| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2016 The Qt Company Ltd. |
| 4 | ** Contact: https://www.qt.io/licensing/ |
| 5 | ** |
| 6 | ** This file is part of the QtGui module of the Qt Toolkit. |
| 7 | ** |
| 8 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 9 | ** Commercial License Usage |
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 11 | ** accordance with the commercial license agreement provided with the |
| 12 | ** Software or, alternatively, in accordance with the terms contained in |
| 13 | ** a written agreement between you and The Qt Company. For licensing terms |
| 14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 15 | ** information use the contact form at https://www.qt.io/contact-us. |
| 16 | ** |
| 17 | ** GNU Lesser General Public License Usage |
| 18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 19 | ** General Public License version 3 as published by the Free Software |
| 20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 21 | ** packaging of this file. Please review the following information to |
| 22 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 24 | ** |
| 25 | ** GNU General Public License Usage |
| 26 | ** Alternatively, this file may be used under the terms of the GNU |
| 27 | ** General Public License version 2.0 or (at your option) the GNU General |
| 28 | ** Public license version 3 or any later version approved by the KDE Free |
| 29 | ** Qt Foundation. The licenses are as published by the Free Software |
| 30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 31 | ** included in the packaging of this file. Please review the following |
| 32 | ** information to ensure the GNU General Public License requirements will |
| 33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 35 | ** |
| 36 | ** $QT_END_LICENSE$ |
| 37 | ** |
| 38 | ****************************************************************************/ |
| 39 | |
| 40 | #include "qpathsimplifier_p.h" |
| 41 | |
| 42 | #include <QtCore/qvarlengtharray.h> |
| 43 | #include <QtCore/qglobal.h> |
| 44 | #include <QtCore/qpoint.h> |
| 45 | #include <QtCore/qalgorithms.h> |
| 46 | |
| 47 | #include <private/qopengl_p.h> |
| 48 | #include <private/qrbtree_p.h> |
| 49 | |
| 50 | QT_BEGIN_NAMESPACE |
| 51 | |
| 52 | #define Q_FIXED_POINT_SCALE 256 |
| 53 | #define Q_TRIANGULATE_END_OF_POLYGON quint32(-1) |
| 54 | |
| 55 | |
| 56 | |
| 57 | //============================================================================// |
| 58 | // QPoint // |
| 59 | //============================================================================// |
| 60 | |
| 61 | inline bool operator < (const QPoint &a, const QPoint &b) |
| 62 | { |
| 63 | return a.y() < b.y() || (a.y() == b.y() && a.x() < b.x()); |
| 64 | } |
| 65 | |
| 66 | inline bool operator > (const QPoint &a, const QPoint &b) |
| 67 | { |
| 68 | return b < a; |
| 69 | } |
| 70 | |
| 71 | inline bool operator <= (const QPoint &a, const QPoint &b) |
| 72 | { |
| 73 | return !(a > b); |
| 74 | } |
| 75 | |
| 76 | inline bool operator >= (const QPoint &a, const QPoint &b) |
| 77 | { |
| 78 | return !(a < b); |
| 79 | } |
| 80 | |
| 81 | namespace { |
| 82 | |
| 83 | inline int cross(const QPoint &u, const QPoint &v) |
| 84 | { |
| 85 | return u.x() * v.y() - u.y() * v.x(); |
| 86 | } |
| 87 | |
| 88 | inline int dot(const QPoint &u, const QPoint &v) |
| 89 | { |
| 90 | return u.x() * v.x() + u.y() * v.y(); |
| 91 | } |
| 92 | |
| 93 | //============================================================================// |
| 94 | // Fraction // |
| 95 | //============================================================================// |
| 96 | |
| 97 | // Fraction must be in the range [0, 1) |
| 98 | struct Fraction |
| 99 | { |
| 100 | bool isValid() const { return denominator != 0; } |
| 101 | |
| 102 | // numerator and denominator must not have common denominators. |
| 103 | unsigned int numerator, denominator; |
| 104 | }; |
| 105 | |
| 106 | inline unsigned int gcd(unsigned int x, unsigned int y) |
| 107 | { |
| 108 | while (y != 0) { |
| 109 | unsigned int z = y; |
| 110 | y = x % y; |
| 111 | x = z; |
| 112 | } |
| 113 | return x; |
| 114 | } |
| 115 | |
| 116 | // Fraction must be in the range [0, 1) |
| 117 | // Assume input is valid. |
| 118 | Fraction fraction(unsigned int n, unsigned int d) { |
| 119 | Fraction result; |
| 120 | if (n == 0) { |
| 121 | result.numerator = 0; |
| 122 | result.denominator = 1; |
| 123 | } else { |
| 124 | unsigned int g = gcd(x: n, y: d); |
| 125 | result.numerator = n / g; |
| 126 | result.denominator = d / g; |
| 127 | } |
| 128 | return result; |
| 129 | } |
| 130 | |
| 131 | //============================================================================// |
| 132 | // Rational // |
| 133 | //============================================================================// |
| 134 | |
| 135 | struct Rational |
| 136 | { |
| 137 | int integer; |
| 138 | Fraction fraction; |
| 139 | }; |
| 140 | |
| 141 | //============================================================================// |
| 142 | // IntersectionPoint // |
| 143 | //============================================================================// |
| 144 | |
| 145 | struct IntersectionPoint |
| 146 | { |
| 147 | bool isValid() const { return x.fraction.isValid() && y.fraction.isValid(); } |
| 148 | QPoint round() const; |
| 149 | bool isAccurate() const { return x.fraction.numerator == 0 && y.fraction.numerator == 0; } |
| 150 | |
| 151 | Rational x; // 8:8 signed, 32/32 |
| 152 | Rational y; // 8:8 signed, 32/32 |
| 153 | }; |
| 154 | |
| 155 | QPoint IntersectionPoint::round() const |
| 156 | { |
| 157 | QPoint result(x.integer, y.integer); |
| 158 | if (2 * x.fraction.numerator >= x.fraction.denominator) |
| 159 | ++result.rx(); |
| 160 | if (2 * y.fraction.numerator >= y.fraction.denominator) |
| 161 | ++result.ry(); |
| 162 | return result; |
| 163 | } |
| 164 | |
| 165 | // Return positive value if 'p' is to the right of the line 'v1'->'v2', negative if left of the |
| 166 | // line and zero if exactly on the line. |
| 167 | // The returned value is the z-component of the qCross product between 'v2-v1' and 'p-v1', |
| 168 | // which is twice the signed area of the triangle 'p'->'v1'->'v2' (positive for CW order). |
| 169 | inline int pointDistanceFromLine(const QPoint &p, const QPoint &v1, const QPoint &v2) |
| 170 | { |
| 171 | return cross(u: v2 - v1, v: p - v1); |
| 172 | } |
| 173 | |
| 174 | IntersectionPoint intersectionPoint(const QPoint &u1, const QPoint &u2, |
| 175 | const QPoint &v1, const QPoint &v2) |
| 176 | { |
| 177 | IntersectionPoint result = {.x: {.integer: 0, .fraction: {.numerator: 0, .denominator: 0}}, .y: {.integer: 0, .fraction: {.numerator: 0, .denominator: 0}}}; |
| 178 | |
| 179 | QPoint u = u2 - u1; |
| 180 | QPoint v = v2 - v1; |
| 181 | int d1 = cross(u, v: v1 - u1); |
| 182 | int d2 = cross(u, v: v2 - u1); |
| 183 | int det = d2 - d1; |
| 184 | int d3 = cross(u: v, v: u1 - v1); |
| 185 | int d4 = d3 - det; //qCross(v, u2 - v1); |
| 186 | |
| 187 | // Check that the math is correct. |
| 188 | Q_ASSERT(d4 == cross(v, u2 - v1)); |
| 189 | |
| 190 | // The intersection point can be expressed as: |
| 191 | // v1 - v * d1/det |
| 192 | // v2 - v * d2/det |
| 193 | // u1 + u * d3/det |
| 194 | // u2 + u * d4/det |
| 195 | |
| 196 | // I'm only interested in lines that are crossing, so ignore parallel lines even if they overlap. |
| 197 | if (det == 0) |
| 198 | return result; |
| 199 | |
| 200 | if (det < 0) { |
| 201 | det = -det; |
| 202 | d1 = -d1; |
| 203 | d2 = -d2; |
| 204 | d3 = -d3; |
| 205 | d4 = -d4; |
| 206 | } |
| 207 | |
| 208 | // I'm only interested in lines intersecting at their interior, not at their end points. |
| 209 | // The lines intersect at their interior if and only if 'd1 < 0', 'd2 > 0', 'd3 < 0' and 'd4 > 0'. |
| 210 | if (d1 >= 0 || d2 <= 0 || d3 <= 0 || d4 >= 0) |
| 211 | return result; |
| 212 | |
| 213 | // Calculate the intersection point as follows: |
| 214 | // v1 - v * d1/det | v1 <= v2 (component-wise) |
| 215 | // v2 - v * d2/det | v2 < v1 (component-wise) |
| 216 | |
| 217 | // Assuming 16 bits per vector component. |
| 218 | if (v.x() >= 0) { |
| 219 | result.x.integer = v1.x() + int(qint64(-v.x()) * d1 / det); |
| 220 | result.x.fraction = fraction(n: (unsigned int)(qint64(-v.x()) * d1 % det), d: (unsigned int)det); |
| 221 | } else { |
| 222 | result.x.integer = v2.x() + int(qint64(-v.x()) * d2 / det); |
| 223 | result.x.fraction = fraction(n: (unsigned int)(qint64(-v.x()) * d2 % det), d: (unsigned int)det); |
| 224 | } |
| 225 | |
| 226 | if (v.y() >= 0) { |
| 227 | result.y.integer = v1.y() + int(qint64(-v.y()) * d1 / det); |
| 228 | result.y.fraction = fraction(n: (unsigned int)(qint64(-v.y()) * d1 % det), d: (unsigned int)det); |
| 229 | } else { |
| 230 | result.y.integer = v2.y() + int(qint64(-v.y()) * d2 / det); |
| 231 | result.y.fraction = fraction(n: (unsigned int)(qint64(-v.y()) * d2 % det), d: (unsigned int)det); |
| 232 | } |
| 233 | |
| 234 | Q_ASSERT(result.x.fraction.isValid()); |
| 235 | Q_ASSERT(result.y.fraction.isValid()); |
| 236 | return result; |
| 237 | } |
| 238 | |
| 239 | //============================================================================// |
| 240 | // PathSimplifier // |
| 241 | //============================================================================// |
| 242 | |
| 243 | class PathSimplifier |
| 244 | { |
| 245 | public: |
| 246 | PathSimplifier(const QVectorPath &path, QDataBuffer<QPoint> &vertices, |
| 247 | QDataBuffer<quint32> &indices, const QTransform &matrix); |
| 248 | |
| 249 | private: |
| 250 | struct Element; |
| 251 | |
| 252 | class BoundingVolumeHierarchy |
| 253 | { |
| 254 | public: |
| 255 | struct Node |
| 256 | { |
| 257 | enum Type |
| 258 | { |
| 259 | Leaf, |
| 260 | Split |
| 261 | }; |
| 262 | Type type; |
| 263 | QPoint minimum; |
| 264 | QPoint maximum; |
| 265 | union { |
| 266 | Element *element; // type == Leaf |
| 267 | Node *left; // type == Split |
| 268 | }; |
| 269 | Node *right; |
| 270 | }; |
| 271 | |
| 272 | BoundingVolumeHierarchy(); |
| 273 | ~BoundingVolumeHierarchy(); |
| 274 | void allocate(int nodeCount); |
| 275 | void free(); |
| 276 | Node *newNode(); |
| 277 | |
| 278 | Node *root; |
| 279 | private: |
| 280 | void freeNode(Node *n); |
| 281 | |
| 282 | Node *nodeBlock; |
| 283 | int blockSize; |
| 284 | int firstFree; |
| 285 | }; |
| 286 | |
| 287 | struct Element |
| 288 | { |
| 289 | enum Degree |
| 290 | { |
| 291 | Line = 1, |
| 292 | Quadratic = 2, |
| 293 | Cubic = 3 |
| 294 | }; |
| 295 | |
| 296 | quint32 &upperIndex() { return indices[pointingUp ? degree : 0]; } |
| 297 | quint32 &lowerIndex() { return indices[pointingUp ? 0 : degree]; } |
| 298 | quint32 upperIndex() const { return indices[pointingUp ? degree : 0]; } |
| 299 | quint32 lowerIndex() const { return indices[pointingUp ? 0 : degree]; } |
| 300 | void flip(); |
| 301 | |
| 302 | QPoint middle; |
| 303 | quint32 indices[4]; // index to points |
| 304 | Element *next, *previous; // used in connectElements() |
| 305 | int winding; // used in connectElements() |
| 306 | union { |
| 307 | QRBTree<Element *>::Node *edgeNode; // used in connectElements() |
| 308 | BoundingVolumeHierarchy::Node *bvhNode; |
| 309 | }; |
| 310 | Degree degree : 8; |
| 311 | uint processed : 1; // initially false, true when the element has been checked for intersections. |
| 312 | uint pointingUp : 1; // used in connectElements() |
| 313 | uint originallyPointingUp : 1; // used in connectElements() |
| 314 | }; |
| 315 | |
| 316 | class ElementAllocator |
| 317 | { |
| 318 | public: |
| 319 | ElementAllocator(); |
| 320 | ~ElementAllocator(); |
| 321 | void allocate(int count); |
| 322 | Element *newElement(); |
| 323 | private: |
| 324 | struct ElementBlock |
| 325 | { |
| 326 | ElementBlock *next; |
| 327 | int blockSize; |
| 328 | int firstFree; |
| 329 | Element elements[1]; |
| 330 | } *blocks; |
| 331 | }; |
| 332 | |
| 333 | struct Event |
| 334 | { |
| 335 | enum Type { Upper, Lower }; |
| 336 | bool operator < (const Event &other) const; |
| 337 | |
| 338 | QPoint point; |
| 339 | Type type; |
| 340 | Element *element; |
| 341 | }; |
| 342 | |
| 343 | typedef QRBTree<Element *>::Node RBNode; |
| 344 | typedef BoundingVolumeHierarchy::Node BVHNode; |
| 345 | |
| 346 | void initElements(const QVectorPath &path, const QTransform &matrix); |
| 347 | void removeIntersections(); |
| 348 | void connectElements(); |
| 349 | void fillIndices(); |
| 350 | BVHNode *buildTree(Element **elements, int elementCount); |
| 351 | bool intersectNodes(QDataBuffer<Element *> &elements, BVHNode *elementNode, BVHNode *treeNode); |
| 352 | bool equalElements(const Element *e1, const Element *e2); |
| 353 | bool splitLineAt(QDataBuffer<Element *> &elements, BVHNode *node, quint32 pointIndex, bool processAgain); |
| 354 | void appendSeparatingAxes(QVarLengthArray<QPoint, 12> &axes, Element *element); |
| 355 | QPair<int, int> calculateSeparatingAxisRange(const QPoint &axis, Element *element); |
| 356 | void splitCurve(QDataBuffer<Element *> &elements, BVHNode *node); |
| 357 | bool setElementToQuadratic(Element *element, quint32 pointIndex1, const QPoint &ctrl, quint32 pointIndex2); |
| 358 | bool setElementToCubic(Element *element, quint32 pointIndex1, const QPoint &ctrl1, const QPoint &ctrl2, quint32 pointIndex2); |
| 359 | void setElementToCubicAndSimplify(Element *element, quint32 pointIndex1, const QPoint &ctrl1, const QPoint &ctrl2, quint32 pointIndex2); |
| 360 | RBNode *findElementLeftOf(const Element *element, const QPair<RBNode *, RBNode *> &bounds); |
| 361 | bool elementIsLeftOf(const Element *left, const Element *right); |
| 362 | QPair<RBNode *, RBNode *> outerBounds(const QPoint &point); |
| 363 | static bool flattenQuadratic(const QPoint &u, const QPoint &v, const QPoint &w); |
| 364 | static bool flattenCubic(const QPoint &u, const QPoint &v, const QPoint &w, const QPoint &q); |
| 365 | static bool splitQuadratic(const QPoint &u, const QPoint &v, const QPoint &w, QPoint *result); |
| 366 | static bool splitCubic(const QPoint &u, const QPoint &v, const QPoint &w, const QPoint &q, QPoint *result); |
| 367 | void subDivQuadratic(const QPoint &u, const QPoint &v, const QPoint &w); |
| 368 | void subDivCubic(const QPoint &u, const QPoint &v, const QPoint &w, const QPoint &q); |
| 369 | static void sortEvents(Event *events, int count); |
| 370 | |
| 371 | ElementAllocator m_elementAllocator; |
| 372 | QDataBuffer<Element *> m_elements; |
| 373 | QDataBuffer<QPoint> *m_points; |
| 374 | BoundingVolumeHierarchy m_bvh; |
| 375 | QDataBuffer<quint32> *m_indices; |
| 376 | QRBTree<Element *> m_elementList; |
| 377 | uint m_hints; |
| 378 | }; |
| 379 | |
| 380 | inline PathSimplifier::BoundingVolumeHierarchy::BoundingVolumeHierarchy() |
| 381 | : root(nullptr) |
| 382 | , nodeBlock(nullptr) |
| 383 | , blockSize(0) |
| 384 | , firstFree(0) |
| 385 | { |
| 386 | } |
| 387 | |
| 388 | inline PathSimplifier::BoundingVolumeHierarchy::~BoundingVolumeHierarchy() |
| 389 | { |
| 390 | free(); |
| 391 | } |
| 392 | |
| 393 | inline void PathSimplifier::BoundingVolumeHierarchy::allocate(int nodeCount) |
| 394 | { |
| 395 | Q_ASSERT(nodeBlock == nullptr); |
| 396 | Q_ASSERT(firstFree == 0); |
| 397 | nodeBlock = new Node[blockSize = nodeCount]; |
| 398 | } |
| 399 | |
| 400 | inline void PathSimplifier::BoundingVolumeHierarchy::free() |
| 401 | { |
| 402 | freeNode(n: root); |
| 403 | delete[] nodeBlock; |
| 404 | nodeBlock = nullptr; |
| 405 | firstFree = blockSize = 0; |
| 406 | root = nullptr; |
| 407 | } |
| 408 | |
| 409 | inline PathSimplifier::BVHNode *PathSimplifier::BoundingVolumeHierarchy::newNode() |
| 410 | { |
| 411 | if (firstFree < blockSize) |
| 412 | return &nodeBlock[firstFree++]; |
| 413 | return new Node; |
| 414 | } |
| 415 | |
| 416 | inline void PathSimplifier::BoundingVolumeHierarchy::freeNode(Node *n) |
| 417 | { |
| 418 | if (!n) |
| 419 | return; |
| 420 | Q_ASSERT(n->type == Node::Split || n->type == Node::Leaf); |
| 421 | if (n->type == Node::Split) { |
| 422 | freeNode(n: n->left); |
| 423 | freeNode(n: n->right); |
| 424 | } |
| 425 | if (!(n >= nodeBlock && n < nodeBlock + blockSize)) |
| 426 | delete n; |
| 427 | } |
| 428 | |
| 429 | inline PathSimplifier::ElementAllocator::ElementAllocator() |
| 430 | : blocks(nullptr) |
| 431 | { |
| 432 | } |
| 433 | |
| 434 | inline PathSimplifier::ElementAllocator::~ElementAllocator() |
| 435 | { |
| 436 | while (blocks) { |
| 437 | ElementBlock *block = blocks; |
| 438 | blocks = blocks->next; |
| 439 | free(ptr: block); |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | inline void PathSimplifier::ElementAllocator::allocate(int count) |
| 444 | { |
| 445 | Q_ASSERT(blocks == nullptr); |
| 446 | Q_ASSERT(count > 0); |
| 447 | blocks = (ElementBlock *)malloc(size: sizeof(ElementBlock) + (count - 1) * sizeof(Element)); |
| 448 | blocks->blockSize = count; |
| 449 | blocks->next = nullptr; |
| 450 | blocks->firstFree = 0; |
| 451 | } |
| 452 | |
| 453 | inline PathSimplifier::Element *PathSimplifier::ElementAllocator::newElement() |
| 454 | { |
| 455 | Q_ASSERT(blocks); |
| 456 | if (blocks->firstFree < blocks->blockSize) |
| 457 | return &blocks->elements[blocks->firstFree++]; |
| 458 | ElementBlock *oldBlock = blocks; |
| 459 | blocks = (ElementBlock *)malloc(size: sizeof(ElementBlock) + (oldBlock->blockSize - 1) * sizeof(Element)); |
| 460 | blocks->blockSize = oldBlock->blockSize; |
| 461 | blocks->next = oldBlock; |
| 462 | blocks->firstFree = 0; |
| 463 | return &blocks->elements[blocks->firstFree++]; |
| 464 | } |
| 465 | |
| 466 | |
| 467 | inline bool PathSimplifier::Event::operator < (const Event &other) const |
| 468 | { |
| 469 | if (point == other.point) |
| 470 | return type < other.type; |
| 471 | return other.point < point; |
| 472 | } |
| 473 | |
| 474 | inline void PathSimplifier::Element::flip() |
| 475 | { |
| 476 | for (int i = 0; i < (degree + 1) >> 1; ++i) { |
| 477 | Q_ASSERT(degree >= Line && degree <= Cubic); |
| 478 | Q_ASSERT(i >= 0 && i < degree); |
| 479 | qSwap(value1&: indices[i], value2&: indices[degree - i]); |
| 480 | } |
| 481 | pointingUp = !pointingUp; |
| 482 | Q_ASSERT(next == nullptr && previous == nullptr); |
| 483 | } |
| 484 | |
| 485 | PathSimplifier::PathSimplifier(const QVectorPath &path, QDataBuffer<QPoint> &vertices, |
| 486 | QDataBuffer<quint32> &indices, const QTransform &matrix) |
| 487 | : m_elements(0) |
| 488 | , m_points(&vertices) |
| 489 | , m_indices(&indices) |
| 490 | { |
| 491 | m_points->reset(); |
| 492 | m_indices->reset(); |
| 493 | initElements(path, matrix); |
| 494 | if (!m_elements.isEmpty()) { |
| 495 | removeIntersections(); |
| 496 | connectElements(); |
| 497 | fillIndices(); |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | void PathSimplifier::initElements(const QVectorPath &path, const QTransform &matrix) |
| 502 | { |
| 503 | m_hints = path.hints(); |
| 504 | int pathElementCount = path.elementCount(); |
| 505 | if (pathElementCount == 0) |
| 506 | return; |
| 507 | m_elements.reserve(size: 2 * pathElementCount); |
| 508 | m_elementAllocator.allocate(count: 2 * pathElementCount); |
| 509 | m_points->reserve(size: 2 * pathElementCount); |
| 510 | const QPainterPath::ElementType *e = path.elements(); |
| 511 | const qreal *p = path.points(); |
| 512 | if (e) { |
| 513 | qreal x, y; |
| 514 | quint32 moveToIndex = 0; |
| 515 | quint32 previousIndex = 0; |
| 516 | for (int i = 0; i < pathElementCount; ++i, ++e, p += 2) { |
| 517 | switch (*e) { |
| 518 | case QPainterPath::MoveToElement: |
| 519 | { |
| 520 | if (!m_points->isEmpty()) { |
| 521 | const QPoint &from = m_points->at(i: previousIndex); |
| 522 | const QPoint &to = m_points->at(i: moveToIndex); |
| 523 | if (from != to) { |
| 524 | Element *element = m_elementAllocator.newElement(); |
| 525 | element->degree = Element::Line; |
| 526 | element->indices[0] = previousIndex; |
| 527 | element->indices[1] = moveToIndex; |
| 528 | element->middle.rx() = (from.x() + to.x()) >> 1; |
| 529 | element->middle.ry() = (from.y() + to.y()) >> 1; |
| 530 | m_elements.add(t: element); |
| 531 | } |
| 532 | } |
| 533 | previousIndex = moveToIndex = m_points->size(); |
| 534 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
| 535 | QPoint to(qRound(d: x * Q_FIXED_POINT_SCALE), qRound(d: y * Q_FIXED_POINT_SCALE)); |
| 536 | m_points->add(t: to); |
| 537 | } |
| 538 | break; |
| 539 | case QPainterPath::LineToElement: |
| 540 | Q_ASSERT(!m_points->isEmpty()); |
| 541 | { |
| 542 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
| 543 | QPoint to(qRound(d: x * Q_FIXED_POINT_SCALE), qRound(d: y * Q_FIXED_POINT_SCALE)); |
| 544 | const QPoint &from = m_points->last(); |
| 545 | if (to != from) { |
| 546 | Element *element = m_elementAllocator.newElement(); |
| 547 | element->degree = Element::Line; |
| 548 | element->indices[0] = previousIndex; |
| 549 | element->indices[1] = quint32(m_points->size()); |
| 550 | element->middle.rx() = (from.x() + to.x()) >> 1; |
| 551 | element->middle.ry() = (from.y() + to.y()) >> 1; |
| 552 | m_elements.add(t: element); |
| 553 | previousIndex = m_points->size(); |
| 554 | m_points->add(t: to); |
| 555 | } |
| 556 | } |
| 557 | break; |
| 558 | case QPainterPath::CurveToElement: |
| 559 | Q_ASSERT(i + 2 < pathElementCount); |
| 560 | Q_ASSERT(!m_points->isEmpty()); |
| 561 | Q_ASSERT(e[1] == QPainterPath::CurveToDataElement); |
| 562 | Q_ASSERT(e[2] == QPainterPath::CurveToDataElement); |
| 563 | { |
| 564 | quint32 startPointIndex = previousIndex; |
| 565 | matrix.map(x: p[4], y: p[5], tx: &x, ty: &y); |
| 566 | QPoint end(qRound(d: x * Q_FIXED_POINT_SCALE), qRound(d: y * Q_FIXED_POINT_SCALE)); |
| 567 | previousIndex = m_points->size(); |
| 568 | m_points->add(t: end); |
| 569 | |
| 570 | // See if this cubic bezier is really quadratic. |
| 571 | qreal x1 = p[-2] + qreal(1.5) * (p[0] - p[-2]); |
| 572 | qreal y1 = p[-1] + qreal(1.5) * (p[1] - p[-1]); |
| 573 | qreal x2 = p[4] + qreal(1.5) * (p[2] - p[4]); |
| 574 | qreal y2 = p[5] + qreal(1.5) * (p[3] - p[5]); |
| 575 | |
| 576 | Element *element = m_elementAllocator.newElement(); |
| 577 | if (qAbs(t: x1 - x2) < qreal(1e-3) && qAbs(t: y1 - y2) < qreal(1e-3)) { |
| 578 | // The bezier curve is quadratic. |
| 579 | matrix.map(x: x1, y: y1, tx: &x, ty: &y); |
| 580 | QPoint ctrl(qRound(d: x * Q_FIXED_POINT_SCALE), |
| 581 | qRound(d: y * Q_FIXED_POINT_SCALE)); |
| 582 | setElementToQuadratic(element, pointIndex1: startPointIndex, ctrl, pointIndex2: previousIndex); |
| 583 | } else { |
| 584 | // The bezier curve is cubic. |
| 585 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
| 586 | QPoint ctrl1(qRound(d: x * Q_FIXED_POINT_SCALE), |
| 587 | qRound(d: y * Q_FIXED_POINT_SCALE)); |
| 588 | matrix.map(x: p[2], y: p[3], tx: &x, ty: &y); |
| 589 | QPoint ctrl2(qRound(d: x * Q_FIXED_POINT_SCALE), |
| 590 | qRound(d: y * Q_FIXED_POINT_SCALE)); |
| 591 | setElementToCubicAndSimplify(element, pointIndex1: startPointIndex, ctrl1, ctrl2, |
| 592 | pointIndex2: previousIndex); |
| 593 | } |
| 594 | m_elements.add(t: element); |
| 595 | } |
| 596 | i += 2; |
| 597 | e += 2; |
| 598 | p += 4; |
| 599 | |
| 600 | break; |
| 601 | default: |
| 602 | Q_ASSERT_X(0, "QSGPathSimplifier::initialize" , "Unexpected element type." ); |
| 603 | break; |
| 604 | } |
| 605 | } |
| 606 | if (!m_points->isEmpty()) { |
| 607 | const QPoint &from = m_points->at(i: previousIndex); |
| 608 | const QPoint &to = m_points->at(i: moveToIndex); |
| 609 | if (from != to) { |
| 610 | Element *element = m_elementAllocator.newElement(); |
| 611 | element->degree = Element::Line; |
| 612 | element->indices[0] = previousIndex; |
| 613 | element->indices[1] = moveToIndex; |
| 614 | element->middle.rx() = (from.x() + to.x()) >> 1; |
| 615 | element->middle.ry() = (from.y() + to.y()) >> 1; |
| 616 | m_elements.add(t: element); |
| 617 | } |
| 618 | } |
| 619 | } else { |
| 620 | qreal x, y; |
| 621 | |
| 622 | for (int i = 0; i < pathElementCount; ++i, p += 2) { |
| 623 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
| 624 | QPoint to(qRound(d: x * Q_FIXED_POINT_SCALE), qRound(d: y * Q_FIXED_POINT_SCALE)); |
| 625 | if (to != m_points->last()) |
| 626 | m_points->add(t: to); |
| 627 | } |
| 628 | |
| 629 | while (!m_points->isEmpty() && m_points->last() == m_points->first()) |
| 630 | m_points->pop_back(); |
| 631 | |
| 632 | if (m_points->isEmpty()) |
| 633 | return; |
| 634 | |
| 635 | quint32 prev = quint32(m_points->size() - 1); |
| 636 | for (int i = 0; i < m_points->size(); ++i) { |
| 637 | QPoint &to = m_points->at(i); |
| 638 | QPoint &from = m_points->at(i: prev); |
| 639 | Element *element = m_elementAllocator.newElement(); |
| 640 | element->degree = Element::Line; |
| 641 | element->indices[0] = prev; |
| 642 | element->indices[1] = quint32(i); |
| 643 | element->middle.rx() = (from.x() + to.x()) >> 1; |
| 644 | element->middle.ry() = (from.y() + to.y()) >> 1; |
| 645 | m_elements.add(t: element); |
| 646 | prev = i; |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | for (int i = 0; i < m_elements.size(); ++i) |
| 651 | m_elements.at(i)->processed = false; |
| 652 | } |
| 653 | |
| 654 | void PathSimplifier::removeIntersections() |
| 655 | { |
| 656 | Q_ASSERT(!m_elements.isEmpty()); |
| 657 | QDataBuffer<Element *> elements(m_elements.size()); |
| 658 | for (int i = 0; i < m_elements.size(); ++i) |
| 659 | elements.add(t: m_elements.at(i)); |
| 660 | m_bvh.allocate(nodeCount: 2 * m_elements.size()); |
| 661 | m_bvh.root = buildTree(elements: elements.data(), elementCount: elements.size()); |
| 662 | |
| 663 | elements.reset(); |
| 664 | for (int i = 0; i < m_elements.size(); ++i) |
| 665 | elements.add(t: m_elements.at(i)); |
| 666 | |
| 667 | while (!elements.isEmpty()) { |
| 668 | Element *element = elements.last(); |
| 669 | elements.pop_back(); |
| 670 | BVHNode *node = element->bvhNode; |
| 671 | Q_ASSERT(node->type == BVHNode::Leaf); |
| 672 | Q_ASSERT(node->element == element); |
| 673 | if (!element->processed) { |
| 674 | if (!intersectNodes(elements, elementNode: node, treeNode: m_bvh.root)) |
| 675 | element->processed = true; |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | m_bvh.free(); // The bounding volume hierarchy is not needed anymore. |
| 680 | } |
| 681 | |
| 682 | void PathSimplifier::connectElements() |
| 683 | { |
| 684 | Q_ASSERT(!m_elements.isEmpty()); |
| 685 | QDataBuffer<Event> events(m_elements.size() * 2); |
| 686 | for (int i = 0; i < m_elements.size(); ++i) { |
| 687 | Element *element = m_elements.at(i); |
| 688 | element->next = element->previous = nullptr; |
| 689 | element->winding = 0; |
| 690 | element->edgeNode = nullptr; |
| 691 | const QPoint &u = m_points->at(i: element->indices[0]); |
| 692 | const QPoint &v = m_points->at(i: element->indices[element->degree]); |
| 693 | if (u != v) { |
| 694 | element->pointingUp = element->originallyPointingUp = v < u; |
| 695 | |
| 696 | Event event; |
| 697 | event.element = element; |
| 698 | event.point = u; |
| 699 | event.type = element->pointingUp ? Event::Lower : Event::Upper; |
| 700 | events.add(t: event); |
| 701 | event.point = v; |
| 702 | event.type = element->pointingUp ? Event::Upper : Event::Lower; |
| 703 | events.add(t: event); |
| 704 | } |
| 705 | } |
| 706 | QVarLengthArray<Element *, 8> orderedElements; |
| 707 | if (!events.isEmpty()) |
| 708 | sortEvents(events: events.data(), count: events.size()); |
| 709 | while (!events.isEmpty()) { |
| 710 | const Event *event = &events.last(); |
| 711 | QPoint eventPoint = event->point; |
| 712 | |
| 713 | // Find all elements passing through the event point. |
| 714 | QPair<RBNode *, RBNode *> bounds = outerBounds(point: eventPoint); |
| 715 | |
| 716 | // Special case: single element above and single element below event point. |
| 717 | int eventCount = events.size(); |
| 718 | if (event->type == Event::Lower && eventCount > 2) { |
| 719 | QPair<RBNode *, RBNode *> range; |
| 720 | range.first = bounds.first ? m_elementList.next(node: bounds.first) |
| 721 | : m_elementList.front(node: m_elementList.root); |
| 722 | range.second = bounds.second ? m_elementList.previous(node: bounds.second) |
| 723 | : m_elementList.back(node: m_elementList.root); |
| 724 | |
| 725 | const Event *event2 = &events.at(i: eventCount - 2); |
| 726 | const Event *event3 = &events.at(i: eventCount - 3); |
| 727 | Q_ASSERT(event2->point == eventPoint); // There are always at least two events at a point. |
| 728 | if (range.first == range.second && event2->type == Event::Upper && event3->point != eventPoint) { |
| 729 | Element *element = event->element; |
| 730 | Element *element2 = event2->element; |
| 731 | element->edgeNode->data = event2->element; |
| 732 | element2->edgeNode = element->edgeNode; |
| 733 | element->edgeNode = nullptr; |
| 734 | |
| 735 | events.pop_back(); |
| 736 | events.pop_back(); |
| 737 | |
| 738 | if (element2->pointingUp != element->pointingUp) |
| 739 | element2->flip(); |
| 740 | element2->winding = element->winding; |
| 741 | int winding = element->winding; |
| 742 | if (element->originallyPointingUp) |
| 743 | ++winding; |
| 744 | if (winding == 0 || winding == 1) { |
| 745 | if (element->pointingUp) { |
| 746 | element->previous = event2->element; |
| 747 | element2->next = event->element; |
| 748 | } else { |
| 749 | element->next = event2->element; |
| 750 | element2->previous = event->element; |
| 751 | } |
| 752 | } |
| 753 | continue; |
| 754 | } |
| 755 | } |
| 756 | orderedElements.clear(); |
| 757 | |
| 758 | // First, find the ones above the event point. |
| 759 | if (m_elementList.root) { |
| 760 | RBNode *current = bounds.first ? m_elementList.next(node: bounds.first) |
| 761 | : m_elementList.front(node: m_elementList.root); |
| 762 | while (current != bounds.second) { |
| 763 | Element *element = current->data; |
| 764 | Q_ASSERT(element->edgeNode == current); |
| 765 | int winding = element->winding; |
| 766 | if (element->originallyPointingUp) |
| 767 | ++winding; |
| 768 | const QPoint &lower = m_points->at(i: element->lowerIndex()); |
| 769 | if (lower == eventPoint) { |
| 770 | if (winding == 0 || winding == 1) |
| 771 | orderedElements.append(t: current->data); |
| 772 | } else { |
| 773 | // The element is passing through 'event.point'. |
| 774 | Q_ASSERT(m_points->at(element->upperIndex()) != eventPoint); |
| 775 | Q_ASSERT(element->degree == Element::Line); |
| 776 | // Split the line. |
| 777 | Element *eventElement = event->element; |
| 778 | int indexIndex = (event->type == Event::Upper) == eventElement->pointingUp |
| 779 | ? eventElement->degree : 0; |
| 780 | quint32 pointIndex = eventElement->indices[indexIndex]; |
| 781 | Q_ASSERT(eventPoint == m_points->at(pointIndex)); |
| 782 | |
| 783 | Element *upperElement = m_elementAllocator.newElement(); |
| 784 | *upperElement = *element; |
| 785 | upperElement->lowerIndex() = element->upperIndex() = pointIndex; |
| 786 | upperElement->edgeNode = nullptr; |
| 787 | element->next = element->previous = nullptr; |
| 788 | if (upperElement->next) |
| 789 | upperElement->next->previous = upperElement; |
| 790 | else if (upperElement->previous) |
| 791 | upperElement->previous->next = upperElement; |
| 792 | if (element->pointingUp != element->originallyPointingUp) |
| 793 | element->flip(); |
| 794 | if (winding == 0 || winding == 1) |
| 795 | orderedElements.append(t: upperElement); |
| 796 | m_elements.add(t: upperElement); |
| 797 | } |
| 798 | current = m_elementList.next(node: current); |
| 799 | } |
| 800 | } |
| 801 | while (!events.isEmpty() && events.last().point == eventPoint) { |
| 802 | event = &events.last(); |
| 803 | if (event->type == Event::Upper) { |
| 804 | Q_ASSERT(event->point == m_points->at(event->element->upperIndex())); |
| 805 | RBNode *left = findElementLeftOf(element: event->element, bounds); |
| 806 | RBNode *node = m_elementList.newNode(); |
| 807 | node->data = event->element; |
| 808 | Q_ASSERT(event->element->edgeNode == nullptr); |
| 809 | event->element->edgeNode = node; |
| 810 | m_elementList.attachAfter(parent: left, child: node); |
| 811 | } else { |
| 812 | Q_ASSERT(event->type == Event::Lower); |
| 813 | Q_ASSERT(event->point == m_points->at(event->element->lowerIndex())); |
| 814 | Element *element = event->element; |
| 815 | Q_ASSERT(element->edgeNode); |
| 816 | m_elementList.deleteNode(node&: element->edgeNode); |
| 817 | Q_ASSERT(element->edgeNode == nullptr); |
| 818 | } |
| 819 | events.pop_back(); |
| 820 | } |
| 821 | |
| 822 | if (m_elementList.root) { |
| 823 | RBNode *current = bounds.first ? m_elementList.next(node: bounds.first) |
| 824 | : m_elementList.front(node: m_elementList.root); |
| 825 | int winding = bounds.first ? bounds.first->data->winding : 0; |
| 826 | |
| 827 | // Calculate winding numbers and flip elements if necessary. |
| 828 | while (current != bounds.second) { |
| 829 | Element *element = current->data; |
| 830 | Q_ASSERT(element->edgeNode == current); |
| 831 | int ccw = winding & 1; |
| 832 | Q_ASSERT(element->pointingUp == element->originallyPointingUp); |
| 833 | if (element->originallyPointingUp) { |
| 834 | --winding; |
| 835 | } else { |
| 836 | ++winding; |
| 837 | ccw ^= 1; |
| 838 | } |
| 839 | element->winding = winding; |
| 840 | if (ccw == 0) |
| 841 | element->flip(); |
| 842 | current = m_elementList.next(node: current); |
| 843 | } |
| 844 | |
| 845 | // Pick elements with correct winding number. |
| 846 | current = bounds.second ? m_elementList.previous(node: bounds.second) |
| 847 | : m_elementList.back(node: m_elementList.root); |
| 848 | while (current != bounds.first) { |
| 849 | Element *element = current->data; |
| 850 | Q_ASSERT(element->edgeNode == current); |
| 851 | Q_ASSERT(m_points->at(element->upperIndex()) == eventPoint); |
| 852 | int winding = element->winding; |
| 853 | if (element->originallyPointingUp) |
| 854 | ++winding; |
| 855 | if (winding == 0 || winding == 1) |
| 856 | orderedElements.append(t: current->data); |
| 857 | current = m_elementList.previous(node: current); |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | if (!orderedElements.isEmpty()) { |
| 862 | Q_ASSERT((orderedElements.size() & 1) == 0); |
| 863 | int i = 0; |
| 864 | Element *firstElement = orderedElements.at(idx: 0); |
| 865 | if (m_points->at(i: firstElement->indices[0]) != eventPoint) { |
| 866 | orderedElements.append(t: firstElement); |
| 867 | i = 1; |
| 868 | } |
| 869 | for (; i < orderedElements.size(); i += 2) { |
| 870 | Q_ASSERT(i + 1 < orderedElements.size()); |
| 871 | Element *next = orderedElements.at(idx: i); |
| 872 | Element *previous = orderedElements.at(idx: i + 1); |
| 873 | Q_ASSERT(next->previous == nullptr); |
| 874 | Q_ASSERT(previous->next == nullptr); |
| 875 | next->previous = previous; |
| 876 | previous->next = next; |
| 877 | } |
| 878 | } |
| 879 | } |
| 880 | #ifndef QT_NO_DEBUG |
| 881 | for (int i = 0; i < m_elements.size(); ++i) { |
| 882 | const Element *element = m_elements.at(i); |
| 883 | Q_ASSERT(element->next == 0 || element->next->previous == element); |
| 884 | Q_ASSERT(element->previous == 0 || element->previous->next == element); |
| 885 | Q_ASSERT((element->next == 0) == (element->previous == 0)); |
| 886 | } |
| 887 | #endif |
| 888 | } |
| 889 | |
| 890 | void PathSimplifier::fillIndices() |
| 891 | { |
| 892 | for (int i = 0; i < m_elements.size(); ++i) |
| 893 | m_elements.at(i)->processed = false; |
| 894 | for (int i = 0; i < m_elements.size(); ++i) { |
| 895 | Element *element = m_elements.at(i); |
| 896 | if (element->processed || element->next == nullptr) |
| 897 | continue; |
| 898 | do { |
| 899 | m_indices->add(t: element->indices[0]); |
| 900 | switch (element->degree) { |
| 901 | case Element::Quadratic: |
| 902 | { |
| 903 | QPoint pts[] = { |
| 904 | m_points->at(i: element->indices[0]), |
| 905 | m_points->at(i: element->indices[1]), |
| 906 | m_points->at(i: element->indices[2]) |
| 907 | }; |
| 908 | subDivQuadratic(u: pts[0], v: pts[1], w: pts[2]); |
| 909 | } |
| 910 | break; |
| 911 | case Element::Cubic: |
| 912 | { |
| 913 | QPoint pts[] = { |
| 914 | m_points->at(i: element->indices[0]), |
| 915 | m_points->at(i: element->indices[1]), |
| 916 | m_points->at(i: element->indices[2]), |
| 917 | m_points->at(i: element->indices[3]) |
| 918 | }; |
| 919 | subDivCubic(u: pts[0], v: pts[1], w: pts[2], q: pts[3]); |
| 920 | } |
| 921 | break; |
| 922 | default: |
| 923 | break; |
| 924 | } |
| 925 | Q_ASSERT(element->next); |
| 926 | element->processed = true; |
| 927 | element = element->next; |
| 928 | } while (element != m_elements.at(i)); |
| 929 | m_indices->add(Q_TRIANGULATE_END_OF_POLYGON); |
| 930 | } |
| 931 | } |
| 932 | |
| 933 | PathSimplifier::BVHNode *PathSimplifier::buildTree(Element **elements, int elementCount) |
| 934 | { |
| 935 | Q_ASSERT(elementCount > 0); |
| 936 | BVHNode *node = m_bvh.newNode(); |
| 937 | if (elementCount == 1) { |
| 938 | Element *element = *elements; |
| 939 | element->bvhNode = node; |
| 940 | node->type = BVHNode::Leaf; |
| 941 | node->element = element; |
| 942 | node->minimum = node->maximum = m_points->at(i: element->indices[0]); |
| 943 | for (int i = 1; i <= element->degree; ++i) { |
| 944 | const QPoint &p = m_points->at(i: element->indices[i]); |
| 945 | node->minimum.rx() = qMin(a: node->minimum.x(), b: p.x()); |
| 946 | node->minimum.ry() = qMin(a: node->minimum.y(), b: p.y()); |
| 947 | node->maximum.rx() = qMax(a: node->maximum.x(), b: p.x()); |
| 948 | node->maximum.ry() = qMax(a: node->maximum.y(), b: p.y()); |
| 949 | } |
| 950 | return node; |
| 951 | } |
| 952 | |
| 953 | node->type = BVHNode::Split; |
| 954 | |
| 955 | QPoint minimum, maximum; |
| 956 | minimum = maximum = elements[0]->middle; |
| 957 | |
| 958 | for (int i = 1; i < elementCount; ++i) { |
| 959 | const QPoint &p = elements[i]->middle; |
| 960 | minimum.rx() = qMin(a: minimum.x(), b: p.x()); |
| 961 | minimum.ry() = qMin(a: minimum.y(), b: p.y()); |
| 962 | maximum.rx() = qMax(a: maximum.x(), b: p.x()); |
| 963 | maximum.ry() = qMax(a: maximum.y(), b: p.y()); |
| 964 | } |
| 965 | |
| 966 | int comp, pivot; |
| 967 | if (maximum.x() - minimum.x() > maximum.y() - minimum.y()) { |
| 968 | comp = 0; |
| 969 | pivot = (maximum.x() + minimum.x()) >> 1; |
| 970 | } else { |
| 971 | comp = 1; |
| 972 | pivot = (maximum.y() + minimum.y()) >> 1; |
| 973 | } |
| 974 | |
| 975 | int lo = 0; |
| 976 | int hi = elementCount - 1; |
| 977 | while (lo < hi) { |
| 978 | while (lo < hi && (&elements[lo]->middle.rx())[comp] <= pivot) |
| 979 | ++lo; |
| 980 | while (lo < hi && (&elements[hi]->middle.rx())[comp] > pivot) |
| 981 | --hi; |
| 982 | if (lo < hi) |
| 983 | qSwap(value1&: elements[lo], value2&: elements[hi]); |
| 984 | } |
| 985 | |
| 986 | if (lo == elementCount) { |
| 987 | // All points are the same. |
| 988 | Q_ASSERT(minimum.x() == maximum.x() && minimum.y() == maximum.y()); |
| 989 | lo = elementCount >> 1; |
| 990 | } |
| 991 | |
| 992 | node->left = buildTree(elements, elementCount: lo); |
| 993 | node->right = buildTree(elements: elements + lo, elementCount: elementCount - lo); |
| 994 | |
| 995 | const BVHNode *left = node->left; |
| 996 | const BVHNode *right = node->right; |
| 997 | node->minimum.rx() = qMin(a: left->minimum.x(), b: right->minimum.x()); |
| 998 | node->minimum.ry() = qMin(a: left->minimum.y(), b: right->minimum.y()); |
| 999 | node->maximum.rx() = qMax(a: left->maximum.x(), b: right->maximum.x()); |
| 1000 | node->maximum.ry() = qMax(a: left->maximum.y(), b: right->maximum.y()); |
| 1001 | |
| 1002 | return node; |
| 1003 | } |
| 1004 | |
| 1005 | bool PathSimplifier::intersectNodes(QDataBuffer<Element *> &elements, BVHNode *elementNode, |
| 1006 | BVHNode *treeNode) |
| 1007 | { |
| 1008 | if (elementNode->minimum.x() >= treeNode->maximum.x() |
| 1009 | || elementNode->minimum.y() >= treeNode->maximum.y() |
| 1010 | || elementNode->maximum.x() <= treeNode->minimum.x() |
| 1011 | || elementNode->maximum.y() <= treeNode->minimum.y()) |
| 1012 | { |
| 1013 | return false; |
| 1014 | } |
| 1015 | |
| 1016 | Q_ASSERT(elementNode->type == BVHNode::Leaf); |
| 1017 | Element *element = elementNode->element; |
| 1018 | Q_ASSERT(!element->processed); |
| 1019 | |
| 1020 | if (treeNode->type == BVHNode::Leaf) { |
| 1021 | Element *nodeElement = treeNode->element; |
| 1022 | if (!nodeElement->processed) |
| 1023 | return false; |
| 1024 | |
| 1025 | if (treeNode->element == elementNode->element) |
| 1026 | return false; |
| 1027 | |
| 1028 | if (equalElements(e1: treeNode->element, e2: elementNode->element)) |
| 1029 | return false; // element doesn't split itself. |
| 1030 | |
| 1031 | if (element->degree == Element::Line && nodeElement->degree == Element::Line) { |
| 1032 | const QPoint &u1 = m_points->at(i: element->indices[0]); |
| 1033 | const QPoint &u2 = m_points->at(i: element->indices[1]); |
| 1034 | const QPoint &v1 = m_points->at(i: nodeElement->indices[0]); |
| 1035 | const QPoint &v2 = m_points->at(i: nodeElement->indices[1]); |
| 1036 | IntersectionPoint intersection = intersectionPoint(u1, u2, v1, v2); |
| 1037 | if (!intersection.isValid()) |
| 1038 | return false; |
| 1039 | |
| 1040 | Q_ASSERT(intersection.x.integer >= qMin(u1.x(), u2.x())); |
| 1041 | Q_ASSERT(intersection.y.integer >= qMin(u1.y(), u2.y())); |
| 1042 | Q_ASSERT(intersection.x.integer >= qMin(v1.x(), v2.x())); |
| 1043 | Q_ASSERT(intersection.y.integer >= qMin(v1.y(), v2.y())); |
| 1044 | |
| 1045 | Q_ASSERT(intersection.x.integer <= qMax(u1.x(), u2.x())); |
| 1046 | Q_ASSERT(intersection.y.integer <= qMax(u1.y(), u2.y())); |
| 1047 | Q_ASSERT(intersection.x.integer <= qMax(v1.x(), v2.x())); |
| 1048 | Q_ASSERT(intersection.y.integer <= qMax(v1.y(), v2.y())); |
| 1049 | |
| 1050 | m_points->add(t: intersection.round()); |
| 1051 | splitLineAt(elements, node: treeNode, pointIndex: m_points->size() - 1, processAgain: !intersection.isAccurate()); |
| 1052 | return splitLineAt(elements, node: elementNode, pointIndex: m_points->size() - 1, processAgain: false); |
| 1053 | } else { |
| 1054 | QVarLengthArray<QPoint, 12> axes; |
| 1055 | appendSeparatingAxes(axes, element: elementNode->element); |
| 1056 | appendSeparatingAxes(axes, element: treeNode->element); |
| 1057 | for (int i = 0; i < axes.size(); ++i) { |
| 1058 | QPair<int, int> range1 = calculateSeparatingAxisRange(axis: axes.at(idx: i), element: elementNode->element); |
| 1059 | QPair<int, int> range2 = calculateSeparatingAxisRange(axis: axes.at(idx: i), element: treeNode->element); |
| 1060 | if (range1.first >= range2.second || range1.second <= range2.first) { |
| 1061 | return false; // Separating axis found. |
| 1062 | } |
| 1063 | } |
| 1064 | // Bounding areas overlap. |
| 1065 | if (nodeElement->degree > Element::Line) |
| 1066 | splitCurve(elements, node: treeNode); |
| 1067 | if (element->degree > Element::Line) { |
| 1068 | splitCurve(elements, node: elementNode); |
| 1069 | } else { |
| 1070 | // The element was not split, so it can be processed further. |
| 1071 | if (intersectNodes(elements, elementNode, treeNode: treeNode->left)) |
| 1072 | return true; |
| 1073 | if (intersectNodes(elements, elementNode, treeNode: treeNode->right)) |
| 1074 | return true; |
| 1075 | return false; |
| 1076 | } |
| 1077 | return true; |
| 1078 | } |
| 1079 | } else { |
| 1080 | if (intersectNodes(elements, elementNode, treeNode: treeNode->left)) |
| 1081 | return true; |
| 1082 | if (intersectNodes(elements, elementNode, treeNode: treeNode->right)) |
| 1083 | return true; |
| 1084 | return false; |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | bool PathSimplifier::equalElements(const Element *e1, const Element *e2) |
| 1089 | { |
| 1090 | Q_ASSERT(e1 != e2); |
| 1091 | if (e1->degree != e2->degree) |
| 1092 | return false; |
| 1093 | |
| 1094 | // Possibly equal and in the same direction. |
| 1095 | bool equalSame = true; |
| 1096 | for (int i = 0; i <= e1->degree; ++i) |
| 1097 | equalSame &= m_points->at(i: e1->indices[i]) == m_points->at(i: e2->indices[i]); |
| 1098 | |
| 1099 | // Possibly equal and in opposite directions. |
| 1100 | bool equalOpposite = true; |
| 1101 | for (int i = 0; i <= e1->degree; ++i) |
| 1102 | equalOpposite &= m_points->at(i: e1->indices[e1->degree - i]) == m_points->at(i: e2->indices[i]); |
| 1103 | |
| 1104 | return equalSame || equalOpposite; |
| 1105 | } |
| 1106 | |
| 1107 | bool PathSimplifier::splitLineAt(QDataBuffer<Element *> &elements, BVHNode *node, |
| 1108 | quint32 pointIndex, bool processAgain) |
| 1109 | { |
| 1110 | Q_ASSERT(node->type == BVHNode::Leaf); |
| 1111 | Element *element = node->element; |
| 1112 | Q_ASSERT(element->degree == Element::Line); |
| 1113 | const QPoint &u = m_points->at(i: element->indices[0]); |
| 1114 | const QPoint &v = m_points->at(i: element->indices[1]); |
| 1115 | const QPoint &p = m_points->at(i: pointIndex); |
| 1116 | if (u == p || v == p) |
| 1117 | return false; // No split needed. |
| 1118 | |
| 1119 | if (processAgain) |
| 1120 | element->processed = false; // Needs to be processed again. |
| 1121 | |
| 1122 | Element *first = node->element; |
| 1123 | Element *second = m_elementAllocator.newElement(); |
| 1124 | *second = *first; |
| 1125 | first->indices[1] = second->indices[0] = pointIndex; |
| 1126 | first->middle.rx() = (u.x() + p.x()) >> 1; |
| 1127 | first->middle.ry() = (u.y() + p.y()) >> 1; |
| 1128 | second->middle.rx() = (v.x() + p.x()) >> 1; |
| 1129 | second->middle.ry() = (v.y() + p.y()) >> 1; |
| 1130 | m_elements.add(t: second); |
| 1131 | |
| 1132 | BVHNode *left = m_bvh.newNode(); |
| 1133 | BVHNode *right = m_bvh.newNode(); |
| 1134 | left->type = right->type = BVHNode::Leaf; |
| 1135 | left->element = first; |
| 1136 | right->element = second; |
| 1137 | left->minimum = right->minimum = node->minimum; |
| 1138 | left->maximum = right->maximum = node->maximum; |
| 1139 | if (u.x() < v.x()) |
| 1140 | left->maximum.rx() = right->minimum.rx() = p.x(); |
| 1141 | else |
| 1142 | left->minimum.rx() = right->maximum.rx() = p.x(); |
| 1143 | if (u.y() < v.y()) |
| 1144 | left->maximum.ry() = right->minimum.ry() = p.y(); |
| 1145 | else |
| 1146 | left->minimum.ry() = right->maximum.ry() = p.y(); |
| 1147 | left->element->bvhNode = left; |
| 1148 | right->element->bvhNode = right; |
| 1149 | |
| 1150 | node->type = BVHNode::Split; |
| 1151 | node->left = left; |
| 1152 | node->right = right; |
| 1153 | |
| 1154 | if (!first->processed) { |
| 1155 | elements.add(t: left->element); |
| 1156 | elements.add(t: right->element); |
| 1157 | } |
| 1158 | return true; |
| 1159 | } |
| 1160 | |
| 1161 | void PathSimplifier::appendSeparatingAxes(QVarLengthArray<QPoint, 12> &axes, Element *element) |
| 1162 | { |
| 1163 | switch (element->degree) { |
| 1164 | case Element::Cubic: |
| 1165 | { |
| 1166 | const QPoint &u = m_points->at(i: element->indices[0]); |
| 1167 | const QPoint &v = m_points->at(i: element->indices[1]); |
| 1168 | const QPoint &w = m_points->at(i: element->indices[2]); |
| 1169 | const QPoint &q = m_points->at(i: element->indices[3]); |
| 1170 | QPoint ns[] = { |
| 1171 | QPoint(u.y() - v.y(), v.x() - u.x()), |
| 1172 | QPoint(v.y() - w.y(), w.x() - v.x()), |
| 1173 | QPoint(w.y() - q.y(), q.x() - w.x()), |
| 1174 | QPoint(q.y() - u.y(), u.x() - q.x()), |
| 1175 | QPoint(u.y() - w.y(), w.x() - u.x()), |
| 1176 | QPoint(v.y() - q.y(), q.x() - v.x()) |
| 1177 | }; |
| 1178 | for (int i = 0; i < 6; ++i) { |
| 1179 | if (ns[i].x() || ns[i].y()) |
| 1180 | axes.append(t: ns[i]); |
| 1181 | } |
| 1182 | } |
| 1183 | break; |
| 1184 | case Element::Quadratic: |
| 1185 | { |
| 1186 | const QPoint &u = m_points->at(i: element->indices[0]); |
| 1187 | const QPoint &v = m_points->at(i: element->indices[1]); |
| 1188 | const QPoint &w = m_points->at(i: element->indices[2]); |
| 1189 | QPoint ns[] = { |
| 1190 | QPoint(u.y() - v.y(), v.x() - u.x()), |
| 1191 | QPoint(v.y() - w.y(), w.x() - v.x()), |
| 1192 | QPoint(w.y() - u.y(), u.x() - w.x()) |
| 1193 | }; |
| 1194 | for (int i = 0; i < 3; ++i) { |
| 1195 | if (ns[i].x() || ns[i].y()) |
| 1196 | axes.append(t: ns[i]); |
| 1197 | } |
| 1198 | } |
| 1199 | break; |
| 1200 | case Element::Line: |
| 1201 | { |
| 1202 | const QPoint &u = m_points->at(i: element->indices[0]); |
| 1203 | const QPoint &v = m_points->at(i: element->indices[1]); |
| 1204 | QPoint n(u.y() - v.y(), v.x() - u.x()); |
| 1205 | if (n.x() || n.y()) |
| 1206 | axes.append(t: n); |
| 1207 | } |
| 1208 | break; |
| 1209 | default: |
| 1210 | Q_ASSERT_X(0, "QSGPathSimplifier::appendSeparatingAxes" , "Unexpected element type." ); |
| 1211 | break; |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | QPair<int, int> PathSimplifier::calculateSeparatingAxisRange(const QPoint &axis, Element *element) |
| 1216 | { |
| 1217 | QPair<int, int> range(0x7fffffff, -0x7fffffff); |
| 1218 | for (int i = 0; i <= element->degree; ++i) { |
| 1219 | const QPoint &p = m_points->at(i: element->indices[i]); |
| 1220 | int dist = dot(u: axis, v: p); |
| 1221 | range.first = qMin(a: range.first, b: dist); |
| 1222 | range.second = qMax(a: range.second, b: dist); |
| 1223 | } |
| 1224 | return range; |
| 1225 | } |
| 1226 | |
| 1227 | void PathSimplifier::splitCurve(QDataBuffer<Element *> &elements, BVHNode *node) |
| 1228 | { |
| 1229 | Q_ASSERT(node->type == BVHNode::Leaf); |
| 1230 | |
| 1231 | Element *first = node->element; |
| 1232 | Element *second = m_elementAllocator.newElement(); |
| 1233 | *second = *first; |
| 1234 | m_elements.add(t: second); |
| 1235 | Q_ASSERT(first->degree > Element::Line); |
| 1236 | |
| 1237 | bool accurate = true; |
| 1238 | const QPoint &u = m_points->at(i: first->indices[0]); |
| 1239 | const QPoint &v = m_points->at(i: first->indices[1]); |
| 1240 | const QPoint &w = m_points->at(i: first->indices[2]); |
| 1241 | |
| 1242 | if (first->degree == Element::Quadratic) { |
| 1243 | QPoint pts[3]; |
| 1244 | accurate = splitQuadratic(u, v, w, result: pts); |
| 1245 | int pointIndex = m_points->size(); |
| 1246 | m_points->add(t: pts[1]); |
| 1247 | accurate &= setElementToQuadratic(element: first, pointIndex1: first->indices[0], ctrl: pts[0], pointIndex2: pointIndex); |
| 1248 | accurate &= setElementToQuadratic(element: second, pointIndex1: pointIndex, ctrl: pts[2], pointIndex2: second->indices[2]); |
| 1249 | } else { |
| 1250 | Q_ASSERT(first->degree == Element::Cubic); |
| 1251 | const QPoint &q = m_points->at(i: first->indices[3]); |
| 1252 | QPoint pts[5]; |
| 1253 | accurate = splitCubic(u, v, w, q, result: pts); |
| 1254 | int pointIndex = m_points->size(); |
| 1255 | m_points->add(t: pts[2]); |
| 1256 | accurate &= setElementToCubic(element: first, pointIndex1: first->indices[0], ctrl1: pts[0], ctrl2: pts[1], pointIndex2: pointIndex); |
| 1257 | accurate &= setElementToCubic(element: second, pointIndex1: pointIndex, ctrl1: pts[3], ctrl2: pts[4], pointIndex2: second->indices[3]); |
| 1258 | } |
| 1259 | |
| 1260 | if (!accurate) |
| 1261 | first->processed = second->processed = false; // Needs to be processed again. |
| 1262 | |
| 1263 | BVHNode *left = m_bvh.newNode(); |
| 1264 | BVHNode *right = m_bvh.newNode(); |
| 1265 | left->type = right->type = BVHNode::Leaf; |
| 1266 | left->element = first; |
| 1267 | right->element = second; |
| 1268 | |
| 1269 | left->minimum.rx() = left->minimum.ry() = right->minimum.rx() = right->minimum.ry() = INT_MAX; |
| 1270 | left->maximum.rx() = left->maximum.ry() = right->maximum.rx() = right->maximum.ry() = INT_MIN; |
| 1271 | |
| 1272 | for (int i = 0; i <= first->degree; ++i) { |
| 1273 | QPoint &p = m_points->at(i: first->indices[i]); |
| 1274 | left->minimum.rx() = qMin(a: left->minimum.x(), b: p.x()); |
| 1275 | left->minimum.ry() = qMin(a: left->minimum.y(), b: p.y()); |
| 1276 | left->maximum.rx() = qMax(a: left->maximum.x(), b: p.x()); |
| 1277 | left->maximum.ry() = qMax(a: left->maximum.y(), b: p.y()); |
| 1278 | } |
| 1279 | for (int i = 0; i <= second->degree; ++i) { |
| 1280 | QPoint &p = m_points->at(i: second->indices[i]); |
| 1281 | right->minimum.rx() = qMin(a: right->minimum.x(), b: p.x()); |
| 1282 | right->minimum.ry() = qMin(a: right->minimum.y(), b: p.y()); |
| 1283 | right->maximum.rx() = qMax(a: right->maximum.x(), b: p.x()); |
| 1284 | right->maximum.ry() = qMax(a: right->maximum.y(), b: p.y()); |
| 1285 | } |
| 1286 | left->element->bvhNode = left; |
| 1287 | right->element->bvhNode = right; |
| 1288 | |
| 1289 | node->type = BVHNode::Split; |
| 1290 | node->left = left; |
| 1291 | node->right = right; |
| 1292 | |
| 1293 | if (!first->processed) { |
| 1294 | elements.add(t: left->element); |
| 1295 | elements.add(t: right->element); |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | bool PathSimplifier::setElementToQuadratic(Element *element, quint32 pointIndex1, |
| 1300 | const QPoint &ctrl, quint32 pointIndex2) |
| 1301 | { |
| 1302 | const QPoint &p1 = m_points->at(i: pointIndex1); |
| 1303 | const QPoint &p2 = m_points->at(i: pointIndex2); |
| 1304 | if (flattenQuadratic(u: p1, v: ctrl, w: p2)) { |
| 1305 | // Insert line. |
| 1306 | element->degree = Element::Line; |
| 1307 | element->indices[0] = pointIndex1; |
| 1308 | element->indices[1] = pointIndex2; |
| 1309 | element->middle.rx() = (p1.x() + p2.x()) >> 1; |
| 1310 | element->middle.ry() = (p1.y() + p2.y()) >> 1; |
| 1311 | return false; |
| 1312 | } else { |
| 1313 | // Insert bezier. |
| 1314 | element->degree = Element::Quadratic; |
| 1315 | element->indices[0] = pointIndex1; |
| 1316 | element->indices[1] = m_points->size(); |
| 1317 | element->indices[2] = pointIndex2; |
| 1318 | element->middle.rx() = (p1.x() + ctrl.x() + p2.x()) / 3; |
| 1319 | element->middle.ry() = (p1.y() + ctrl.y() + p2.y()) / 3; |
| 1320 | m_points->add(t: ctrl); |
| 1321 | return true; |
| 1322 | } |
| 1323 | } |
| 1324 | |
| 1325 | bool PathSimplifier::setElementToCubic(Element *element, quint32 pointIndex1, const QPoint &v, |
| 1326 | const QPoint &w, quint32 pointIndex2) |
| 1327 | { |
| 1328 | const QPoint &u = m_points->at(i: pointIndex1); |
| 1329 | const QPoint &q = m_points->at(i: pointIndex2); |
| 1330 | if (flattenCubic(u, v, w, q)) { |
| 1331 | // Insert line. |
| 1332 | element->degree = Element::Line; |
| 1333 | element->indices[0] = pointIndex1; |
| 1334 | element->indices[1] = pointIndex2; |
| 1335 | element->middle.rx() = (u.x() + q.x()) >> 1; |
| 1336 | element->middle.ry() = (u.y() + q.y()) >> 1; |
| 1337 | return false; |
| 1338 | } else { |
| 1339 | // Insert bezier. |
| 1340 | element->degree = Element::Cubic; |
| 1341 | element->indices[0] = pointIndex1; |
| 1342 | element->indices[1] = m_points->size(); |
| 1343 | element->indices[2] = m_points->size() + 1; |
| 1344 | element->indices[3] = pointIndex2; |
| 1345 | element->middle.rx() = (u.x() + v.x() + w.x() + q.x()) >> 2; |
| 1346 | element->middle.ry() = (u.y() + v.y() + w.y() + q.y()) >> 2; |
| 1347 | m_points->add(t: v); |
| 1348 | m_points->add(t: w); |
| 1349 | return true; |
| 1350 | } |
| 1351 | } |
| 1352 | |
| 1353 | void PathSimplifier::setElementToCubicAndSimplify(Element *element, quint32 pointIndex1, |
| 1354 | const QPoint &v, const QPoint &w, |
| 1355 | quint32 pointIndex2) |
| 1356 | { |
| 1357 | const QPoint &u = m_points->at(i: pointIndex1); |
| 1358 | const QPoint &q = m_points->at(i: pointIndex2); |
| 1359 | if (flattenCubic(u, v, w, q)) { |
| 1360 | // Insert line. |
| 1361 | element->degree = Element::Line; |
| 1362 | element->indices[0] = pointIndex1; |
| 1363 | element->indices[1] = pointIndex2; |
| 1364 | element->middle.rx() = (u.x() + q.x()) >> 1; |
| 1365 | element->middle.ry() = (u.y() + q.y()) >> 1; |
| 1366 | return; |
| 1367 | } |
| 1368 | |
| 1369 | bool intersecting = (u == q) || intersectionPoint(u1: u, u2: v, v1: w, v2: q).isValid(); |
| 1370 | if (!intersecting) { |
| 1371 | // Insert bezier. |
| 1372 | element->degree = Element::Cubic; |
| 1373 | element->indices[0] = pointIndex1; |
| 1374 | element->indices[1] = m_points->size(); |
| 1375 | element->indices[2] = m_points->size() + 1; |
| 1376 | element->indices[3] = pointIndex2; |
| 1377 | element->middle.rx() = (u.x() + v.x() + w.x() + q.x()) >> 2; |
| 1378 | element->middle.ry() = (u.y() + v.y() + w.y() + q.y()) >> 2; |
| 1379 | m_points->add(t: v); |
| 1380 | m_points->add(t: w); |
| 1381 | return; |
| 1382 | } |
| 1383 | |
| 1384 | QPoint pts[5]; |
| 1385 | splitCubic(u, v, w, q, result: pts); |
| 1386 | int pointIndex = m_points->size(); |
| 1387 | m_points->add(t: pts[2]); |
| 1388 | Element *element2 = m_elementAllocator.newElement(); |
| 1389 | m_elements.add(t: element2); |
| 1390 | setElementToCubicAndSimplify(element, pointIndex1, v: pts[0], w: pts[1], pointIndex2: pointIndex); |
| 1391 | setElementToCubicAndSimplify(element: element2, pointIndex1: pointIndex, v: pts[3], w: pts[4], pointIndex2); |
| 1392 | } |
| 1393 | |
| 1394 | PathSimplifier::RBNode *PathSimplifier::findElementLeftOf(const Element *element, |
| 1395 | const QPair<RBNode *, RBNode *> &bounds) |
| 1396 | { |
| 1397 | if (!m_elementList.root) |
| 1398 | return nullptr; |
| 1399 | RBNode *current = bounds.first; |
| 1400 | Q_ASSERT(!current || !elementIsLeftOf(element, current->data)); |
| 1401 | if (!current) |
| 1402 | current = m_elementList.front(node: m_elementList.root); |
| 1403 | Q_ASSERT(current); |
| 1404 | RBNode *result = nullptr; |
| 1405 | while (current != bounds.second && !elementIsLeftOf(left: element, right: current->data)) { |
| 1406 | result = current; |
| 1407 | current = m_elementList.next(node: current); |
| 1408 | } |
| 1409 | return result; |
| 1410 | } |
| 1411 | |
| 1412 | bool PathSimplifier::elementIsLeftOf(const Element *left, const Element *right) |
| 1413 | { |
| 1414 | const QPoint &leftU = m_points->at(i: left->upperIndex()); |
| 1415 | const QPoint &leftL = m_points->at(i: left->lowerIndex()); |
| 1416 | const QPoint &rightU = m_points->at(i: right->upperIndex()); |
| 1417 | const QPoint &rightL = m_points->at(i: right->lowerIndex()); |
| 1418 | Q_ASSERT(leftL >= rightU && rightL >= leftU); |
| 1419 | if (leftU.x() < qMin(a: rightL.x(), b: rightU.x())) |
| 1420 | return true; |
| 1421 | if (leftU.x() > qMax(a: rightL.x(), b: rightU.x())) |
| 1422 | return false; |
| 1423 | int d = pointDistanceFromLine(p: leftU, v1: rightL, v2: rightU); |
| 1424 | // d < 0: left, d > 0: right, d == 0: on top |
| 1425 | if (d == 0) { |
| 1426 | d = pointDistanceFromLine(p: leftL, v1: rightL, v2: rightU); |
| 1427 | if (d == 0) { |
| 1428 | if (right->degree > Element::Line) { |
| 1429 | d = pointDistanceFromLine(p: leftL, v1: rightL, v2: m_points->at(i: right->indices[1])); |
| 1430 | if (d == 0) |
| 1431 | d = pointDistanceFromLine(p: leftL, v1: rightL, v2: m_points->at(i: right->indices[2])); |
| 1432 | } else if (left->degree > Element::Line) { |
| 1433 | d = pointDistanceFromLine(p: m_points->at(i: left->indices[1]), v1: rightL, v2: rightU); |
| 1434 | if (d == 0) |
| 1435 | d = pointDistanceFromLine(p: m_points->at(i: left->indices[2]), v1: rightL, v2: rightU); |
| 1436 | } |
| 1437 | } |
| 1438 | } |
| 1439 | return d < 0; |
| 1440 | } |
| 1441 | |
| 1442 | QPair<PathSimplifier::RBNode *, PathSimplifier::RBNode *> PathSimplifier::outerBounds(const QPoint &point) |
| 1443 | { |
| 1444 | RBNode *current = m_elementList.root; |
| 1445 | QPair<RBNode *, RBNode *> result(0, 0); |
| 1446 | |
| 1447 | while (current) { |
| 1448 | const Element *element = current->data; |
| 1449 | Q_ASSERT(element->edgeNode == current); |
| 1450 | const QPoint &v1 = m_points->at(i: element->lowerIndex()); |
| 1451 | const QPoint &v2 = m_points->at(i: element->upperIndex()); |
| 1452 | Q_ASSERT(point >= v2 && point <= v1); |
| 1453 | if (point == v1 || point == v2) |
| 1454 | break; |
| 1455 | int d = pointDistanceFromLine(p: point, v1, v2); |
| 1456 | if (d == 0) { |
| 1457 | if (element->degree == Element::Line) |
| 1458 | break; |
| 1459 | d = pointDistanceFromLine(p: point, v1, v2: m_points->at(i: element->indices[1])); |
| 1460 | if (d == 0) |
| 1461 | d = pointDistanceFromLine(p: point, v1, v2: m_points->at(i: element->indices[2])); |
| 1462 | Q_ASSERT(d != 0); |
| 1463 | } |
| 1464 | if (d < 0) { |
| 1465 | result.second = current; |
| 1466 | current = current->left; |
| 1467 | } else { |
| 1468 | result.first = current; |
| 1469 | current = current->right; |
| 1470 | } |
| 1471 | } |
| 1472 | |
| 1473 | if (!current) |
| 1474 | return result; |
| 1475 | |
| 1476 | RBNode *mid = current; |
| 1477 | |
| 1478 | current = mid->left; |
| 1479 | while (current) { |
| 1480 | const Element *element = current->data; |
| 1481 | Q_ASSERT(element->edgeNode == current); |
| 1482 | const QPoint &v1 = m_points->at(i: element->lowerIndex()); |
| 1483 | const QPoint &v2 = m_points->at(i: element->upperIndex()); |
| 1484 | Q_ASSERT(point >= v2 && point <= v1); |
| 1485 | bool equal = (point == v1 || point == v2); |
| 1486 | if (!equal) { |
| 1487 | int d = pointDistanceFromLine(p: point, v1, v2); |
| 1488 | Q_ASSERT(d >= 0); |
| 1489 | equal = (d == 0 && element->degree == Element::Line); |
| 1490 | } |
| 1491 | if (equal) { |
| 1492 | current = current->left; |
| 1493 | } else { |
| 1494 | result.first = current; |
| 1495 | current = current->right; |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | current = mid->right; |
| 1500 | while (current) { |
| 1501 | const Element *element = current->data; |
| 1502 | Q_ASSERT(element->edgeNode == current); |
| 1503 | const QPoint &v1 = m_points->at(i: element->lowerIndex()); |
| 1504 | const QPoint &v2 = m_points->at(i: element->upperIndex()); |
| 1505 | Q_ASSERT(point >= v2 && point <= v1); |
| 1506 | bool equal = (point == v1 || point == v2); |
| 1507 | if (!equal) { |
| 1508 | int d = pointDistanceFromLine(p: point, v1, v2); |
| 1509 | Q_ASSERT(d <= 0); |
| 1510 | equal = (d == 0 && element->degree == Element::Line); |
| 1511 | } |
| 1512 | if (equal) { |
| 1513 | current = current->right; |
| 1514 | } else { |
| 1515 | result.second = current; |
| 1516 | current = current->left; |
| 1517 | } |
| 1518 | } |
| 1519 | |
| 1520 | return result; |
| 1521 | } |
| 1522 | |
| 1523 | inline bool PathSimplifier::flattenQuadratic(const QPoint &u, const QPoint &v, const QPoint &w) |
| 1524 | { |
| 1525 | QPoint deltas[2] = { v - u, w - v }; |
| 1526 | int d = qAbs(t: cross(u: deltas[0], v: deltas[1])); |
| 1527 | int l = qAbs(t: deltas[0].x()) + qAbs(t: deltas[0].y()) + qAbs(t: deltas[1].x()) + qAbs(t: deltas[1].y()); |
| 1528 | return d < (Q_FIXED_POINT_SCALE * Q_FIXED_POINT_SCALE * 3 / 2) || l <= Q_FIXED_POINT_SCALE * 2; |
| 1529 | } |
| 1530 | |
| 1531 | inline bool PathSimplifier::flattenCubic(const QPoint &u, const QPoint &v, |
| 1532 | const QPoint &w, const QPoint &q) |
| 1533 | { |
| 1534 | QPoint deltas[] = { v - u, w - v, q - w, q - u }; |
| 1535 | int d = qAbs(t: cross(u: deltas[0], v: deltas[1])) + qAbs(t: cross(u: deltas[1], v: deltas[2])) |
| 1536 | + qAbs(t: cross(u: deltas[0], v: deltas[3])) + qAbs(t: cross(u: deltas[3], v: deltas[2])); |
| 1537 | int l = qAbs(t: deltas[0].x()) + qAbs(t: deltas[0].y()) + qAbs(t: deltas[1].x()) + qAbs(t: deltas[1].y()) |
| 1538 | + qAbs(t: deltas[2].x()) + qAbs(t: deltas[2].y()); |
| 1539 | return d < (Q_FIXED_POINT_SCALE * Q_FIXED_POINT_SCALE * 3) || l <= Q_FIXED_POINT_SCALE * 2; |
| 1540 | } |
| 1541 | |
| 1542 | inline bool PathSimplifier::splitQuadratic(const QPoint &u, const QPoint &v, |
| 1543 | const QPoint &w, QPoint *result) |
| 1544 | { |
| 1545 | result[0] = u + v; |
| 1546 | result[2] = v + w; |
| 1547 | result[1] = result[0] + result[2]; |
| 1548 | bool accurate = ((result[0].x() | result[0].y() | result[2].x() | result[2].y()) & 1) == 0 |
| 1549 | && ((result[1].x() | result[1].y()) & 3) == 0; |
| 1550 | result[0].rx() >>= 1; |
| 1551 | result[0].ry() >>= 1; |
| 1552 | result[1].rx() >>= 2; |
| 1553 | result[1].ry() >>= 2; |
| 1554 | result[2].rx() >>= 1; |
| 1555 | result[2].ry() >>= 1; |
| 1556 | return accurate; |
| 1557 | } |
| 1558 | |
| 1559 | inline bool PathSimplifier::splitCubic(const QPoint &u, const QPoint &v, |
| 1560 | const QPoint &w, const QPoint &q, QPoint *result) |
| 1561 | { |
| 1562 | result[0] = u + v; |
| 1563 | result[2] = v + w; |
| 1564 | result[4] = w + q; |
| 1565 | result[1] = result[0] + result[2]; |
| 1566 | result[3] = result[2] + result[4]; |
| 1567 | result[2] = result[1] + result[3]; |
| 1568 | bool accurate = ((result[0].x() | result[0].y() | result[4].x() | result[4].y()) & 1) == 0 |
| 1569 | && ((result[1].x() | result[1].y() | result[3].x() | result[3].y()) & 3) == 0 |
| 1570 | && ((result[2].x() | result[2].y()) & 7) == 0; |
| 1571 | result[0].rx() >>= 1; |
| 1572 | result[0].ry() >>= 1; |
| 1573 | result[1].rx() >>= 2; |
| 1574 | result[1].ry() >>= 2; |
| 1575 | result[2].rx() >>= 3; |
| 1576 | result[2].ry() >>= 3; |
| 1577 | result[3].rx() >>= 2; |
| 1578 | result[3].ry() >>= 2; |
| 1579 | result[4].rx() >>= 1; |
| 1580 | result[4].ry() >>= 1; |
| 1581 | return accurate; |
| 1582 | } |
| 1583 | |
| 1584 | inline void PathSimplifier::subDivQuadratic(const QPoint &u, const QPoint &v, const QPoint &w) |
| 1585 | { |
| 1586 | if (flattenQuadratic(u, v, w)) |
| 1587 | return; |
| 1588 | QPoint pts[3]; |
| 1589 | splitQuadratic(u, v, w, result: pts); |
| 1590 | subDivQuadratic(u, v: pts[0], w: pts[1]); |
| 1591 | m_indices->add(t: m_points->size()); |
| 1592 | m_points->add(t: pts[1]); |
| 1593 | subDivQuadratic(u: pts[1], v: pts[2], w); |
| 1594 | } |
| 1595 | |
| 1596 | inline void PathSimplifier::subDivCubic(const QPoint &u, const QPoint &v, |
| 1597 | const QPoint &w, const QPoint &q) |
| 1598 | { |
| 1599 | if (flattenCubic(u, v, w, q)) |
| 1600 | return; |
| 1601 | QPoint pts[5]; |
| 1602 | splitCubic(u, v, w, q, result: pts); |
| 1603 | subDivCubic(u, v: pts[0], w: pts[1], q: pts[2]); |
| 1604 | m_indices->add(t: m_points->size()); |
| 1605 | m_points->add(t: pts[2]); |
| 1606 | subDivCubic(u: pts[2], v: pts[3], w: pts[4], q); |
| 1607 | } |
| 1608 | |
| 1609 | void PathSimplifier::sortEvents(Event *events, int count) |
| 1610 | { |
| 1611 | // Bucket sort + insertion sort. |
| 1612 | Q_ASSERT(count > 0); |
| 1613 | QDataBuffer<Event> buffer(count); |
| 1614 | buffer.resize(size: count); |
| 1615 | QScopedArrayPointer<int> bins(new int[count]); |
| 1616 | int counts[0x101]; |
| 1617 | memset(s: counts, c: 0, n: sizeof(counts)); |
| 1618 | |
| 1619 | int minimum, maximum; |
| 1620 | minimum = maximum = events[0].point.y(); |
| 1621 | for (int i = 1; i < count; ++i) { |
| 1622 | minimum = qMin(a: minimum, b: events[i].point.y()); |
| 1623 | maximum = qMax(a: maximum, b: events[i].point.y()); |
| 1624 | } |
| 1625 | |
| 1626 | for (int i = 0; i < count; ++i) { |
| 1627 | bins[i] = ((maximum - events[i].point.y()) << 8) / (maximum - minimum + 1); |
| 1628 | Q_ASSERT(bins[i] >= 0 && bins[i] < 0x100); |
| 1629 | ++counts[bins[i]]; |
| 1630 | } |
| 1631 | |
| 1632 | for (int i = 1; i < 0x100; ++i) |
| 1633 | counts[i] += counts[i - 1]; |
| 1634 | counts[0x100] = counts[0xff]; |
| 1635 | Q_ASSERT(counts[0x100] == count); |
| 1636 | |
| 1637 | for (int i = 0; i < count; ++i) |
| 1638 | buffer.at(i: --counts[bins[i]]) = events[i]; |
| 1639 | |
| 1640 | int j = 0; |
| 1641 | for (int i = 0; i < 0x100; ++i) { |
| 1642 | for (; j < counts[i + 1]; ++j) { |
| 1643 | int k = j; |
| 1644 | while (k > 0 && (buffer.at(i: j) < events[k - 1])) { |
| 1645 | events[k] = events[k - 1]; |
| 1646 | --k; |
| 1647 | } |
| 1648 | events[k] = buffer.at(i: j); |
| 1649 | } |
| 1650 | } |
| 1651 | } |
| 1652 | |
| 1653 | } // end anonymous namespace |
| 1654 | |
| 1655 | |
| 1656 | void qSimplifyPath(const QVectorPath &path, QDataBuffer<QPoint> &vertices, |
| 1657 | QDataBuffer<quint32> &indices, const QTransform &matrix) |
| 1658 | { |
| 1659 | PathSimplifier(path, vertices, indices, matrix); |
| 1660 | } |
| 1661 | |
| 1662 | void qSimplifyPath(const QPainterPath &path, QDataBuffer<QPoint> &vertices, |
| 1663 | QDataBuffer<quint32> &indices, const QTransform &matrix) |
| 1664 | { |
| 1665 | qSimplifyPath(path: qtVectorPathForPath(path), vertices, indices, matrix); |
| 1666 | } |
| 1667 | |
| 1668 | |
| 1669 | QT_END_NAMESPACE |
| 1670 | |