1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qvector3d.h" |
41 | #include "qvector2d.h" |
42 | #include "qvector4d.h" |
43 | #include "qmatrix4x4.h" |
44 | #include <QtCore/qdatastream.h> |
45 | #include <QtCore/qmath.h> |
46 | #include <QtCore/qvariant.h> |
47 | #include <QtCore/qdebug.h> |
48 | #include <QtCore/qrect.h> |
49 | |
50 | QT_BEGIN_NAMESPACE |
51 | |
52 | #ifndef QT_NO_VECTOR3D |
53 | |
54 | Q_STATIC_ASSERT_X(std::is_standard_layout<QVector3D>::value, "QVector3D is supposed to be standard layout" ); |
55 | Q_STATIC_ASSERT_X(sizeof(QVector3D) == sizeof(float) * 3, "QVector3D is not supposed to have padding at the end" ); |
56 | |
57 | // QVector3D used to be defined as class QVector3D { float x, y, z; };, |
58 | // now instead it is defined as classs QVector3D { float v[3]; };. |
59 | // Check that binary compatibility is preserved. |
60 | // ### Qt 6: remove all of these checks. |
61 | |
62 | namespace { |
63 | |
64 | struct QVector3DOld |
65 | { |
66 | float x, y, z; |
67 | }; |
68 | |
69 | struct QVector3DNew |
70 | { |
71 | float v[3]; |
72 | }; |
73 | |
74 | Q_STATIC_ASSERT_X(std::is_standard_layout<QVector3DOld>::value, "Binary compatibility break in QVector3D" ); |
75 | Q_STATIC_ASSERT_X(std::is_standard_layout<QVector3DNew>::value, "Binary compatibility break in QVector3D" ); |
76 | |
77 | Q_STATIC_ASSERT_X(sizeof(QVector3DOld) == sizeof(QVector3DNew), "Binary compatibility break in QVector3D" ); |
78 | |
79 | // requires a constexpr offsetof |
80 | #if !defined(Q_CC_MSVC) || (_MSC_VER >= 1910) |
81 | Q_STATIC_ASSERT_X(offsetof(QVector3DOld, x) == offsetof(QVector3DNew, v) + sizeof(QVector3DNew::v[0]) * 0, "Binary compatibility break in QVector3D" ); |
82 | Q_STATIC_ASSERT_X(offsetof(QVector3DOld, y) == offsetof(QVector3DNew, v) + sizeof(QVector3DNew::v[0]) * 1, "Binary compatibility break in QVector3D" ); |
83 | Q_STATIC_ASSERT_X(offsetof(QVector3DOld, z) == offsetof(QVector3DNew, v) + sizeof(QVector3DNew::v[0]) * 2, "Binary compatibility break in QVector3D" ); |
84 | #endif |
85 | |
86 | |
87 | } // anonymous namespace |
88 | |
89 | /*! |
90 | \class QVector3D |
91 | \brief The QVector3D class represents a vector or vertex in 3D space. |
92 | \since 4.6 |
93 | \ingroup painting-3D |
94 | \inmodule QtGui |
95 | |
96 | Vectors are one of the main building blocks of 3D representation and |
97 | drawing. They consist of three coordinates, traditionally called |
98 | x, y, and z. |
99 | |
100 | The QVector3D class can also be used to represent vertices in 3D space. |
101 | We therefore do not need to provide a separate vertex class. |
102 | |
103 | \sa QVector2D, QVector4D, QQuaternion |
104 | */ |
105 | |
106 | /*! |
107 | \fn QVector3D::QVector3D() |
108 | |
109 | Constructs a null vector, i.e. with coordinates (0, 0, 0). |
110 | */ |
111 | |
112 | /*! |
113 | \fn QVector3D::QVector3D(Qt::Initialization) |
114 | \since 5.5 |
115 | \internal |
116 | |
117 | Constructs a vector without initializing the contents. |
118 | */ |
119 | |
120 | /*! |
121 | \fn QVector3D::QVector3D(float xpos, float ypos, float zpos) |
122 | |
123 | Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos). |
124 | */ |
125 | |
126 | /*! |
127 | \fn QVector3D::QVector3D(const QPoint& point) |
128 | |
129 | Constructs a vector with x and y coordinates from a 2D \a point, and a |
130 | z coordinate of 0. |
131 | */ |
132 | |
133 | /*! |
134 | \fn QVector3D::QVector3D(const QPointF& point) |
135 | |
136 | Constructs a vector with x and y coordinates from a 2D \a point, and a |
137 | z coordinate of 0. |
138 | */ |
139 | |
140 | #ifndef QT_NO_VECTOR2D |
141 | |
142 | /*! |
143 | Constructs a 3D vector from the specified 2D \a vector. The z |
144 | coordinate is set to zero. |
145 | |
146 | \sa toVector2D() |
147 | */ |
148 | QVector3D::QVector3D(const QVector2D& vector) |
149 | { |
150 | v[0] = vector.v[0]; |
151 | v[1] = vector.v[1]; |
152 | v[2] = 0.0f; |
153 | } |
154 | |
155 | /*! |
156 | Constructs a 3D vector from the specified 2D \a vector. The z |
157 | coordinate is set to \a zpos. |
158 | |
159 | \sa toVector2D() |
160 | */ |
161 | QVector3D::QVector3D(const QVector2D& vector, float zpos) |
162 | { |
163 | v[0] = vector.v[0]; |
164 | v[1] = vector.v[1]; |
165 | v[2] = zpos; |
166 | } |
167 | |
168 | #endif |
169 | |
170 | #ifndef QT_NO_VECTOR4D |
171 | |
172 | /*! |
173 | Constructs a 3D vector from the specified 4D \a vector. The w |
174 | coordinate is dropped. |
175 | |
176 | \sa toVector4D() |
177 | */ |
178 | QVector3D::QVector3D(const QVector4D& vector) |
179 | { |
180 | v[0] = vector.v[0]; |
181 | v[1] = vector.v[1]; |
182 | v[2] = vector.v[2]; |
183 | } |
184 | |
185 | #endif |
186 | |
187 | /*! |
188 | \fn bool QVector3D::isNull() const |
189 | |
190 | Returns \c true if the x, y, and z coordinates are set to 0.0, |
191 | otherwise returns \c false. |
192 | */ |
193 | |
194 | /*! |
195 | \fn float QVector3D::x() const |
196 | |
197 | Returns the x coordinate of this point. |
198 | |
199 | \sa setX(), y(), z() |
200 | */ |
201 | |
202 | /*! |
203 | \fn float QVector3D::y() const |
204 | |
205 | Returns the y coordinate of this point. |
206 | |
207 | \sa setY(), x(), z() |
208 | */ |
209 | |
210 | /*! |
211 | \fn float QVector3D::z() const |
212 | |
213 | Returns the z coordinate of this point. |
214 | |
215 | \sa setZ(), x(), y() |
216 | */ |
217 | |
218 | /*! |
219 | \fn void QVector3D::setX(float x) |
220 | |
221 | Sets the x coordinate of this point to the given \a x coordinate. |
222 | |
223 | \sa x(), setY(), setZ() |
224 | */ |
225 | |
226 | /*! |
227 | \fn void QVector3D::setY(float y) |
228 | |
229 | Sets the y coordinate of this point to the given \a y coordinate. |
230 | |
231 | \sa y(), setX(), setZ() |
232 | */ |
233 | |
234 | /*! |
235 | \fn void QVector3D::setZ(float z) |
236 | |
237 | Sets the z coordinate of this point to the given \a z coordinate. |
238 | |
239 | \sa z(), setX(), setY() |
240 | */ |
241 | |
242 | /*! \fn float &QVector3D::operator[](int i) |
243 | \since 5.2 |
244 | |
245 | Returns the component of the vector at index position \a i |
246 | as a modifiable reference. |
247 | |
248 | \a i must be a valid index position in the vector (i.e., 0 <= \a i |
249 | < 3). |
250 | */ |
251 | |
252 | /*! \fn float QVector3D::operator[](int i) const |
253 | \since 5.2 |
254 | |
255 | Returns the component of the vector at index position \a i. |
256 | |
257 | \a i must be a valid index position in the vector (i.e., 0 <= \a i |
258 | < 3). |
259 | */ |
260 | |
261 | /*! |
262 | Returns the normalized unit vector form of this vector. |
263 | |
264 | If this vector is null, then a null vector is returned. If the length |
265 | of the vector is very close to 1, then the vector will be returned as-is. |
266 | Otherwise the normalized form of the vector of length 1 will be returned. |
267 | |
268 | \sa length(), normalize() |
269 | */ |
270 | QVector3D QVector3D::normalized() const |
271 | { |
272 | // Need some extra precision if the length is very small. |
273 | double len = double(v[0]) * double(v[0]) + |
274 | double(v[1]) * double(v[1]) + |
275 | double(v[2]) * double(v[2]); |
276 | if (qFuzzyIsNull(d: len - 1.0f)) { |
277 | return *this; |
278 | } else if (!qFuzzyIsNull(d: len)) { |
279 | double sqrtLen = std::sqrt(x: len); |
280 | return QVector3D(float(double(v[0]) / sqrtLen), |
281 | float(double(v[1]) / sqrtLen), |
282 | float(double(v[2]) / sqrtLen)); |
283 | } else { |
284 | return QVector3D(); |
285 | } |
286 | } |
287 | |
288 | /*! |
289 | Normalizes the currect vector in place. Nothing happens if this |
290 | vector is a null vector or the length of the vector is very close to 1. |
291 | |
292 | \sa length(), normalized() |
293 | */ |
294 | void QVector3D::normalize() |
295 | { |
296 | // Need some extra precision if the length is very small. |
297 | double len = double(v[0]) * double(v[0]) + |
298 | double(v[1]) * double(v[1]) + |
299 | double(v[2]) * double(v[2]); |
300 | if (qFuzzyIsNull(d: len - 1.0f) || qFuzzyIsNull(d: len)) |
301 | return; |
302 | |
303 | len = std::sqrt(x: len); |
304 | |
305 | v[0] = float(double(v[0]) / len); |
306 | v[1] = float(double(v[1]) / len); |
307 | v[2] = float(double(v[2]) / len); |
308 | } |
309 | |
310 | /*! |
311 | \fn QVector3D &QVector3D::operator+=(const QVector3D &vector) |
312 | |
313 | Adds the given \a vector to this vector and returns a reference to |
314 | this vector. |
315 | |
316 | \sa operator-=() |
317 | */ |
318 | |
319 | /*! |
320 | \fn QVector3D &QVector3D::operator-=(const QVector3D &vector) |
321 | |
322 | Subtracts the given \a vector from this vector and returns a reference to |
323 | this vector. |
324 | |
325 | \sa operator+=() |
326 | */ |
327 | |
328 | /*! |
329 | \fn QVector3D &QVector3D::operator*=(float factor) |
330 | |
331 | Multiplies this vector's coordinates by the given \a factor, and |
332 | returns a reference to this vector. |
333 | |
334 | \sa operator/=() |
335 | */ |
336 | |
337 | /*! |
338 | \fn QVector3D &QVector3D::operator*=(const QVector3D& vector) |
339 | \overload |
340 | |
341 | Multiplies the components of this vector by the corresponding |
342 | components in \a vector. |
343 | |
344 | Note: this is not the same as the crossProduct() of this |
345 | vector and \a vector. |
346 | |
347 | \sa crossProduct() |
348 | */ |
349 | |
350 | /*! |
351 | \fn QVector3D &QVector3D::operator/=(float divisor) |
352 | |
353 | Divides this vector's coordinates by the given \a divisor, and |
354 | returns a reference to this vector. |
355 | |
356 | \sa operator*=() |
357 | */ |
358 | |
359 | /*! |
360 | \fn QVector3D &QVector3D::operator/=(const QVector3D &vector) |
361 | \since 5.5 |
362 | |
363 | Divides the components of this vector by the corresponding |
364 | components in \a vector. |
365 | |
366 | \sa operator*=() |
367 | */ |
368 | |
369 | /*! |
370 | Returns the dot product of \a v1 and \a v2. |
371 | */ |
372 | float QVector3D::dotProduct(const QVector3D& v1, const QVector3D& v2) |
373 | { |
374 | return v1.v[0] * v2.v[0] + v1.v[1] * v2.v[1] + v1.v[2] * v2.v[2]; |
375 | } |
376 | |
377 | /*! |
378 | Returns the cross-product of vectors \a v1 and \a v2, which corresponds |
379 | to the normal vector of a plane defined by \a v1 and \a v2. |
380 | |
381 | \sa normal() |
382 | */ |
383 | QVector3D QVector3D::crossProduct(const QVector3D& v1, const QVector3D& v2) |
384 | { |
385 | return QVector3D(v1.v[1] * v2.v[2] - v1.v[2] * v2.v[1], |
386 | v1.v[2] * v2.v[0] - v1.v[0] * v2.v[2], |
387 | v1.v[0] * v2.v[1] - v1.v[1] * v2.v[0]); |
388 | } |
389 | |
390 | /*! |
391 | Returns the normal vector of a plane defined by vectors \a v1 and \a v2, |
392 | normalized to be a unit vector. |
393 | |
394 | Use crossProduct() to compute the cross-product of \a v1 and \a v2 if you |
395 | do not need the result to be normalized to a unit vector. |
396 | |
397 | \sa crossProduct(), distanceToPlane() |
398 | */ |
399 | QVector3D QVector3D::normal(const QVector3D& v1, const QVector3D& v2) |
400 | { |
401 | return crossProduct(v1, v2).normalized(); |
402 | } |
403 | |
404 | /*! |
405 | \overload |
406 | |
407 | Returns the normal vector of a plane defined by vectors |
408 | \a v2 - \a v1 and \a v3 - \a v1, normalized to be a unit vector. |
409 | |
410 | Use crossProduct() to compute the cross-product of \a v2 - \a v1 and |
411 | \a v3 - \a v1 if you do not need the result to be normalized to a |
412 | unit vector. |
413 | |
414 | \sa crossProduct(), distanceToPlane() |
415 | */ |
416 | QVector3D QVector3D::normal |
417 | (const QVector3D& v1, const QVector3D& v2, const QVector3D& v3) |
418 | { |
419 | return crossProduct(v1: (v2 - v1), v2: (v3 - v1)).normalized(); |
420 | } |
421 | |
422 | /*! |
423 | \since 5.5 |
424 | |
425 | Returns the window coordinates of this vector initially in object/model |
426 | coordinates using the model view matrix \a modelView, the projection matrix |
427 | \a projection and the viewport dimensions \a viewport. |
428 | |
429 | When transforming from clip to normalized space, a division by the w |
430 | component on the vector components takes place. To prevent dividing by 0 if |
431 | w equals to 0, it is set to 1. |
432 | |
433 | \note the returned y coordinates are in OpenGL orientation. OpenGL expects |
434 | the bottom to be 0 whereas for Qt top is 0. |
435 | |
436 | \sa unproject() |
437 | */ |
438 | QVector3D QVector3D::project(const QMatrix4x4 &modelView, const QMatrix4x4 &projection, const QRect &viewport) const |
439 | { |
440 | QVector4D tmp(*this, 1.0f); |
441 | tmp = projection * modelView * tmp; |
442 | if (qFuzzyIsNull(f: tmp.w())) |
443 | tmp.setW(1.0f); |
444 | tmp /= tmp.w(); |
445 | |
446 | tmp = tmp * 0.5f + QVector4D(0.5f, 0.5f, 0.5f, 0.5f); |
447 | tmp.setX(tmp.x() * viewport.width() + viewport.x()); |
448 | tmp.setY(tmp.y() * viewport.height() + viewport.y()); |
449 | |
450 | return tmp.toVector3D(); |
451 | } |
452 | |
453 | /*! |
454 | \since 5.5 |
455 | |
456 | Returns the object/model coordinates of this vector initially in window |
457 | coordinates using the model view matrix \a modelView, the projection matrix |
458 | \a projection and the viewport dimensions \a viewport. |
459 | |
460 | When transforming from clip to normalized space, a division by the w |
461 | component of the vector components takes place. To prevent dividing by 0 if |
462 | w equals to 0, it is set to 1. |
463 | |
464 | \note y coordinates in \a viewport should use OpenGL orientation. OpenGL |
465 | expects the bottom to be 0 whereas for Qt top is 0. |
466 | |
467 | \sa project() |
468 | */ |
469 | QVector3D QVector3D::unproject(const QMatrix4x4 &modelView, const QMatrix4x4 &projection, const QRect &viewport) const |
470 | { |
471 | QMatrix4x4 inverse = QMatrix4x4( projection * modelView ).inverted(); |
472 | |
473 | QVector4D tmp(*this, 1.0f); |
474 | tmp.setX((tmp.x() - float(viewport.x())) / float(viewport.width())); |
475 | tmp.setY((tmp.y() - float(viewport.y())) / float(viewport.height())); |
476 | tmp = tmp * 2.0f - QVector4D(1.0f, 1.0f, 1.0f, 1.0f); |
477 | |
478 | QVector4D obj = inverse * tmp; |
479 | if (qFuzzyIsNull(f: obj.w())) |
480 | obj.setW(1.0f); |
481 | obj /= obj.w(); |
482 | return obj.toVector3D(); |
483 | } |
484 | |
485 | /*! |
486 | \since 5.1 |
487 | |
488 | Returns the distance from this vertex to a point defined by |
489 | the vertex \a point. |
490 | |
491 | \sa distanceToPlane(), distanceToLine() |
492 | */ |
493 | float QVector3D::distanceToPoint(const QVector3D& point) const |
494 | { |
495 | return (*this - point).length(); |
496 | } |
497 | |
498 | /*! |
499 | Returns the distance from this vertex to a plane defined by |
500 | the vertex \a plane and a \a normal unit vector. The \a normal |
501 | parameter is assumed to have been normalized to a unit vector. |
502 | |
503 | The return value will be negative if the vertex is below the plane, |
504 | or zero if it is on the plane. |
505 | |
506 | \sa normal(), distanceToLine() |
507 | */ |
508 | float QVector3D::distanceToPlane |
509 | (const QVector3D& plane, const QVector3D& normal) const |
510 | { |
511 | return dotProduct(v1: *this - plane, v2: normal); |
512 | } |
513 | |
514 | /*! |
515 | \overload |
516 | |
517 | Returns the distance from this vertex to a plane defined by |
518 | the vertices \a plane1, \a plane2 and \a plane3. |
519 | |
520 | The return value will be negative if the vertex is below the plane, |
521 | or zero if it is on the plane. |
522 | |
523 | The two vectors that define the plane are \a plane2 - \a plane1 |
524 | and \a plane3 - \a plane1. |
525 | |
526 | \sa normal(), distanceToLine() |
527 | */ |
528 | float QVector3D::distanceToPlane |
529 | (const QVector3D& plane1, const QVector3D& plane2, const QVector3D& plane3) const |
530 | { |
531 | QVector3D n = normal(v1: plane2 - plane1, v2: plane3 - plane1); |
532 | return dotProduct(v1: *this - plane1, v2: n); |
533 | } |
534 | |
535 | /*! |
536 | Returns the distance that this vertex is from a line defined |
537 | by \a point and the unit vector \a direction. |
538 | |
539 | If \a direction is a null vector, then it does not define a line. |
540 | In that case, the distance from \a point to this vertex is returned. |
541 | |
542 | \sa distanceToPlane() |
543 | */ |
544 | float QVector3D::distanceToLine |
545 | (const QVector3D& point, const QVector3D& direction) const |
546 | { |
547 | if (direction.isNull()) |
548 | return (*this - point).length(); |
549 | QVector3D p = point + dotProduct(v1: *this - point, v2: direction) * direction; |
550 | return (*this - p).length(); |
551 | } |
552 | |
553 | /*! |
554 | \fn bool operator==(const QVector3D &v1, const QVector3D &v2) |
555 | \relates QVector3D |
556 | |
557 | Returns \c true if \a v1 is equal to \a v2; otherwise returns \c false. |
558 | This operator uses an exact floating-point comparison. |
559 | */ |
560 | |
561 | /*! |
562 | \fn bool operator!=(const QVector3D &v1, const QVector3D &v2) |
563 | \relates QVector3D |
564 | |
565 | Returns \c true if \a v1 is not equal to \a v2; otherwise returns \c false. |
566 | This operator uses an exact floating-point comparison. |
567 | */ |
568 | |
569 | /*! |
570 | \fn const QVector3D operator+(const QVector3D &v1, const QVector3D &v2) |
571 | \relates QVector3D |
572 | |
573 | Returns a QVector3D object that is the sum of the given vectors, \a v1 |
574 | and \a v2; each component is added separately. |
575 | |
576 | \sa QVector3D::operator+=() |
577 | */ |
578 | |
579 | /*! |
580 | \fn const QVector3D operator-(const QVector3D &v1, const QVector3D &v2) |
581 | \relates QVector3D |
582 | |
583 | Returns a QVector3D object that is formed by subtracting \a v2 from \a v1; |
584 | each component is subtracted separately. |
585 | |
586 | \sa QVector3D::operator-=() |
587 | */ |
588 | |
589 | /*! |
590 | \fn const QVector3D operator*(float factor, const QVector3D &vector) |
591 | \relates QVector3D |
592 | |
593 | Returns a copy of the given \a vector, multiplied by the given \a factor. |
594 | |
595 | \sa QVector3D::operator*=() |
596 | */ |
597 | |
598 | /*! |
599 | \fn const QVector3D operator*(const QVector3D &vector, float factor) |
600 | \relates QVector3D |
601 | |
602 | Returns a copy of the given \a vector, multiplied by the given \a factor. |
603 | |
604 | \sa QVector3D::operator*=() |
605 | */ |
606 | |
607 | /*! |
608 | \fn const QVector3D operator*(const QVector3D &v1, const QVector3D& v2) |
609 | \relates QVector3D |
610 | |
611 | Multiplies the components of \a v1 by the corresponding components in \a v2. |
612 | |
613 | Note: this is not the same as the crossProduct() of \a v1 and \a v2. |
614 | |
615 | \sa QVector3D::crossProduct() |
616 | */ |
617 | |
618 | /*! |
619 | \fn const QVector3D operator-(const QVector3D &vector) |
620 | \relates QVector3D |
621 | \overload |
622 | |
623 | Returns a QVector3D object that is formed by changing the sign of |
624 | all three components of the given \a vector. |
625 | |
626 | Equivalent to \c {QVector3D(0,0,0) - vector}. |
627 | */ |
628 | |
629 | /*! |
630 | \fn const QVector3D operator/(const QVector3D &vector, float divisor) |
631 | \relates QVector3D |
632 | |
633 | Returns the QVector3D object formed by dividing all three components of |
634 | the given \a vector by the given \a divisor. |
635 | |
636 | \sa QVector3D::operator/=() |
637 | */ |
638 | |
639 | /*! |
640 | \fn const QVector3D operator/(const QVector3D &vector, const QVector3D &divisor) |
641 | \relates QVector3D |
642 | \since 5.5 |
643 | |
644 | Returns the QVector3D object formed by dividing components of the given |
645 | \a vector by a respective components of the given \a divisor. |
646 | |
647 | \sa QVector3D::operator/=() |
648 | */ |
649 | |
650 | /*! |
651 | \fn bool qFuzzyCompare(const QVector3D& v1, const QVector3D& v2) |
652 | \relates QVector3D |
653 | |
654 | Returns \c true if \a v1 and \a v2 are equal, allowing for a small |
655 | fuzziness factor for floating-point comparisons; false otherwise. |
656 | */ |
657 | |
658 | #ifndef QT_NO_VECTOR2D |
659 | |
660 | /*! |
661 | Returns the 2D vector form of this 3D vector, dropping the z coordinate. |
662 | |
663 | \sa toVector4D(), toPoint() |
664 | */ |
665 | QVector2D QVector3D::toVector2D() const |
666 | { |
667 | return QVector2D(v[0], v[1]); |
668 | } |
669 | |
670 | #endif |
671 | |
672 | #ifndef QT_NO_VECTOR4D |
673 | |
674 | /*! |
675 | Returns the 4D form of this 3D vector, with the w coordinate set to zero. |
676 | |
677 | \sa toVector2D(), toPoint() |
678 | */ |
679 | QVector4D QVector3D::toVector4D() const |
680 | { |
681 | return QVector4D(v[0], v[1], v[2], 0.0f); |
682 | } |
683 | |
684 | #endif |
685 | |
686 | /*! |
687 | \fn QPoint QVector3D::toPoint() const |
688 | |
689 | Returns the QPoint form of this 3D vector. The z coordinate |
690 | is dropped. |
691 | |
692 | \sa toPointF(), toVector2D() |
693 | */ |
694 | |
695 | /*! |
696 | \fn QPointF QVector3D::toPointF() const |
697 | |
698 | Returns the QPointF form of this 3D vector. The z coordinate |
699 | is dropped. |
700 | |
701 | \sa toPoint(), toVector2D() |
702 | */ |
703 | |
704 | /*! |
705 | Returns the 3D vector as a QVariant. |
706 | */ |
707 | QVector3D::operator QVariant() const |
708 | { |
709 | return QVariant(QMetaType::QVector3D, this); |
710 | } |
711 | |
712 | /*! |
713 | Returns the length of the vector from the origin. |
714 | |
715 | \sa lengthSquared(), normalized() |
716 | */ |
717 | float QVector3D::length() const |
718 | { |
719 | // Need some extra precision if the length is very small. |
720 | double len = double(v[0]) * double(v[0]) + |
721 | double(v[1]) * double(v[1]) + |
722 | double(v[2]) * double(v[2]); |
723 | return float(std::sqrt(x: len)); |
724 | } |
725 | |
726 | /*! |
727 | Returns the squared length of the vector from the origin. |
728 | This is equivalent to the dot product of the vector with itself. |
729 | |
730 | \sa length(), dotProduct() |
731 | */ |
732 | float QVector3D::lengthSquared() const |
733 | { |
734 | return v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; |
735 | } |
736 | |
737 | #ifndef QT_NO_DEBUG_STREAM |
738 | |
739 | QDebug operator<<(QDebug dbg, const QVector3D &vector) |
740 | { |
741 | QDebugStateSaver saver(dbg); |
742 | dbg.nospace() << "QVector3D(" |
743 | << vector.x() << ", " << vector.y() << ", " << vector.z() << ')'; |
744 | return dbg; |
745 | } |
746 | |
747 | #endif |
748 | |
749 | #ifndef QT_NO_DATASTREAM |
750 | |
751 | /*! |
752 | \fn QDataStream &operator<<(QDataStream &stream, const QVector3D &vector) |
753 | \relates QVector3D |
754 | |
755 | Writes the given \a vector to the given \a stream and returns a |
756 | reference to the stream. |
757 | |
758 | \sa {Serializing Qt Data Types} |
759 | */ |
760 | |
761 | QDataStream &operator<<(QDataStream &stream, const QVector3D &vector) |
762 | { |
763 | stream << vector.x() << vector.y() << vector.z(); |
764 | return stream; |
765 | } |
766 | |
767 | /*! |
768 | \fn QDataStream &operator>>(QDataStream &stream, QVector3D &vector) |
769 | \relates QVector3D |
770 | |
771 | Reads a 3D vector from the given \a stream into the given \a vector |
772 | and returns a reference to the stream. |
773 | |
774 | \sa {Serializing Qt Data Types} |
775 | */ |
776 | |
777 | QDataStream &operator>>(QDataStream &stream, QVector3D &vector) |
778 | { |
779 | float x, y, z; |
780 | stream >> x; |
781 | stream >> y; |
782 | stream >> z; |
783 | vector.setX(x); |
784 | vector.setY(y); |
785 | vector.setZ(z); |
786 | return stream; |
787 | } |
788 | |
789 | #endif // QT_NO_DATASTREAM |
790 | |
791 | #endif // QT_NO_VECTOR3D |
792 | |
793 | QT_END_NAMESPACE |
794 | |