1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2016 The Qt Company Ltd. |
4 | ** Contact: https://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the QtGui module of the Qt Toolkit. |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at https://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or (at your option) the GNU General |
28 | ** Public license version 3 or any later version approved by the KDE Free |
29 | ** Qt Foundation. The licenses are as published by the Free Software |
30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
31 | ** included in the packaging of this file. Please review the following |
32 | ** information to ensure the GNU General Public License requirements will |
33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
35 | ** |
36 | ** $QT_END_LICENSE$ |
37 | ** |
38 | ****************************************************************************/ |
39 | |
40 | #include "qvector4d.h" |
41 | #include "qvector3d.h" |
42 | #include "qvector2d.h" |
43 | #include <QtCore/qdatastream.h> |
44 | #include <QtCore/qdebug.h> |
45 | #include <QtCore/qvariant.h> |
46 | #include <QtCore/qmath.h> |
47 | |
48 | QT_BEGIN_NAMESPACE |
49 | |
50 | #ifndef QT_NO_VECTOR4D |
51 | |
52 | Q_STATIC_ASSERT_X(std::is_standard_layout<QVector4D>::value, "QVector4D is supposed to be standard layout" ); |
53 | Q_STATIC_ASSERT_X(sizeof(QVector4D) == sizeof(float) * 4, "QVector4D is not supposed to have padding at the end" ); |
54 | |
55 | // QVector4D used to be defined as class QVector4D { float x, y, z, w; };, |
56 | // now instead it is defined as classs QVector4D { float v[4]; };. |
57 | // Check that binary compatibility is preserved. |
58 | // ### Qt 6: remove all of these checks. |
59 | |
60 | namespace { |
61 | |
62 | struct QVector4DOld |
63 | { |
64 | float x, y, z, w; |
65 | }; |
66 | |
67 | struct QVector4DNew |
68 | { |
69 | float v[4]; |
70 | }; |
71 | |
72 | Q_STATIC_ASSERT_X(std::is_standard_layout<QVector4DOld>::value, "Binary compatibility break in QVector4D" ); |
73 | Q_STATIC_ASSERT_X(std::is_standard_layout<QVector4DNew>::value, "Binary compatibility break in QVector4D" ); |
74 | |
75 | Q_STATIC_ASSERT_X(sizeof(QVector4DOld) == sizeof(QVector4DNew), "Binary compatibility break in QVector4D" ); |
76 | |
77 | // requires a constexpr offsetof |
78 | #if !defined(Q_CC_MSVC) || (_MSC_VER >= 1910) |
79 | Q_STATIC_ASSERT_X(offsetof(QVector4DOld, x) == offsetof(QVector4DNew, v) + sizeof(QVector4DNew::v[0]) * 0, "Binary compatibility break in QVector4D" ); |
80 | Q_STATIC_ASSERT_X(offsetof(QVector4DOld, y) == offsetof(QVector4DNew, v) + sizeof(QVector4DNew::v[0]) * 1, "Binary compatibility break in QVector4D" ); |
81 | Q_STATIC_ASSERT_X(offsetof(QVector4DOld, z) == offsetof(QVector4DNew, v) + sizeof(QVector4DNew::v[0]) * 2, "Binary compatibility break in QVector4D" ); |
82 | Q_STATIC_ASSERT_X(offsetof(QVector4DOld, w) == offsetof(QVector4DNew, v) + sizeof(QVector4DNew::v[0]) * 3, "Binary compatibility break in QVector4D" ); |
83 | #endif |
84 | |
85 | |
86 | } // anonymous namespace |
87 | |
88 | /*! |
89 | \class QVector4D |
90 | \brief The QVector4D class represents a vector or vertex in 4D space. |
91 | \since 4.6 |
92 | \ingroup painting-3D |
93 | \inmodule QtGui |
94 | |
95 | The QVector4D class can also be used to represent vertices in 4D space. |
96 | We therefore do not need to provide a separate vertex class. |
97 | |
98 | \sa QQuaternion, QVector2D, QVector3D |
99 | */ |
100 | |
101 | /*! |
102 | \fn QVector4D::QVector4D() |
103 | |
104 | Constructs a null vector, i.e. with coordinates (0, 0, 0, 0). |
105 | */ |
106 | |
107 | /*! |
108 | \fn QVector4D::QVector4D(Qt::Initialization) |
109 | \since 5.5 |
110 | \internal |
111 | |
112 | Constructs a vector without initializing the contents. |
113 | */ |
114 | |
115 | /*! |
116 | \fn QVector4D::QVector4D(float xpos, float ypos, float zpos, float wpos) |
117 | |
118 | Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos, \a wpos). |
119 | */ |
120 | |
121 | /*! |
122 | \fn QVector4D::QVector4D(const QPoint& point) |
123 | |
124 | Constructs a vector with x and y coordinates from a 2D \a point, and |
125 | z and w coordinates of 0. |
126 | */ |
127 | |
128 | /*! |
129 | \fn QVector4D::QVector4D(const QPointF& point) |
130 | |
131 | Constructs a vector with x and y coordinates from a 2D \a point, and |
132 | z and w coordinates of 0. |
133 | */ |
134 | |
135 | #ifndef QT_NO_VECTOR2D |
136 | |
137 | /*! |
138 | Constructs a 4D vector from the specified 2D \a vector. The z |
139 | and w coordinates are set to zero. |
140 | |
141 | \sa toVector2D() |
142 | */ |
143 | QVector4D::QVector4D(const QVector2D& vector) |
144 | { |
145 | v[0] = vector.v[0]; |
146 | v[1] = vector.v[1]; |
147 | v[2] = 0.0f; |
148 | v[3] = 0.0f; |
149 | } |
150 | |
151 | /*! |
152 | Constructs a 4D vector from the specified 2D \a vector. The z |
153 | and w coordinates are set to \a zpos and \a wpos respectively. |
154 | |
155 | \sa toVector2D() |
156 | */ |
157 | QVector4D::QVector4D(const QVector2D& vector, float zpos, float wpos) |
158 | { |
159 | v[0] = vector.v[0]; |
160 | v[1] = vector.v[1]; |
161 | v[2] = zpos; |
162 | v[3] = wpos; |
163 | } |
164 | |
165 | #endif |
166 | |
167 | #ifndef QT_NO_VECTOR3D |
168 | |
169 | /*! |
170 | Constructs a 4D vector from the specified 3D \a vector. The w |
171 | coordinate is set to zero. |
172 | |
173 | \sa toVector3D() |
174 | */ |
175 | QVector4D::QVector4D(const QVector3D& vector) |
176 | { |
177 | v[0] = vector.v[0]; |
178 | v[1] = vector.v[1]; |
179 | v[2] = vector.v[2]; |
180 | v[3] = 0.0f; |
181 | } |
182 | |
183 | /*! |
184 | Constructs a 4D vector from the specified 3D \a vector. The w |
185 | coordinate is set to \a wpos. |
186 | |
187 | \sa toVector3D() |
188 | */ |
189 | QVector4D::QVector4D(const QVector3D& vector, float wpos) |
190 | { |
191 | v[0] = vector.v[0]; |
192 | v[1] = vector.v[1]; |
193 | v[2] = vector.v[2]; |
194 | v[3] = wpos; |
195 | } |
196 | |
197 | #endif |
198 | |
199 | /*! |
200 | \fn bool QVector4D::isNull() const |
201 | |
202 | Returns \c true if the x, y, z, and w coordinates are set to 0.0, |
203 | otherwise returns \c false. |
204 | */ |
205 | |
206 | /*! |
207 | \fn float QVector4D::x() const |
208 | |
209 | Returns the x coordinate of this point. |
210 | |
211 | \sa setX(), y(), z(), w() |
212 | */ |
213 | |
214 | /*! |
215 | \fn float QVector4D::y() const |
216 | |
217 | Returns the y coordinate of this point. |
218 | |
219 | \sa setY(), x(), z(), w() |
220 | */ |
221 | |
222 | /*! |
223 | \fn float QVector4D::z() const |
224 | |
225 | Returns the z coordinate of this point. |
226 | |
227 | \sa setZ(), x(), y(), w() |
228 | */ |
229 | |
230 | /*! |
231 | \fn float QVector4D::w() const |
232 | |
233 | Returns the w coordinate of this point. |
234 | |
235 | \sa setW(), x(), y(), z() |
236 | */ |
237 | |
238 | /*! |
239 | \fn void QVector4D::setX(float x) |
240 | |
241 | Sets the x coordinate of this point to the given \a x coordinate. |
242 | |
243 | \sa x(), setY(), setZ(), setW() |
244 | */ |
245 | |
246 | /*! |
247 | \fn void QVector4D::setY(float y) |
248 | |
249 | Sets the y coordinate of this point to the given \a y coordinate. |
250 | |
251 | \sa y(), setX(), setZ(), setW() |
252 | */ |
253 | |
254 | /*! |
255 | \fn void QVector4D::setZ(float z) |
256 | |
257 | Sets the z coordinate of this point to the given \a z coordinate. |
258 | |
259 | \sa z(), setX(), setY(), setW() |
260 | */ |
261 | |
262 | /*! |
263 | \fn void QVector4D::setW(float w) |
264 | |
265 | Sets the w coordinate of this point to the given \a w coordinate. |
266 | |
267 | \sa w(), setX(), setY(), setZ() |
268 | */ |
269 | |
270 | /*! \fn float &QVector4D::operator[](int i) |
271 | \since 5.2 |
272 | |
273 | Returns the component of the vector at index position \a i |
274 | as a modifiable reference. |
275 | |
276 | \a i must be a valid index position in the vector (i.e., 0 <= \a i |
277 | < 4). |
278 | */ |
279 | |
280 | /*! \fn float QVector4D::operator[](int i) const |
281 | \since 5.2 |
282 | |
283 | Returns the component of the vector at index position \a i. |
284 | |
285 | \a i must be a valid index position in the vector (i.e., 0 <= \a i |
286 | < 4). |
287 | */ |
288 | |
289 | /*! |
290 | Returns the length of the vector from the origin. |
291 | |
292 | \sa lengthSquared(), normalized() |
293 | */ |
294 | float QVector4D::length() const |
295 | { |
296 | // Need some extra precision if the length is very small. |
297 | double len = double(v[0]) * double(v[0]) + |
298 | double(v[1]) * double(v[1]) + |
299 | double(v[2]) * double(v[2]) + |
300 | double(v[3]) * double(v[3]); |
301 | return float(std::sqrt(x: len)); |
302 | } |
303 | |
304 | /*! |
305 | Returns the squared length of the vector from the origin. |
306 | This is equivalent to the dot product of the vector with itself. |
307 | |
308 | \sa length(), dotProduct() |
309 | */ |
310 | float QVector4D::lengthSquared() const |
311 | { |
312 | return v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + v[3] * v[3]; |
313 | } |
314 | |
315 | /*! |
316 | Returns the normalized unit vector form of this vector. |
317 | |
318 | If this vector is null, then a null vector is returned. If the length |
319 | of the vector is very close to 1, then the vector will be returned as-is. |
320 | Otherwise the normalized form of the vector of length 1 will be returned. |
321 | |
322 | \sa length(), normalize() |
323 | */ |
324 | QVector4D QVector4D::normalized() const |
325 | { |
326 | // Need some extra precision if the length is very small. |
327 | double len = double(v[0]) * double(v[0]) + |
328 | double(v[1]) * double(v[1]) + |
329 | double(v[2]) * double(v[2]) + |
330 | double(v[3]) * double(v[3]); |
331 | if (qFuzzyIsNull(d: len - 1.0f)) { |
332 | return *this; |
333 | } else if (!qFuzzyIsNull(d: len)) { |
334 | double sqrtLen = std::sqrt(x: len); |
335 | return QVector4D(float(double(v[0]) / sqrtLen), |
336 | float(double(v[1]) / sqrtLen), |
337 | float(double(v[2]) / sqrtLen), |
338 | float(double(v[3]) / sqrtLen)); |
339 | } else { |
340 | return QVector4D(); |
341 | } |
342 | } |
343 | |
344 | /*! |
345 | Normalizes the currect vector in place. Nothing happens if this |
346 | vector is a null vector or the length of the vector is very close to 1. |
347 | |
348 | \sa length(), normalized() |
349 | */ |
350 | void QVector4D::normalize() |
351 | { |
352 | // Need some extra precision if the length is very small. |
353 | double len = double(v[0]) * double(v[0]) + |
354 | double(v[1]) * double(v[1]) + |
355 | double(v[2]) * double(v[2]) + |
356 | double(v[3]) * double(v[3]); |
357 | if (qFuzzyIsNull(d: len - 1.0f) || qFuzzyIsNull(d: len)) |
358 | return; |
359 | |
360 | len = std::sqrt(x: len); |
361 | |
362 | v[0] = float(double(v[0]) / len); |
363 | v[1] = float(double(v[1]) / len); |
364 | v[2] = float(double(v[2]) / len); |
365 | v[3] = float(double(v[3]) / len); |
366 | } |
367 | |
368 | /*! |
369 | \fn QVector4D &QVector4D::operator+=(const QVector4D &vector) |
370 | |
371 | Adds the given \a vector to this vector and returns a reference to |
372 | this vector. |
373 | |
374 | \sa operator-=() |
375 | */ |
376 | |
377 | /*! |
378 | \fn QVector4D &QVector4D::operator-=(const QVector4D &vector) |
379 | |
380 | Subtracts the given \a vector from this vector and returns a reference to |
381 | this vector. |
382 | |
383 | \sa operator+=() |
384 | */ |
385 | |
386 | /*! |
387 | \fn QVector4D &QVector4D::operator*=(float factor) |
388 | |
389 | Multiplies this vector's coordinates by the given \a factor, and |
390 | returns a reference to this vector. |
391 | |
392 | \sa operator/=() |
393 | */ |
394 | |
395 | /*! |
396 | \fn QVector4D &QVector4D::operator*=(const QVector4D &vector) |
397 | |
398 | Multiplies the components of this vector by the corresponding |
399 | components in \a vector. |
400 | */ |
401 | |
402 | /*! |
403 | \fn QVector4D &QVector4D::operator/=(float divisor) |
404 | |
405 | Divides this vector's coordinates by the given \a divisor, and |
406 | returns a reference to this vector. |
407 | |
408 | \sa operator*=() |
409 | */ |
410 | |
411 | /*! |
412 | \fn QVector4D &QVector4D::operator/=(const QVector4D &vector) |
413 | \since 5.5 |
414 | |
415 | Divides the components of this vector by the corresponding |
416 | components in \a vector. |
417 | |
418 | \sa operator*=() |
419 | */ |
420 | |
421 | /*! |
422 | Returns the dot product of \a v1 and \a v2. |
423 | */ |
424 | float QVector4D::dotProduct(const QVector4D& v1, const QVector4D& v2) |
425 | { |
426 | return v1.v[0] * v2.v[0] + v1.v[1] * v2.v[1] + v1.v[2] * v2.v[2] + v1.v[3] * v2.v[3]; |
427 | } |
428 | |
429 | /*! |
430 | \fn bool operator==(const QVector4D &v1, const QVector4D &v2) |
431 | \relates QVector4D |
432 | |
433 | Returns \c true if \a v1 is equal to \a v2; otherwise returns \c false. |
434 | This operator uses an exact floating-point comparison. |
435 | */ |
436 | |
437 | /*! |
438 | \fn bool operator!=(const QVector4D &v1, const QVector4D &v2) |
439 | \relates QVector4D |
440 | |
441 | Returns \c true if \a v1 is not equal to \a v2; otherwise returns \c false. |
442 | This operator uses an exact floating-point comparison. |
443 | */ |
444 | |
445 | /*! |
446 | \fn const QVector4D operator+(const QVector4D &v1, const QVector4D &v2) |
447 | \relates QVector4D |
448 | |
449 | Returns a QVector4D object that is the sum of the given vectors, \a v1 |
450 | and \a v2; each component is added separately. |
451 | |
452 | \sa QVector4D::operator+=() |
453 | */ |
454 | |
455 | /*! |
456 | \fn const QVector4D operator-(const QVector4D &v1, const QVector4D &v2) |
457 | \relates QVector4D |
458 | |
459 | Returns a QVector4D object that is formed by subtracting \a v2 from \a v1; |
460 | each component is subtracted separately. |
461 | |
462 | \sa QVector4D::operator-=() |
463 | */ |
464 | |
465 | /*! |
466 | \fn const QVector4D operator*(float factor, const QVector4D &vector) |
467 | \relates QVector4D |
468 | |
469 | Returns a copy of the given \a vector, multiplied by the given \a factor. |
470 | |
471 | \sa QVector4D::operator*=() |
472 | */ |
473 | |
474 | /*! |
475 | \fn const QVector4D operator*(const QVector4D &vector, float factor) |
476 | \relates QVector4D |
477 | |
478 | Returns a copy of the given \a vector, multiplied by the given \a factor. |
479 | |
480 | \sa QVector4D::operator*=() |
481 | */ |
482 | |
483 | /*! |
484 | \fn const QVector4D operator*(const QVector4D &v1, const QVector4D& v2) |
485 | \relates QVector4D |
486 | |
487 | Returns the vector consisting of the multiplication of the |
488 | components from \a v1 and \a v2. |
489 | |
490 | \sa QVector4D::operator*=() |
491 | */ |
492 | |
493 | /*! |
494 | \fn const QVector4D operator-(const QVector4D &vector) |
495 | \relates QVector4D |
496 | \overload |
497 | |
498 | Returns a QVector4D object that is formed by changing the sign of |
499 | all three components of the given \a vector. |
500 | |
501 | Equivalent to \c {QVector4D(0,0,0,0) - vector}. |
502 | */ |
503 | |
504 | /*! |
505 | \fn const QVector4D operator/(const QVector4D &vector, float divisor) |
506 | \relates QVector4D |
507 | |
508 | Returns the QVector4D object formed by dividing all four components of |
509 | the given \a vector by the given \a divisor. |
510 | |
511 | \sa QVector4D::operator/=() |
512 | */ |
513 | |
514 | /*! |
515 | \fn const QVector4D operator/(const QVector4D &vector, const QVector4D &divisor) |
516 | \relates QVector4D |
517 | \since 5.5 |
518 | |
519 | Returns the QVector4D object formed by dividing components of the given |
520 | \a vector by a respective components of the given \a divisor. |
521 | |
522 | \sa QVector4D::operator/=() |
523 | */ |
524 | |
525 | /*! |
526 | \fn bool qFuzzyCompare(const QVector4D& v1, const QVector4D& v2) |
527 | \relates QVector4D |
528 | |
529 | Returns \c true if \a v1 and \a v2 are equal, allowing for a small |
530 | fuzziness factor for floating-point comparisons; false otherwise. |
531 | */ |
532 | |
533 | #ifndef QT_NO_VECTOR2D |
534 | |
535 | /*! |
536 | Returns the 2D vector form of this 4D vector, dropping the z and w coordinates. |
537 | |
538 | \sa toVector2DAffine(), toVector3D(), toPoint() |
539 | */ |
540 | QVector2D QVector4D::toVector2D() const |
541 | { |
542 | return QVector2D(v[0], v[1]); |
543 | } |
544 | |
545 | /*! |
546 | Returns the 2D vector form of this 4D vector, dividing the x and y |
547 | coordinates by the w coordinate and dropping the z coordinate. |
548 | Returns a null vector if w is zero. |
549 | |
550 | \sa toVector2D(), toVector3DAffine(), toPoint() |
551 | */ |
552 | QVector2D QVector4D::toVector2DAffine() const |
553 | { |
554 | if (qIsNull(f: v[3])) |
555 | return QVector2D(); |
556 | return QVector2D(v[0] / v[3], v[1] / v[3]); |
557 | } |
558 | |
559 | #endif |
560 | |
561 | #ifndef QT_NO_VECTOR3D |
562 | |
563 | /*! |
564 | Returns the 3D vector form of this 4D vector, dropping the w coordinate. |
565 | |
566 | \sa toVector3DAffine(), toVector2D(), toPoint() |
567 | */ |
568 | QVector3D QVector4D::toVector3D() const |
569 | { |
570 | return QVector3D(v[0], v[1], v[2]); |
571 | } |
572 | |
573 | /*! |
574 | Returns the 3D vector form of this 4D vector, dividing the x, y, and |
575 | z coordinates by the w coordinate. Returns a null vector if w is zero. |
576 | |
577 | \sa toVector3D(), toVector2DAffine(), toPoint() |
578 | */ |
579 | QVector3D QVector4D::toVector3DAffine() const |
580 | { |
581 | if (qIsNull(f: v[3])) |
582 | return QVector3D(); |
583 | return QVector3D(v[0] / v[3], v[1] / v[3], v[2] / v[3]); |
584 | } |
585 | |
586 | #endif |
587 | |
588 | /*! |
589 | \fn QPoint QVector4D::toPoint() const |
590 | |
591 | Returns the QPoint form of this 4D vector. The z and w coordinates |
592 | are dropped. |
593 | |
594 | \sa toPointF(), toVector2D() |
595 | */ |
596 | |
597 | /*! |
598 | \fn QPointF QVector4D::toPointF() const |
599 | |
600 | Returns the QPointF form of this 4D vector. The z and w coordinates |
601 | are dropped. |
602 | |
603 | \sa toPoint(), toVector2D() |
604 | */ |
605 | |
606 | /*! |
607 | Returns the 4D vector as a QVariant. |
608 | */ |
609 | QVector4D::operator QVariant() const |
610 | { |
611 | return QVariant(QMetaType::QVector4D, this); |
612 | } |
613 | |
614 | #ifndef QT_NO_DEBUG_STREAM |
615 | |
616 | QDebug operator<<(QDebug dbg, const QVector4D &vector) |
617 | { |
618 | QDebugStateSaver saver(dbg); |
619 | dbg.nospace() << "QVector4D(" |
620 | << vector.x() << ", " << vector.y() << ", " |
621 | << vector.z() << ", " << vector.w() << ')'; |
622 | return dbg; |
623 | } |
624 | |
625 | #endif |
626 | |
627 | #ifndef QT_NO_DATASTREAM |
628 | |
629 | /*! |
630 | \fn QDataStream &operator<<(QDataStream &stream, const QVector4D &vector) |
631 | \relates QVector4D |
632 | |
633 | Writes the given \a vector to the given \a stream and returns a |
634 | reference to the stream. |
635 | |
636 | \sa {Serializing Qt Data Types} |
637 | */ |
638 | |
639 | QDataStream &operator<<(QDataStream &stream, const QVector4D &vector) |
640 | { |
641 | stream << vector.x() << vector.y() |
642 | << vector.z() << vector.w(); |
643 | return stream; |
644 | } |
645 | |
646 | /*! |
647 | \fn QDataStream &operator>>(QDataStream &stream, QVector4D &vector) |
648 | \relates QVector4D |
649 | |
650 | Reads a 4D vector from the given \a stream into the given \a vector |
651 | and returns a reference to the stream. |
652 | |
653 | \sa {Serializing Qt Data Types} |
654 | */ |
655 | |
656 | QDataStream &operator>>(QDataStream &stream, QVector4D &vector) |
657 | { |
658 | float x, y, z, w; |
659 | stream >> x; |
660 | stream >> y; |
661 | stream >> z; |
662 | stream >> w; |
663 | vector.setX(x); |
664 | vector.setY(y); |
665 | vector.setZ(z); |
666 | vector.setW(w); |
667 | return stream; |
668 | } |
669 | |
670 | #endif // QT_NO_DATASTREAM |
671 | |
672 | #endif // QT_NO_VECTOR4D |
673 | |
674 | QT_END_NAMESPACE |
675 | |