 1.0) |
1994 | && qFuzzyCompare(p1: lenY, p2: 1.0) && qFuzzyCompare(p1: lenZ, p2: 1.0)) |
1995 | { |
1996 | flagBits &= ~Scale; |
1997 | } |
1998 | } |
1999 | } else { |
2000 | // If the columns are orthonormal and form a right-handed system, then there is no scale. |
2001 | double mm[4][4]; |
2002 | copyToDoubles(m, mm); |
2003 | double det = matrixDet3(m: mm, col0: 0, col1: 1, col2: 2, row0: 0, row1: 1, row2: 2); |
2004 | double lenX = mm[0][0] * mm[0][0] + mm[0][1] * mm[0][1] + mm[0][2] * mm[0][2]; |
2005 | double lenY = mm[1][0] * mm[1][0] + mm[1][1] * mm[1][1] + mm[1][2] * mm[1][2]; |
2006 | double lenZ = mm[2][0] * mm[2][0] + mm[2][1] * mm[2][1] + mm[2][2] * mm[2][2]; |
2007 | if (qFuzzyCompare(p1: det, p2: 1.0) && qFuzzyCompare(p1: lenX, p2: 1.0) |
2008 | && qFuzzyCompare(p1: lenY, p2: 1.0) && qFuzzyCompare(p1: lenZ, p2: 1.0)) |
2009 | { |
2010 | flagBits &= ~Scale; |
2011 | } |
2012 | } |
2013 | } |
2014 | |
2015 | /*! |
2016 | Returns the matrix as a QVariant. |
2017 | */ |
2018 | QMatrix4x4::operator QVariant() const |
2019 | { |
2020 | return QVariant(QMetaType::QMatrix4x4, this); |
2021 | } |
2022 | |
2023 | #ifndef QT_NO_DEBUG_STREAM |
2024 | |
2025 | QDebug operator<<(QDebug dbg, const QMatrix4x4 &m) |
2026 | { |
2027 | QDebugStateSaver saver(dbg); |
2028 | // Create a string that represents the matrix type. |
2029 | QByteArray bits; |
2030 | if (m.flagBits == QMatrix4x4::Identity) { |
2031 | bits = "Identity" ; |
2032 | } else if (m.flagBits == QMatrix4x4::General) { |
2033 | bits = "General" ; |
2034 | } else { |
2035 | if ((m.flagBits & QMatrix4x4::Translation) != 0) |
2036 | bits += "Translation," ; |
2037 | if ((m.flagBits & QMatrix4x4::Scale) != 0) |
2038 | bits += "Scale," ; |
2039 | if ((m.flagBits & QMatrix4x4::Rotation2D) != 0) |
2040 | bits += "Rotation2D," ; |
2041 | if ((m.flagBits & QMatrix4x4::Rotation) != 0) |
2042 | bits += "Rotation," ; |
2043 | if ((m.flagBits & QMatrix4x4::Perspective) != 0) |
2044 | bits += "Perspective," ; |
2045 | if (bits.size() > 0) |
2046 | bits = bits.left(len: bits.size() - 1); |
2047 | } |
2048 | |
2049 | // Output in row-major order because it is more human-readable. |
2050 | dbg.nospace() << "QMatrix4x4(type:" << bits.constData() << Qt::endl |
2051 | << qSetFieldWidth(width: 10) |
2052 | << m(0, 0) << m(0, 1) << m(0, 2) << m(0, 3) << Qt::endl |
2053 | << m(1, 0) << m(1, 1) << m(1, 2) << m(1, 3) << Qt::endl |
2054 | << m(2, 0) << m(2, 1) << m(2, 2) << m(2, 3) << Qt::endl |
2055 | << m(3, 0) << m(3, 1) << m(3, 2) << m(3, 3) << Qt::endl |
2056 | << qSetFieldWidth(width: 0) << ')'; |
2057 | return dbg; |
2058 | } |
2059 | |
2060 | #endif |
2061 | |
2062 | #ifndef QT_NO_DATASTREAM |
2063 | |
2064 | /*! |
2065 | \fn QDataStream &operator<<(QDataStream &stream, const QMatrix4x4 &matrix) |
2066 | \relates QMatrix4x4 |
2067 | |
2068 | Writes the given \a matrix to the given \a stream and returns a |
2069 | reference to the stream. |
2070 | |
2071 | \sa {Serializing Qt Data Types} |
2072 | */ |
2073 | |
2074 | QDataStream &operator<<(QDataStream &stream, const QMatrix4x4 &matrix) |
2075 | { |
2076 | for (int row = 0; row < 4; ++row) |
2077 | for (int col = 0; col < 4; ++col) |
2078 | stream << matrix(row, col); |
2079 | return stream; |
2080 | } |
2081 | |
2082 | /*! |
2083 | \fn QDataStream &operator>>(QDataStream &stream, QMatrix4x4 &matrix) |
2084 | \relates QMatrix4x4 |
2085 | |
2086 | Reads a 4x4 matrix from the given \a stream into the given \a matrix |
2087 | and returns a reference to the stream. |
2088 | |
2089 | \sa {Serializing Qt Data Types} |
2090 | */ |
2091 | |
2092 | QDataStream &operator>>(QDataStream &stream, QMatrix4x4 &matrix) |
2093 | { |
2094 | float x; |
2095 | for (int row = 0; row < 4; ++row) { |
2096 | for (int col = 0; col < 4; ++col) { |
2097 | stream >> x; |
2098 | matrix(row, col) = x; |
2099 | } |
2100 | } |
2101 | matrix.optimize(); |
2102 | return stream; |
2103 | } |
2104 | |
2105 | #endif // QT_NO_DATASTREAM |
2106 | |
2107 | #endif // QT_NO_MATRIX4X4 |
2108 | |
2109 | QT_END_NAMESPACE |
2110 | |