| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2016 The Qt Company Ltd. |
| 4 | ** Contact: https://www.qt.io/licensing/ |
| 5 | ** |
| 6 | ** This file is part of the QtGui module of the Qt Toolkit. |
| 7 | ** |
| 8 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 9 | ** Commercial License Usage |
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 11 | ** accordance with the commercial license agreement provided with the |
| 12 | ** Software or, alternatively, in accordance with the terms contained in |
| 13 | ** a written agreement between you and The Qt Company. For licensing terms |
| 14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 15 | ** information use the contact form at https://www.qt.io/contact-us. |
| 16 | ** |
| 17 | ** GNU Lesser General Public License Usage |
| 18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 19 | ** General Public License version 3 as published by the Free Software |
| 20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 21 | ** packaging of this file. Please review the following information to |
| 22 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 24 | ** |
| 25 | ** GNU General Public License Usage |
| 26 | ** Alternatively, this file may be used under the terms of the GNU |
| 27 | ** General Public License version 2.0 or (at your option) the GNU General |
| 28 | ** Public license version 3 or any later version approved by the KDE Free |
| 29 | ** Qt Foundation. The licenses are as published by the Free Software |
| 30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 31 | ** included in the packaging of this file. Please review the following |
| 32 | ** information to ensure the GNU General Public License requirements will |
| 33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 35 | ** |
| 36 | ** $QT_END_LICENSE$ |
| 37 | ** |
| 38 | ****************************************************************************/ |
| 39 | |
| 40 | #include "qbezier_p.h" |
| 41 | #include <qdebug.h> |
| 42 | #include <qline.h> |
| 43 | #include <qpolygon.h> |
| 44 | #include <qvector.h> |
| 45 | #include <qlist.h> |
| 46 | #include <qmath.h> |
| 47 | |
| 48 | #include <private/qnumeric_p.h> |
| 49 | |
| 50 | #include <tuple> // for std::tie() |
| 51 | |
| 52 | QT_BEGIN_NAMESPACE |
| 53 | |
| 54 | //#define QDEBUG_BEZIER |
| 55 | |
| 56 | /*! |
| 57 | \internal |
| 58 | */ |
| 59 | QPolygonF QBezier::toPolygon(qreal bezier_flattening_threshold) const |
| 60 | { |
| 61 | // flattening is done by splitting the bezier until we can replace the segment by a straight |
| 62 | // line. We split further until the control points are close enough to the line connecting the |
| 63 | // boundary points. |
| 64 | // |
| 65 | // the Distance of a point p from a line given by the points (a,b) is given by: |
| 66 | // |
| 67 | // d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length |
| 68 | // |
| 69 | // We can stop splitting if both control points are close enough to the line. |
| 70 | // To make the algorithm faster we use the manhattan length of the line. |
| 71 | |
| 72 | QPolygonF polygon; |
| 73 | polygon.append(t: QPointF(x1, y1)); |
| 74 | addToPolygon(p: &polygon, bezier_flattening_threshold); |
| 75 | return polygon; |
| 76 | } |
| 77 | |
| 78 | QBezier QBezier::mapBy(const QTransform &transform) const |
| 79 | { |
| 80 | return QBezier::fromPoints(p1: transform.map(p: pt1()), p2: transform.map(p: pt2()), p3: transform.map(p: pt3()), p4: transform.map(p: pt4())); |
| 81 | } |
| 82 | |
| 83 | QBezier QBezier::getSubRange(qreal t0, qreal t1) const |
| 84 | { |
| 85 | QBezier result; |
| 86 | QBezier temp; |
| 87 | |
| 88 | // cut at t1 |
| 89 | if (qFuzzyIsNull(d: t1 - qreal(1.))) { |
| 90 | result = *this; |
| 91 | } else { |
| 92 | temp = *this; |
| 93 | temp.parameterSplitLeft(t: t1, left: &result); |
| 94 | } |
| 95 | |
| 96 | // cut at t0 |
| 97 | if (!qFuzzyIsNull(d: t0)) |
| 98 | result.parameterSplitLeft(t: t0 / t1, left: &temp); |
| 99 | |
| 100 | return result; |
| 101 | } |
| 102 | |
| 103 | void QBezier::addToPolygon(QPolygonF *polygon, qreal bezier_flattening_threshold) const |
| 104 | { |
| 105 | QBezier beziers[10]; |
| 106 | int levels[10]; |
| 107 | beziers[0] = *this; |
| 108 | levels[0] = 9; |
| 109 | int top = 0; |
| 110 | |
| 111 | while (top >= 0) { |
| 112 | QBezier *b = &beziers[top]; |
| 113 | // check if we can pop the top bezier curve from the stack |
| 114 | qreal y4y1 = b->y4 - b->y1; |
| 115 | qreal x4x1 = b->x4 - b->x1; |
| 116 | qreal l = qAbs(t: x4x1) + qAbs(t: y4y1); |
| 117 | qreal d; |
| 118 | if (l > 1.) { |
| 119 | d = qAbs( t: (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) ) |
| 120 | + qAbs( t: (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) ); |
| 121 | } else { |
| 122 | d = qAbs(t: b->x1 - b->x2) + qAbs(t: b->y1 - b->y2) + |
| 123 | qAbs(t: b->x1 - b->x3) + qAbs(t: b->y1 - b->y3); |
| 124 | l = 1.; |
| 125 | } |
| 126 | if (d < bezier_flattening_threshold * l || levels[top] == 0) { |
| 127 | // good enough, we pop it off and add the endpoint |
| 128 | polygon->append(t: QPointF(b->x4, b->y4)); |
| 129 | --top; |
| 130 | } else { |
| 131 | // split, second half of the polygon goes lower into the stack |
| 132 | std::tie(args&: b[1], args&: b[0]) = b->split(); |
| 133 | levels[top + 1] = --levels[top]; |
| 134 | ++top; |
| 135 | } |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | void QBezier::addToPolygon(QDataBuffer<QPointF> &polygon, qreal bezier_flattening_threshold) const |
| 140 | { |
| 141 | QBezier beziers[10]; |
| 142 | int levels[10]; |
| 143 | beziers[0] = *this; |
| 144 | levels[0] = 9; |
| 145 | int top = 0; |
| 146 | |
| 147 | while (top >= 0) { |
| 148 | QBezier *b = &beziers[top]; |
| 149 | // check if we can pop the top bezier curve from the stack |
| 150 | qreal y4y1 = b->y4 - b->y1; |
| 151 | qreal x4x1 = b->x4 - b->x1; |
| 152 | qreal l = qAbs(t: x4x1) + qAbs(t: y4y1); |
| 153 | qreal d; |
| 154 | if (l > 1.) { |
| 155 | d = qAbs( t: (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) ) |
| 156 | + qAbs( t: (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) ); |
| 157 | } else { |
| 158 | d = qAbs(t: b->x1 - b->x2) + qAbs(t: b->y1 - b->y2) + |
| 159 | qAbs(t: b->x1 - b->x3) + qAbs(t: b->y1 - b->y3); |
| 160 | l = 1.; |
| 161 | } |
| 162 | if (d < bezier_flattening_threshold * l || levels[top] == 0) { |
| 163 | // good enough, we pop it off and add the endpoint |
| 164 | polygon.add(t: QPointF(b->x4, b->y4)); |
| 165 | --top; |
| 166 | } else { |
| 167 | // split, second half of the polygon goes lower into the stack |
| 168 | std::tie(args&: b[1], args&: b[0]) = b->split(); |
| 169 | levels[top + 1] = --levels[top]; |
| 170 | ++top; |
| 171 | } |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | QRectF QBezier::bounds() const |
| 176 | { |
| 177 | qreal xmin = x1; |
| 178 | qreal xmax = x1; |
| 179 | if (x2 < xmin) |
| 180 | xmin = x2; |
| 181 | else if (x2 > xmax) |
| 182 | xmax = x2; |
| 183 | if (x3 < xmin) |
| 184 | xmin = x3; |
| 185 | else if (x3 > xmax) |
| 186 | xmax = x3; |
| 187 | if (x4 < xmin) |
| 188 | xmin = x4; |
| 189 | else if (x4 > xmax) |
| 190 | xmax = x4; |
| 191 | |
| 192 | qreal ymin = y1; |
| 193 | qreal ymax = y1; |
| 194 | if (y2 < ymin) |
| 195 | ymin = y2; |
| 196 | else if (y2 > ymax) |
| 197 | ymax = y2; |
| 198 | if (y3 < ymin) |
| 199 | ymin = y3; |
| 200 | else if (y3 > ymax) |
| 201 | ymax = y3; |
| 202 | if (y4 < ymin) |
| 203 | ymin = y4; |
| 204 | else if (y4 > ymax) |
| 205 | ymax = y4; |
| 206 | return QRectF(xmin, ymin, xmax-xmin, ymax-ymin); |
| 207 | } |
| 208 | |
| 209 | |
| 210 | enum ShiftResult { |
| 211 | Ok, |
| 212 | Discard, |
| 213 | Split, |
| 214 | Circle |
| 215 | }; |
| 216 | |
| 217 | static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold) |
| 218 | { |
| 219 | const qreal o2 = offset*offset; |
| 220 | const qreal max_dist_line = threshold*offset*offset; |
| 221 | const qreal max_dist_normal = threshold*offset; |
| 222 | const qreal spacing = qreal(0.25); |
| 223 | for (qreal i = spacing; i < qreal(0.99); i += spacing) { |
| 224 | QPointF p1 = b1->pointAt(t: i); |
| 225 | QPointF p2 = b2->pointAt(t: i); |
| 226 | qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y()); |
| 227 | if (qAbs(t: d - o2) > max_dist_line) |
| 228 | return Split; |
| 229 | |
| 230 | QPointF normalPoint = b1->normalVector(t: i); |
| 231 | qreal l = qAbs(t: normalPoint.x()) + qAbs(t: normalPoint.y()); |
| 232 | if (l != qreal(0.0)) { |
| 233 | d = qAbs( t: normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l; |
| 234 | if (d > max_dist_normal) |
| 235 | return Split; |
| 236 | } |
| 237 | } |
| 238 | return Ok; |
| 239 | } |
| 240 | |
| 241 | static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold) |
| 242 | { |
| 243 | int map[4]; |
| 244 | bool p1_p2_equal = qFuzzyCompare(p1: orig->x1, p2: orig->x2) && qFuzzyCompare(p1: orig->y1, p2: orig->y2); |
| 245 | bool p2_p3_equal = qFuzzyCompare(p1: orig->x2, p2: orig->x3) && qFuzzyCompare(p1: orig->y2, p2: orig->y3); |
| 246 | bool p3_p4_equal = qFuzzyCompare(p1: orig->x3, p2: orig->x4) && qFuzzyCompare(p1: orig->y3, p2: orig->y4); |
| 247 | |
| 248 | QPointF points[4]; |
| 249 | int np = 0; |
| 250 | points[np] = QPointF(orig->x1, orig->y1); |
| 251 | map[0] = 0; |
| 252 | ++np; |
| 253 | if (!p1_p2_equal) { |
| 254 | points[np] = QPointF(orig->x2, orig->y2); |
| 255 | ++np; |
| 256 | } |
| 257 | map[1] = np - 1; |
| 258 | if (!p2_p3_equal) { |
| 259 | points[np] = QPointF(orig->x3, orig->y3); |
| 260 | ++np; |
| 261 | } |
| 262 | map[2] = np - 1; |
| 263 | if (!p3_p4_equal) { |
| 264 | points[np] = QPointF(orig->x4, orig->y4); |
| 265 | ++np; |
| 266 | } |
| 267 | map[3] = np - 1; |
| 268 | if (np == 1) |
| 269 | return Discard; |
| 270 | |
| 271 | QRectF b = orig->bounds(); |
| 272 | if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) { |
| 273 | qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) + |
| 274 | (orig->y1 - orig->y2)*(orig->y1 - orig->y2) * |
| 275 | (orig->x3 - orig->x4)*(orig->x3 - orig->x4) + |
| 276 | (orig->y3 - orig->y4)*(orig->y3 - orig->y4); |
| 277 | qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) + |
| 278 | (orig->y1 - orig->y2)*(orig->y3 - orig->y4); |
| 279 | if (dot < 0 && dot*dot < 0.8*l) |
| 280 | // the points are close and reverse dirction. Approximate the whole |
| 281 | // thing by a semi circle |
| 282 | return Circle; |
| 283 | } |
| 284 | |
| 285 | QPointF points_shifted[4]; |
| 286 | |
| 287 | QLineF prev = QLineF(QPointF(), points[1] - points[0]); |
| 288 | if (!prev.length()) |
| 289 | return Discard; |
| 290 | QPointF prev_normal = prev.normalVector().unitVector().p2(); |
| 291 | |
| 292 | points_shifted[0] = points[0] + offset * prev_normal; |
| 293 | |
| 294 | for (int i = 1; i < np - 1; ++i) { |
| 295 | QLineF next = QLineF(QPointF(), points[i + 1] - points[i]); |
| 296 | QPointF next_normal = next.normalVector().unitVector().p2(); |
| 297 | |
| 298 | QPointF normal_sum = prev_normal + next_normal; |
| 299 | |
| 300 | qreal r = qreal(1.0) + prev_normal.x() * next_normal.x() |
| 301 | + prev_normal.y() * next_normal.y(); |
| 302 | |
| 303 | if (qFuzzyIsNull(d: r)) { |
| 304 | points_shifted[i] = points[i] + offset * prev_normal; |
| 305 | } else { |
| 306 | qreal k = offset / r; |
| 307 | points_shifted[i] = points[i] + k * normal_sum; |
| 308 | } |
| 309 | |
| 310 | prev_normal = next_normal; |
| 311 | } |
| 312 | |
| 313 | points_shifted[np - 1] = points[np - 1] + offset * prev_normal; |
| 314 | |
| 315 | *shifted = QBezier::fromPoints(p1: points_shifted[map[0]], p2: points_shifted[map[1]], |
| 316 | p3: points_shifted[map[2]], p4: points_shifted[map[3]]); |
| 317 | |
| 318 | if (np > 2) |
| 319 | return good_offset(b1: orig, b2: shifted, offset, threshold); |
| 320 | return Ok; |
| 321 | } |
| 322 | |
| 323 | // This value is used to determine the length of control point vectors |
| 324 | // when approximating arc segments as curves. The factor is multiplied |
| 325 | // with the radius of the circle. |
| 326 | #define KAPPA qreal(0.5522847498) |
| 327 | |
| 328 | |
| 329 | static bool addCircle(const QBezier *b, qreal offset, QBezier *o) |
| 330 | { |
| 331 | QPointF normals[3]; |
| 332 | |
| 333 | normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2); |
| 334 | qreal dist = qSqrt(v: normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y()); |
| 335 | if (qFuzzyIsNull(d: dist)) |
| 336 | return false; |
| 337 | normals[0] /= dist; |
| 338 | normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4); |
| 339 | dist = qSqrt(v: normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y()); |
| 340 | if (qFuzzyIsNull(d: dist)) |
| 341 | return false; |
| 342 | normals[2] /= dist; |
| 343 | |
| 344 | normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4); |
| 345 | normals[1] /= -1*qSqrt(v: normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y()); |
| 346 | |
| 347 | qreal angles[2]; |
| 348 | qreal sign = 1.; |
| 349 | for (int i = 0; i < 2; ++i) { |
| 350 | qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y(); |
| 351 | if (cos_a > 1.) |
| 352 | cos_a = 1.; |
| 353 | if (cos_a < -1.) |
| 354 | cos_a = -1; |
| 355 | angles[i] = qAcos(v: cos_a) * qreal(M_1_PI); |
| 356 | } |
| 357 | |
| 358 | if (angles[0] + angles[1] > 1.) { |
| 359 | // more than 180 degrees |
| 360 | normals[1] = -normals[1]; |
| 361 | angles[0] = 1. - angles[0]; |
| 362 | angles[1] = 1. - angles[1]; |
| 363 | sign = -1.; |
| 364 | |
| 365 | } |
| 366 | |
| 367 | QPointF circle[3]; |
| 368 | circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset; |
| 369 | circle[1] = QPointF(qreal(0.5)*(b->x1 + b->x4), qreal(0.5)*(b->y1 + b->y4)) + normals[1]*offset; |
| 370 | circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset; |
| 371 | |
| 372 | for (int i = 0; i < 2; ++i) { |
| 373 | qreal kappa = qreal(2.0) * KAPPA * sign * offset * angles[i]; |
| 374 | |
| 375 | o->x1 = circle[i].x(); |
| 376 | o->y1 = circle[i].y(); |
| 377 | o->x2 = circle[i].x() - normals[i].y()*kappa; |
| 378 | o->y2 = circle[i].y() + normals[i].x()*kappa; |
| 379 | o->x3 = circle[i+1].x() + normals[i+1].y()*kappa; |
| 380 | o->y3 = circle[i+1].y() - normals[i+1].x()*kappa; |
| 381 | o->x4 = circle[i+1].x(); |
| 382 | o->y4 = circle[i+1].y(); |
| 383 | |
| 384 | ++o; |
| 385 | } |
| 386 | return true; |
| 387 | } |
| 388 | |
| 389 | int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const |
| 390 | { |
| 391 | Q_ASSERT(curveSegments); |
| 392 | Q_ASSERT(maxSegments > 0); |
| 393 | |
| 394 | if (qFuzzyCompare(p1: x1, p2: x2) && qFuzzyCompare(p1: x1, p2: x3) && qFuzzyCompare(p1: x1, p2: x4) && |
| 395 | qFuzzyCompare(p1: y1, p2: y2) && qFuzzyCompare(p1: y1, p2: y3) && qFuzzyCompare(p1: y1, p2: y4)) |
| 396 | return 0; |
| 397 | |
| 398 | --maxSegments; |
| 399 | QBezier beziers[10]; |
| 400 | redo: |
| 401 | beziers[0] = *this; |
| 402 | QBezier *b = beziers; |
| 403 | QBezier *o = curveSegments; |
| 404 | |
| 405 | while (b >= beziers) { |
| 406 | int stack_segments = b - beziers + 1; |
| 407 | if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) { |
| 408 | threshold *= qreal(1.5); |
| 409 | if (threshold > qreal(2.0)) |
| 410 | goto give_up; |
| 411 | goto redo; |
| 412 | } |
| 413 | ShiftResult res = shift(orig: b, shifted: o, offset, threshold); |
| 414 | if (res == Discard) { |
| 415 | --b; |
| 416 | } else if (res == Ok) { |
| 417 | ++o; |
| 418 | --b; |
| 419 | } else if (res == Circle && maxSegments - (o - curveSegments) >= 2) { |
| 420 | // add semi circle |
| 421 | if (addCircle(b, offset, o)) |
| 422 | o += 2; |
| 423 | --b; |
| 424 | } else { |
| 425 | std::tie(args&: b[1], args&: b[0]) = b->split(); |
| 426 | ++b; |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | give_up: |
| 431 | while (b >= beziers) { |
| 432 | ShiftResult res = shift(orig: b, shifted: o, offset, threshold); |
| 433 | |
| 434 | // if res isn't Ok or Split then *o is undefined |
| 435 | if (res == Ok || res == Split) |
| 436 | ++o; |
| 437 | |
| 438 | --b; |
| 439 | } |
| 440 | |
| 441 | Q_ASSERT(o - curveSegments <= maxSegments); |
| 442 | return o - curveSegments; |
| 443 | } |
| 444 | |
| 445 | #ifdef QDEBUG_BEZIER |
| 446 | static QDebug operator<<(QDebug dbg, const QBezier &bz) |
| 447 | { |
| 448 | dbg << '[' << bz.x1<< ", " << bz.y1 << "], " |
| 449 | << '[' << bz.x2 <<", " << bz.y2 << "], " |
| 450 | << '[' << bz.x3 <<", " << bz.y3 << "], " |
| 451 | << '[' << bz.x4 <<", " << bz.y4 << ']'; |
| 452 | return dbg; |
| 453 | } |
| 454 | #endif |
| 455 | |
| 456 | qreal QBezier::length(qreal error) const |
| 457 | { |
| 458 | qreal length = qreal(0.0); |
| 459 | |
| 460 | addIfClose(length: &length, error); |
| 461 | |
| 462 | return length; |
| 463 | } |
| 464 | |
| 465 | void QBezier::addIfClose(qreal *length, qreal error) const |
| 466 | { |
| 467 | qreal len = qreal(0.0); /* arc length */ |
| 468 | qreal chord; /* chord length */ |
| 469 | |
| 470 | len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length(); |
| 471 | len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length(); |
| 472 | len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length(); |
| 473 | |
| 474 | chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length(); |
| 475 | |
| 476 | if((len-chord) > error) { |
| 477 | const auto halves = split(); /* split in two */ |
| 478 | halves.first.addIfClose(length, error); /* try left side */ |
| 479 | halves.second.addIfClose(length, error); /* try right side */ |
| 480 | return; |
| 481 | } |
| 482 | |
| 483 | *length = *length + len; |
| 484 | |
| 485 | return; |
| 486 | } |
| 487 | |
| 488 | qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const |
| 489 | { |
| 490 | qreal py0 = pointAt(t: t0).y(); |
| 491 | qreal py1 = pointAt(t: t1).y(); |
| 492 | |
| 493 | if (py0 > py1) { |
| 494 | qSwap(value1&: py0, value2&: py1); |
| 495 | qSwap(value1&: t0, value2&: t1); |
| 496 | } |
| 497 | |
| 498 | Q_ASSERT(py0 <= py1); |
| 499 | |
| 500 | if (py0 >= y) |
| 501 | return t0; |
| 502 | else if (py1 <= y) |
| 503 | return t1; |
| 504 | |
| 505 | Q_ASSERT(py0 < y && y < py1); |
| 506 | |
| 507 | qreal lt = t0; |
| 508 | qreal dt; |
| 509 | do { |
| 510 | qreal t = qreal(0.5) * (t0 + t1); |
| 511 | |
| 512 | qreal a, b, c, d; |
| 513 | QBezier::coefficients(t, a, b, c, d); |
| 514 | qreal yt = a * y1 + b * y2 + c * y3 + d * y4; |
| 515 | |
| 516 | if (yt < y) { |
| 517 | t0 = t; |
| 518 | py0 = yt; |
| 519 | } else { |
| 520 | t1 = t; |
| 521 | py1 = yt; |
| 522 | } |
| 523 | dt = lt - t; |
| 524 | lt = t; |
| 525 | } while (qAbs(t: dt) > qreal(1e-7)); |
| 526 | |
| 527 | return t0; |
| 528 | } |
| 529 | |
| 530 | int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const |
| 531 | { |
| 532 | // y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4 |
| 533 | // y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4) |
| 534 | // y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2)) |
| 535 | |
| 536 | const qreal a = -y1 + 3 * y2 - 3 * y3 + y4; |
| 537 | const qreal b = 2 * y1 - 4 * y2 + 2 * y3; |
| 538 | const qreal c = -y1 + y2; |
| 539 | |
| 540 | if (qFuzzyIsNull(d: a)) { |
| 541 | if (qFuzzyIsNull(d: b)) |
| 542 | return 0; |
| 543 | |
| 544 | t0 = -c / b; |
| 545 | return t0 > 0 && t0 < 1; |
| 546 | } |
| 547 | |
| 548 | qreal reciprocal = b * b - 4 * a * c; |
| 549 | |
| 550 | if (qFuzzyIsNull(d: reciprocal)) { |
| 551 | t0 = -b / (2 * a); |
| 552 | return t0 > 0 && t0 < 1; |
| 553 | } else if (reciprocal > 0) { |
| 554 | qreal temp = qSqrt(v: reciprocal); |
| 555 | |
| 556 | t0 = (-b - temp)/(2*a); |
| 557 | t1 = (-b + temp)/(2*a); |
| 558 | |
| 559 | if (t1 < t0) |
| 560 | qSwap(value1&: t0, value2&: t1); |
| 561 | |
| 562 | int count = 0; |
| 563 | qreal t[2] = { 0, 1 }; |
| 564 | |
| 565 | if (t0 > 0 && t0 < 1) |
| 566 | t[count++] = t0; |
| 567 | if (t1 > 0 && t1 < 1) |
| 568 | t[count++] = t1; |
| 569 | |
| 570 | t0 = t[0]; |
| 571 | t1 = t[1]; |
| 572 | |
| 573 | return count; |
| 574 | } |
| 575 | |
| 576 | return 0; |
| 577 | } |
| 578 | |
| 579 | qreal QBezier::tAtLength(qreal l) const |
| 580 | { |
| 581 | qreal len = length(); |
| 582 | qreal t = qreal(1.0); |
| 583 | const qreal error = qreal(0.01); |
| 584 | if (l > len || qFuzzyCompare(p1: l, p2: len)) |
| 585 | return t; |
| 586 | |
| 587 | t *= qreal(0.5); |
| 588 | //int iters = 0; |
| 589 | //qDebug()<<"LEN is "<<l<<len; |
| 590 | qreal lastBigger = qreal(1.0); |
| 591 | while (1) { |
| 592 | //qDebug()<<"\tt is "<<t; |
| 593 | QBezier right = *this; |
| 594 | QBezier left; |
| 595 | right.parameterSplitLeft(t, left: &left); |
| 596 | qreal lLen = left.length(); |
| 597 | if (qAbs(t: lLen - l) < error) |
| 598 | break; |
| 599 | |
| 600 | if (lLen < l) { |
| 601 | t += (lastBigger - t) * qreal(0.5); |
| 602 | } else { |
| 603 | lastBigger = t; |
| 604 | t -= t * qreal(0.5); |
| 605 | } |
| 606 | //++iters; |
| 607 | } |
| 608 | //qDebug()<<"number of iters is "<<iters; |
| 609 | return t; |
| 610 | } |
| 611 | |
| 612 | QBezier QBezier::bezierOnInterval(qreal t0, qreal t1) const |
| 613 | { |
| 614 | if (t0 == 0 && t1 == 1) |
| 615 | return *this; |
| 616 | |
| 617 | QBezier bezier = *this; |
| 618 | |
| 619 | QBezier result; |
| 620 | bezier.parameterSplitLeft(t: t0, left: &result); |
| 621 | qreal trueT = (t1-t0)/(1-t0); |
| 622 | bezier.parameterSplitLeft(t: trueT, left: &result); |
| 623 | |
| 624 | return result; |
| 625 | } |
| 626 | |
| 627 | QT_END_NAMESPACE |
| 628 | |