| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2016 The Qt Company Ltd. |
| 4 | ** Contact: https://www.qt.io/licensing/ |
| 5 | ** |
| 6 | ** This file is part of the QtGui module of the Qt Toolkit. |
| 7 | ** |
| 8 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 9 | ** Commercial License Usage |
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 11 | ** accordance with the commercial license agreement provided with the |
| 12 | ** Software or, alternatively, in accordance with the terms contained in |
| 13 | ** a written agreement between you and The Qt Company. For licensing terms |
| 14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 15 | ** information use the contact form at https://www.qt.io/contact-us. |
| 16 | ** |
| 17 | ** GNU Lesser General Public License Usage |
| 18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 19 | ** General Public License version 3 as published by the Free Software |
| 20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 21 | ** packaging of this file. Please review the following information to |
| 22 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 24 | ** |
| 25 | ** GNU General Public License Usage |
| 26 | ** Alternatively, this file may be used under the terms of the GNU |
| 27 | ** General Public License version 2.0 or (at your option) the GNU General |
| 28 | ** Public license version 3 or any later version approved by the KDE Free |
| 29 | ** Qt Foundation. The licenses are as published by the Free Software |
| 30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 31 | ** included in the packaging of this file. Please review the following |
| 32 | ** information to ensure the GNU General Public License requirements will |
| 33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 35 | ** |
| 36 | ** $QT_END_LICENSE$ |
| 37 | ** |
| 38 | ****************************************************************************/ |
| 39 | |
| 40 | #include "qmatrix.h" |
| 41 | |
| 42 | #include "qdatastream.h" |
| 43 | #include "qdebug.h" |
| 44 | #include "qhashfunctions.h" |
| 45 | #include "qregion.h" |
| 46 | #include "qpainterpath.h" |
| 47 | #include "qpainterpath_p.h" |
| 48 | #include "qtransform.h" |
| 49 | #include "qvariant.h" |
| 50 | #include <qmath.h> |
| 51 | |
| 52 | #include <limits.h> |
| 53 | |
| 54 | QT_BEGIN_NAMESPACE |
| 55 | |
| 56 | /*! |
| 57 | \class QMatrix |
| 58 | \brief The QMatrix class specifies 2D transformations of a |
| 59 | coordinate system. |
| 60 | \obsolete |
| 61 | |
| 62 | \ingroup painting |
| 63 | \inmodule QtGui |
| 64 | |
| 65 | A matrix specifies how to translate, scale, shear or rotate the |
| 66 | coordinate system, and is typically used when rendering graphics. |
| 67 | QMatrix, in contrast to QTransform, does not allow perspective |
| 68 | transformations. QTransform is the recommended transformation |
| 69 | class in Qt. |
| 70 | |
| 71 | A QMatrix object can be built using the setMatrix(), scale(), |
| 72 | rotate(), translate() and shear() functions. Alternatively, it |
| 73 | can be built by applying \l {QMatrix#Basic Matrix |
| 74 | Operations}{basic matrix operations}. The matrix can also be |
| 75 | defined when constructed, and it can be reset to the identity |
| 76 | matrix (the default) using the reset() function. |
| 77 | |
| 78 | The QMatrix class supports mapping of graphic primitives: A given |
| 79 | point, line, polygon, region, or painter path can be mapped to the |
| 80 | coordinate system defined by \e this matrix using the map() |
| 81 | function. In case of a rectangle, its coordinates can be |
| 82 | transformed using the mapRect() function. A rectangle can also be |
| 83 | transformed into a \e polygon (mapped to the coordinate system |
| 84 | defined by \e this matrix), using the mapToPolygon() function. |
| 85 | |
| 86 | QMatrix provides the isIdentity() function which returns \c true if |
| 87 | the matrix is the identity matrix, and the isInvertible() function |
| 88 | which returns \c true if the matrix is non-singular (i.e. AB = BA = |
| 89 | I). The inverted() function returns an inverted copy of \e this |
| 90 | matrix if it is invertible (otherwise it returns the identity |
| 91 | matrix). In addition, QMatrix provides the determinant() function |
| 92 | returning the matrix's determinant. |
| 93 | |
| 94 | Finally, the QMatrix class supports matrix multiplication, and |
| 95 | objects of the class can be streamed as well as compared. |
| 96 | |
| 97 | \tableofcontents |
| 98 | |
| 99 | \section1 Rendering Graphics |
| 100 | |
| 101 | When rendering graphics, the matrix defines the transformations |
| 102 | but the actual transformation is performed by the drawing routines |
| 103 | in QPainter. |
| 104 | |
| 105 | By default, QPainter operates on the associated device's own |
| 106 | coordinate system. The standard coordinate system of a |
| 107 | QPaintDevice has its origin located at the top-left position. The |
| 108 | \e x values increase to the right; \e y values increase |
| 109 | downward. For a complete description, see the \l {Coordinate |
| 110 | System}{coordinate system} documentation. |
| 111 | |
| 112 | QPainter has functions to translate, scale, shear and rotate the |
| 113 | coordinate system without using a QMatrix. For example: |
| 114 | |
| 115 | \table 100% |
| 116 | \row |
| 117 | \li \inlineimage qmatrix-simpletransformation.png |
| 118 | \li |
| 119 | \snippet matrix/matrix.cpp 0 |
| 120 | \endtable |
| 121 | |
| 122 | Although these functions are very convenient, it can be more |
| 123 | efficient to build a QMatrix and call QPainter::setMatrix() if you |
| 124 | want to perform more than a single transform operation. For |
| 125 | example: |
| 126 | |
| 127 | \table 100% |
| 128 | \row |
| 129 | \li \inlineimage qmatrix-combinedtransformation.png |
| 130 | \li |
| 131 | \snippet matrix/matrix.cpp 1 |
| 132 | \endtable |
| 133 | |
| 134 | \section1 Basic Matrix Operations |
| 135 | |
| 136 | \image qmatrix-representation.png |
| 137 | |
| 138 | A QMatrix object contains a 3 x 3 matrix. The \c dx and \c dy |
| 139 | elements specify horizontal and vertical translation. The \c m11 |
| 140 | and \c m22 elements specify horizontal and vertical scaling. And |
| 141 | finally, the \c m21 and \c m12 elements specify horizontal and |
| 142 | vertical \e shearing. |
| 143 | |
| 144 | QMatrix transforms a point in the plane to another point using the |
| 145 | following formulas: |
| 146 | |
| 147 | \snippet code/src_gui_painting_qmatrix.cpp 0 |
| 148 | |
| 149 | The point \e (x, y) is the original point, and \e (x', y') is the |
| 150 | transformed point. \e (x', y') can be transformed back to \e (x, |
| 151 | y) by performing the same operation on the inverted() matrix. |
| 152 | |
| 153 | The various matrix elements can be set when constructing the |
| 154 | matrix, or by using the setMatrix() function later on. They can also |
| 155 | be manipulated using the translate(), rotate(), scale() and |
| 156 | shear() convenience functions, The currently set values can be |
| 157 | retrieved using the m11(), m12(), m21(), m22(), dx() and dy() |
| 158 | functions. |
| 159 | |
| 160 | Translation is the simplest transformation. Setting \c dx and \c |
| 161 | dy will move the coordinate system \c dx units along the X axis |
| 162 | and \c dy units along the Y axis. Scaling can be done by setting |
| 163 | \c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to |
| 164 | 1.5 will double the height and increase the width by 50%. The |
| 165 | identity matrix has \c m11 and \c m22 set to 1 (all others are set |
| 166 | to 0) mapping a point to itself. Shearing is controlled by \c m12 |
| 167 | and \c m21. Setting these elements to values different from zero |
| 168 | will twist the coordinate system. Rotation is achieved by |
| 169 | carefully setting both the shearing factors and the scaling |
| 170 | factors. |
| 171 | |
| 172 | Here's the combined transformations example using basic matrix |
| 173 | operations: |
| 174 | |
| 175 | \table 100% |
| 176 | \row |
| 177 | \li \inlineimage qmatrix-combinedtransformation.png |
| 178 | \li |
| 179 | \snippet matrix/matrix.cpp 2 |
| 180 | \endtable |
| 181 | |
| 182 | \sa QPainter, QTransform, {Coordinate System}, |
| 183 | {painting/affine}{Affine Transformations Example}, {Transformations Example} |
| 184 | */ |
| 185 | |
| 186 | |
| 187 | // some defines to inline some code |
| 188 | #define MAPDOUBLE(x, y, nx, ny) \ |
| 189 | { \ |
| 190 | qreal fx = x; \ |
| 191 | qreal fy = y; \ |
| 192 | nx = _m11*fx + _m21*fy + _dx; \ |
| 193 | ny = _m12*fx + _m22*fy + _dy; \ |
| 194 | } |
| 195 | |
| 196 | #define MAPINT(x, y, nx, ny) \ |
| 197 | { \ |
| 198 | qreal fx = x; \ |
| 199 | qreal fy = y; \ |
| 200 | nx = qRound(_m11*fx + _m21*fy + _dx); \ |
| 201 | ny = qRound(_m12*fx + _m22*fy + _dy); \ |
| 202 | } |
| 203 | |
| 204 | /***************************************************************************** |
| 205 | QMatrix member functions |
| 206 | *****************************************************************************/ |
| 207 | /*! |
| 208 | \fn QMatrix::QMatrix(Qt::Initialization) |
| 209 | \internal |
| 210 | */ |
| 211 | |
| 212 | /*! |
| 213 | Constructs an identity matrix. |
| 214 | |
| 215 | All elements are set to zero except \c m11 and \c m22 (specifying |
| 216 | the scale), which are set to 1. |
| 217 | |
| 218 | \sa reset() |
| 219 | */ |
| 220 | |
| 221 | QMatrix::QMatrix() |
| 222 | : _m11(1.) |
| 223 | , _m12(0.) |
| 224 | , _m21(0.) |
| 225 | , _m22(1.) |
| 226 | , _dx(0.) |
| 227 | , _dy(0.) |
| 228 | { |
| 229 | } |
| 230 | |
| 231 | /*! |
| 232 | Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a |
| 233 | m22, \a dx and \a dy. |
| 234 | |
| 235 | \sa setMatrix() |
| 236 | */ |
| 237 | |
| 238 | QMatrix::QMatrix(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy) |
| 239 | : _m11(m11) |
| 240 | , _m12(m12) |
| 241 | , _m21(m21) |
| 242 | , _m22(m22) |
| 243 | , _dx(dx) |
| 244 | , _dy(dy) |
| 245 | { |
| 246 | } |
| 247 | |
| 248 | #if QT_VERSION < QT_VERSION_CHECK(6, 0, 0) |
| 249 | /*! |
| 250 | Constructs a matrix that is a copy of the given \a matrix. |
| 251 | */ |
| 252 | QMatrix::QMatrix(const QMatrix &matrix) noexcept |
| 253 | : _m11(matrix._m11) |
| 254 | , _m12(matrix._m12) |
| 255 | , _m21(matrix._m21) |
| 256 | , _m22(matrix._m22) |
| 257 | , _dx(matrix._dx) |
| 258 | , _dy(matrix._dy) |
| 259 | { |
| 260 | } |
| 261 | #endif |
| 262 | |
| 263 | /*! |
| 264 | Sets the matrix elements to the specified values, \a m11, \a m12, |
| 265 | \a m21, \a m22, \a dx and \a dy. |
| 266 | |
| 267 | Note that this function replaces the previous values. QMatrix |
| 268 | provide the translate(), rotate(), scale() and shear() convenience |
| 269 | functions to manipulate the various matrix elements based on the |
| 270 | currently defined coordinate system. |
| 271 | |
| 272 | \sa QMatrix() |
| 273 | */ |
| 274 | |
| 275 | void QMatrix::setMatrix(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy) |
| 276 | { |
| 277 | _m11 = m11; |
| 278 | _m12 = m12; |
| 279 | _m21 = m21; |
| 280 | _m22 = m22; |
| 281 | _dx = dx; |
| 282 | _dy = dy; |
| 283 | } |
| 284 | |
| 285 | |
| 286 | /*! |
| 287 | \fn qreal QMatrix::m11() const |
| 288 | |
| 289 | Returns the horizontal scaling factor. |
| 290 | |
| 291 | \sa scale(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
| 292 | Operations} |
| 293 | */ |
| 294 | |
| 295 | /*! |
| 296 | \fn qreal QMatrix::m12() const |
| 297 | |
| 298 | Returns the vertical shearing factor. |
| 299 | |
| 300 | \sa shear(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
| 301 | Operations} |
| 302 | */ |
| 303 | |
| 304 | /*! |
| 305 | \fn qreal QMatrix::m21() const |
| 306 | |
| 307 | Returns the horizontal shearing factor. |
| 308 | |
| 309 | \sa shear(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
| 310 | Operations} |
| 311 | */ |
| 312 | |
| 313 | /*! |
| 314 | \fn qreal QMatrix::m22() const |
| 315 | |
| 316 | Returns the vertical scaling factor. |
| 317 | |
| 318 | \sa scale(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
| 319 | Operations} |
| 320 | */ |
| 321 | |
| 322 | /*! |
| 323 | \fn qreal QMatrix::dx() const |
| 324 | |
| 325 | Returns the horizontal translation factor. |
| 326 | |
| 327 | \sa translate(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
| 328 | Operations} |
| 329 | */ |
| 330 | |
| 331 | /*! |
| 332 | \fn qreal QMatrix::dy() const |
| 333 | |
| 334 | Returns the vertical translation factor. |
| 335 | |
| 336 | \sa translate(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
| 337 | Operations} |
| 338 | */ |
| 339 | |
| 340 | |
| 341 | /*! |
| 342 | Maps the given coordinates \a x and \a y into the coordinate |
| 343 | system defined by this matrix. The resulting values are put in *\a |
| 344 | tx and *\a ty, respectively. |
| 345 | |
| 346 | The coordinates are transformed using the following formulas: |
| 347 | |
| 348 | \snippet code/src_gui_painting_qmatrix.cpp 1 |
| 349 | |
| 350 | The point (x, y) is the original point, and (x', y') is the |
| 351 | transformed point. |
| 352 | |
| 353 | \sa {QMatrix#Basic Matrix Operations}{Basic Matrix Operations} |
| 354 | */ |
| 355 | |
| 356 | void QMatrix::map(qreal x, qreal y, qreal *tx, qreal *ty) const |
| 357 | { |
| 358 | MAPDOUBLE(x, y, *tx, *ty); |
| 359 | } |
| 360 | |
| 361 | |
| 362 | |
| 363 | /*! |
| 364 | \overload |
| 365 | |
| 366 | Maps the given coordinates \a x and \a y into the coordinate |
| 367 | system defined by this matrix. The resulting values are put in *\a |
| 368 | tx and *\a ty, respectively. Note that the transformed coordinates |
| 369 | are rounded to the nearest integer. |
| 370 | */ |
| 371 | |
| 372 | void QMatrix::map(int x, int y, int *tx, int *ty) const |
| 373 | { |
| 374 | MAPINT(x, y, *tx, *ty); |
| 375 | } |
| 376 | |
| 377 | QRect QMatrix::mapRect(const QRect &rect) const |
| 378 | { |
| 379 | QRect result; |
| 380 | if (_m12 == 0.0F && _m21 == 0.0F) { |
| 381 | int x = qRound(d: _m11*rect.x() + _dx); |
| 382 | int y = qRound(d: _m22*rect.y() + _dy); |
| 383 | int w = qRound(d: _m11*rect.width()); |
| 384 | int h = qRound(d: _m22*rect.height()); |
| 385 | if (w < 0) { |
| 386 | w = -w; |
| 387 | x -= w; |
| 388 | } |
| 389 | if (h < 0) { |
| 390 | h = -h; |
| 391 | y -= h; |
| 392 | } |
| 393 | result = QRect(x, y, w, h); |
| 394 | } else { |
| 395 | // see mapToPolygon for explanations of the algorithm. |
| 396 | qreal x0, y0; |
| 397 | qreal x, y; |
| 398 | MAPDOUBLE(rect.left(), rect.top(), x0, y0); |
| 399 | qreal xmin = x0; |
| 400 | qreal ymin = y0; |
| 401 | qreal xmax = x0; |
| 402 | qreal ymax = y0; |
| 403 | MAPDOUBLE(rect.right() + 1, rect.top(), x, y); |
| 404 | xmin = qMin(a: xmin, b: x); |
| 405 | ymin = qMin(a: ymin, b: y); |
| 406 | xmax = qMax(a: xmax, b: x); |
| 407 | ymax = qMax(a: ymax, b: y); |
| 408 | MAPDOUBLE(rect.right() + 1, rect.bottom() + 1, x, y); |
| 409 | xmin = qMin(a: xmin, b: x); |
| 410 | ymin = qMin(a: ymin, b: y); |
| 411 | xmax = qMax(a: xmax, b: x); |
| 412 | ymax = qMax(a: ymax, b: y); |
| 413 | MAPDOUBLE(rect.left(), rect.bottom() + 1, x, y); |
| 414 | xmin = qMin(a: xmin, b: x); |
| 415 | ymin = qMin(a: ymin, b: y); |
| 416 | xmax = qMax(a: xmax, b: x); |
| 417 | ymax = qMax(a: ymax, b: y); |
| 418 | result = QRect(qRound(d: xmin), qRound(d: ymin), qRound(d: xmax)-qRound(d: xmin), qRound(d: ymax)-qRound(d: ymin)); |
| 419 | } |
| 420 | return result; |
| 421 | } |
| 422 | |
| 423 | /*! |
| 424 | \fn QRectF QMatrix::mapRect(const QRectF &rectangle) const |
| 425 | |
| 426 | Creates and returns a QRectF object that is a copy of the given \a |
| 427 | rectangle, mapped into the coordinate system defined by this |
| 428 | matrix. |
| 429 | |
| 430 | The rectangle's coordinates are transformed using the following |
| 431 | formulas: |
| 432 | |
| 433 | \snippet code/src_gui_painting_qmatrix.cpp 2 |
| 434 | |
| 435 | If rotation or shearing has been specified, this function returns |
| 436 | the \e bounding rectangle. To retrieve the exact region the given |
| 437 | \a rectangle maps to, use the mapToPolygon() function instead. |
| 438 | |
| 439 | \sa mapToPolygon(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
| 440 | Operations} |
| 441 | */ |
| 442 | QRectF QMatrix::mapRect(const QRectF &rect) const |
| 443 | { |
| 444 | QRectF result; |
| 445 | if (_m12 == 0.0F && _m21 == 0.0F) { |
| 446 | qreal x = _m11*rect.x() + _dx; |
| 447 | qreal y = _m22*rect.y() + _dy; |
| 448 | qreal w = _m11*rect.width(); |
| 449 | qreal h = _m22*rect.height(); |
| 450 | if (w < 0) { |
| 451 | w = -w; |
| 452 | x -= w; |
| 453 | } |
| 454 | if (h < 0) { |
| 455 | h = -h; |
| 456 | y -= h; |
| 457 | } |
| 458 | result = QRectF(x, y, w, h); |
| 459 | } else { |
| 460 | qreal x0, y0; |
| 461 | qreal x, y; |
| 462 | MAPDOUBLE(rect.x(), rect.y(), x0, y0); |
| 463 | qreal xmin = x0; |
| 464 | qreal ymin = y0; |
| 465 | qreal xmax = x0; |
| 466 | qreal ymax = y0; |
| 467 | MAPDOUBLE(rect.x() + rect.width(), rect.y(), x, y); |
| 468 | xmin = qMin(a: xmin, b: x); |
| 469 | ymin = qMin(a: ymin, b: y); |
| 470 | xmax = qMax(a: xmax, b: x); |
| 471 | ymax = qMax(a: ymax, b: y); |
| 472 | MAPDOUBLE(rect.x() + rect.width(), rect.y() + rect.height(), x, y); |
| 473 | xmin = qMin(a: xmin, b: x); |
| 474 | ymin = qMin(a: ymin, b: y); |
| 475 | xmax = qMax(a: xmax, b: x); |
| 476 | ymax = qMax(a: ymax, b: y); |
| 477 | MAPDOUBLE(rect.x(), rect.y() + rect.height(), x, y); |
| 478 | xmin = qMin(a: xmin, b: x); |
| 479 | ymin = qMin(a: ymin, b: y); |
| 480 | xmax = qMax(a: xmax, b: x); |
| 481 | ymax = qMax(a: ymax, b: y); |
| 482 | result = QRectF(xmin, ymin, xmax-xmin, ymax - ymin); |
| 483 | } |
| 484 | return result; |
| 485 | } |
| 486 | |
| 487 | /*! |
| 488 | \fn QRect QMatrix::mapRect(const QRect &rectangle) const |
| 489 | \overload |
| 490 | |
| 491 | Creates and returns a QRect object that is a copy of the given \a |
| 492 | rectangle, mapped into the coordinate system defined by this |
| 493 | matrix. Note that the transformed coordinates are rounded to the |
| 494 | nearest integer. |
| 495 | */ |
| 496 | |
| 497 | |
| 498 | /*! |
| 499 | \fn QPoint operator*(const QPoint &point, const QMatrix &matrix) |
| 500 | \relates QMatrix |
| 501 | |
| 502 | This is the same as \a{matrix}.map(\a{point}). |
| 503 | |
| 504 | \sa QMatrix::map() |
| 505 | */ |
| 506 | |
| 507 | QPoint QMatrix::map(const QPoint &p) const |
| 508 | { |
| 509 | qreal fx = p.x(); |
| 510 | qreal fy = p.y(); |
| 511 | return QPoint(qRound(d: _m11*fx + _m21*fy + _dx), |
| 512 | qRound(d: _m12*fx + _m22*fy + _dy)); |
| 513 | } |
| 514 | |
| 515 | /*! |
| 516 | \fn QPointF operator*(const QPointF &point, const QMatrix &matrix) |
| 517 | \relates QMatrix |
| 518 | |
| 519 | Same as \a{matrix}.map(\a{point}). |
| 520 | |
| 521 | \sa QMatrix::map() |
| 522 | */ |
| 523 | |
| 524 | /*! |
| 525 | \overload |
| 526 | |
| 527 | Creates and returns a QPointF object that is a copy of the given |
| 528 | \a point, mapped into the coordinate system defined by this |
| 529 | matrix. |
| 530 | */ |
| 531 | QPointF QMatrix::map(const QPointF &point) const |
| 532 | { |
| 533 | qreal fx = point.x(); |
| 534 | qreal fy = point.y(); |
| 535 | return QPointF(_m11*fx + _m21*fy + _dx, _m12*fx + _m22*fy + _dy); |
| 536 | } |
| 537 | |
| 538 | /*! |
| 539 | \fn QPoint QMatrix::map(const QPoint &point) const |
| 540 | \overload |
| 541 | |
| 542 | Creates and returns a QPoint object that is a copy of the given \a |
| 543 | point, mapped into the coordinate system defined by this |
| 544 | matrix. Note that the transformed coordinates are rounded to the |
| 545 | nearest integer. |
| 546 | */ |
| 547 | |
| 548 | /*! |
| 549 | \fn QLineF operator*(const QLineF &line, const QMatrix &matrix) |
| 550 | \relates QMatrix |
| 551 | |
| 552 | This is the same as \a{matrix}.map(\a{line}). |
| 553 | |
| 554 | \sa QMatrix::map() |
| 555 | */ |
| 556 | |
| 557 | /*! |
| 558 | \fn QLine operator*(const QLine &line, const QMatrix &matrix) |
| 559 | \relates QMatrix |
| 560 | |
| 561 | This is the same as \a{matrix}.map(\a{line}). |
| 562 | |
| 563 | \sa QMatrix::map() |
| 564 | */ |
| 565 | |
| 566 | /*! |
| 567 | \overload |
| 568 | |
| 569 | Creates and returns a QLineF object that is a copy of the given \a |
| 570 | line, mapped into the coordinate system defined by this matrix. |
| 571 | */ |
| 572 | QLineF QMatrix::map(const QLineF &line) const |
| 573 | { |
| 574 | return QLineF(map(point: line.p1()), map(point: line.p2())); |
| 575 | } |
| 576 | |
| 577 | /*! |
| 578 | \overload |
| 579 | |
| 580 | Creates and returns a QLine object that is a copy of the given \a |
| 581 | line, mapped into the coordinate system defined by this matrix. |
| 582 | Note that the transformed coordinates are rounded to the nearest |
| 583 | integer. |
| 584 | */ |
| 585 | QLine QMatrix::map(const QLine &line) const |
| 586 | { |
| 587 | return QLine(map(p: line.p1()), map(p: line.p2())); |
| 588 | } |
| 589 | |
| 590 | /*! |
| 591 | \fn QPolygonF operator *(const QPolygonF &polygon, const QMatrix &matrix) |
| 592 | \relates QMatrix |
| 593 | |
| 594 | This is the same as \a{matrix}.map(\a{polygon}). |
| 595 | |
| 596 | \sa QMatrix::map() |
| 597 | */ |
| 598 | |
| 599 | /*! |
| 600 | \fn QPolygon operator*(const QPolygon &polygon, const QMatrix &matrix) |
| 601 | \relates QMatrix |
| 602 | |
| 603 | This is the same as \a{matrix}.map(\a{polygon}). |
| 604 | |
| 605 | \sa QMatrix::map() |
| 606 | */ |
| 607 | |
| 608 | QPolygon QMatrix::map(const QPolygon &a) const |
| 609 | { |
| 610 | int size = a.size(); |
| 611 | int i; |
| 612 | QPolygon p(size); |
| 613 | const QPoint *da = a.constData(); |
| 614 | QPoint *dp = p.data(); |
| 615 | for(i = 0; i < size; i++) { |
| 616 | MAPINT(da[i].x(), da[i].y(), dp[i].rx(), dp[i].ry()); |
| 617 | } |
| 618 | return p; |
| 619 | } |
| 620 | |
| 621 | /*! |
| 622 | \fn QPolygonF QMatrix::map(const QPolygonF &polygon) const |
| 623 | \overload |
| 624 | |
| 625 | Creates and returns a QPolygonF object that is a copy of the given |
| 626 | \a polygon, mapped into the coordinate system defined by this |
| 627 | matrix. |
| 628 | */ |
| 629 | QPolygonF QMatrix::map(const QPolygonF &a) const |
| 630 | { |
| 631 | int size = a.size(); |
| 632 | int i; |
| 633 | QPolygonF p(size); |
| 634 | const QPointF *da = a.constData(); |
| 635 | QPointF *dp = p.data(); |
| 636 | for(i = 0; i < size; i++) { |
| 637 | MAPDOUBLE(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp); |
| 638 | } |
| 639 | return p; |
| 640 | } |
| 641 | |
| 642 | /*! |
| 643 | \fn QPolygon QMatrix::map(const QPolygon &polygon) const |
| 644 | \overload |
| 645 | |
| 646 | Creates and returns a QPolygon object that is a copy of the given |
| 647 | \a polygon, mapped into the coordinate system defined by this |
| 648 | matrix. Note that the transformed coordinates are rounded to the |
| 649 | nearest integer. |
| 650 | */ |
| 651 | |
| 652 | /*! |
| 653 | \fn QRegion operator*(const QRegion ®ion, const QMatrix &matrix) |
| 654 | \relates QMatrix |
| 655 | |
| 656 | This is the same as \a{matrix}.map(\a{region}). |
| 657 | |
| 658 | \sa QMatrix::map() |
| 659 | */ |
| 660 | |
| 661 | extern QPainterPath qt_regionToPath(const QRegion ®ion); |
| 662 | |
| 663 | /*! |
| 664 | \fn QRegion QMatrix::map(const QRegion ®ion) const |
| 665 | \overload |
| 666 | |
| 667 | Creates and returns a QRegion object that is a copy of the given |
| 668 | \a region, mapped into the coordinate system defined by this matrix. |
| 669 | |
| 670 | Calling this method can be rather expensive if rotations or |
| 671 | shearing are used. |
| 672 | */ |
| 673 | QRegion QMatrix::map(const QRegion &r) const |
| 674 | { |
| 675 | if (_m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0) { // translate or identity |
| 676 | if (_dx == 0.0 && _dy == 0.0) // Identity |
| 677 | return r; |
| 678 | QRegion copy(r); |
| 679 | copy.translate(dx: qRound(d: _dx), dy: qRound(d: _dy)); |
| 680 | return copy; |
| 681 | } |
| 682 | |
| 683 | QPainterPath p = map(p: qt_regionToPath(region: r)); |
| 684 | return p.toFillPolygon(matrix: QTransform()).toPolygon(); |
| 685 | } |
| 686 | |
| 687 | /*! |
| 688 | \fn QPainterPath operator *(const QPainterPath &path, const QMatrix &matrix) |
| 689 | \relates QMatrix |
| 690 | |
| 691 | This is the same as \a{matrix}.map(\a{path}). |
| 692 | |
| 693 | \sa QMatrix::map() |
| 694 | */ |
| 695 | |
| 696 | /*! |
| 697 | \overload |
| 698 | |
| 699 | Creates and returns a QPainterPath object that is a copy of the |
| 700 | given \a path, mapped into the coordinate system defined by this |
| 701 | matrix. |
| 702 | */ |
| 703 | QPainterPath QMatrix::map(const QPainterPath &path) const |
| 704 | { |
| 705 | if (path.isEmpty()) |
| 706 | return QPainterPath(); |
| 707 | |
| 708 | QPainterPath copy = path; |
| 709 | |
| 710 | // Translate or identity |
| 711 | if (_m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0) { |
| 712 | |
| 713 | // Translate |
| 714 | if (_dx != 0.0 || _dy != 0.0) { |
| 715 | copy.detach(); |
| 716 | for (int i=0; i<path.elementCount(); ++i) { |
| 717 | QPainterPath::Element &e = copy.d_ptr->elements[i]; |
| 718 | e.x += _dx; |
| 719 | e.y += _dy; |
| 720 | } |
| 721 | } |
| 722 | |
| 723 | // Full xform |
| 724 | } else { |
| 725 | copy.detach(); |
| 726 | for (int i=0; i<path.elementCount(); ++i) { |
| 727 | QPainterPath::Element &e = copy.d_ptr->elements[i]; |
| 728 | qreal fx = e.x, fy = e.y; |
| 729 | e.x = _m11*fx + _m21*fy + _dx; |
| 730 | e.y = _m12*fx + _m22*fy + _dy; |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | return copy; |
| 735 | } |
| 736 | |
| 737 | /*! |
| 738 | \fn QPolygon QMatrix::mapToPolygon(const QRect &rectangle) const |
| 739 | |
| 740 | Creates and returns a QPolygon representation of the given \a |
| 741 | rectangle, mapped into the coordinate system defined by this |
| 742 | matrix. |
| 743 | |
| 744 | The rectangle's coordinates are transformed using the following |
| 745 | formulas: |
| 746 | |
| 747 | \snippet code/src_gui_painting_qmatrix.cpp 3 |
| 748 | |
| 749 | Polygons and rectangles behave slightly differently when |
| 750 | transformed (due to integer rounding), so |
| 751 | \c{matrix.map(QPolygon(rectangle))} is not always the same as |
| 752 | \c{matrix.mapToPolygon(rectangle)}. |
| 753 | |
| 754 | \sa mapRect(), {QMatrix#Basic Matrix Operations}{Basic Matrix |
| 755 | Operations} |
| 756 | */ |
| 757 | QPolygon QMatrix::mapToPolygon(const QRect &rect) const |
| 758 | { |
| 759 | QPolygon a(4); |
| 760 | qreal x[4], y[4]; |
| 761 | if (_m12 == 0.0F && _m21 == 0.0F) { |
| 762 | x[0] = _m11*rect.x() + _dx; |
| 763 | y[0] = _m22*rect.y() + _dy; |
| 764 | qreal w = _m11*rect.width(); |
| 765 | qreal h = _m22*rect.height(); |
| 766 | if (w < 0) { |
| 767 | w = -w; |
| 768 | x[0] -= w; |
| 769 | } |
| 770 | if (h < 0) { |
| 771 | h = -h; |
| 772 | y[0] -= h; |
| 773 | } |
| 774 | x[1] = x[0]+w; |
| 775 | x[2] = x[1]; |
| 776 | x[3] = x[0]; |
| 777 | y[1] = y[0]; |
| 778 | y[2] = y[0]+h; |
| 779 | y[3] = y[2]; |
| 780 | } else { |
| 781 | qreal right = rect.x() + rect.width(); |
| 782 | qreal bottom = rect.y() + rect.height(); |
| 783 | MAPDOUBLE(rect.x(), rect.y(), x[0], y[0]); |
| 784 | MAPDOUBLE(right, rect.y(), x[1], y[1]); |
| 785 | MAPDOUBLE(right, bottom, x[2], y[2]); |
| 786 | MAPDOUBLE(rect.x(), bottom, x[3], y[3]); |
| 787 | } |
| 788 | #if 0 |
| 789 | int i; |
| 790 | for(i = 0; i< 4; i++) |
| 791 | qDebug("coords(%d) = (%f/%f) (%d/%d)" , i, x[i], y[i], qRound(x[i]), qRound(y[i])); |
| 792 | qDebug("width=%f, height=%f" , qSqrt((x[1]-x[0])*(x[1]-x[0]) + (y[1]-y[0])*(y[1]-y[0])), |
| 793 | qSqrt((x[0]-x[3])*(x[0]-x[3]) + (y[0]-y[3])*(y[0]-y[3]))); |
| 794 | #endif |
| 795 | // all coordinates are correctly, tranform to a pointarray |
| 796 | // (rounding to the next integer) |
| 797 | a.setPoints(nPoints: 4, firstx: qRound(d: x[0]), firsty: qRound(d: y[0]), |
| 798 | qRound(d: x[1]), qRound(d: y[1]), |
| 799 | qRound(d: x[2]), qRound(d: y[2]), |
| 800 | qRound(d: x[3]), qRound(d: y[3])); |
| 801 | return a; |
| 802 | } |
| 803 | |
| 804 | /*! |
| 805 | Resets the matrix to an identity matrix, i.e. all elements are set |
| 806 | to zero, except \c m11 and \c m22 (specifying the scale) which are |
| 807 | set to 1. |
| 808 | |
| 809 | \sa QMatrix(), isIdentity(), {QMatrix#Basic Matrix |
| 810 | Operations}{Basic Matrix Operations} |
| 811 | */ |
| 812 | |
| 813 | void QMatrix::reset() |
| 814 | { |
| 815 | _m11 = _m22 = 1.0; |
| 816 | _m12 = _m21 = _dx = _dy = 0.0; |
| 817 | } |
| 818 | |
| 819 | /*! |
| 820 | \fn bool QMatrix::isIdentity() const |
| 821 | |
| 822 | Returns \c true if the matrix is the identity matrix, otherwise |
| 823 | returns \c false. |
| 824 | |
| 825 | \sa reset() |
| 826 | */ |
| 827 | |
| 828 | /*! |
| 829 | Moves the coordinate system \a dx along the x axis and \a dy along |
| 830 | the y axis, and returns a reference to the matrix. |
| 831 | |
| 832 | \sa setMatrix() |
| 833 | */ |
| 834 | |
| 835 | QMatrix &QMatrix::translate(qreal dx, qreal dy) |
| 836 | { |
| 837 | _dx += dx*_m11 + dy*_m21; |
| 838 | _dy += dy*_m22 + dx*_m12; |
| 839 | return *this; |
| 840 | } |
| 841 | |
| 842 | /*! |
| 843 | \fn QMatrix &QMatrix::scale(qreal sx, qreal sy) |
| 844 | |
| 845 | Scales the coordinate system by \a sx horizontally and \a sy |
| 846 | vertically, and returns a reference to the matrix. |
| 847 | |
| 848 | \sa setMatrix() |
| 849 | */ |
| 850 | |
| 851 | QMatrix &QMatrix::scale(qreal sx, qreal sy) |
| 852 | { |
| 853 | _m11 *= sx; |
| 854 | _m12 *= sx; |
| 855 | _m21 *= sy; |
| 856 | _m22 *= sy; |
| 857 | return *this; |
| 858 | } |
| 859 | |
| 860 | /*! |
| 861 | Shears the coordinate system by \a sh horizontally and \a sv |
| 862 | vertically, and returns a reference to the matrix. |
| 863 | |
| 864 | \sa setMatrix() |
| 865 | */ |
| 866 | |
| 867 | QMatrix &QMatrix::shear(qreal sh, qreal sv) |
| 868 | { |
| 869 | qreal tm11 = sv*_m21; |
| 870 | qreal tm12 = sv*_m22; |
| 871 | qreal tm21 = sh*_m11; |
| 872 | qreal tm22 = sh*_m12; |
| 873 | _m11 += tm11; |
| 874 | _m12 += tm12; |
| 875 | _m21 += tm21; |
| 876 | _m22 += tm22; |
| 877 | return *this; |
| 878 | } |
| 879 | |
| 880 | const qreal deg2rad = qreal(0.017453292519943295769); // pi/180 |
| 881 | |
| 882 | /*! |
| 883 | \fn QMatrix &QMatrix::rotate(qreal degrees) |
| 884 | |
| 885 | Rotates the coordinate system the given \a degrees |
| 886 | counterclockwise. |
| 887 | |
| 888 | Note that if you apply a QMatrix to a point defined in widget |
| 889 | coordinates, the direction of the rotation will be clockwise |
| 890 | because the y-axis points downwards. |
| 891 | |
| 892 | Returns a reference to the matrix. |
| 893 | |
| 894 | \sa setMatrix() |
| 895 | */ |
| 896 | |
| 897 | QMatrix &QMatrix::rotate(qreal a) |
| 898 | { |
| 899 | qreal sina = 0; |
| 900 | qreal cosa = 0; |
| 901 | if (a == 90. || a == -270.) |
| 902 | sina = 1.; |
| 903 | else if (a == 270. || a == -90.) |
| 904 | sina = -1.; |
| 905 | else if (a == 180.) |
| 906 | cosa = -1.; |
| 907 | else{ |
| 908 | qreal b = deg2rad*a; // convert to radians |
| 909 | sina = qSin(v: b); // fast and convenient |
| 910 | cosa = qCos(v: b); |
| 911 | } |
| 912 | qreal tm11 = cosa*_m11 + sina*_m21; |
| 913 | qreal tm12 = cosa*_m12 + sina*_m22; |
| 914 | qreal tm21 = -sina*_m11 + cosa*_m21; |
| 915 | qreal tm22 = -sina*_m12 + cosa*_m22; |
| 916 | _m11 = tm11; _m12 = tm12; |
| 917 | _m21 = tm21; _m22 = tm22; |
| 918 | return *this; |
| 919 | } |
| 920 | |
| 921 | /*! |
| 922 | \fn bool QMatrix::isInvertible() const |
| 923 | |
| 924 | Returns \c true if the matrix is invertible, otherwise returns \c false. |
| 925 | |
| 926 | \sa inverted() |
| 927 | */ |
| 928 | |
| 929 | /*! |
| 930 | \since 4.6 |
| 931 | \fn qreal QMatrix::determinant() const |
| 932 | |
| 933 | Returns the matrix's determinant. |
| 934 | */ |
| 935 | |
| 936 | /*! |
| 937 | Returns an inverted copy of this matrix. |
| 938 | |
| 939 | If the matrix is singular (not invertible), the returned matrix is |
| 940 | the identity matrix. If \a invertible is valid (i.e. not 0), its |
| 941 | value is set to true if the matrix is invertible, otherwise it is |
| 942 | set to false. |
| 943 | |
| 944 | \sa isInvertible() |
| 945 | */ |
| 946 | |
| 947 | QMatrix QMatrix::inverted(bool *invertible) const |
| 948 | { |
| 949 | qreal dtr = determinant(); |
| 950 | if (dtr == 0.0) { |
| 951 | if (invertible) |
| 952 | *invertible = false; // singular matrix |
| 953 | return QMatrix(true); |
| 954 | } |
| 955 | else { // invertible matrix |
| 956 | if (invertible) |
| 957 | *invertible = true; |
| 958 | qreal dinv = 1.0/dtr; |
| 959 | return QMatrix((_m22*dinv), (-_m12*dinv), |
| 960 | (-_m21*dinv), (_m11*dinv), |
| 961 | ((_m21*_dy - _m22*_dx)*dinv), |
| 962 | ((_m12*_dx - _m11*_dy)*dinv), |
| 963 | true); |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | |
| 968 | /*! |
| 969 | \fn bool QMatrix::operator==(const QMatrix &matrix) const |
| 970 | |
| 971 | Returns \c true if this matrix is equal to the given \a matrix, |
| 972 | otherwise returns \c false. |
| 973 | */ |
| 974 | |
| 975 | bool QMatrix::operator==(const QMatrix &m) const |
| 976 | { |
| 977 | return _m11 == m._m11 && |
| 978 | _m12 == m._m12 && |
| 979 | _m21 == m._m21 && |
| 980 | _m22 == m._m22 && |
| 981 | _dx == m._dx && |
| 982 | _dy == m._dy; |
| 983 | } |
| 984 | |
| 985 | |
| 986 | /*! |
| 987 | \since 5.6 |
| 988 | \relates QMatrix |
| 989 | |
| 990 | Returns the hash value for \a key, using |
| 991 | \a seed to seed the calculation. |
| 992 | */ |
| 993 | uint qHash(const QMatrix &key, uint seed) noexcept |
| 994 | { |
| 995 | QtPrivate::QHashCombine hash; |
| 996 | seed = hash(seed, key.m11()); |
| 997 | seed = hash(seed, key.m12()); |
| 998 | seed = hash(seed, key.m21()); |
| 999 | seed = hash(seed, key.m22()); |
| 1000 | seed = hash(seed, key.dx()); |
| 1001 | seed = hash(seed, key.dy()); |
| 1002 | return seed; |
| 1003 | } |
| 1004 | |
| 1005 | /*! |
| 1006 | \fn bool QMatrix::operator!=(const QMatrix &matrix) const |
| 1007 | |
| 1008 | Returns \c true if this matrix is not equal to the given \a matrix, |
| 1009 | otherwise returns \c false. |
| 1010 | */ |
| 1011 | |
| 1012 | bool QMatrix::operator!=(const QMatrix &m) const |
| 1013 | { |
| 1014 | return _m11 != m._m11 || |
| 1015 | _m12 != m._m12 || |
| 1016 | _m21 != m._m21 || |
| 1017 | _m22 != m._m22 || |
| 1018 | _dx != m._dx || |
| 1019 | _dy != m._dy; |
| 1020 | } |
| 1021 | |
| 1022 | /*! |
| 1023 | \fn QMatrix &QMatrix::operator *=(const QMatrix &matrix) |
| 1024 | \overload |
| 1025 | |
| 1026 | Returns the result of multiplying this matrix by the given \a |
| 1027 | matrix. |
| 1028 | */ |
| 1029 | |
| 1030 | QMatrix &QMatrix::operator *=(const QMatrix &m) |
| 1031 | { |
| 1032 | qreal tm11 = _m11*m._m11 + _m12*m._m21; |
| 1033 | qreal tm12 = _m11*m._m12 + _m12*m._m22; |
| 1034 | qreal tm21 = _m21*m._m11 + _m22*m._m21; |
| 1035 | qreal tm22 = _m21*m._m12 + _m22*m._m22; |
| 1036 | |
| 1037 | qreal tdx = _dx*m._m11 + _dy*m._m21 + m._dx; |
| 1038 | qreal tdy = _dx*m._m12 + _dy*m._m22 + m._dy; |
| 1039 | |
| 1040 | _m11 = tm11; _m12 = tm12; |
| 1041 | _m21 = tm21; _m22 = tm22; |
| 1042 | _dx = tdx; _dy = tdy; |
| 1043 | return *this; |
| 1044 | } |
| 1045 | |
| 1046 | /*! |
| 1047 | \fn QMatrix QMatrix::operator *(const QMatrix &matrix) const |
| 1048 | |
| 1049 | Returns the result of multiplying this matrix by the given \a |
| 1050 | matrix. |
| 1051 | |
| 1052 | Note that matrix multiplication is not commutative, i.e. a*b != |
| 1053 | b*a. |
| 1054 | */ |
| 1055 | |
| 1056 | QMatrix QMatrix::operator *(const QMatrix &m) const |
| 1057 | { |
| 1058 | qreal tm11 = _m11*m._m11 + _m12*m._m21; |
| 1059 | qreal tm12 = _m11*m._m12 + _m12*m._m22; |
| 1060 | qreal tm21 = _m21*m._m11 + _m22*m._m21; |
| 1061 | qreal tm22 = _m21*m._m12 + _m22*m._m22; |
| 1062 | |
| 1063 | qreal tdx = _dx*m._m11 + _dy*m._m21 + m._dx; |
| 1064 | qreal tdy = _dx*m._m12 + _dy*m._m22 + m._dy; |
| 1065 | return QMatrix(tm11, tm12, tm21, tm22, tdx, tdy, true); |
| 1066 | } |
| 1067 | |
| 1068 | #if QT_VERSION < QT_VERSION_CHECK(6, 0, 0) |
| 1069 | /*! |
| 1070 | Assigns the given \a matrix's values to this matrix. |
| 1071 | */ |
| 1072 | QMatrix &QMatrix::operator=(const QMatrix &matrix) noexcept |
| 1073 | { |
| 1074 | _m11 = matrix._m11; |
| 1075 | _m12 = matrix._m12; |
| 1076 | _m21 = matrix._m21; |
| 1077 | _m22 = matrix._m22; |
| 1078 | _dx = matrix._dx; |
| 1079 | _dy = matrix._dy; |
| 1080 | return *this; |
| 1081 | } |
| 1082 | #endif |
| 1083 | |
| 1084 | /*! |
| 1085 | \since 4.2 |
| 1086 | |
| 1087 | Returns the matrix as a QVariant. |
| 1088 | */ |
| 1089 | QMatrix::operator QVariant() const |
| 1090 | { |
| 1091 | return QVariant(QMetaType::QMatrix, this); |
| 1092 | } |
| 1093 | |
| 1094 | Q_GUI_EXPORT QPainterPath operator *(const QPainterPath &p, const QMatrix &m) |
| 1095 | { |
| 1096 | return m.map(path: p); |
| 1097 | } |
| 1098 | |
| 1099 | |
| 1100 | /***************************************************************************** |
| 1101 | QMatrix stream functions |
| 1102 | *****************************************************************************/ |
| 1103 | #ifndef QT_NO_DATASTREAM |
| 1104 | /*! |
| 1105 | \fn QDataStream &operator<<(QDataStream &stream, const QMatrix &matrix) |
| 1106 | \relates QMatrix |
| 1107 | |
| 1108 | Writes the given \a matrix to the given \a stream and returns a |
| 1109 | reference to the stream. |
| 1110 | |
| 1111 | \sa {Serializing Qt Data Types} |
| 1112 | */ |
| 1113 | |
| 1114 | QDataStream &operator<<(QDataStream &s, const QMatrix &m) |
| 1115 | { |
| 1116 | if (s.version() == 1) { |
| 1117 | s << (float)m.m11() << (float)m.m12() << (float)m.m21() |
| 1118 | << (float)m.m22() << (float)m.dx() << (float)m.dy(); |
| 1119 | } else { |
| 1120 | s << double(m.m11()) |
| 1121 | << double(m.m12()) |
| 1122 | << double(m.m21()) |
| 1123 | << double(m.m22()) |
| 1124 | << double(m.dx()) |
| 1125 | << double(m.dy()); |
| 1126 | } |
| 1127 | return s; |
| 1128 | } |
| 1129 | |
| 1130 | /*! |
| 1131 | \fn QDataStream &operator>>(QDataStream &stream, QMatrix &matrix) |
| 1132 | \relates QMatrix |
| 1133 | |
| 1134 | Reads the given \a matrix from the given \a stream and returns a |
| 1135 | reference to the stream. |
| 1136 | |
| 1137 | \sa {Serializing Qt Data Types} |
| 1138 | */ |
| 1139 | |
| 1140 | QDataStream &operator>>(QDataStream &s, QMatrix &m) |
| 1141 | { |
| 1142 | if (s.version() == 1) { |
| 1143 | float m11, m12, m21, m22, dx, dy; |
| 1144 | s >> m11; s >> m12; s >> m21; s >> m22; |
| 1145 | s >> dx; s >> dy; |
| 1146 | m.setMatrix(m11, m12, m21, m22, dx, dy); |
| 1147 | } |
| 1148 | else { |
| 1149 | double m11, m12, m21, m22, dx, dy; |
| 1150 | s >> m11; |
| 1151 | s >> m12; |
| 1152 | s >> m21; |
| 1153 | s >> m22; |
| 1154 | s >> dx; |
| 1155 | s >> dy; |
| 1156 | m.setMatrix(m11, m12, m21, m22, dx, dy); |
| 1157 | } |
| 1158 | return s; |
| 1159 | } |
| 1160 | #endif // QT_NO_DATASTREAM |
| 1161 | |
| 1162 | #ifndef QT_NO_DEBUG_STREAM |
| 1163 | QDebug operator<<(QDebug dbg, const QMatrix &m) |
| 1164 | { |
| 1165 | QDebugStateSaver saver(dbg); |
| 1166 | dbg.nospace() << "QMatrix(" |
| 1167 | << "11=" << m.m11() |
| 1168 | << " 12=" << m.m12() |
| 1169 | << " 21=" << m.m21() |
| 1170 | << " 22=" << m.m22() |
| 1171 | << " dx=" << m.dx() |
| 1172 | << " dy=" << m.dy() |
| 1173 | << ')'; |
| 1174 | return dbg; |
| 1175 | } |
| 1176 | #endif |
| 1177 | |
| 1178 | /*! |
| 1179 | \fn bool qFuzzyCompare(const QMatrix& m1, const QMatrix& m2) |
| 1180 | |
| 1181 | \relates QMatrix |
| 1182 | \since 4.6 |
| 1183 | |
| 1184 | \brief The qFuzzyCompare function is for comparing two matrices |
| 1185 | using a fuzziness factor. |
| 1186 | |
| 1187 | Returns \c true if \a m1 and \a m2 are equal, allowing for a small |
| 1188 | fuzziness factor for floating-point comparisons; false otherwise. |
| 1189 | */ |
| 1190 | |
| 1191 | QT_END_NAMESPACE |
| 1192 | |