1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qvector2d.h" |
41 | #include "qvector3d.h" |
42 | #include "qvector4d.h" |
43 | #include <QtCore/qdatastream.h> |
44 | #include <QtCore/qdebug.h> |
45 | #include <QtCore/qvariant.h> |
46 | #include <QtCore/qmath.h> |
47 | |
48 | QT_BEGIN_NAMESPACE |
49 | |
50 | #ifndef QT_NO_VECTOR2D |
51 | |
52 | Q_STATIC_ASSERT_X(std::is_standard_layout<QVector2D>::value, "QVector2D is supposed to be standard layout" ); |
53 | Q_STATIC_ASSERT_X(sizeof(QVector2D) == sizeof(float) * 2, "QVector2D is not supposed to have padding at the end" ); |
54 | |
55 | // QVector2D used to be defined as class QVector2D { float x, y; };, |
56 | // now instead it is defined as classs QVector2D { float v[2]; };. |
57 | // Check that binary compatibility is preserved. |
58 | // ### Qt 6: remove all of these checks. |
59 | |
60 | namespace { |
61 | |
62 | struct QVector2DOld |
63 | { |
64 | float x, y; |
65 | }; |
66 | |
67 | struct QVector2DNew |
68 | { |
69 | float v[2]; |
70 | }; |
71 | |
72 | Q_STATIC_ASSERT_X(std::is_standard_layout<QVector2DOld>::value, "Binary compatibility break in QVector2D" ); |
73 | Q_STATIC_ASSERT_X(std::is_standard_layout<QVector2DNew>::value, "Binary compatibility break in QVector2D" ); |
74 | |
75 | Q_STATIC_ASSERT_X(sizeof(QVector2DOld) == sizeof(QVector2DNew), "Binary compatibility break in QVector2D" ); |
76 | |
77 | // requires a constexpr offsetof |
78 | #if !defined(Q_CC_MSVC) || (_MSC_VER >= 1910) |
79 | Q_STATIC_ASSERT_X(offsetof(QVector2DOld, x) == offsetof(QVector2DNew, v) + sizeof(QVector2DNew::v[0]) * 0, "Binary compatibility break in QVector2D" ); |
80 | Q_STATIC_ASSERT_X(offsetof(QVector2DOld, y) == offsetof(QVector2DNew, v) + sizeof(QVector2DNew::v[0]) * 1, "Binary compatibility break in QVector2D" ); |
81 | #endif |
82 | |
83 | } // anonymous namespace |
84 | |
85 | /*! |
86 | \class QVector2D |
87 | \brief The QVector2D class represents a vector or vertex in 2D space. |
88 | \since 4.6 |
89 | \ingroup painting |
90 | \ingroup painting-3D |
91 | \inmodule QtGui |
92 | |
93 | The QVector2D class can also be used to represent vertices in 2D space. |
94 | We therefore do not need to provide a separate vertex class. |
95 | |
96 | \sa QVector3D, QVector4D, QQuaternion |
97 | */ |
98 | |
99 | /*! |
100 | \fn QVector2D::QVector2D() |
101 | |
102 | Constructs a null vector, i.e. with coordinates (0, 0). |
103 | */ |
104 | |
105 | /*! |
106 | \fn QVector2D::QVector2D(Qt::Initialization) |
107 | \since 5.5 |
108 | \internal |
109 | |
110 | Constructs a vector without initializing the contents. |
111 | */ |
112 | |
113 | /*! |
114 | \fn QVector2D::QVector2D(float xpos, float ypos) |
115 | |
116 | Constructs a vector with coordinates (\a xpos, \a ypos). |
117 | */ |
118 | |
119 | /*! |
120 | \fn QVector2D::QVector2D(const QPoint& point) |
121 | |
122 | Constructs a vector with x and y coordinates from a 2D \a point. |
123 | */ |
124 | |
125 | /*! |
126 | \fn QVector2D::QVector2D(const QPointF& point) |
127 | |
128 | Constructs a vector with x and y coordinates from a 2D \a point. |
129 | */ |
130 | |
131 | #ifndef QT_NO_VECTOR3D |
132 | |
133 | /*! |
134 | Constructs a vector with x and y coordinates from a 3D \a vector. |
135 | The z coordinate of \a vector is dropped. |
136 | |
137 | \sa toVector3D() |
138 | */ |
139 | QVector2D::QVector2D(const QVector3D& vector) |
140 | { |
141 | v[0] = vector.v[0]; |
142 | v[1] = vector.v[1]; |
143 | } |
144 | |
145 | #endif |
146 | |
147 | #ifndef QT_NO_VECTOR4D |
148 | |
149 | /*! |
150 | Constructs a vector with x and y coordinates from a 3D \a vector. |
151 | The z and w coordinates of \a vector are dropped. |
152 | |
153 | \sa toVector4D() |
154 | */ |
155 | QVector2D::QVector2D(const QVector4D& vector) |
156 | { |
157 | v[0] = vector.v[0]; |
158 | v[1] = vector.v[1]; |
159 | } |
160 | |
161 | #endif |
162 | |
163 | /*! |
164 | \fn bool QVector2D::isNull() const |
165 | |
166 | Returns \c true if the x and y coordinates are set to 0.0, |
167 | otherwise returns \c false. |
168 | */ |
169 | |
170 | /*! |
171 | \fn float QVector2D::x() const |
172 | |
173 | Returns the x coordinate of this point. |
174 | |
175 | \sa setX(), y() |
176 | */ |
177 | |
178 | /*! |
179 | \fn float QVector2D::y() const |
180 | |
181 | Returns the y coordinate of this point. |
182 | |
183 | \sa setY(), x() |
184 | */ |
185 | |
186 | /*! |
187 | \fn void QVector2D::setX(float x) |
188 | |
189 | Sets the x coordinate of this point to the given \a x coordinate. |
190 | |
191 | \sa x(), setY() |
192 | */ |
193 | |
194 | /*! |
195 | \fn void QVector2D::setY(float y) |
196 | |
197 | Sets the y coordinate of this point to the given \a y coordinate. |
198 | |
199 | \sa y(), setX() |
200 | */ |
201 | |
202 | /*! \fn float &QVector2D::operator[](int i) |
203 | \since 5.2 |
204 | |
205 | Returns the component of the vector at index position \a i |
206 | as a modifiable reference. |
207 | |
208 | \a i must be a valid index position in the vector (i.e., 0 <= \a i |
209 | < 2). |
210 | */ |
211 | |
212 | /*! \fn float QVector2D::operator[](int i) const |
213 | \since 5.2 |
214 | |
215 | Returns the component of the vector at index position \a i. |
216 | |
217 | \a i must be a valid index position in the vector (i.e., 0 <= \a i |
218 | < 2). |
219 | */ |
220 | |
221 | /*! |
222 | Returns the length of the vector from the origin. |
223 | |
224 | \sa lengthSquared(), normalized() |
225 | */ |
226 | float QVector2D::length() const |
227 | { |
228 | // Need some extra precision if the length is very small. |
229 | double len = double(v[0]) * double(v[0]) + |
230 | double(v[1]) * double(v[1]); |
231 | return float(std::sqrt(x: len)); |
232 | } |
233 | |
234 | /*! |
235 | Returns the squared length of the vector from the origin. |
236 | This is equivalent to the dot product of the vector with itself. |
237 | |
238 | \sa length(), dotProduct() |
239 | */ |
240 | float QVector2D::lengthSquared() const |
241 | { |
242 | return v[0] * v[0] + v[1] * v[1]; |
243 | } |
244 | |
245 | /*! |
246 | Returns the normalized unit vector form of this vector. |
247 | |
248 | If this vector is null, then a null vector is returned. If the length |
249 | of the vector is very close to 1, then the vector will be returned as-is. |
250 | Otherwise the normalized form of the vector of length 1 will be returned. |
251 | |
252 | \sa length(), normalize() |
253 | */ |
254 | QVector2D QVector2D::normalized() const |
255 | { |
256 | // Need some extra precision if the length is very small. |
257 | double len = double(v[0]) * double(v[0]) + |
258 | double(v[1]) * double(v[1]); |
259 | if (qFuzzyIsNull(d: len - 1.0f)) { |
260 | return *this; |
261 | } else if (!qFuzzyIsNull(d: len)) { |
262 | double sqrtLen = std::sqrt(x: len); |
263 | return QVector2D(float(double(v[0]) / sqrtLen), float(double(v[1]) / sqrtLen)); |
264 | } else { |
265 | return QVector2D(); |
266 | } |
267 | } |
268 | |
269 | /*! |
270 | Normalizes the currect vector in place. Nothing happens if this |
271 | vector is a null vector or the length of the vector is very close to 1. |
272 | |
273 | \sa length(), normalized() |
274 | */ |
275 | void QVector2D::normalize() |
276 | { |
277 | // Need some extra precision if the length is very small. |
278 | double len = double(v[0]) * double(v[0]) + |
279 | double(v[1]) * double(v[1]); |
280 | if (qFuzzyIsNull(d: len - 1.0f) || qFuzzyIsNull(d: len)) |
281 | return; |
282 | |
283 | len = std::sqrt(x: len); |
284 | |
285 | v[0] = float(double(v[0]) / len); |
286 | v[1] = float(double(v[1]) / len); |
287 | } |
288 | |
289 | /*! |
290 | \since 5.1 |
291 | |
292 | Returns the distance from this vertex to a point defined by |
293 | the vertex \a point. |
294 | |
295 | \sa distanceToLine() |
296 | */ |
297 | float QVector2D::distanceToPoint(const QVector2D& point) const |
298 | { |
299 | return (*this - point).length(); |
300 | } |
301 | |
302 | /*! |
303 | \since 5.1 |
304 | |
305 | Returns the distance that this vertex is from a line defined |
306 | by \a point and the unit vector \a direction. |
307 | |
308 | If \a direction is a null vector, then it does not define a line. |
309 | In that case, the distance from \a point to this vertex is returned. |
310 | |
311 | \sa distanceToPoint() |
312 | */ |
313 | float QVector2D::distanceToLine |
314 | (const QVector2D& point, const QVector2D& direction) const |
315 | { |
316 | if (direction.isNull()) |
317 | return (*this - point).length(); |
318 | QVector2D p = point + dotProduct(v1: *this - point, v2: direction) * direction; |
319 | return (*this - p).length(); |
320 | } |
321 | |
322 | /*! |
323 | \fn QVector2D &QVector2D::operator+=(const QVector2D &vector) |
324 | |
325 | Adds the given \a vector to this vector and returns a reference to |
326 | this vector. |
327 | |
328 | \sa operator-=() |
329 | */ |
330 | |
331 | /*! |
332 | \fn QVector2D &QVector2D::operator-=(const QVector2D &vector) |
333 | |
334 | Subtracts the given \a vector from this vector and returns a reference to |
335 | this vector. |
336 | |
337 | \sa operator+=() |
338 | */ |
339 | |
340 | /*! |
341 | \fn QVector2D &QVector2D::operator*=(float factor) |
342 | |
343 | Multiplies this vector's coordinates by the given \a factor, and |
344 | returns a reference to this vector. |
345 | |
346 | \sa operator/=() |
347 | */ |
348 | |
349 | /*! |
350 | \fn QVector2D &QVector2D::operator*=(const QVector2D &vector) |
351 | |
352 | Multiplies the components of this vector by the corresponding |
353 | components in \a vector. |
354 | */ |
355 | |
356 | /*! |
357 | \fn QVector2D &QVector2D::operator/=(float divisor) |
358 | |
359 | Divides this vector's coordinates by the given \a divisor, and |
360 | returns a reference to this vector. |
361 | |
362 | \sa operator*=() |
363 | */ |
364 | |
365 | /*! |
366 | \fn QVector2D &QVector2D::operator/=(const QVector2D &vector) |
367 | \since 5.5 |
368 | |
369 | Divides the components of this vector by the corresponding |
370 | components in \a vector. |
371 | |
372 | \sa operator*=() |
373 | */ |
374 | |
375 | /*! |
376 | Returns the dot product of \a v1 and \a v2. |
377 | */ |
378 | float QVector2D::dotProduct(const QVector2D& v1, const QVector2D& v2) |
379 | { |
380 | return v1.v[0] * v2.v[0] + v1.v[1] * v2.v[1]; |
381 | } |
382 | |
383 | /*! |
384 | \fn bool operator==(const QVector2D &v1, const QVector2D &v2) |
385 | \relates QVector2D |
386 | |
387 | Returns \c true if \a v1 is equal to \a v2; otherwise returns \c false. |
388 | This operator uses an exact floating-point comparison. |
389 | */ |
390 | |
391 | /*! |
392 | \fn bool operator!=(const QVector2D &v1, const QVector2D &v2) |
393 | \relates QVector2D |
394 | |
395 | Returns \c true if \a v1 is not equal to \a v2; otherwise returns \c false. |
396 | This operator uses an exact floating-point comparison. |
397 | */ |
398 | |
399 | /*! |
400 | \fn const QVector2D operator+(const QVector2D &v1, const QVector2D &v2) |
401 | \relates QVector2D |
402 | |
403 | Returns a QVector2D object that is the sum of the given vectors, \a v1 |
404 | and \a v2; each component is added separately. |
405 | |
406 | \sa QVector2D::operator+=() |
407 | */ |
408 | |
409 | /*! |
410 | \fn const QVector2D operator-(const QVector2D &v1, const QVector2D &v2) |
411 | \relates QVector2D |
412 | |
413 | Returns a QVector2D object that is formed by subtracting \a v2 from \a v1; |
414 | each component is subtracted separately. |
415 | |
416 | \sa QVector2D::operator-=() |
417 | */ |
418 | |
419 | /*! |
420 | \fn const QVector2D operator*(float factor, const QVector2D &vector) |
421 | \relates QVector2D |
422 | |
423 | Returns a copy of the given \a vector, multiplied by the given \a factor. |
424 | |
425 | \sa QVector2D::operator*=() |
426 | */ |
427 | |
428 | /*! |
429 | \fn const QVector2D operator*(const QVector2D &vector, float factor) |
430 | \relates QVector2D |
431 | |
432 | Returns a copy of the given \a vector, multiplied by the given \a factor. |
433 | |
434 | \sa QVector2D::operator*=() |
435 | */ |
436 | |
437 | /*! |
438 | \fn const QVector2D operator*(const QVector2D &v1, const QVector2D &v2) |
439 | \relates QVector2D |
440 | |
441 | Multiplies the components of \a v1 by the corresponding |
442 | components in \a v2. |
443 | */ |
444 | |
445 | /*! |
446 | \fn const QVector2D operator-(const QVector2D &vector) |
447 | \relates QVector2D |
448 | \overload |
449 | |
450 | Returns a QVector2D object that is formed by changing the sign of |
451 | the components of the given \a vector. |
452 | |
453 | Equivalent to \c {QVector2D(0,0) - vector}. |
454 | */ |
455 | |
456 | /*! |
457 | \fn const QVector2D operator/(const QVector2D &vector, float divisor) |
458 | \relates QVector2D |
459 | |
460 | Returns the QVector2D object formed by dividing all three components of |
461 | the given \a vector by the given \a divisor. |
462 | |
463 | \sa QVector2D::operator/=() |
464 | */ |
465 | |
466 | /*! |
467 | \fn const QVector2D operator/(const QVector2D &vector, const QVector2D &divisor) |
468 | \relates QVector2D |
469 | \since 5.5 |
470 | |
471 | Returns the QVector2D object formed by dividing components of the given |
472 | \a vector by a respective components of the given \a divisor. |
473 | |
474 | \sa QVector2D::operator/=() |
475 | */ |
476 | |
477 | /*! |
478 | \fn bool qFuzzyCompare(const QVector2D& v1, const QVector2D& v2) |
479 | \relates QVector2D |
480 | |
481 | Returns \c true if \a v1 and \a v2 are equal, allowing for a small |
482 | fuzziness factor for floating-point comparisons; false otherwise. |
483 | */ |
484 | |
485 | #ifndef QT_NO_VECTOR3D |
486 | |
487 | /*! |
488 | Returns the 3D form of this 2D vector, with the z coordinate set to zero. |
489 | |
490 | \sa toVector4D(), toPoint() |
491 | */ |
492 | QVector3D QVector2D::toVector3D() const |
493 | { |
494 | return QVector3D(v[0], v[1], 0.0f); |
495 | } |
496 | |
497 | #endif |
498 | |
499 | #ifndef QT_NO_VECTOR4D |
500 | |
501 | /*! |
502 | Returns the 4D form of this 2D vector, with the z and w coordinates set to zero. |
503 | |
504 | \sa toVector3D(), toPoint() |
505 | */ |
506 | QVector4D QVector2D::toVector4D() const |
507 | { |
508 | return QVector4D(v[0], v[1], 0.0f, 0.0f); |
509 | } |
510 | |
511 | #endif |
512 | |
513 | /*! |
514 | \fn QPoint QVector2D::toPoint() const |
515 | |
516 | Returns the QPoint form of this 2D vector. |
517 | |
518 | \sa toPointF(), toVector3D() |
519 | */ |
520 | |
521 | /*! |
522 | \fn QPointF QVector2D::toPointF() const |
523 | |
524 | Returns the QPointF form of this 2D vector. |
525 | |
526 | \sa toPoint(), toVector3D() |
527 | */ |
528 | |
529 | /*! |
530 | Returns the 2D vector as a QVariant. |
531 | */ |
532 | QVector2D::operator QVariant() const |
533 | { |
534 | return QVariant(QMetaType::QVector2D, this); |
535 | } |
536 | |
537 | #ifndef QT_NO_DEBUG_STREAM |
538 | |
539 | QDebug operator<<(QDebug dbg, const QVector2D &vector) |
540 | { |
541 | QDebugStateSaver saver(dbg); |
542 | dbg.nospace() << "QVector2D(" << vector.x() << ", " << vector.y() << ')'; |
543 | return dbg; |
544 | } |
545 | |
546 | #endif |
547 | |
548 | #ifndef QT_NO_DATASTREAM |
549 | |
550 | /*! |
551 | \fn QDataStream &operator<<(QDataStream &stream, const QVector2D &vector) |
552 | \relates QVector2D |
553 | |
554 | Writes the given \a vector to the given \a stream and returns a |
555 | reference to the stream. |
556 | |
557 | \sa {Serializing Qt Data Types} |
558 | */ |
559 | |
560 | QDataStream &operator<<(QDataStream &stream, const QVector2D &vector) |
561 | { |
562 | stream << vector.x() << vector.y(); |
563 | return stream; |
564 | } |
565 | |
566 | /*! |
567 | \fn QDataStream &operator>>(QDataStream &stream, QVector2D &vector) |
568 | \relates QVector2D |
569 | |
570 | Reads a 2D vector from the given \a stream into the given \a vector |
571 | and returns a reference to the stream. |
572 | |
573 | \sa {Serializing Qt Data Types} |
574 | */ |
575 | |
576 | QDataStream &operator>>(QDataStream &stream, QVector2D &vector) |
577 | { |
578 | float x, y; |
579 | stream >> x; |
580 | stream >> y; |
581 | vector.setX(x); |
582 | vector.setY(y); |
583 | return stream; |
584 | } |
585 | |
586 | #endif // QT_NO_DATASTREAM |
587 | |
588 | #endif // QT_NO_VECTOR2D |
589 | |
590 | QT_END_NAMESPACE |
591 | |