1 | /**************************************************************************** |
2 | ** |
3 | ** Copyright (C) 2019 The Qt Company Ltd. |
4 | ** Contact: http://www.qt.io/licensing/ |
5 | ** |
6 | ** This file is part of the Qt Gui module |
7 | ** |
8 | ** $QT_BEGIN_LICENSE:LGPL3$ |
9 | ** Commercial License Usage |
10 | ** Licensees holding valid commercial Qt licenses may use this file in |
11 | ** accordance with the commercial license agreement provided with the |
12 | ** Software or, alternatively, in accordance with the terms contained in |
13 | ** a written agreement between you and The Qt Company. For licensing terms |
14 | ** and conditions see http://www.qt.io/terms-conditions. For further |
15 | ** information use the contact form at http://www.qt.io/contact-us. |
16 | ** |
17 | ** GNU Lesser General Public License Usage |
18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
19 | ** General Public License version 3 as published by the Free Software |
20 | ** Foundation and appearing in the file LICENSE.LGPLv3 included in the |
21 | ** packaging of this file. Please review the following information to |
22 | ** ensure the GNU Lesser General Public License version 3 requirements |
23 | ** will be met: https://www.gnu.org/licenses/lgpl.html. |
24 | ** |
25 | ** GNU General Public License Usage |
26 | ** Alternatively, this file may be used under the terms of the GNU |
27 | ** General Public License version 2.0 or later as published by the Free |
28 | ** Software Foundation and appearing in the file LICENSE.GPL included in |
29 | ** the packaging of this file. Please review the following information to |
30 | ** ensure the GNU General Public License version 2.0 requirements will be |
31 | ** met: http://www.gnu.org/licenses/gpl-2.0.html. |
32 | ** |
33 | ** $QT_END_LICENSE$ |
34 | ** |
35 | ****************************************************************************/ |
36 | |
37 | #include "qrhi_p_p.h" |
38 | #include <qmath.h> |
39 | #include <QLoggingCategory> |
40 | |
41 | #include "qrhinull_p_p.h" |
42 | #ifndef QT_NO_OPENGL |
43 | #include "qrhigles2_p_p.h" |
44 | #endif |
45 | #if QT_CONFIG(vulkan) |
46 | #include "qrhivulkan_p_p.h" |
47 | #endif |
48 | #ifdef Q_OS_WIN |
49 | #include "qrhid3d11_p_p.h" |
50 | #endif |
51 | #if defined(Q_OS_MACOS) || defined(Q_OS_IOS) |
52 | #include "qrhimetal_p_p.h" |
53 | #endif |
54 | |
55 | QT_BEGIN_NAMESPACE |
56 | |
57 | Q_LOGGING_CATEGORY(QRHI_LOG_INFO, "qt.rhi.general" ) |
58 | |
59 | /*! |
60 | \class QRhi |
61 | \internal |
62 | \inmodule QtGui |
63 | |
64 | \brief Accelerated 2D/3D graphics API abstraction. |
65 | |
66 | The Qt Rendering Hardware Interface is an abstraction for hardware accelerated |
67 | graphics APIs, such as, \l{https://www.khronos.org/opengl/}{OpenGL}, |
68 | \l{https://www.khronos.org/opengles/}{OpenGL ES}, |
69 | \l{https://docs.microsoft.com/en-us/windows/desktop/direct3d}{Direct3D}, |
70 | \l{https://developer.apple.com/metal/}{Metal}, and |
71 | \l{https://www.khronos.org/vulkan/}{Vulkan}. |
72 | |
73 | Some of the main design goals are: |
74 | |
75 | \list |
76 | |
77 | \li Simple, minimal, understandable, extensible. Follow the proven path of the |
78 | Qt Quick scenegraph. |
79 | |
80 | \li Aim to be a product - and in the bigger picture, part of a product (Qt) - |
81 | that is usable out of the box both by internal (such as, Qt Quick) and, |
82 | eventually, external users. |
83 | |
84 | \li Not a complete 1:1 wrapper for any of the underlying APIs. The feature set |
85 | is tuned towards the needs of Qt's 2D and 3D offering (QPainter, Qt Quick, Qt |
86 | 3D Studio). Iterate and evolve in a sustainable manner. |
87 | |
88 | \li Intrinsically cross-platform, without reinventing: abstracting |
89 | cross-platform aspects of certain APIs (such as, OpenGL context creation and |
90 | windowing system interfaces, Vulkan instance and surface management) is not in |
91 | scope here. These are delegated to the existing QtGui facilities (QWindow, |
92 | QOpenGLContext, QVulkanInstance) and its backing QPA architecture. |
93 | |
94 | \endlist |
95 | |
96 | Each QRhi instance is backed by a backend for a specific graphics API. The |
97 | selection of the backend is a run time choice and is up to the application |
98 | or library that creates the QRhi instance. Some backends are available on |
99 | multiple platforms (OpenGL, Vulkan, Null), while APIs specific to a given |
100 | platform are only available when running on the platform in question (Metal |
101 | on macOS/iOS/tvOS, Direct3D on Windows). |
102 | |
103 | The available backends currently are: |
104 | |
105 | \list |
106 | |
107 | \li OpenGL 2.1 or OpenGL ES 2.0 or newer. Some extensions are utilized when |
108 | present, for example to enable multisample framebuffers. |
109 | |
110 | \li Direct3D 11.1 |
111 | |
112 | \li Metal |
113 | |
114 | \li Vulkan 1.0, optionally with some extensions that are part of Vulkan 1.1 |
115 | |
116 | \li Null - A "dummy" backend that issues no graphics calls at all. |
117 | |
118 | \endlist |
119 | |
120 | In order to allow shader code to be written once in Qt applications and |
121 | libraries, all shaders are expected to be written in a single language |
122 | which is then compiled into SPIR-V. Versions for various shading language |
123 | are then generated from that, together with reflection information (inputs, |
124 | outputs, shader resources). This is then packed into easily and efficiently |
125 | serializable QShader instances. The compilers and tools to generate such |
126 | shaders are not part of QRhi, but the core classes for using such shaders, |
127 | QShader and QShaderDescription, are. |
128 | |
129 | \section2 Design Fundamentals |
130 | |
131 | A QRhi cannot be instantiated directly. Instead, use the create() |
132 | function. Delete the QRhi instance normally to release the graphics device. |
133 | |
134 | \section3 Resources |
135 | |
136 | Instances of classes deriving from QRhiResource, such as, QRhiBuffer, |
137 | QRhiTexture, etc., encapsulate zero, one, or more native graphics |
138 | resources. Instances of such classes are always created via the \c new |
139 | functions of the QRhi, such as, newBuffer(), newTexture(), |
140 | newTextureRenderTarget(), newSwapChain(). |
141 | |
142 | \badcode |
143 | vbuf = rhi->newBuffer(QRhiBuffer::Immutable, QRhiBuffer::VertexBuffer, sizeof(vertexData)); |
144 | if (!vbuf->build()) { error } |
145 | ... |
146 | delete vbuf; |
147 | \endcode |
148 | |
149 | \list |
150 | |
151 | \li The returned value from both create() and functions like newBuffer() is |
152 | owned by the caller. |
153 | |
154 | \li Just creating a QRhiResource subclass never allocates or initializes any |
155 | native resources. That is only done when calling the \c build function of a |
156 | subclass, for example, QRhiBuffer::build() or QRhiTexture::build(). |
157 | |
158 | \li The exception is |
159 | QRhiTextureRenderTarget::newCompatibleRenderPassDescriptor() and |
160 | QRhiSwapChain::newCompatibleRenderPassDescriptor(). There is no \c build |
161 | operation for these and the returned object is immediately active. |
162 | |
163 | \li The resource objects themselves are treated as immutable: once a |
164 | resource is built, changing any parameters via the setters, such as, |
165 | QRhiTexture::setPixelSize(), has no effect, unless the underlying native |
166 | resource is released and \c build is called again. See more about resource |
167 | reuse in the sections below. |
168 | |
169 | \li The underlying native resources are scheduled for releasing by the |
170 | QRhiResource destructor, or by calling QRhiResource::release(). Backends |
171 | often queue release requests and defer executing them to an unspecified |
172 | time, this is hidden from the applications. This way applications do not |
173 | have to worry about releasing native resources that may still be in use by |
174 | an in-flight frame. |
175 | |
176 | \li Note that this does not mean that a QRhiResource can freely be |
177 | destroyed or release()'d within a frame (that is, in a |
178 | \l{QRhiCommandBuffer::beginFrame()}{beginFrame()} - |
179 | \l{QRhiCommandBuffer::endFrame()}{endFrame()} section). As a general rule, |
180 | all referenced QRhiResource objects must stay unchanged until the frame is |
181 | submitted by calling \l{QRhiCommandBuffer::endFrame()}{endFrame()}. To ease |
182 | this, QRhiResource::releaseAndDestroyLater() is provided as a convenience. |
183 | |
184 | \endlist |
185 | |
186 | \section3 Command buffers and deferred command execution |
187 | |
188 | Regardless of the design and capabilities of the underlying graphics API, |
189 | all QRhi backends implement some level of command buffers. No |
190 | QRhiCommandBuffer function issues any native bind or draw command (such as, |
191 | \c glDrawElements) directly. Commands are always recorded in a queue, |
192 | either native or provided by the QRhi backend. The command buffer is |
193 | submitted, and so execution starts only upon QRhi::endFrame() or |
194 | QRhi::finish(). |
195 | |
196 | The deferred nature has consequences for some types of objects. For example, |
197 | writing to a dynamic buffer multiple times within a frame, in case such |
198 | buffers are backed by host-visible memory, will result in making the |
199 | results of all writes are visible to all draw calls in the command buffer |
200 | of the frame, regardless of when the dynamic buffer update was recorded |
201 | relative to a draw call. |
202 | |
203 | Furthermore, instances of QRhiResource subclasses must be treated immutable |
204 | within a frame in which they are referenced in any way. Create or rebuild |
205 | all resources upfront, before starting to record commands for the next |
206 | frame. Reusing a QRhiResource instance within a frame (by rebuilding it and |
207 | then referencing it again in the same \c{beginFrame - endFrame} section) |
208 | should be avoided as it may lead to unexpected results, depending on the |
209 | backend. |
210 | |
211 | As a general rule, all referenced QRhiResource objects must stay valid and |
212 | unmodified until the frame is submitted by calling |
213 | \l{QRhiCommandBuffer::endFrame()}{endFrame()}. On the other hand, calling |
214 | \l{QRhiResource::release()}{release()} or destroying the QRhiResource are |
215 | always safe once the frame is submitted, regardless of the status of the |
216 | underlying native resources (which may still be in use by the GPU - but |
217 | that is taken care of internally). |
218 | |
219 | Unlike APIs like OpenGL, upload and copy type of commands cannot be mixed |
220 | with draw commands. The typical renderer will involve a sequence similar to |
221 | the following: \c{(re)build resources} - \c{begin frame} - \c{record |
222 | uploads and copies} - \c{start renderpass} - \c{record draw calls} - \c{end |
223 | renderpass} - \c{end frame}. Recording copy type of operations happens via |
224 | QRhiResourceUpdateBatch. Such operations are committed typically on |
225 | \l{QRhiCommandBuffer::beginPass()}{beginPass()}. |
226 | |
227 | When working with legacy rendering engines designed for OpenGL, the |
228 | migration to QRhi often involves redesigning from having a single \c render |
229 | step (that performs copies and uploads, clears buffers, and issues draw |
230 | calls, all mixed together) to a clearly separated, two phase \c prepare - |
231 | \c render setup where the \c render step only starts a renderpass and |
232 | records draw calls, while all resource creation and queuing of updates, |
233 | uploads and copies happens beforehand, in the \c prepare step. |
234 | |
235 | QRhi does not at the moment allow freely creating and submitting command |
236 | buffers. This may be lifted in the future to some extent, in particular if |
237 | compute support is introduced, but the model of well defined |
238 | \c{frame-start} and \c{frame-end} points, combined with a dedicated, |
239 | "frame" command buffer, where \c{frame-end} implies presenting, is going to |
240 | remain the primary way of operating since this is what fits Qt's various UI |
241 | technologies best. |
242 | |
243 | \section3 Threading |
244 | |
245 | A QRhi instance and the associated resources can be created and used on any |
246 | thread but all usage must be limited to that one single thread. When |
247 | rendering to multiple QWindows in an application, having a dedicated thread |
248 | and QRhi instance for each window is often advisable, as this can eliminate |
249 | issues with unexpected throttling caused by presenting to multiple windows. |
250 | Conceptually that is then the same as how Qt Quick scene graph's threaded |
251 | render loop operates when working directly with OpenGL: one thread for each |
252 | window, one QOpenGLContext for each thread. When moving onto QRhi, |
253 | QOpenGLContext is replaced by QRhi, making the migration straightforward. |
254 | |
255 | When it comes to externally created native objects, such as OpenGL contexts |
256 | passed in via QRhiGles2NativeHandles, it is up to the application to ensure |
257 | they are not misused by other threads. |
258 | |
259 | Resources are not shareable between QRhi instances. This is an intentional |
260 | choice since QRhi hides most queue, command buffer, and resource |
261 | synchronization related tasks, and provides no API for them. Safe and |
262 | efficient concurrent use of graphics resources from multiple threads is |
263 | tied to those concepts, however, and is thus a topic that is currently out |
264 | of scope, but may be introduced in the future. |
265 | |
266 | \note The Metal backend requires that an autorelease pool is available on |
267 | the rendering thread, ideally wrapping each iteration of the render loop. |
268 | This needs no action from the users of QRhi when rendering on the main |
269 | (gui) thread, but becomes important when a separate, dedicated render |
270 | thread is used. |
271 | |
272 | \section3 Resource synchronization |
273 | |
274 | QRhi does not expose APIs for resource barriers or image layout |
275 | transitions. Such synchronization is done implicitly by the backends, where |
276 | applicable (for example, Vulkan), by tracking resource usage as necessary. |
277 | Buffer and image barriers are inserted before render or compute passes |
278 | transparently to the application. |
279 | |
280 | \note Resources within a render or compute pass are expected to be bound to |
281 | a single usage during that pass. For example, a buffer can be used as |
282 | vertex, index, uniform, or storage buffer, but not a combination of them |
283 | within a single pass. However, it is perfectly fine to use a buffer as a |
284 | storage buffer in a compute pass, and then as a vertex buffer in a render |
285 | pass, for example, assuming the buffer declared both usages upon creation. |
286 | |
287 | \note Textures have this rule relaxed in certain cases, because using two |
288 | subresources (typically two different mip levels) of the same texture for |
289 | different access (one for load, one for store) is supported even within the |
290 | same pass. |
291 | |
292 | \section3 Resource reuse |
293 | |
294 | From the user's point of view a QRhiResource is reusable immediately after |
295 | calling QRhiResource::release(). With the exception of swapchains, calling |
296 | \c build() on an already built object does an implicit \c release(). This |
297 | provides a handy shortcut to reuse a QRhiResource instance with different |
298 | parameters, with a new native graphics object underneath. |
299 | |
300 | The importance of reusing the same object lies in the fact that some |
301 | objects reference other objects: for example, a QRhiShaderResourceBindings |
302 | can reference QRhiBuffer, QRhiTexture, and QRhiSampler instances. If in a |
303 | later frame one of these buffers need to be resized or a sampler parameter |
304 | needs changing, destroying and creating a whole new QRhiBuffer or |
305 | QRhiSampler would invalidate all references to the old instance. By just |
306 | changing the appropriate parameters via QRhiBuffer::setSize() or similar |
307 | and then calling QRhiBuffer::build(), everything works as expected and |
308 | there is no need to touch the QRhiShaderResourceBindings at all, even |
309 | though there is a good chance that under the hood the QRhiBuffer is now |
310 | backed by a whole new native buffer. |
311 | |
312 | \badcode |
313 | ubuf = rhi->newBuffer(QRhiBuffer::Dynamic, QRhiBuffer::UniformBuffer, 256); |
314 | ubuf->build(); |
315 | |
316 | srb = rhi->newShaderResourceBindings() |
317 | srb->setBindings({ |
318 | QRhiShaderResourceBinding::uniformBuffer(0, QRhiShaderResourceBinding::VertexStage | QRhiShaderResourceBinding::FragmentStage, ubuf) |
319 | }); |
320 | srb->build(); |
321 | |
322 | ... |
323 | |
324 | // now in a later frame we need to grow the buffer to a larger size |
325 | ubuf->setSize(512); |
326 | ubuf->build(); // same as ubuf->release(); ubuf->build(); |
327 | |
328 | // that's it, srb needs no changes whatsoever |
329 | \endcode |
330 | |
331 | \section3 Pooled objects |
332 | |
333 | In addition to resources, there are pooled objects as well, such as, |
334 | QRhiResourceUpdateBatch. An instance is retrieved via a \c next function, |
335 | such as, nextResourceUpdateBatch(). The caller does not own the returned |
336 | instance in this case. The only valid way of operating here is calling |
337 | functions on the QRhiResourceUpdateBatch and then passing it to |
338 | QRhiCommandBuffer::beginPass() or QRhiCommandBuffer::endPass(). These |
339 | functions take care of returning the batch to the pool. Alternatively, a |
340 | batch can be "canceled" and returned to the pool without processing by |
341 | calling QRhiResourceUpdateBatch::release(). |
342 | |
343 | A typical pattern is thus: |
344 | |
345 | \badcode |
346 | QRhiResourceUpdateBatch *resUpdates = rhi->nextResourceUpdateBatch(); |
347 | ... |
348 | resUpdates->updateDynamicBuffer(ubuf, 0, 64, mvp.constData()); |
349 | if (!image.isNull()) { |
350 | resUpdates->uploadTexture(texture, image); |
351 | image = QImage(); |
352 | } |
353 | ... |
354 | QRhiCommandBuffer *cb = m_sc->currentFrameCommandBuffer(); |
355 | cb->beginPass(swapchain->currentFrameRenderTarget(), clearCol, clearDs, resUpdates); |
356 | \endcode |
357 | |
358 | \section3 Swapchain specifics |
359 | |
360 | QRhiSwapChain features some special semantics due to the peculiar nature of |
361 | swapchains. |
362 | |
363 | \list |
364 | |
365 | \li It has no \c build but rather a QRhiSwapChain::buildOrResize(). |
366 | Repeatedly calling this function is \b not the same as calling |
367 | QRhiSwapChain::release() followed by QRhiSwapChain::buildOrResize(). This |
368 | is because swapchains often have ways to handle the case where buffers need |
369 | to be resized in a manner that is more efficient than a brute force |
370 | destroying and recreating from scratch. |
371 | |
372 | \li An active QRhiSwapChain must be released by calling |
373 | \l{QRhiSwapChain::release()}{release()}, or by destroying the object, before |
374 | the QWindow's underlying QPlatformWindow, and so the associated native |
375 | window object, is destroyed. It should not be postponed because releasing |
376 | the swapchain may become problematic (and with some APIs, like Vulkan, is |
377 | explicitly disallowed) when the native window is not around anymore, for |
378 | example because the QPlatformWindow got destroyed upon getting a |
379 | QWindow::close(). Therefore, releasing the swapchain must happen whenever |
380 | the targeted QWindow sends the |
381 | QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed event. If the event does |
382 | not arrive before the destruction of the QWindow - this can happen when |
383 | using QCoreApplication::quit() -, then check QWindow::handle() after the |
384 | event loop exits and invoke the swapchain release when non-null (meaning |
385 | the underlying native window is still around). |
386 | |
387 | \endlist |
388 | |
389 | \section3 Ownership |
390 | |
391 | The general rule is no ownership transfer. Creating a QRhi with an already |
392 | existing graphics device does not mean the QRhi takes ownership of the |
393 | device object. Similarly, ownership is not given away when a device or |
394 | texture object is "exported" via QRhi::nativeHandles() or |
395 | QRhiTexture::nativeHandles(). Most importantly, passing pointers in structs |
396 | and via setters does not transfer ownership. |
397 | |
398 | \section2 Troubleshooting |
399 | |
400 | Errors are printed to the output via qWarning(). Additional debug messages |
401 | can be enabled via the following logging categories. Messages from these |
402 | categories are not printed by default unless explicitly enabled via |
403 | QRhi::EnableProfiling or the facilities of QLoggingCategory (such as, the |
404 | \c QT_LOGGING_RULES environment variable). |
405 | |
406 | \list |
407 | \li \c{qt.rhi.general} |
408 | \endlist |
409 | |
410 | It is strongly advised to inspect the output with the logging categories |
411 | (\c{qt.rhi.*}) enabled whenever a QRhi-based application is not behaving as |
412 | expected. |
413 | */ |
414 | |
415 | /*! |
416 | \enum QRhi::Implementation |
417 | Describes which graphics API-specific backend gets used by a QRhi instance. |
418 | |
419 | \value Null |
420 | \value Vulkan |
421 | \value OpenGLES2 |
422 | \value D3D11 |
423 | \value Metal |
424 | */ |
425 | |
426 | /*! |
427 | \enum QRhi::Flag |
428 | Describes what special features to enable. |
429 | |
430 | \value EnableProfiling Enables gathering timing (CPU, GPU) and resource |
431 | (QRhiBuffer, QRhiTexture, etc.) information and additional metadata. See |
432 | QRhiProfiler. Avoid enabling in production builds as it may involve a |
433 | performance penalty. Also enables debug messages from the \c{qt.rhi.*} |
434 | logging categories. |
435 | |
436 | \value EnableDebugMarkers Enables debug marker groups. Without this frame |
437 | debugging features like making debug groups and custom resource name |
438 | visible in external GPU debugging tools will not be available and functions |
439 | like QRhiCommandBuffer::debugMarkBegin() will become a no-op. Avoid |
440 | enabling in production builds as it may involve a performance penalty. |
441 | |
442 | \value PreferSoftwareRenderer Indicates that backends should prefer |
443 | choosing an adapter or physical device that renders in software on the CPU. |
444 | For example, with Direct3D there is typically a "Basic Render Driver" |
445 | adapter available with \c{DXGI_ADAPTER_FLAG_SOFTWARE}. Setting this flag |
446 | requests the backend to choose that adapter over any other, as long as no |
447 | specific adapter was forced by other backend-specific means. With Vulkan |
448 | this maps to preferring physical devices with |
449 | \c{VK_PHYSICAL_DEVICE_TYPE_CPU}. When not available, or when it is not |
450 | possible to decide if an adapter/device is software-based, this flag is |
451 | ignored. It may also be ignored with graphics APIs that have no concept and |
452 | means of enumerating adapters/devices. |
453 | */ |
454 | |
455 | /*! |
456 | \enum QRhi::FrameOpResult |
457 | Describes the result of operations that can have a soft failure. |
458 | |
459 | \value FrameOpSuccess Success |
460 | |
461 | \value FrameOpError Unspecified error |
462 | |
463 | \value FrameOpSwapChainOutOfDate The swapchain is in an inconsistent state |
464 | internally. This can be recoverable by attempting to repeat the operation |
465 | (such as, beginFrame()) later. |
466 | |
467 | \value FrameOpDeviceLost The graphics device was lost. This can be |
468 | recoverable by attempting to repeat the operation (such as, beginFrame()) |
469 | after releasing and reinitializing all objects backed by native graphics |
470 | resources. See isDeviceLost(). |
471 | */ |
472 | |
473 | /*! |
474 | \enum QRhi::Feature |
475 | Flag values to indicate what features are supported by the backend currently in use. |
476 | |
477 | \value MultisampleTexture Indicates that textures with a sample count larger |
478 | than 1 are supported. |
479 | |
480 | \value MultisampleRenderBuffer Indicates that renderbuffers with a sample |
481 | count larger than 1 are supported. |
482 | |
483 | \value DebugMarkers Indicates that debug marker groups (and so |
484 | QRhiCommandBuffer::debugMarkBegin()) are supported. |
485 | |
486 | \value Timestamps Indicates that command buffer timestamps are supported. |
487 | Relevant for QRhiProfiler::gpuFrameTimes(). |
488 | |
489 | \value Instancing Indicates that instanced drawing is supported. |
490 | |
491 | \value CustomInstanceStepRate Indicates that instance step rates other than |
492 | 1 are supported. |
493 | |
494 | \value PrimitiveRestart Indicates that restarting the assembly of |
495 | primitives when encountering an index value of 0xFFFF |
496 | (\l{QRhiCommandBuffer::IndexUInt16}{IndexUInt16}) or 0xFFFFFFFF |
497 | (\l{QRhiCommandBuffer::IndexUInt32}{IndexUInt32}) is enabled, for certain |
498 | primitive topologies at least. QRhi will try to enable this with all |
499 | backends, but in some cases it will not be supported. Dynamically |
500 | controlling primitive restart is not possible since with some APIs |
501 | primitive restart with a fixed index is always on. Applications must assume |
502 | that whenever this feature is reported as supported, the above mentioned |
503 | index values \c may be treated specially, depending on the topology. The |
504 | only two topologies where primitive restart is guaranteed to behave |
505 | identically across backends, as long as this feature is reported as |
506 | supported, are \l{QRhiGraphicsPipeline::LineStrip}{LineStrip} and |
507 | \l{QRhiGraphicsPipeline::TriangleStrip}{TriangleStrip}. |
508 | |
509 | \value NonDynamicUniformBuffers Indicates that creating buffers with the |
510 | usage \l{QRhiBuffer::UniformBuffer}{UniformBuffer} and the types |
511 | \l{QRhiBuffer::Immutable}{Immutable} or \l{QRhiBuffer::Static}{Static} is |
512 | supported. When reported as unsupported, uniform (constant) buffers must be |
513 | created as \l{QRhiBuffer::Dynamic}{Dynamic}. (which is recommended |
514 | regardless) |
515 | |
516 | \value NonFourAlignedEffectiveIndexBufferOffset Indicates that effective |
517 | index buffer offsets (\c{indexOffset + firstIndex * indexComponentSize}) |
518 | that are not 4 byte aligned are supported. When not supported, attempting |
519 | to issue a \l{QRhiCommandBuffer::drawIndexed()}{drawIndexed()} with a |
520 | non-aligned effective offset may lead to unspecified behavior. |
521 | |
522 | \value NPOTTextureRepeat Indicates that the |
523 | \l{QRhiSampler::Repeat}{Repeat} wrap mode and mipmap filtering modes are |
524 | supported for textures with a non-power-of-two size. In practice this can |
525 | only be false with OpenGL ES 2.0 implementations without |
526 | \c{GL_OES_texture_npot}. |
527 | |
528 | \value RedOrAlpha8IsRed Indicates that the |
529 | \l{QRhiTexture::RED_OR_ALPHA8}{RED_OR_ALPHA8} format maps to a one |
530 | component 8-bit \c red format. This is the case for all backends except |
531 | OpenGL, where \c{GL_ALPHA}, a one component 8-bit \c alpha format, is used |
532 | instead. This is relevant for shader code that samples from the texture. |
533 | |
534 | \value ElementIndexUint Indicates that 32-bit unsigned integer elements are |
535 | supported in the index buffer. In practice this is true everywhere except |
536 | when running on plain OpenGL ES 2.0 implementations without the necessary |
537 | extension. When false, only 16-bit unsigned elements are supported in the |
538 | index buffer. |
539 | |
540 | \value Compute Indicates that compute shaders, image load/store, and |
541 | storage buffers are supported. |
542 | |
543 | \value WideLines Indicates that lines with a width other than 1 are |
544 | supported. When reported as not supported, the line width set on the |
545 | graphics pipeline state is ignored. This can always be false with some |
546 | backends (D3D11, Metal). With Vulkan, the value depends on the |
547 | implementation. |
548 | |
549 | \value VertexShaderPointSize Indicates that the size of rasterized points |
550 | set via \c{gl_PointSize} in the vertex shader is taken into account. When |
551 | reported as not supported, drawing points with a size other than 1 is not |
552 | supported. Setting \c{gl_PointSize} in the shader is still valid then, but |
553 | is ignored. (for example, when generating HLSL, the assignment is silently |
554 | dropped from the generated code) Note that some APIs (Metal, Vulkan) |
555 | require the point size to be set in the shader explicitly whenever drawing |
556 | points, even when the size is 1, as they do not automatically default to 1. |
557 | |
558 | \value BaseVertex Indicates that \l{QRhiCommandBuffer::drawIndexed()}{drawIndexed()} |
559 | supports the \c vertexOffset argument. When reported as not supported, the |
560 | vertexOffset value in an indexed draw is ignored. |
561 | |
562 | \value BaseInstance Indicates that instanced draw commands support the \c |
563 | firstInstance argument. When reported as not supported, the firstInstance |
564 | value is ignored and the instance ID starts from 0. |
565 | |
566 | \value TriangleFanTopology Indicates that QRhiGraphicsPipeline::setTopology() |
567 | supports QRhiGraphicsPipeline::TriangleFan. |
568 | |
569 | \value ReadBackNonUniformBuffer Indicates that |
570 | \l{QRhiResourceUpdateBatch::readBackBuffer()}{reading buffer contents} is |
571 | supported for QRhiBuffer instances with a usage different than |
572 | UniformBuffer. While this is supported in the majority of cases, it will be |
573 | unsupported with OpenGL ES older than 3.0. |
574 | |
575 | \value ReadBackNonBaseMipLevel Indicates that specifying a mip level other |
576 | than 0 is supported when reading back texture contents. When not supported, |
577 | specifying a non-zero level in QRhiReadbackDescription leads to returning |
578 | an all-zero image. In practice this feature will be unsupported with OpenGL |
579 | ES 2.0, while it will likely be supported everywhere else. |
580 | |
581 | \value TexelFetch Indicates that texelFetch() is available in shaders. In |
582 | practice this will be reported as unsupported with OpenGL ES 2.0 and OpenGL |
583 | 2.x contexts, because GLSL 100 es and versions before 130 do not support |
584 | this function. |
585 | */ |
586 | |
587 | /*! |
588 | \enum QRhi::BeginFrameFlag |
589 | Flag values for QRhi::beginFrame() |
590 | |
591 | \value ExternalContentsInPass Specifies that one or more render or compute |
592 | passes in this frame will call QRhiCommandBuffer::beginExternal(). Some |
593 | backends, Vulkan in particular, will fail if this flag is not set and |
594 | beginExternal() is still called. |
595 | */ |
596 | |
597 | /*! |
598 | \enum QRhi::EndFrameFlag |
599 | Flag values for QRhi::endFrame() |
600 | |
601 | \value SkipPresent Specifies that no present command is to be queued or no |
602 | swapBuffers call is to be made. This way no image is presented. Generating |
603 | multiple frames with all having this flag set is not recommended (except, |
604 | for example, for benchmarking purposes - but keep in mind that backends may |
605 | behave differently when it comes to waiting for command completion without |
606 | presenting so the results are not comparable between them) |
607 | */ |
608 | |
609 | /*! |
610 | \enum QRhi::ResourceLimit |
611 | Describes the resource limit to query. |
612 | |
613 | \value TextureSizeMin Minimum texture width and height. This is typically |
614 | 1. The minimum texture size is handled gracefully, meaning attempting to |
615 | create a texture with an empty size will instead create a texture with the |
616 | minimum size. |
617 | |
618 | \value TextureSizeMax Maximum texture width and height. This depends on the |
619 | graphics API and sometimes the platform or implementation as well. |
620 | Typically the value is in the range 4096 - 16384. Attempting to create |
621 | textures larger than this is expected to fail. |
622 | |
623 | \value MaxColorAttachments The maximum number of color attachments for a |
624 | QRhiTextureRenderTarget, in case multiple render targets are supported. When |
625 | MRT is not supported, the value is 1. Otherwise this is typically 8, but |
626 | watch out for the fact that OpenGL only mandates 4 as the minimum, and that |
627 | is what some OpenGL ES implementations provide. |
628 | |
629 | \value FramesInFlight The number of frames the backend may keep "in |
630 | flight": with backends like Vulkan or Metal, it is the responsibility of |
631 | QRhi to block whenever starting a new frame and finding the CPU is already |
632 | \c{N - 1} frames ahead of the GPU (because the command buffer submitted in |
633 | frame no. \c{current} - \c{N} has not yet completed). The value N is what |
634 | is returned from here, and is typically 2. This can be relevant to |
635 | applications that integrate rendering done directly with the graphics API, |
636 | as such rendering code may want to perform double (if the value is 2) |
637 | buffering for resources, such as, buffers, similarly to the QRhi backends |
638 | themselves. The current frame slot index (a value running 0, 1, .., N-1, |
639 | then wrapping around) is retrievable from QRhi::currentFrameSlot(). The |
640 | value is 1 for backends where the graphics API offers no such low level |
641 | control over the command submission process. Note that pipelining may still |
642 | happen even when this value is 1 (some backends, such as D3D11, are |
643 | designed to attempt to enable this, for instance, by using an update |
644 | strategy for uniform buffers that does not stall the pipeline), but that is |
645 | then not controlled by QRhi and so not reflected here in the API. |
646 | |
647 | \value MaxAsyncReadbackFrames The number of \l{QRhi::endFrame()}{submitted} |
648 | frames (including the one that contains the readback) after which an |
649 | asynchronous texture or buffer readback is guaranteed to complete upon |
650 | \l{QRhi::beginFrame()}{starting a new frame}. |
651 | */ |
652 | |
653 | /*! |
654 | \class QRhiInitParams |
655 | \internal |
656 | \inmodule QtGui |
657 | \brief Base class for backend-specific initialization parameters. |
658 | |
659 | Contains fields that are relevant to all backends. |
660 | */ |
661 | |
662 | /*! |
663 | \class QRhiDepthStencilClearValue |
664 | \internal |
665 | \inmodule QtGui |
666 | \brief Specifies clear values for a depth or stencil buffer. |
667 | */ |
668 | |
669 | /*! |
670 | \fn QRhiDepthStencilClearValue::QRhiDepthStencilClearValue() |
671 | |
672 | Constructs a depth/stencil clear value with depth clear value 1.0f and |
673 | stencil clear value 0. |
674 | */ |
675 | |
676 | /*! |
677 | Constructs a depth/stencil clear value with depth clear value \a d and |
678 | stencil clear value \a s. |
679 | */ |
680 | QRhiDepthStencilClearValue::QRhiDepthStencilClearValue(float d, quint32 s) |
681 | : m_d(d), |
682 | m_s(s) |
683 | { |
684 | } |
685 | |
686 | /*! |
687 | \return \c true if the values in the two QRhiDepthStencilClearValue objects |
688 | \a a and \a b are equal. |
689 | |
690 | \relates QRhiDepthStencilClearValue |
691 | */ |
692 | bool operator==(const QRhiDepthStencilClearValue &a, const QRhiDepthStencilClearValue &b) Q_DECL_NOTHROW |
693 | { |
694 | return a.depthClearValue() == b.depthClearValue() |
695 | && a.stencilClearValue() == b.stencilClearValue(); |
696 | } |
697 | |
698 | /*! |
699 | \return \c false if the values in the two QRhiDepthStencilClearValue |
700 | objects \a a and \a b are equal; otherwise returns \c true. |
701 | |
702 | \relates QRhiDepthStencilClearValue |
703 | */ |
704 | bool operator!=(const QRhiDepthStencilClearValue &a, const QRhiDepthStencilClearValue &b) Q_DECL_NOTHROW |
705 | { |
706 | return !(a == b); |
707 | } |
708 | |
709 | /*! |
710 | \return the hash value for \a v, using \a seed to seed the calculation. |
711 | |
712 | \relates QRhiDepthStencilClearValue |
713 | */ |
714 | uint qHash(const QRhiDepthStencilClearValue &v, uint seed) Q_DECL_NOTHROW |
715 | { |
716 | return seed * (uint(qFloor(v: qreal(v.depthClearValue()) * 100)) + v.stencilClearValue()); |
717 | } |
718 | |
719 | #ifndef QT_NO_DEBUG_STREAM |
720 | QDebug operator<<(QDebug dbg, const QRhiDepthStencilClearValue &v) |
721 | { |
722 | QDebugStateSaver saver(dbg); |
723 | dbg.nospace() << "QRhiDepthStencilClearValue(depth-clear=" << v.depthClearValue() |
724 | << " stencil-clear=" << v.stencilClearValue() |
725 | << ')'; |
726 | return dbg; |
727 | } |
728 | #endif |
729 | |
730 | /*! |
731 | \class QRhiViewport |
732 | \internal |
733 | \inmodule QtGui |
734 | \brief Specifies a viewport rectangle. |
735 | |
736 | Used with QRhiCommandBuffer::setViewport(). |
737 | |
738 | QRhi assumes OpenGL-style viewport coordinates, meaning x and y are |
739 | bottom-left. Negative width or height are not allowed. |
740 | |
741 | Typical usage is like the following: |
742 | |
743 | \badcode |
744 | const QSize outputSizeInPixels = swapchain->currentPixelSize(); |
745 | const QRhiViewport viewport(0, 0, outputSizeInPixels.width(), outputSizeInPixels.height()); |
746 | cb->beginPass(swapchain->currentFrameRenderTarget(), { 0, 0, 0, 1 }, { 1, 0 }); |
747 | cb->setGraphicsPipeline(ps); |
748 | cb->setViewport(viewport); |
749 | ... |
750 | \endcode |
751 | |
752 | \sa QRhiCommandBuffer::setViewport(), QRhi::clipSpaceCorrMatrix(), QRhiScissor |
753 | */ |
754 | |
755 | /*! |
756 | \fn QRhiViewport::QRhiViewport() |
757 | |
758 | Constructs a viewport description with an empty rectangle and a depth range |
759 | of 0.0f - 1.0f. |
760 | |
761 | \sa QRhi::clipSpaceCorrMatrix() |
762 | */ |
763 | |
764 | /*! |
765 | Constructs a viewport description with the rectangle specified by \a x, \a |
766 | y, \a w, \a h and the depth range \a minDepth and \a maxDepth. |
767 | |
768 | \note \a x and \a y are assumed to be the bottom-left position. \a w and \a |
769 | h should not be negative, the viewport will be ignored by |
770 | QRhiCommandBuffer::setViewport() otherwise. |
771 | |
772 | \sa QRhi::clipSpaceCorrMatrix() |
773 | */ |
774 | QRhiViewport::QRhiViewport(float x, float y, float w, float h, float minDepth, float maxDepth) |
775 | : m_rect { ._M_elems: { x, y, w, h } }, |
776 | m_minDepth(minDepth), |
777 | m_maxDepth(maxDepth) |
778 | { |
779 | } |
780 | |
781 | /*! |
782 | \return \c true if the values in the two QRhiViewport objects |
783 | \a a and \a b are equal. |
784 | |
785 | \relates QRhiViewport |
786 | */ |
787 | bool operator==(const QRhiViewport &a, const QRhiViewport &b) Q_DECL_NOTHROW |
788 | { |
789 | return a.viewport() == b.viewport() |
790 | && a.minDepth() == b.minDepth() |
791 | && a.maxDepth() == b.maxDepth(); |
792 | } |
793 | |
794 | /*! |
795 | \return \c false if the values in the two QRhiViewport |
796 | objects \a a and \a b are equal; otherwise returns \c true. |
797 | |
798 | \relates QRhiViewport |
799 | */ |
800 | bool operator!=(const QRhiViewport &a, const QRhiViewport &b) Q_DECL_NOTHROW |
801 | { |
802 | return !(a == b); |
803 | } |
804 | |
805 | /*! |
806 | \return the hash value for \a v, using \a seed to seed the calculation. |
807 | |
808 | \relates QRhiViewport |
809 | */ |
810 | uint qHash(const QRhiViewport &v, uint seed) Q_DECL_NOTHROW |
811 | { |
812 | const std::array<float, 4> r = v.viewport(); |
813 | return seed + uint(r[0]) + uint(r[1]) + uint(r[2]) + uint(r[3]) |
814 | + uint(qFloor(v: qreal(v.minDepth()) * 100)) + uint(qFloor(v: qreal(v.maxDepth()) * 100)); |
815 | } |
816 | |
817 | #ifndef QT_NO_DEBUG_STREAM |
818 | QDebug operator<<(QDebug dbg, const QRhiViewport &v) |
819 | { |
820 | QDebugStateSaver saver(dbg); |
821 | const std::array<float, 4> r = v.viewport(); |
822 | dbg.nospace() << "QRhiViewport(bottom-left-x=" << r[0] |
823 | << " bottom-left-y=" << r[1] |
824 | << " width=" << r[2] |
825 | << " height=" << r[3] |
826 | << " minDepth=" << v.minDepth() |
827 | << " maxDepth=" << v.maxDepth() |
828 | << ')'; |
829 | return dbg; |
830 | } |
831 | #endif |
832 | |
833 | /*! |
834 | \class QRhiScissor |
835 | \internal |
836 | \inmodule QtGui |
837 | \brief Specifies a scissor rectangle. |
838 | |
839 | Used with QRhiCommandBuffer::setScissor(). Setting a scissor rectangle is |
840 | only possible with a QRhiGraphicsPipeline that has |
841 | QRhiGraphicsPipeline::UsesScissor set. |
842 | |
843 | QRhi assumes OpenGL-style scissor coordinates, meaning x and y are |
844 | bottom-left. Negative width or height are not allowed. However, apart from |
845 | that, the flexible OpenGL semantics apply: negative x and y, partially out |
846 | of bounds rectangles, etc. will be handled gracefully, clamping as |
847 | appropriate. Therefore, any rendering logic targeting OpenGL can feed |
848 | scissor rectangles into QRhiScissor as-is, without any adaptation. |
849 | |
850 | \sa QRhiCommandBuffer::setScissor(), QRhiViewport |
851 | */ |
852 | |
853 | /*! |
854 | \fn QRhiScissor::QRhiScissor() |
855 | |
856 | Constructs an empty scissor. |
857 | */ |
858 | |
859 | /*! |
860 | Constructs a scissor with the rectangle specified by \a x, \a y, \a w, and |
861 | \a h. |
862 | |
863 | \note \a x and \a y are assumed to be the bottom-left position. Negative \a w |
864 | or \a h are not allowed, such scissor rectangles will be ignored by |
865 | QRhiCommandBuffer. Other than that, the flexible OpenGL semantics apply: |
866 | negative x and y, partially out of bounds rectangles, etc. will be handled |
867 | gracefully, clamping as appropriate. |
868 | */ |
869 | QRhiScissor::QRhiScissor(int x, int y, int w, int h) |
870 | : m_rect { ._M_elems: { x, y, w, h } } |
871 | { |
872 | } |
873 | |
874 | /*! |
875 | \return \c true if the values in the two QRhiScissor objects |
876 | \a a and \a b are equal. |
877 | |
878 | \relates QRhiScissor |
879 | */ |
880 | bool operator==(const QRhiScissor &a, const QRhiScissor &b) Q_DECL_NOTHROW |
881 | { |
882 | return a.scissor() == b.scissor(); |
883 | } |
884 | |
885 | /*! |
886 | \return \c false if the values in the two QRhiScissor |
887 | objects \a a and \a b are equal; otherwise returns \c true. |
888 | |
889 | \relates QRhiScissor |
890 | */ |
891 | bool operator!=(const QRhiScissor &a, const QRhiScissor &b) Q_DECL_NOTHROW |
892 | { |
893 | return !(a == b); |
894 | } |
895 | |
896 | /*! |
897 | \return the hash value for \a v, using \a seed to seed the calculation. |
898 | |
899 | \relates QRhiScissor |
900 | */ |
901 | uint qHash(const QRhiScissor &v, uint seed) Q_DECL_NOTHROW |
902 | { |
903 | const std::array<int, 4> r = v.scissor(); |
904 | return seed + uint(r[0]) + uint(r[1]) + uint(r[2]) + uint(r[3]); |
905 | } |
906 | |
907 | #ifndef QT_NO_DEBUG_STREAM |
908 | QDebug operator<<(QDebug dbg, const QRhiScissor &s) |
909 | { |
910 | QDebugStateSaver saver(dbg); |
911 | const std::array<int, 4> r = s.scissor(); |
912 | dbg.nospace() << "QRhiScissor(bottom-left-x=" << r[0] |
913 | << " bottom-left-y=" << r[1] |
914 | << " width=" << r[2] |
915 | << " height=" << r[3] |
916 | << ')'; |
917 | return dbg; |
918 | } |
919 | #endif |
920 | |
921 | /*! |
922 | \class QRhiVertexInputBinding |
923 | \internal |
924 | \inmodule QtGui |
925 | \brief Describes a vertex input binding. |
926 | |
927 | Specifies the stride (in bytes, must be a multiple of 4), the |
928 | classification and optionally the instance step rate. |
929 | |
930 | As an example, assume a vertex shader with the following inputs: |
931 | |
932 | \badcode |
933 | layout(location = 0) in vec4 position; |
934 | layout(location = 1) in vec2 texcoord; |
935 | \endcode |
936 | |
937 | Now let's assume also that 3 component vertex positions \c{(x, y, z)} and 2 |
938 | component texture coordinates \c{(u, v)} are provided in a non-interleaved |
939 | format in a buffer (or separate buffers even). Definining two bindings |
940 | could then be done like this: |
941 | |
942 | \badcode |
943 | QRhiVertexInputLayout inputLayout; |
944 | inputLayout.setBindings({ |
945 | { 3 * sizeof(float) }, |
946 | { 2 * sizeof(float) } |
947 | }); |
948 | \endcode |
949 | |
950 | Only the stride is interesting here since instancing is not used. The |
951 | binding number is given by the index of the QRhiVertexInputBinding |
952 | element in the bindings vector of the QRhiVertexInputLayout. |
953 | |
954 | Once a graphics pipeline with this vertex input layout is bound, the vertex |
955 | inputs could be set up like the following for drawing a cube with 36 |
956 | vertices, assuming we have a single buffer with first the positions and |
957 | then the texture coordinates: |
958 | |
959 | \badcode |
960 | const QRhiCommandBuffer::VertexInput vbufBindings[] = { |
961 | { cubeBuf, 0 }, |
962 | { cubeBuf, 36 * 3 * sizeof(float) } |
963 | }; |
964 | cb->setVertexInput(0, 2, vbufBindings); |
965 | \endcode |
966 | |
967 | Note how the index defined by \c {startBinding + i}, where \c i is the |
968 | index in the second argument of |
969 | \l{QRhiCommandBuffer::setVertexInput()}{setVertexInput()}, matches the |
970 | index of the corresponding entry in the \c bindings vector of the |
971 | QRhiVertexInputLayout. |
972 | |
973 | \note the stride must always be a multiple of 4. |
974 | |
975 | \sa QRhiCommandBuffer::setVertexInput() |
976 | */ |
977 | |
978 | /*! |
979 | \enum QRhiVertexInputBinding::Classification |
980 | Describes the input data classification. |
981 | |
982 | \value PerVertex Data is per-vertex |
983 | \value PerInstance Data is per-instance |
984 | */ |
985 | |
986 | /*! |
987 | \fn QRhiVertexInputBinding::QRhiVertexInputBinding() |
988 | |
989 | Constructs a default vertex input binding description. |
990 | */ |
991 | |
992 | /*! |
993 | Constructs a vertex input binding description with the specified \a stride, |
994 | classification \a cls, and instance step rate \a stepRate. |
995 | |
996 | \note \a stepRate other than 1 is only supported when |
997 | QRhi::CustomInstanceStepRate is reported to be supported. |
998 | */ |
999 | QRhiVertexInputBinding::QRhiVertexInputBinding(quint32 stride, Classification cls, int stepRate) |
1000 | : m_stride(stride), |
1001 | m_classification(cls), |
1002 | m_instanceStepRate(stepRate) |
1003 | { |
1004 | } |
1005 | |
1006 | /*! |
1007 | \return \c true if the values in the two QRhiVertexInputBinding objects |
1008 | \a a and \a b are equal. |
1009 | |
1010 | \relates QRhiVertexInputBinding |
1011 | */ |
1012 | bool operator==(const QRhiVertexInputBinding &a, const QRhiVertexInputBinding &b) Q_DECL_NOTHROW |
1013 | { |
1014 | return a.stride() == b.stride() |
1015 | && a.classification() == b.classification() |
1016 | && a.instanceStepRate() == b.instanceStepRate(); |
1017 | } |
1018 | |
1019 | /*! |
1020 | \return \c false if the values in the two QRhiVertexInputBinding |
1021 | objects \a a and \a b are equal; otherwise returns \c true. |
1022 | |
1023 | \relates QRhiVertexInputBinding |
1024 | */ |
1025 | bool operator!=(const QRhiVertexInputBinding &a, const QRhiVertexInputBinding &b) Q_DECL_NOTHROW |
1026 | { |
1027 | return !(a == b); |
1028 | } |
1029 | |
1030 | /*! |
1031 | \return the hash value for \a v, using \a seed to seed the calculation. |
1032 | |
1033 | \relates QRhiVertexInputBinding |
1034 | */ |
1035 | uint qHash(const QRhiVertexInputBinding &v, uint seed) Q_DECL_NOTHROW |
1036 | { |
1037 | return seed + v.stride() + v.classification(); |
1038 | } |
1039 | |
1040 | #ifndef QT_NO_DEBUG_STREAM |
1041 | QDebug operator<<(QDebug dbg, const QRhiVertexInputBinding &b) |
1042 | { |
1043 | QDebugStateSaver saver(dbg); |
1044 | dbg.nospace() << "QRhiVertexInputBinding(stride=" << b.stride() |
1045 | << " cls=" << b.classification() |
1046 | << " step-rate=" << b.instanceStepRate() |
1047 | << ')'; |
1048 | return dbg; |
1049 | } |
1050 | #endif |
1051 | |
1052 | /*! |
1053 | \class QRhiVertexInputAttribute |
1054 | \internal |
1055 | \inmodule QtGui |
1056 | \brief Describes a single vertex input element. |
1057 | |
1058 | The members specify the binding number, location, format, and offset for a |
1059 | single vertex input element. |
1060 | |
1061 | \note For HLSL it is assumed that the vertex shader uses |
1062 | \c{TEXCOORD<location>} as the semantic for each input. Hence no separate |
1063 | semantic name and index. |
1064 | |
1065 | As an example, assume a vertex shader with the following inputs: |
1066 | |
1067 | \badcode |
1068 | layout(location = 0) in vec4 position; |
1069 | layout(location = 1) in vec2 texcoord; |
1070 | \endcode |
1071 | |
1072 | Now let's assume that we have 3 component vertex positions \c{(x, y, z)} |
1073 | and 2 component texture coordinates \c{(u, v)} are provided in a |
1074 | non-interleaved format in a buffer (or separate buffers even). Once two |
1075 | bindings are defined, the attributes could be specified as: |
1076 | |
1077 | \badcode |
1078 | QRhiVertexInputLayout inputLayout; |
1079 | inputLayout.setBindings({ |
1080 | { 3 * sizeof(float) }, |
1081 | { 2 * sizeof(float) } |
1082 | }); |
1083 | inputLayout.setAttributes({ |
1084 | { 0, 0, QRhiVertexInputAttribute::Float3, 0 }, |
1085 | { 1, 1, QRhiVertexInputAttribute::Float2, 0 } |
1086 | }); |
1087 | \endcode |
1088 | |
1089 | Once a graphics pipeline with this vertex input layout is bound, the vertex |
1090 | inputs could be set up like the following for drawing a cube with 36 |
1091 | vertices, assuming we have a single buffer with first the positions and |
1092 | then the texture coordinates: |
1093 | |
1094 | \badcode |
1095 | const QRhiCommandBuffer::VertexInput vbufBindings[] = { |
1096 | { cubeBuf, 0 }, |
1097 | { cubeBuf, 36 * 3 * sizeof(float) } |
1098 | }; |
1099 | cb->setVertexInput(0, 2, vbufBindings); |
1100 | \endcode |
1101 | |
1102 | When working with interleaved data, there will typically be just one |
1103 | binding, with multiple attributes referring to that same buffer binding |
1104 | point: |
1105 | |
1106 | \badcode |
1107 | QRhiVertexInputLayout inputLayout; |
1108 | inputLayout.setBindings({ |
1109 | { 5 * sizeof(float) } |
1110 | }); |
1111 | inputLayout.setAttributes({ |
1112 | { 0, 0, QRhiVertexInputAttribute::Float3, 0 }, |
1113 | { 0, 1, QRhiVertexInputAttribute::Float2, 3 * sizeof(float) } |
1114 | }); |
1115 | \endcode |
1116 | |
1117 | and then: |
1118 | |
1119 | \badcode |
1120 | const QRhiCommandBuffer::VertexInput vbufBinding(interleavedCubeBuf, 0); |
1121 | cb->setVertexInput(0, 1, &vbufBinding); |
1122 | \endcode |
1123 | |
1124 | \sa QRhiCommandBuffer::setVertexInput() |
1125 | */ |
1126 | |
1127 | /*! |
1128 | \enum QRhiVertexInputAttribute::Format |
1129 | Specifies the type of the element data. |
1130 | |
1131 | \value Float4 Four component float vector |
1132 | \value Float3 Three component float vector |
1133 | \value Float2 Two component float vector |
1134 | \value Float Float |
1135 | \value UNormByte4 Four component normalized unsigned byte vector |
1136 | \value UNormByte2 Two component normalized unsigned byte vector |
1137 | \value UNormByte Normalized unsigned byte |
1138 | */ |
1139 | |
1140 | /*! |
1141 | \fn QRhiVertexInputAttribute::QRhiVertexInputAttribute() |
1142 | |
1143 | Constructs a default vertex input attribute description. |
1144 | */ |
1145 | |
1146 | /*! |
1147 | Constructs a vertex input attribute description with the specified \a |
1148 | binding number, \a location, \a format, and \a offset. |
1149 | */ |
1150 | QRhiVertexInputAttribute::QRhiVertexInputAttribute(int binding, int location, Format format, quint32 offset) |
1151 | : m_binding(binding), |
1152 | m_location(location), |
1153 | m_format(format), |
1154 | m_offset(offset) |
1155 | { |
1156 | } |
1157 | |
1158 | /*! |
1159 | \return \c true if the values in the two QRhiVertexInputAttribute objects |
1160 | \a a and \a b are equal. |
1161 | |
1162 | \relates QRhiVertexInputAttribute |
1163 | */ |
1164 | bool operator==(const QRhiVertexInputAttribute &a, const QRhiVertexInputAttribute &b) Q_DECL_NOTHROW |
1165 | { |
1166 | return a.binding() == b.binding() |
1167 | && a.location() == b.location() |
1168 | && a.format() == b.format() |
1169 | && a.offset() == b.offset(); |
1170 | } |
1171 | |
1172 | /*! |
1173 | \return \c false if the values in the two QRhiVertexInputAttribute |
1174 | objects \a a and \a b are equal; otherwise returns \c true. |
1175 | |
1176 | \relates QRhiVertexInputAttribute |
1177 | */ |
1178 | bool operator!=(const QRhiVertexInputAttribute &a, const QRhiVertexInputAttribute &b) Q_DECL_NOTHROW |
1179 | { |
1180 | return !(a == b); |
1181 | } |
1182 | |
1183 | /*! |
1184 | \return the hash value for \a v, using \a seed to seed the calculation. |
1185 | |
1186 | \relates QRhiVertexInputAttribute |
1187 | */ |
1188 | uint qHash(const QRhiVertexInputAttribute &v, uint seed) Q_DECL_NOTHROW |
1189 | { |
1190 | return seed + uint(v.binding()) + uint(v.location()) + uint(v.format()) + v.offset(); |
1191 | } |
1192 | |
1193 | #ifndef QT_NO_DEBUG_STREAM |
1194 | QDebug operator<<(QDebug dbg, const QRhiVertexInputAttribute &a) |
1195 | { |
1196 | QDebugStateSaver saver(dbg); |
1197 | dbg.nospace() << "QRhiVertexInputAttribute(binding=" << a.binding() |
1198 | << " location=" << a.location() |
1199 | << " format=" << a.format() |
1200 | << " offset=" << a.offset() |
1201 | << ')'; |
1202 | return dbg; |
1203 | } |
1204 | #endif |
1205 | |
1206 | /*! |
1207 | \class QRhiVertexInputLayout |
1208 | \internal |
1209 | \inmodule QtGui |
1210 | \brief Describes the layout of vertex inputs consumed by a vertex shader. |
1211 | |
1212 | The vertex input layout is defined by the collections of |
1213 | QRhiVertexInputBinding and QRhiVertexInputAttribute. |
1214 | */ |
1215 | |
1216 | /*! |
1217 | \fn QRhiVertexInputLayout::QRhiVertexInputLayout() |
1218 | |
1219 | Constructs an empty vertex input layout description. |
1220 | */ |
1221 | |
1222 | /*! |
1223 | \return \c true if the values in the two QRhiVertexInputLayout objects |
1224 | \a a and \a b are equal. |
1225 | |
1226 | \relates QRhiVertexInputLayout |
1227 | */ |
1228 | bool operator==(const QRhiVertexInputLayout &a, const QRhiVertexInputLayout &b) Q_DECL_NOTHROW |
1229 | { |
1230 | return a.m_bindings == b.m_bindings && a.m_attributes == b.m_attributes; |
1231 | } |
1232 | |
1233 | /*! |
1234 | \return \c false if the values in the two QRhiVertexInputLayout |
1235 | objects \a a and \a b are equal; otherwise returns \c true. |
1236 | |
1237 | \relates QRhiVertexInputLayout |
1238 | */ |
1239 | bool operator!=(const QRhiVertexInputLayout &a, const QRhiVertexInputLayout &b) Q_DECL_NOTHROW |
1240 | { |
1241 | return !(a == b); |
1242 | } |
1243 | |
1244 | /*! |
1245 | \return the hash value for \a v, using \a seed to seed the calculation. |
1246 | |
1247 | \relates QRhiVertexInputLayout |
1248 | */ |
1249 | uint qHash(const QRhiVertexInputLayout &v, uint seed) Q_DECL_NOTHROW |
1250 | { |
1251 | return qHash(key: v.m_bindings, seed) + qHash(key: v.m_attributes, seed); |
1252 | } |
1253 | |
1254 | #ifndef QT_NO_DEBUG_STREAM |
1255 | template<typename T, int N> |
1256 | QDebug operator<<(QDebug dbg, const QVarLengthArray<T, N> &vla) |
1257 | { |
1258 | return QtPrivate::printSequentialContainer(dbg, "VLA" , vla); |
1259 | } |
1260 | |
1261 | QDebug operator<<(QDebug dbg, const QRhiVertexInputLayout &v) |
1262 | { |
1263 | QDebugStateSaver saver(dbg); |
1264 | dbg.nospace() << "QRhiVertexInputLayout(bindings=" << v.m_bindings |
1265 | << " attributes=" << v.m_attributes |
1266 | << ')'; |
1267 | return dbg; |
1268 | } |
1269 | #endif |
1270 | |
1271 | /*! |
1272 | \class QRhiShaderStage |
1273 | \internal |
1274 | \inmodule QtGui |
1275 | \brief Specifies the type and the shader code for a shader stage in the pipeline. |
1276 | */ |
1277 | |
1278 | /*! |
1279 | \enum QRhiShaderStage::Type |
1280 | Specifies the type of the shader stage. |
1281 | |
1282 | \value Vertex Vertex stage |
1283 | \value Fragment Fragment (pixel) stage |
1284 | \value Compute Compute stage (this may not always be supported at run time) |
1285 | */ |
1286 | |
1287 | /*! |
1288 | \fn QRhiShaderStage::QRhiShaderStage() |
1289 | |
1290 | Constructs a shader stage description for the vertex stage with an empty |
1291 | QShader. |
1292 | */ |
1293 | |
1294 | /*! |
1295 | Constructs a shader stage description with the \a type of the stage and the |
1296 | \a shader. |
1297 | |
1298 | The shader variant \a v defaults to QShader::StandardShader. A |
1299 | QShader contains multiple source and binary versions of a shader. |
1300 | In addition, it can also contain variants of the shader with slightly |
1301 | modified code. \a v can then be used to select the desired variant. |
1302 | */ |
1303 | QRhiShaderStage::QRhiShaderStage(Type type, const QShader &shader, QShader::Variant v) |
1304 | : m_type(type), |
1305 | m_shader(shader), |
1306 | m_shaderVariant(v) |
1307 | { |
1308 | } |
1309 | |
1310 | /*! |
1311 | \return \c true if the values in the two QRhiShaderStage objects |
1312 | \a a and \a b are equal. |
1313 | |
1314 | \relates QRhiShaderStage |
1315 | */ |
1316 | bool operator==(const QRhiShaderStage &a, const QRhiShaderStage &b) Q_DECL_NOTHROW |
1317 | { |
1318 | return a.type() == b.type() |
1319 | && a.shader() == b.shader() |
1320 | && a.shaderVariant() == b.shaderVariant(); |
1321 | } |
1322 | |
1323 | /*! |
1324 | \return \c false if the values in the two QRhiShaderStage |
1325 | objects \a a and \a b are equal; otherwise returns \c true. |
1326 | |
1327 | \relates QRhiShaderStage |
1328 | */ |
1329 | bool operator!=(const QRhiShaderStage &a, const QRhiShaderStage &b) Q_DECL_NOTHROW |
1330 | { |
1331 | return !(a == b); |
1332 | } |
1333 | |
1334 | /*! |
1335 | \return the hash value for \a v, using \a seed to seed the calculation. |
1336 | |
1337 | \relates QRhiShaderStage |
1338 | */ |
1339 | uint qHash(const QRhiShaderStage &v, uint seed) Q_DECL_NOTHROW |
1340 | { |
1341 | return v.type() + qHash(s: v.shader(), seed) + v.shaderVariant(); |
1342 | } |
1343 | |
1344 | #ifndef QT_NO_DEBUG_STREAM |
1345 | QDebug operator<<(QDebug dbg, const QRhiShaderStage &s) |
1346 | { |
1347 | QDebugStateSaver saver(dbg); |
1348 | dbg.nospace() << "QRhiShaderStage(type=" << s.type() |
1349 | << " shader=" << s.shader() |
1350 | << " variant=" << s.shaderVariant() |
1351 | << ')'; |
1352 | return dbg; |
1353 | } |
1354 | #endif |
1355 | |
1356 | /*! |
1357 | \class QRhiColorAttachment |
1358 | \internal |
1359 | \inmodule QtGui |
1360 | \brief Describes the a single color attachment of a render target. |
1361 | |
1362 | A color attachment is either a QRhiTexture or a QRhiRenderBuffer. The |
1363 | former, when texture() is set, is used in most cases. |
1364 | |
1365 | \note texture() and renderBuffer() cannot be both set (be non-null at the |
1366 | same time). |
1367 | |
1368 | Setting renderBuffer instead is recommended only when multisampling is |
1369 | needed. Relying on QRhi::MultisampleRenderBuffer is a better choice than |
1370 | QRhi::MultisampleTexture in practice since the former is available in more |
1371 | run time configurations (e.g. when running on OpenGL ES 3.0 which has no |
1372 | support for multisample textures, but does support multisample |
1373 | renderbuffers). |
1374 | |
1375 | When targeting a non-multisample texture, the layer() and level() |
1376 | indicate the targeted layer (face index \c{0-5} for cubemaps) and mip |
1377 | level. |
1378 | |
1379 | When texture() or renderBuffer() is multisample, resolveTexture() can be |
1380 | set optionally. When set, samples are resolved automatically into that |
1381 | (non-multisample) texture at the end of the render pass. When rendering |
1382 | into a multisample renderbuffers, this is the only way to get resolved, |
1383 | non-multisample content out of them. Multisample textures allow sampling in |
1384 | shaders so for them this is just one option. |
1385 | |
1386 | \note when resolving is enabled, the multisample data may not be written |
1387 | out at all. This means that the multisample texture() must not be used |
1388 | afterwards with shaders for sampling when resolveTexture() is set. |
1389 | */ |
1390 | |
1391 | /*! |
1392 | \fn QRhiColorAttachment::QRhiColorAttachment() |
1393 | |
1394 | Constructs an empty color attachment description. |
1395 | */ |
1396 | |
1397 | /*! |
1398 | Constructs a color attachment description that specifies \a texture as the |
1399 | associated color buffer. |
1400 | */ |
1401 | QRhiColorAttachment::QRhiColorAttachment(QRhiTexture *texture) |
1402 | : m_texture(texture) |
1403 | { |
1404 | } |
1405 | |
1406 | /*! |
1407 | Constructs a color attachment description that specifies \a renderBuffer as |
1408 | the associated color buffer. |
1409 | */ |
1410 | QRhiColorAttachment::QRhiColorAttachment(QRhiRenderBuffer *renderBuffer) |
1411 | : m_renderBuffer(renderBuffer) |
1412 | { |
1413 | } |
1414 | |
1415 | /*! |
1416 | \class QRhiTextureRenderTargetDescription |
1417 | \internal |
1418 | \inmodule QtGui |
1419 | \brief Describes the color and depth or depth/stencil attachments of a render target. |
1420 | |
1421 | A texture render target has zero or more textures as color attachments, |
1422 | zero or one renderbuffer as combined depth/stencil buffer or zero or one |
1423 | texture as depth buffer. |
1424 | |
1425 | \note depthStencilBuffer() and depthTexture() cannot be both set (cannot be |
1426 | non-null at the same time). |
1427 | */ |
1428 | |
1429 | /*! |
1430 | \fn QRhiTextureRenderTargetDescription::QRhiTextureRenderTargetDescription() |
1431 | |
1432 | Constructs an empty texture render target description. |
1433 | */ |
1434 | |
1435 | /*! |
1436 | Constructs a texture render target description with one attachment |
1437 | described by \a colorAttachment. |
1438 | */ |
1439 | QRhiTextureRenderTargetDescription::QRhiTextureRenderTargetDescription(const QRhiColorAttachment &colorAttachment) |
1440 | { |
1441 | m_colorAttachments.append(t: colorAttachment); |
1442 | } |
1443 | |
1444 | /*! |
1445 | Constructs a texture render target description with two attachments, a |
1446 | color attachment described by \a colorAttachment, and a depth/stencil |
1447 | attachment with \a depthStencilBuffer. |
1448 | */ |
1449 | QRhiTextureRenderTargetDescription::QRhiTextureRenderTargetDescription(const QRhiColorAttachment &colorAttachment, |
1450 | QRhiRenderBuffer *depthStencilBuffer) |
1451 | : m_depthStencilBuffer(depthStencilBuffer) |
1452 | { |
1453 | m_colorAttachments.append(t: colorAttachment); |
1454 | } |
1455 | |
1456 | /*! |
1457 | Constructs a texture render target description with two attachments, a |
1458 | color attachment described by \a colorAttachment, and a depth attachment |
1459 | with \a depthTexture. |
1460 | |
1461 | \note \a depthTexture must have a suitable format, such as QRhiTexture::D16 |
1462 | or QRhiTexture::D32F. |
1463 | */ |
1464 | QRhiTextureRenderTargetDescription::QRhiTextureRenderTargetDescription(const QRhiColorAttachment &colorAttachment, |
1465 | QRhiTexture *depthTexture) |
1466 | : m_depthTexture(depthTexture) |
1467 | { |
1468 | m_colorAttachments.append(t: colorAttachment); |
1469 | } |
1470 | |
1471 | /*! |
1472 | \class QRhiTextureSubresourceUploadDescription |
1473 | \internal |
1474 | \inmodule QtGui |
1475 | \brief Describes the source for one mip level in a layer in a texture upload operation. |
1476 | |
1477 | The source content is specified either as a QImage or as a raw blob. The |
1478 | former is only allowed for uncompressed textures with a format that can be |
1479 | mapped to QImage, while the latter is supported for all formats, including |
1480 | floating point and compressed. |
1481 | |
1482 | \note image() and data() cannot be both set at the same time. |
1483 | |
1484 | destinationTopLeft() specifies the top-left corner of the target |
1485 | rectangle. Defaults to (0, 0). |
1486 | |
1487 | An empty sourceSize() (the default) indicates that size is assumed to be |
1488 | the size of the subresource. With QImage-based uploads this implies that |
1489 | the size of the source image() must match the subresource. When providing |
1490 | raw data instead, sufficient number of bytes must be provided in data(). |
1491 | |
1492 | \note With compressed textures the first upload must always match the |
1493 | subresource size due to graphics API limitations with some backends. |
1494 | |
1495 | sourceTopLeft() is supported only for QImage-based uploads, and specifies |
1496 | the top-left corner of the source rectangle. |
1497 | |
1498 | \note Setting sourceSize() or sourceTopLeft() may trigger a QImage copy |
1499 | internally, depending on the format and the backend. |
1500 | |
1501 | When providing raw data, the stride (row pitch, row length in bytes) of the |
1502 | provided data must be equal to \c{width * pixelSize} where \c pixelSize is |
1503 | the number of bytes used for one pixel, and there must be no additional |
1504 | padding between rows. There is no row start alignment requirement. |
1505 | |
1506 | \note The format of the source data must be compatible with the texture |
1507 | format. With many graphics APIs the data is copied as-is into a staging |
1508 | buffer, there is no intermediate format conversion provided by QRhi. This |
1509 | applies to floating point formats as well, with, for example, RGBA16F |
1510 | requiring half floats in the source data. |
1511 | */ |
1512 | |
1513 | /*! |
1514 | \fn QRhiTextureSubresourceUploadDescription::QRhiTextureSubresourceUploadDescription() |
1515 | |
1516 | Constructs an empty subresource description. |
1517 | |
1518 | \note an empty QRhiTextureSubresourceUploadDescription is not useful on its |
1519 | own and should not be submitted to a QRhiTextureUploadEntry. At minimum |
1520 | image or data must be set first. |
1521 | */ |
1522 | |
1523 | /*! |
1524 | Constructs a mip level description with a \a image. |
1525 | |
1526 | The \l{QImage::size()}{size} of \a image must match the size of the mip |
1527 | level. For level 0 that is the \l{QRhiTexture::pixelSize()}{texture size}. |
1528 | |
1529 | The bit depth of \a image must be compatible with the |
1530 | \l{QRhiTexture::Format}{texture format}. |
1531 | |
1532 | To describe a partial upload, call setSourceSize(), setSourceTopLeft(), or |
1533 | setDestinationTopLeft() afterwards. |
1534 | */ |
1535 | QRhiTextureSubresourceUploadDescription::QRhiTextureSubresourceUploadDescription(const QImage &image) |
1536 | : m_image(image) |
1537 | { |
1538 | } |
1539 | |
1540 | /*! |
1541 | Constructs a mip level description with the image data is specified by \a |
1542 | data and \a size. This is suitable for floating point and compressed |
1543 | formats as well. |
1544 | |
1545 | \a data can safely be destroyed or changed once this function returns. |
1546 | */ |
1547 | QRhiTextureSubresourceUploadDescription::QRhiTextureSubresourceUploadDescription(const void *data, int size) |
1548 | : m_data(reinterpret_cast<const char *>(data), size) |
1549 | { |
1550 | } |
1551 | |
1552 | /*! |
1553 | \class QRhiTextureUploadEntry |
1554 | \internal |
1555 | \inmodule QtGui |
1556 | \brief Describes one layer (face for cubemaps) in a texture upload operation. |
1557 | */ |
1558 | |
1559 | /*! |
1560 | \fn QRhiTextureUploadEntry::QRhiTextureUploadEntry() |
1561 | |
1562 | Constructs an empty QRhiTextureUploadEntry targeting layer 0 and level 0. |
1563 | |
1564 | \note an empty QRhiTextureUploadEntry should not be submitted without |
1565 | setting a QRhiTextureSubresourceUploadDescription via setDescription() |
1566 | first. |
1567 | */ |
1568 | |
1569 | /*! |
1570 | Constructs a QRhiTextureUploadEntry targeting the given \a layer and mip |
1571 | \a level, with the subresource contents described by \a desc. |
1572 | */ |
1573 | QRhiTextureUploadEntry::QRhiTextureUploadEntry(int layer, int level, |
1574 | const QRhiTextureSubresourceUploadDescription &desc) |
1575 | : m_layer(layer), |
1576 | m_level(level), |
1577 | m_desc(desc) |
1578 | { |
1579 | } |
1580 | |
1581 | /*! |
1582 | \class QRhiTextureUploadDescription |
1583 | \internal |
1584 | \inmodule QtGui |
1585 | \brief Describes a texture upload operation. |
1586 | |
1587 | Used with QRhiResourceUpdateBatch::uploadTexture(). That function has two |
1588 | variants: one taking a QImage and one taking a |
1589 | QRhiTextureUploadDescription. The former is a convenience version, |
1590 | internally creating a QRhiTextureUploadDescription with a single image |
1591 | targeting level 0 for layer 0. However, when cubemaps, pre-generated mip |
1592 | images, or compressed textures are involved, applications will have to work |
1593 | directly with this class instead. |
1594 | |
1595 | QRhiTextureUploadDescription also enables specifying batched uploads, which |
1596 | are useful for example when generating an atlas or glyph cache texture: |
1597 | multiple, partial uploads for the same subresource (meaning the same layer |
1598 | and level) are supported, and can be, depending on the backend and the |
1599 | underlying graphics API, more efficient when batched into the same |
1600 | QRhiTextureUploadDescription as opposed to issuing individual |
1601 | \l{QRhiResourceUpdateBatch::uploadTexture()}{uploadTexture()} commands for |
1602 | each of them. |
1603 | |
1604 | \note Cubemaps have one layer for each of the six faces in the order +X, |
1605 | -X, +Y, -Y, +Z, -Z. |
1606 | |
1607 | For example, specifying the faces of a cubemap could look like the following: |
1608 | |
1609 | \badcode |
1610 | QImage faces[6]; |
1611 | ... |
1612 | QVector<QRhiTextureUploadEntry> entries; |
1613 | for (int i = 0; i < 6; ++i) |
1614 | entries.append(QRhiTextureUploadEntry(i, 0, faces[i])); |
1615 | QRhiTextureUploadDescription desc(entries); |
1616 | resourceUpdates->uploadTexture(texture, desc); |
1617 | \endcode |
1618 | |
1619 | Another example that specifies mip images for a compressed texture: |
1620 | |
1621 | \badcode |
1622 | QRhiTextureUploadDescription desc; |
1623 | const int mipCount = rhi->mipLevelsForSize(compressedTexture->pixelSize()); |
1624 | for (int level = 0; level < mipCount; ++level) { |
1625 | const QByteArray compressedDataForLevel = .. |
1626 | desc.append(QRhiTextureUploadEntry(0, level, compressedDataForLevel)); |
1627 | } |
1628 | resourceUpdates->uploadTexture(compressedTexture, desc); |
1629 | \endcode |
1630 | |
1631 | With partial uploads targeting the same subresource, it is recommended to |
1632 | batch them into a single upload request, whenever possible: |
1633 | |
1634 | \badcode |
1635 | QRhiTextureSubresourceUploadDescription subresDesc(image); |
1636 | subresDesc.setSourceSize(QSize(10, 10)); |
1637 | subResDesc.setDestinationTopLeft(QPoint(50, 40)); |
1638 | QRhiTextureUploadEntry entry(0, 0, subresDesc); // layer 0, level 0 |
1639 | |
1640 | QRhiTextureSubresourceUploadDescription subresDesc2(image); |
1641 | subresDesc2.setSourceSize(QSize(30, 40)); |
1642 | subResDesc2.setDestinationTopLeft(QPoint(100, 200)); |
1643 | QRhiTextureUploadEntry entry2(0, 0, subresDesc2); // layer 0, level 0, i.e. same subresource |
1644 | |
1645 | QRhiTextureUploadDescription desc({ entry, entry2}); |
1646 | resourceUpdates->uploadTexture(texture, desc); |
1647 | \endcode |
1648 | */ |
1649 | |
1650 | /*! |
1651 | \fn QRhiTextureUploadDescription::QRhiTextureUploadDescription() |
1652 | |
1653 | Constructs an empty texture upload description. |
1654 | */ |
1655 | |
1656 | /*! |
1657 | Constructs a texture upload description with a single subresource upload |
1658 | described by \a entry. |
1659 | */ |
1660 | QRhiTextureUploadDescription::QRhiTextureUploadDescription(const QRhiTextureUploadEntry &entry) |
1661 | { |
1662 | m_entries.append(t: entry); |
1663 | } |
1664 | |
1665 | /*! |
1666 | Constructs a texture upload description with the specified \a list of entries. |
1667 | |
1668 | \note \a list can also contain multiple QRhiTextureUploadEntry elements |
1669 | with the same layer and level. This makes sense when those uploads are |
1670 | partial, meaning their subresource description has a source size or image |
1671 | smaller than the subresource dimensions, and can be more efficient than |
1672 | issuing separate uploadTexture()'s. |
1673 | */ |
1674 | QRhiTextureUploadDescription::QRhiTextureUploadDescription(std::initializer_list<QRhiTextureUploadEntry> list) |
1675 | : m_entries(list) |
1676 | { |
1677 | } |
1678 | |
1679 | /*! |
1680 | \class QRhiTextureCopyDescription |
1681 | \internal |
1682 | \inmodule QtGui |
1683 | \brief Describes a texture-to-texture copy operation. |
1684 | |
1685 | An empty pixelSize() indicates that the entire subresource is to be copied. |
1686 | A default constructed copy description therefore leads to copying the |
1687 | entire subresource at level 0 of layer 0. |
1688 | |
1689 | \note The source texture must be created with |
1690 | QRhiTexture::UsedAsTransferSource. |
1691 | |
1692 | \note The source and destination rectangles defined by pixelSize(), |
1693 | sourceTopLeft(), and destinationTopLeft() must fit the source and |
1694 | destination textures, respectively. The behavior is undefined otherwise. |
1695 | */ |
1696 | |
1697 | /*! |
1698 | \fn QRhiTextureCopyDescription::QRhiTextureCopyDescription() |
1699 | |
1700 | Constructs an empty texture copy description. |
1701 | */ |
1702 | |
1703 | /*! |
1704 | \class QRhiReadbackDescription |
1705 | \internal |
1706 | \inmodule QtGui |
1707 | \brief Describes a readback (reading back texture contents from possibly GPU-only memory) operation. |
1708 | |
1709 | The source of the readback operation is either a QRhiTexture or the |
1710 | current backbuffer of the currently targeted QRhiSwapChain. When |
1711 | texture() is not set, the swapchain is used. Otherwise the specified |
1712 | QRhiTexture is treated as the source. |
1713 | |
1714 | \note Textures used in readbacks must be created with |
1715 | QRhiTexture::UsedAsTransferSource. |
1716 | |
1717 | \note Swapchains used in readbacks must be created with |
1718 | QRhiSwapChain::UsedAsTransferSource. |
1719 | |
1720 | layer() and level() are only applicable when the source is a QRhiTexture. |
1721 | |
1722 | \note Multisample textures cannot be read back. Readbacks are supported for |
1723 | multisample swapchain buffers however. |
1724 | */ |
1725 | |
1726 | /*! |
1727 | \fn QRhiReadbackDescription::QRhiReadbackDescription() |
1728 | |
1729 | Constructs an empty texture readback description. |
1730 | |
1731 | \note The source texture is set to null by default, which is still a valid |
1732 | readback: it specifies that the backbuffer of the current swapchain is to |
1733 | be read back. (current meaning the frame's target swapchain at the time of |
1734 | committing the QRhiResourceUpdateBatch with the |
1735 | \l{QRhiResourceUpdateBatch::readBackTexture()}{texture readback} on it) |
1736 | */ |
1737 | |
1738 | /*! |
1739 | Constructs an texture readback description that specifies that level 0 of |
1740 | layer 0 of \a texture is to be read back. |
1741 | |
1742 | \note \a texture can also be null in which case this constructor is |
1743 | identical to the argumentless variant. |
1744 | */ |
1745 | QRhiReadbackDescription::QRhiReadbackDescription(QRhiTexture *texture) |
1746 | : m_texture(texture) |
1747 | { |
1748 | } |
1749 | |
1750 | /*! |
1751 | \class QRhiReadbackResult |
1752 | \internal |
1753 | \inmodule QtGui |
1754 | \brief Describes the results of a potentially asynchronous readback operation. |
1755 | |
1756 | When \l completed is set, the function is invoked when the \l data is |
1757 | available. \l format and \l pixelSize are set upon completion together with |
1758 | \l data. |
1759 | */ |
1760 | |
1761 | /*! |
1762 | \class QRhiNativeHandles |
1763 | \internal |
1764 | \inmodule QtGui |
1765 | \brief Base class for classes exposing backend-specific collections of native resource objects. |
1766 | */ |
1767 | |
1768 | /*! |
1769 | \class QRhiResource |
1770 | \internal |
1771 | \inmodule QtGui |
1772 | \brief Base class for classes encapsulating native resource objects. |
1773 | */ |
1774 | |
1775 | /*! |
1776 | \fn QRhiResource::Type QRhiResource::resourceType() const |
1777 | |
1778 | \return the type of the resource. |
1779 | */ |
1780 | |
1781 | /*! |
1782 | \internal |
1783 | */ |
1784 | QRhiResource::QRhiResource(QRhiImplementation *rhi) |
1785 | : m_rhi(rhi) |
1786 | { |
1787 | m_id = QRhiGlobalObjectIdGenerator::newId(); |
1788 | } |
1789 | |
1790 | /*! |
1791 | Destructor. |
1792 | |
1793 | Releases (or requests deferred releasing of) the underlying native graphics |
1794 | resources, if there are any. |
1795 | |
1796 | \note Resources referenced by commands for the current frame should not be |
1797 | released until the frame is submitted by QRhi::endFrame(). |
1798 | |
1799 | \sa release() |
1800 | */ |
1801 | QRhiResource::~QRhiResource() |
1802 | { |
1803 | // release() cannot be called here, it being virtual; it is up to the |
1804 | // subclasses to do that. |
1805 | } |
1806 | |
1807 | /*! |
1808 | \fn void QRhiResource::release() |
1809 | |
1810 | Releases (or requests deferred releasing of) the underlying native graphics |
1811 | resources. Safe to call multiple times, subsequent invocations will be a |
1812 | no-op then. |
1813 | |
1814 | Once release() is called, the QRhiResource instance can be reused, by |
1815 | calling \c build() again. That will then result in creating new native |
1816 | graphics resources underneath. |
1817 | |
1818 | \note Resources referenced by commands for the current frame should not be |
1819 | released until the frame is submitted by QRhi::endFrame(). |
1820 | |
1821 | The QRhiResource destructor also performs the same task, so calling this |
1822 | function is not necessary before destroying a QRhiResource. |
1823 | |
1824 | \sa releaseAndDestroyLater() |
1825 | */ |
1826 | |
1827 | /*! |
1828 | When called without a frame being recorded, this function is equivalent to |
1829 | deleting the object. Between a QRhi::beginFrame() and QRhi::endFrame() |
1830 | however the behavior is different: the QRhiResource will not be destroyed |
1831 | until the frame is submitted via QRhi::endFrame(), thus satisfying the QRhi |
1832 | requirement of not altering QRhiResource objects that are referenced by the |
1833 | frame being recorded. |
1834 | |
1835 | \sa release() |
1836 | */ |
1837 | void QRhiResource::releaseAndDestroyLater() |
1838 | { |
1839 | m_rhi->addReleaseAndDestroyLater(res: this); |
1840 | } |
1841 | |
1842 | /*! |
1843 | \return the currently set object name. By default the name is empty. |
1844 | */ |
1845 | QByteArray QRhiResource::name() const |
1846 | { |
1847 | return m_objectName; |
1848 | } |
1849 | |
1850 | /*! |
1851 | Sets a \a name for the object. |
1852 | |
1853 | This has two uses: to get descriptive names for the native graphics |
1854 | resources visible in graphics debugging tools, such as |
1855 | \l{https://renderdoc.org/}{RenderDoc} and |
1856 | \l{https://developer.apple.com/xcode/}{XCode}, and in the output stream of |
1857 | QRhiProfiler. |
1858 | |
1859 | When it comes to naming native objects by relaying the name via the |
1860 | appropriate graphics API, note that the name is ignored when |
1861 | QRhi::DebugMarkers are not supported, and may, depending on the backend, |
1862 | also be ignored when QRhi::EnableDebugMarkers is not set. |
1863 | |
1864 | \note The name may be ignored for objects other than buffers, |
1865 | renderbuffers, and textures, depending on the backend. |
1866 | |
1867 | \note The name may be modified. For slotted resources, such as a QRhiBuffer |
1868 | backed by multiple native buffers, QRhi will append a suffix to make the |
1869 | underlying native buffers easily distinguishable from each other. |
1870 | */ |
1871 | void QRhiResource::setName(const QByteArray &name) |
1872 | { |
1873 | m_objectName = name; |
1874 | m_objectName.replace(before: ',', after: '_'); // cannot contain comma for QRhiProfiler |
1875 | } |
1876 | |
1877 | /*! |
1878 | \return the global, unique identifier of this QRhiResource. |
1879 | |
1880 | User code rarely needs to deal with the value directly. It is used |
1881 | internally for tracking and bookkeeping purposes. |
1882 | */ |
1883 | quint64 QRhiResource::globalResourceId() const |
1884 | { |
1885 | return m_id; |
1886 | } |
1887 | |
1888 | /*! |
1889 | \class QRhiBuffer |
1890 | \internal |
1891 | \inmodule QtGui |
1892 | \brief Vertex, index, or uniform (constant) buffer resource. |
1893 | */ |
1894 | |
1895 | /*! |
1896 | \enum QRhiBuffer::Type |
1897 | Specifies storage type of buffer resource. |
1898 | |
1899 | \value Immutable Indicates that the data is not expected to change ever |
1900 | after the initial upload. Under the hood such buffer resources are |
1901 | typically placed in device local (GPU) memory (on systems where |
1902 | applicable). Uploading new data is possible, but may be expensive. The |
1903 | upload typically happens by copying to a separate, host visible staging |
1904 | buffer from which a GPU buffer-to-buffer copy is issued into the actual |
1905 | GPU-only buffer. |
1906 | |
1907 | \value Static Indicates that the data is expected to change only |
1908 | infrequently. Typically placed in device local (GPU) memory, where |
1909 | applicable. On backends where host visible staging buffers are used for |
1910 | uploading, the staging buffers are kept around for this type, unlike with |
1911 | Immutable, so subsequent uploads do not suffer in performance. Frequent |
1912 | updates, especially updates in consecutive frames, should be avoided. |
1913 | |
1914 | \value Dynamic Indicates that the data is expected to change frequently. |
1915 | Not recommended for large buffers. Typically backed by host visible memory |
1916 | in 2 copies in order to allow for changing without stalling the graphics |
1917 | pipeline. The double buffering is managed transparently to the applications |
1918 | and is not exposed in the API here in any form. This is the recommended, |
1919 | and, with some backends, the only possible, type for buffers with |
1920 | UniformBuffer usage. |
1921 | */ |
1922 | |
1923 | /*! |
1924 | \enum QRhiBuffer::UsageFlag |
1925 | Flag values to specify how the buffer is going to be used. |
1926 | |
1927 | \value VertexBuffer Vertex buffer. This allows the QRhiBuffer to be used in |
1928 | \l{setVertexInput()}{QRhiCommandBuffer::setVertexInput()}. |
1929 | |
1930 | \value IndexBuffer Index buffer. This allows the QRhiBuffer to be used in |
1931 | \l{setVertexInput()}{QRhiCommandBuffer::setVertexInput()}. |
1932 | |
1933 | \value UniformBuffer Uniform buffer (also called constant buffer). This |
1934 | allows the QRhiBuffer to be used in combination with |
1935 | \l{UniformBuffer}{QRhiShaderResourceBinding::UniformBuffer}. When |
1936 | \l{QRhi::NonDynamicUniformBuffers}{NonDynamicUniformBuffers} is reported as |
1937 | not supported, this usage can only be combined with the type Dynamic. |
1938 | |
1939 | \value StorageBuffer Storage buffer. This allows the QRhiBuffer to be used |
1940 | in combination with \l{BufferLoad}{QRhiShaderResourceBinding::BufferLoad}, |
1941 | \l{BufferStore}{QRhiShaderResourceBinding::BufferStore}, or |
1942 | \l{BufferLoadStore}{QRhiShaderResourceBinding::BufferLoadStore}. This usage |
1943 | can only be combined with the types Immutable or Static, and is only |
1944 | available when the \l{QRhi::Compute}{Compute feature} is reported as |
1945 | supported. |
1946 | */ |
1947 | |
1948 | /*! |
1949 | \fn void QRhiBuffer::setSize(int sz) |
1950 | |
1951 | Sets the size of the buffer in bytes. The size is normally specified in |
1952 | QRhi::newBuffer() so this function is only used when the size has to be |
1953 | changed. As with other setters, the size only takes effect when calling |
1954 | build(), and for already built buffers this involves releasing the previous |
1955 | native resource and creating new ones under the hood. |
1956 | |
1957 | Backends may choose to allocate buffers bigger than \a sz in order to |
1958 | fulfill alignment requirements. This is hidden from the applications and |
1959 | size() will always report the size requested in \a sz. |
1960 | */ |
1961 | |
1962 | /*! |
1963 | \class QRhiBuffer::NativeBuffer |
1964 | \brief Contains information about the underlying native resources of a buffer. |
1965 | */ |
1966 | |
1967 | /*! |
1968 | \variable QRhiBuffer::NativeBuffer::objects |
1969 | \brief an array with pointers to the native object handles. |
1970 | |
1971 | With OpenGL, the native handle is a GLuint value, so the elements in the \c |
1972 | objects array are pointers to a GLuint. With Vulkan, the native handle is a |
1973 | VkBuffer, so the elements of the array are pointers to a VkBuffer. With |
1974 | Direct3D 11 and Metal the elements are pointers to a ID3D11Buffer or |
1975 | MTLBuffer pointer, respectively. |
1976 | |
1977 | \note Pay attention to the fact that the elements are always pointers to |
1978 | the native buffer handle type, even if the native type itself is a pointer. |
1979 | */ |
1980 | |
1981 | /*! |
1982 | \variable QRhiBuffer::NativeBuffer::slotCount |
1983 | \brief Specifies the number of valid elements in the objects array. |
1984 | |
1985 | The value can be 0, 1, 2, or 3 in practice. 0 indicates that the QRhiBuffer |
1986 | is not backed by any native buffer objects. This can happen with |
1987 | QRhiBuffers with the usage UniformBuffer when the underlying API does not |
1988 | support (or the backend chooses not to use) native uniform buffers. 1 is |
1989 | commonly used for Immutable and Static types (but some backends may |
1990 | differ). 2 or 3 is typical when the type is Dynamic (but some backends may |
1991 | differ). |
1992 | |
1993 | \sa QRhi::currentFrameSlot(), QRhi::FramesInFlight |
1994 | */ |
1995 | |
1996 | /*! |
1997 | \internal |
1998 | */ |
1999 | QRhiBuffer::QRhiBuffer(QRhiImplementation *rhi, Type type_, UsageFlags usage_, int size_) |
2000 | : QRhiResource(rhi), |
2001 | m_type(type_), m_usage(usage_), m_size(size_) |
2002 | { |
2003 | } |
2004 | |
2005 | /*! |
2006 | \return the resource type. |
2007 | */ |
2008 | QRhiResource::Type QRhiBuffer::resourceType() const |
2009 | { |
2010 | return Buffer; |
2011 | } |
2012 | |
2013 | /*! |
2014 | \fn bool QRhiBuffer::build() |
2015 | |
2016 | Creates the corresponding native graphics resources. If there are already |
2017 | resources present due to an earlier build() with no corresponding |
2018 | release(), then release() is called implicitly first. |
2019 | |
2020 | \return \c true when successful, \c false when a graphics operation failed. |
2021 | Regardless of the return value, calling release() is always safe. |
2022 | */ |
2023 | |
2024 | /*! |
2025 | \return the underlying native resources for this buffer. The returned value |
2026 | will be empty if exposing the underlying native resources is not supported by |
2027 | the backend. |
2028 | |
2029 | A QRhiBuffer may be backed by multiple native buffer objects, depending on |
2030 | the type() and the QRhi backend in use. When this is the case, all of them |
2031 | are returned in the objects array in the returned struct, with slotCount |
2032 | specifying the number of native buffer objects. While |
2033 | \l{QRhi::beginFrame()}{recording a frame}, QRhi::currentFrameSlot() can be |
2034 | used to determine which of the native buffers QRhi is using for operations |
2035 | that read or write from this QRhiBuffer within the frame being recorded. |
2036 | |
2037 | In some cases a QRhiBuffer will not be backed by a native buffer object at |
2038 | all. In this case slotCount will be set to 0 and no valid native objects |
2039 | are returned. This is not an error, and is perfectly valid when a given |
2040 | backend does not use native buffers for QRhiBuffers with certain types or |
2041 | usages. |
2042 | |
2043 | \note Be aware that QRhi backends may employ various buffer update |
2044 | strategies. Unlike textures, where uploading image data always means |
2045 | recording a buffer-to-image (or similar) copy command on the command |
2046 | buffer, buffers, in particular Dynamic and UniformBuffer ones, can operate |
2047 | in many different ways. For example, a QRhiBuffer with usage type |
2048 | UniformBuffer may not even be backed by a native buffer object at all if |
2049 | uniform buffers are not used or supported by a given backend and graphics |
2050 | API. There are also differences to how data is written to the buffer and |
2051 | the type of backing memory used. For buffers backed by host visible memory, |
2052 | calling this function guarantees that pending host writes are executed for |
2053 | all the returned native buffers. |
2054 | |
2055 | \sa QRhi::currentFrameSlot(), QRhi::FramesInFlight |
2056 | */ |
2057 | QRhiBuffer::NativeBuffer QRhiBuffer::nativeBuffer() |
2058 | { |
2059 | return {}; |
2060 | } |
2061 | |
2062 | /*! |
2063 | \class QRhiRenderBuffer |
2064 | \internal |
2065 | \inmodule QtGui |
2066 | \brief Renderbuffer resource. |
2067 | |
2068 | Renderbuffers cannot be sampled or read but have some benefits over |
2069 | textures in some cases: |
2070 | |
2071 | A DepthStencil renderbuffer may be lazily allocated and be backed by |
2072 | transient memory with some APIs. On some platforms this may mean the |
2073 | depth/stencil buffer uses no physical backing at all. |
2074 | |
2075 | Color renderbuffers are useful since QRhi::MultisampleRenderBuffer may be |
2076 | supported even when QRhi::MultisampleTexture is not. |
2077 | |
2078 | How the renderbuffer is implemented by a backend is not exposed to the |
2079 | applications. In some cases it may be backed by ordinary textures, while in |
2080 | others there may be a different kind of native resource used. |
2081 | |
2082 | Renderbuffers that are used as (and are only used as) depth-stencil buffers |
2083 | in combination with a QRhiSwapChain's color buffers should have the |
2084 | UsedWithSwapChainOnly flag set. This serves a double purpose: such buffers, |
2085 | depending on the backend and the underlying APIs, be more efficient, and |
2086 | QRhi provides automatic sizing behavior to match the color buffers, which |
2087 | means calling setPixelSize() and build() are not necessary for such |
2088 | renderbuffers. |
2089 | */ |
2090 | |
2091 | /*! |
2092 | \enum QRhiRenderBuffer::Type |
2093 | Specifies the type of the renderbuffer |
2094 | |
2095 | \value DepthStencil Combined depth/stencil |
2096 | \value Color Color |
2097 | */ |
2098 | |
2099 | /*! |
2100 | \enum QRhiRenderBuffer::Flag |
2101 | Flag values for flags() and setFlags() |
2102 | |
2103 | \value UsedWithSwapChainOnly For DepthStencil renderbuffers this indicates |
2104 | that the renderbuffer is only used in combination with a QRhiSwapChain, and |
2105 | never in any other way. This provides automatic sizing and resource |
2106 | rebuilding, so calling setPixelSize() or build() is not needed whenever |
2107 | this flag is set. This flag value may also trigger backend-specific |
2108 | behavior, for example with OpenGL, where a separate windowing system |
2109 | interface API is in use (EGL, GLX, etc.), the flag is especially important |
2110 | as it avoids creating any actual renderbuffer resource as there is already |
2111 | a windowing system provided depth/stencil buffer as requested by |
2112 | QSurfaceFormat. |
2113 | */ |
2114 | |
2115 | /*! |
2116 | \internal |
2117 | */ |
2118 | QRhiRenderBuffer::QRhiRenderBuffer(QRhiImplementation *rhi, Type type_, const QSize &pixelSize_, |
2119 | int sampleCount_, Flags flags_) |
2120 | : QRhiResource(rhi), |
2121 | m_type(type_), m_pixelSize(pixelSize_), m_sampleCount(sampleCount_), m_flags(flags_) |
2122 | { |
2123 | } |
2124 | |
2125 | /*! |
2126 | \return the resource type. |
2127 | */ |
2128 | QRhiResource::Type QRhiRenderBuffer::resourceType() const |
2129 | { |
2130 | return RenderBuffer; |
2131 | } |
2132 | |
2133 | /*! |
2134 | \fn bool QRhiRenderBuffer::build() |
2135 | |
2136 | Creates the corresponding native graphics resources. If there are already |
2137 | resources present due to an earlier build() with no corresponding |
2138 | release(), then release() is called implicitly first. |
2139 | |
2140 | \return \c true when successful, \c false when a graphics operation failed. |
2141 | Regardless of the return value, calling release() is always safe. |
2142 | */ |
2143 | |
2144 | /*! |
2145 | \fn QRhiTexture::Format QRhiRenderBuffer::backingFormat() const |
2146 | |
2147 | \internal |
2148 | */ |
2149 | |
2150 | /*! |
2151 | \class QRhiTexture |
2152 | \internal |
2153 | \inmodule QtGui |
2154 | \brief Texture resource. |
2155 | */ |
2156 | |
2157 | /*! |
2158 | \enum QRhiTexture::Flag |
2159 | |
2160 | Flag values to specify how the texture is going to be used. Not honoring |
2161 | the flags set before build() and attempting to use the texture in ways that |
2162 | was not declared upfront can lead to unspecified behavior or decreased |
2163 | performance depending on the backend and the underlying graphics API. |
2164 | |
2165 | \value RenderTarget The texture going to be used in combination with |
2166 | QRhiTextureRenderTarget. |
2167 | |
2168 | \value CubeMap The texture is a cubemap. Such textures have 6 layers, one |
2169 | for each face in the order of +X, -X, +Y, -Y, +Z, -Z. Cubemap textures |
2170 | cannot be multisample. |
2171 | |
2172 | \value MipMapped The texture has mipmaps. The appropriate mip count is |
2173 | calculated automatically and can also be retrieved via |
2174 | QRhi::mipLevelsForSize(). The images for the mip levels have to be |
2175 | provided in the texture uploaded or generated via |
2176 | QRhiResourceUpdateBatch::generateMips(). Multisample textures cannot have |
2177 | mipmaps. |
2178 | |
2179 | \value sRGB Use an sRGB format. |
2180 | |
2181 | \value UsedAsTransferSource The texture is used as the source of a texture |
2182 | copy or readback, meaning the texture is given as the source in |
2183 | QRhiResourceUpdateBatch::copyTexture() or |
2184 | QRhiResourceUpdateBatch::readBackTexture(). |
2185 | |
2186 | \value UsedWithGenerateMips The texture is going to be used with |
2187 | QRhiResourceUpdateBatch::generateMips(). |
2188 | |
2189 | \value UsedWithLoadStore The texture is going to be used with image |
2190 | load/store operations, for example, in a compute shader. |
2191 | */ |
2192 | |
2193 | /*! |
2194 | \enum QRhiTexture::Format |
2195 | |
2196 | Specifies the texture format. See also QRhi::isTextureFormatSupported() and |
2197 | note that flags() can modify the format when QRhiTexture::sRGB is set. |
2198 | |
2199 | \value UnknownFormat Not a valid format. This cannot be passed to setFormat(). |
2200 | |
2201 | \value RGBA8 Four component, unsigned normalized 8 bit per component. Always supported. |
2202 | |
2203 | \value BGRA8 Four component, unsigned normalized 8 bit per component. |
2204 | |
2205 | \value R8 One component, unsigned normalized 8 bit. |
2206 | |
2207 | \value R16 One component, unsigned normalized 16 bit. |
2208 | |
2209 | \value RED_OR_ALPHA8 Either same as R8, or is a similar format with the component swizzled to alpha, |
2210 | depending on \l{QRhi::RedOrAlpha8IsRed}{RedOrAlpha8IsRed}. |
2211 | |
2212 | \value RGBA16F Four components, 16-bit float per component. |
2213 | |
2214 | \value RGBA32F Four components, 32-bit float per component. |
2215 | |
2216 | \value D16 16-bit depth (normalized unsigned integer) |
2217 | |
2218 | \value D32F 32-bit depth (32-bit float) |
2219 | |
2220 | \value BC1 |
2221 | \value BC2 |
2222 | \value BC3 |
2223 | \value BC4 |
2224 | \value BC5 |
2225 | \value BC6H |
2226 | \value BC7 |
2227 | |
2228 | \value ETC2_RGB8 |
2229 | \value ETC2_RGB8A1 |
2230 | \value ETC2_RGBA8 |
2231 | |
2232 | \value ASTC_4x4 |
2233 | \value ASTC_5x4 |
2234 | \value ASTC_5x5 |
2235 | \value ASTC_6x5 |
2236 | \value ASTC_6x6 |
2237 | \value ASTC_8x5 |
2238 | \value ASTC_8x6 |
2239 | \value ASTC_8x8 |
2240 | \value ASTC_10x5 |
2241 | \value ASTC_10x6 |
2242 | \value ASTC_10x8 |
2243 | \value ASTC_10x10 |
2244 | \value ASTC_12x10 |
2245 | \value ASTC_12x12 |
2246 | */ |
2247 | |
2248 | /*! |
2249 | \class QRhiTexture::NativeTexture |
2250 | \brief Contains information about the underlying native resources of a texture. |
2251 | */ |
2252 | |
2253 | /*! |
2254 | \variable QRhiTexture::NativeTexture::object |
2255 | \brief a pointer to the native object handle. |
2256 | |
2257 | With OpenGL, the native handle is a GLuint value, so \c object is then a |
2258 | pointer to a GLuint. With Vulkan, the native handle is a VkImage, so \c |
2259 | object is a pointer to a VkImage. With Direct3D 11 and Metal \c |
2260 | object is a pointer to a ID3D11Texture2D or MTLTexture pointer, respectively. |
2261 | |
2262 | \note Pay attention to the fact that \a object is always a pointer |
2263 | to the native texture handle type, even if the native type itself is a |
2264 | pointer. |
2265 | */ |
2266 | |
2267 | /*! |
2268 | \variable QRhiTexture::NativeTexture::layout |
2269 | \brief Specifies the current image layout for APIs like Vulkan. |
2270 | |
2271 | For Vulkan, \c layout contains a \c VkImageLayout value. |
2272 | */ |
2273 | |
2274 | /*! |
2275 | \internal |
2276 | */ |
2277 | QRhiTexture::QRhiTexture(QRhiImplementation *rhi, Format format_, const QSize &pixelSize_, |
2278 | int sampleCount_, Flags flags_) |
2279 | : QRhiResource(rhi), |
2280 | m_format(format_), m_pixelSize(pixelSize_), m_sampleCount(sampleCount_), m_flags(flags_) |
2281 | { |
2282 | } |
2283 | |
2284 | /*! |
2285 | \return the resource type. |
2286 | */ |
2287 | QRhiResource::Type QRhiTexture::resourceType() const |
2288 | { |
2289 | return Texture; |
2290 | } |
2291 | |
2292 | /*! |
2293 | \fn bool QRhiTexture::build() |
2294 | |
2295 | Creates the corresponding native graphics resources. If there are already |
2296 | resources present due to an earlier build() with no corresponding |
2297 | release(), then release() is called implicitly first. |
2298 | |
2299 | \return \c true when successful, \c false when a graphics operation failed. |
2300 | Regardless of the return value, calling release() is always safe. |
2301 | */ |
2302 | |
2303 | /*! |
2304 | \return the underlying native resources for this texture. The returned value |
2305 | will be empty if exposing the underlying native resources is not supported by |
2306 | the backend. |
2307 | |
2308 | \sa buildFrom() |
2309 | */ |
2310 | QRhiTexture::NativeTexture QRhiTexture::nativeTexture() |
2311 | { |
2312 | return {}; |
2313 | } |
2314 | |
2315 | /*! |
2316 | Similar to build() except that no new native textures are created. Instead, |
2317 | the native texture resources specified by \a src is used. |
2318 | |
2319 | This allows importing an existing native texture object (which must belong |
2320 | to the same device or sharing context, depending on the graphics API) from |
2321 | an external graphics engine. |
2322 | |
2323 | \note format(), pixelSize(), sampleCount(), and flags() must still be set |
2324 | correctly. Passing incorrect sizes and other values to QRhi::newTexture() |
2325 | and then following it with a buildFrom() expecting that the native texture |
2326 | object alone is sufficient to deduce such values is \b wrong and will lead |
2327 | to problems. |
2328 | |
2329 | \note QRhiTexture does not take ownership of the texture object. release() |
2330 | does not free the object or any associated memory. |
2331 | |
2332 | The opposite of this operation, exposing a QRhiTexture-created native |
2333 | texture object to a foreign engine, is possible via nativeTexture(). |
2334 | |
2335 | */ |
2336 | bool QRhiTexture::buildFrom(QRhiTexture::NativeTexture src) |
2337 | { |
2338 | Q_UNUSED(src); |
2339 | return false; |
2340 | } |
2341 | |
2342 | /*! |
2343 | With some graphics APIs, such as Vulkan, integrating custom rendering code |
2344 | that uses the graphics API directly needs special care when it comes to |
2345 | image layouts. This function allows communicating the expected layout the |
2346 | image backing the QRhiTexture is in after the native rendering commands. |
2347 | |
2348 | For example, consider rendering into a QRhiTexture's VkImage directly with |
2349 | Vulkan in a code block enclosed by QRhiCommandBuffer::beginExternal() and |
2350 | QRhiCommandBuffer::endExternal(), followed by using the image for texture |
2351 | sampling in a QRhi-based render pass. To avoid potentially incorrect image |
2352 | layout transitions, this function can be used to indicate what the image |
2353 | layout will be once the commands recorded in said code block complete. |
2354 | |
2355 | Calling this function makes sense only after |
2356 | QRhiCommandBuffer::endExternal() and before a subsequent |
2357 | QRhiCommandBuffer::beginPass(). |
2358 | |
2359 | This function has no effect with QRhi backends where the underlying |
2360 | graphics API does not expose a concept of image layouts. |
2361 | */ |
2362 | void QRhiTexture::setNativeLayout(int layout) |
2363 | { |
2364 | Q_UNUSED(layout); |
2365 | } |
2366 | |
2367 | /*! |
2368 | \class QRhiSampler |
2369 | \internal |
2370 | \inmodule QtGui |
2371 | \brief Sampler resource. |
2372 | */ |
2373 | |
2374 | /*! |
2375 | \enum QRhiSampler::Filter |
2376 | Specifies the minification, magnification, or mipmap filtering |
2377 | |
2378 | \value None Applicable only for mipmapMode(), indicates no mipmaps to be used |
2379 | \value Nearest |
2380 | \value Linear |
2381 | */ |
2382 | |
2383 | /*! |
2384 | \enum QRhiSampler::AddressMode |
2385 | Specifies the addressing mode |
2386 | |
2387 | \value Repeat |
2388 | \value ClampToEdge |
2389 | \value Mirror |
2390 | */ |
2391 | |
2392 | /*! |
2393 | \enum QRhiSampler::CompareOp |
2394 | Specifies the texture comparison function. |
2395 | |
2396 | \value Never (default) |
2397 | \value Less |
2398 | \value Equal |
2399 | \value LessOrEqual |
2400 | \value Greater |
2401 | \value NotEqual |
2402 | \value GreaterOrEqual |
2403 | \value Always |
2404 | */ |
2405 | |
2406 | /*! |
2407 | \internal |
2408 | */ |
2409 | QRhiSampler::QRhiSampler(QRhiImplementation *rhi, |
2410 | Filter magFilter_, Filter minFilter_, Filter mipmapMode_, |
2411 | AddressMode u_, AddressMode v_, AddressMode w_) |
2412 | : QRhiResource(rhi), |
2413 | m_magFilter(magFilter_), m_minFilter(minFilter_), m_mipmapMode(mipmapMode_), |
2414 | m_addressU(u_), m_addressV(v_), m_addressW(w_), |
2415 | m_compareOp(QRhiSampler::Never) |
2416 | { |
2417 | } |
2418 | |
2419 | /*! |
2420 | \return the resource type. |
2421 | */ |
2422 | QRhiResource::Type QRhiSampler::resourceType() const |
2423 | { |
2424 | return Sampler; |
2425 | } |
2426 | |
2427 | /*! |
2428 | \class QRhiRenderPassDescriptor |
2429 | \internal |
2430 | \inmodule QtGui |
2431 | \brief Render pass resource. |
2432 | |
2433 | A render pass, if such a concept exists in the underlying graphics API, is |
2434 | a collection of attachments (color, depth, stencil) and describes how those |
2435 | attachments are used. |
2436 | */ |
2437 | |
2438 | /*! |
2439 | \internal |
2440 | */ |
2441 | QRhiRenderPassDescriptor::QRhiRenderPassDescriptor(QRhiImplementation *rhi) |
2442 | : QRhiResource(rhi) |
2443 | { |
2444 | } |
2445 | |
2446 | /*! |
2447 | \return the resource type. |
2448 | */ |
2449 | QRhiResource::Type QRhiRenderPassDescriptor::resourceType() const |
2450 | { |
2451 | return RenderPassDescriptor; |
2452 | } |
2453 | |
2454 | /*! |
2455 | \fn bool QRhiRenderPassDescriptor::isCompatible(const QRhiRenderPassDescriptor *other) const; |
2456 | |
2457 | \return true if the \a other QRhiRenderPassDescriptor is compatible with |
2458 | this one, meaning \c this and \a other can be used interchangebly in |
2459 | QRhiGraphicsPipeline::setRenderPassDescriptor(). |
2460 | |
2461 | The concept of the compatibility of renderpass descriptors is similar to |
2462 | the \l{QRhiShaderResourceBindings::isLayoutCompatible}{layout |
2463 | compatibility} of QRhiShaderResourceBindings instances. They allow better |
2464 | reuse of QRhiGraphicsPipeline instances: for example, a |
2465 | QRhiGraphicsPipeline instance cache is expected to use these functions to |
2466 | look for a matching pipeline, instead of just comparing pointers, thus |
2467 | allowing a different QRhiRenderPassDescriptor and |
2468 | QRhiShaderResourceBindings to be used in combination with the pipeline, as |
2469 | long as they are compatible. |
2470 | */ |
2471 | |
2472 | /*! |
2473 | \return a pointer to a backend-specific QRhiNativeHandles subclass, such as |
2474 | QRhiVulkanRenderPassNativeHandles. The returned value is \nullptr when exposing |
2475 | the underlying native resources is not supported by the backend. |
2476 | |
2477 | \sa QRhiVulkanRenderPassNativeHandles |
2478 | */ |
2479 | const QRhiNativeHandles *QRhiRenderPassDescriptor::nativeHandles() |
2480 | { |
2481 | return nullptr; |
2482 | } |
2483 | |
2484 | /*! |
2485 | \class QRhiRenderTarget |
2486 | \internal |
2487 | \inmodule QtGui |
2488 | \brief Represents an onscreen (swapchain) or offscreen (texture) render target. |
2489 | */ |
2490 | |
2491 | /*! |
2492 | \internal |
2493 | */ |
2494 | QRhiRenderTarget::QRhiRenderTarget(QRhiImplementation *rhi) |
2495 | : QRhiResource(rhi) |
2496 | { |
2497 | } |
2498 | |
2499 | /*! |
2500 | \return the resource type. |
2501 | */ |
2502 | QRhiResource::Type QRhiRenderTarget::resourceType() const |
2503 | { |
2504 | return RenderTarget; |
2505 | } |
2506 | |
2507 | /*! |
2508 | \fn QSize QRhiRenderTarget::pixelSize() const |
2509 | |
2510 | \return the size in pixels. |
2511 | */ |
2512 | |
2513 | /*! |
2514 | \fn float QRhiRenderTarget::devicePixelRatio() const |
2515 | |
2516 | \return the device pixel ratio. For QRhiTextureRenderTarget this is always |
2517 | 1. For targets retrieved from a QRhiSwapChain the value reflects the |
2518 | \l{QWindow::devicePixelRatio()}{device pixel ratio} of the targeted |
2519 | QWindow. |
2520 | */ |
2521 | |
2522 | /*! |
2523 | \class QRhiTextureRenderTarget |
2524 | \internal |
2525 | \inmodule QtGui |
2526 | \brief Texture render target resource. |
2527 | |
2528 | A texture render target allows rendering into one or more textures, |
2529 | optionally with a depth texture or depth/stencil renderbuffer. |
2530 | |
2531 | \note Textures used in combination with QRhiTextureRenderTarget must be |
2532 | created with the QRhiTexture::RenderTarget flag. |
2533 | |
2534 | The simplest example of creating a render target with a texture as its |
2535 | single color attachment: |
2536 | |
2537 | \badcode |
2538 | texture = rhi->newTexture(QRhiTexture::RGBA8, size, 1, QRhiTexture::RenderTarget); |
2539 | texture->build(); |
2540 | rt = rhi->newTextureRenderTarget({ texture }); |
2541 | rp = rt->newCompatibleRenderPassDescriptor(); |
2542 | rt->setRenderPassDescriptor(rt); |
2543 | rt->build(); |
2544 | // rt can now be used with beginPass() |
2545 | \endcode |
2546 | */ |
2547 | |
2548 | /*! |
2549 | \enum QRhiTextureRenderTarget::Flag |
2550 | |
2551 | Flag values describing the load/store behavior for the render target. The |
2552 | load/store behavior may be baked into native resources under the hood, |
2553 | depending on the backend, and therefore it needs to be known upfront and |
2554 | cannot be changed without rebuilding (and so releasing and creating new |
2555 | native resources). |
2556 | |
2557 | \value PreserveColorContents Indicates that the contents of the color |
2558 | attachments is to be loaded when starting a render pass, instead of |
2559 | clearing. This is potentially more expensive, especially on mobile (tiled) |
2560 | GPUs, but allows preserving the existing contents between passes. |
2561 | |
2562 | \value PreserveDepthStencilContents Indicates that the contents of the |
2563 | depth texture is to be loaded when starting a render pass, instead |
2564 | clearing. Only applicable when a texture is used as the depth buffer |
2565 | (QRhiTextureRenderTargetDescription::depthTexture() is set) because |
2566 | depth/stencil renderbuffers may not have any physical backing and data may |
2567 | not be written out in the first place. |
2568 | */ |
2569 | |
2570 | /*! |
2571 | \internal |
2572 | */ |
2573 | QRhiTextureRenderTarget::QRhiTextureRenderTarget(QRhiImplementation *rhi, |
2574 | const QRhiTextureRenderTargetDescription &desc_, |
2575 | Flags flags_) |
2576 | : QRhiRenderTarget(rhi), |
2577 | m_desc(desc_), |
2578 | m_flags(flags_) |
2579 | { |
2580 | } |
2581 | |
2582 | /*! |
2583 | \return the resource type. |
2584 | */ |
2585 | QRhiResource::Type QRhiTextureRenderTarget::resourceType() const |
2586 | { |
2587 | return TextureRenderTarget; |
2588 | } |
2589 | |
2590 | /*! |
2591 | \fn QRhiRenderPassDescriptor *QRhiTextureRenderTarget::newCompatibleRenderPassDescriptor() |
2592 | |
2593 | \return a new QRhiRenderPassDescriptor that is compatible with this render |
2594 | target. |
2595 | |
2596 | The returned value is used in two ways: it can be passed to |
2597 | setRenderPassDescriptor() and |
2598 | QRhiGraphicsPipeline::setRenderPassDescriptor(). A render pass descriptor |
2599 | describes the attachments (color, depth/stencil) and the load/store |
2600 | behavior that can be affected by flags(). A QRhiGraphicsPipeline can only |
2601 | be used in combination with a render target that has the same |
2602 | QRhiRenderPassDescriptor set. |
2603 | |
2604 | Two QRhiTextureRenderTarget instances can share the same render pass |
2605 | descriptor as long as they have the same number and type of attachments. |
2606 | The associated QRhiTexture or QRhiRenderBuffer instances are not part of |
2607 | the render pass descriptor so those can differ in the two |
2608 | QRhiTextureRenderTarget intances. |
2609 | |
2610 | \note resources, such as QRhiTexture instances, referenced in description() |
2611 | must already be built |
2612 | |
2613 | \sa build() |
2614 | */ |
2615 | |
2616 | /*! |
2617 | \fn bool QRhiTextureRenderTarget::build() |
2618 | |
2619 | Creates the corresponding native graphics resources. If there are already |
2620 | resources present due to an earlier build() with no corresponding |
2621 | release(), then release() is called implicitly first. |
2622 | |
2623 | \note renderPassDescriptor() must be set before calling build(). To obtain |
2624 | a QRhiRenderPassDescriptor compatible with the render target, call |
2625 | newCompatibleRenderPassDescriptor() before build() but after setting all |
2626 | other parameters, such as description() and flags(). To save resources, |
2627 | reuse the same QRhiRenderPassDescriptor with multiple |
2628 | QRhiTextureRenderTarget instances, whenever possible. Sharing the same |
2629 | render pass descriptor is only possible when the render targets have the |
2630 | same number and type of attachments (the actual textures can differ) and |
2631 | the same flags. |
2632 | |
2633 | \note resources, such as QRhiTexture instances, referenced in description() |
2634 | must already be built |
2635 | |
2636 | \return \c true when successful, \c false when a graphics operation failed. |
2637 | Regardless of the return value, calling release() is always safe. |
2638 | */ |
2639 | |
2640 | /*! |
2641 | \class QRhiShaderResourceBindings |
2642 | \internal |
2643 | \inmodule QtGui |
2644 | \brief Encapsulates resources for making buffer, texture, sampler resources visible to shaders. |
2645 | |
2646 | A QRhiShaderResourceBindings is a collection of QRhiShaderResourceBinding |
2647 | objects, each of which describe a single binding. |
2648 | |
2649 | Take a fragment shader with the following interface: |
2650 | |
2651 | \badcode |
2652 | layout(std140, binding = 0) uniform buf { |
2653 | mat4 mvp; |
2654 | int flip; |
2655 | } ubuf; |
2656 | |
2657 | layout(binding = 1) uniform sampler2D tex; |
2658 | \endcode |
2659 | |
2660 | To make resources visible to the shader, the following |
2661 | QRhiShaderResourceBindings could be created and then passed to |
2662 | QRhiGraphicsPipeline::setShaderResourceBindings(): |
2663 | |
2664 | \badcode |
2665 | srb = rhi->newShaderResourceBindings(); |
2666 | srb->setBindings({ |
2667 | QRhiShaderResourceBinding::uniformBuffer(0, QRhiShaderResourceBinding::VertexStage | QRhiShaderResourceBinding::FragmentStage, ubuf), |
2668 | QRhiShaderResourceBinding::sampledTexture(1, QRhiShaderResourceBinding::FragmentStage, texture, sampler) |
2669 | }); |
2670 | srb->build(); |
2671 | ... |
2672 | ps = rhi->newGraphicsPipeline(); |
2673 | ... |
2674 | ps->setShaderResourceBindings(srb); |
2675 | ps->build(); |
2676 | ... |
2677 | cb->setGraphicsPipeline(ps); |
2678 | cb->setShaderResources(); // binds srb |
2679 | \endcode |
2680 | |
2681 | This assumes that \c ubuf is a QRhiBuffer, \c texture is a QRhiTexture, |
2682 | while \a sampler is a QRhiSampler. The example also assumes that the |
2683 | uniform block is present in the vertex shader as well so the same buffer is |
2684 | made visible to the vertex stage too. |
2685 | |
2686 | \section3 Advanced usage |
2687 | |
2688 | Building on the above example, let's assume that a pass now needs to use |
2689 | the exact same pipeline and shaders with a different texture. Creating a |
2690 | whole separate QRhiGraphicsPipeline just for this would be an overkill. |
2691 | This is why QRhiCommandBuffer::setShaderResources() allows specifying a \a |
2692 | srb argument. As long as the layouts (so the number of bindings and the |
2693 | binding points) match between two QRhiShaderResourceBindings, they can both |
2694 | be used with the same pipeline, assuming the pipeline was built with one of |
2695 | them in the first place. |
2696 | |
2697 | \badcode |
2698 | srb2 = rhi->newShaderResourceBindings(); |
2699 | ... |
2700 | cb->setGraphicsPipeline(ps); |
2701 | cb->setShaderResources(srb2); // binds srb2 |
2702 | \endcode |
2703 | */ |
2704 | |
2705 | /*! |
2706 | \internal |
2707 | */ |
2708 | QRhiShaderResourceBindings::QRhiShaderResourceBindings(QRhiImplementation *rhi) |
2709 | : QRhiResource(rhi) |
2710 | { |
2711 | } |
2712 | |
2713 | /*! |
2714 | \return the resource type. |
2715 | */ |
2716 | QRhiResource::Type QRhiShaderResourceBindings::resourceType() const |
2717 | { |
2718 | return ShaderResourceBindings; |
2719 | } |
2720 | |
2721 | /*! |
2722 | \return \c true if the layout is compatible with \a other. The layout does |
2723 | not include the actual resource (such as, buffer or texture) and related |
2724 | parameters (such as, offset or size). It does include the binding point, |
2725 | pipeline stage, and resource type, however. The number and order of the |
2726 | bindings must also match in order to be compatible. |
2727 | |
2728 | When there is a QRhiGraphicsPipeline created with this |
2729 | QRhiShaderResourceBindings, and the function returns \c true, \a other can |
2730 | then safely be passed to QRhiCommandBuffer::setShaderResources(), and so |
2731 | be used with the pipeline in place of this QRhiShaderResourceBindings. |
2732 | |
2733 | This function can be called before build() as well. The bindings must |
2734 | already be set via setBindings() however. |
2735 | */ |
2736 | bool QRhiShaderResourceBindings::isLayoutCompatible(const QRhiShaderResourceBindings *other) const |
2737 | { |
2738 | const int count = m_bindings.count(); |
2739 | if (count != other->m_bindings.count()) |
2740 | return false; |
2741 | |
2742 | for (int i = 0; i < count; ++i) { |
2743 | if (!m_bindings[i].isLayoutCompatible(other: other->m_bindings.at(idx: i))) |
2744 | return false; |
2745 | } |
2746 | |
2747 | return true; |
2748 | } |
2749 | |
2750 | /*! |
2751 | \class QRhiShaderResourceBinding |
2752 | \internal |
2753 | \inmodule QtGui |
2754 | \brief Describes the shader resource for a single binding point. |
2755 | |
2756 | A QRhiShaderResourceBinding cannot be constructed directly. Instead, use |
2757 | the static functions uniformBuffer(), sampledTexture() to get an instance. |
2758 | */ |
2759 | |
2760 | /*! |
2761 | \enum QRhiShaderResourceBinding::Type |
2762 | Specifies type of the shader resource bound to a binding point |
2763 | |
2764 | \value UniformBuffer Uniform buffer |
2765 | |
2766 | \value SampledTexture Combined image sampler |
2767 | |
2768 | \value ImageLoad Image load (with GLSL this maps to doing imageLoad() on a |
2769 | single level - and either one or all layers - of a texture exposed to the |
2770 | shader as an image object) |
2771 | |
2772 | \value ImageStore Image store (with GLSL this maps to doing imageStore() or |
2773 | imageAtomic*() on a single level - and either one or all layers - of a |
2774 | texture exposed to the shader as an image object) |
2775 | |
2776 | \value ImageLoadStore Image load and store |
2777 | |
2778 | \value BufferLoad Storage buffer store (with GLSL this maps to reading from |
2779 | a shader storage buffer) |
2780 | |
2781 | \value BufferStore Storage buffer store (with GLSL this maps to writing to |
2782 | a shader storage buffer) |
2783 | |
2784 | \value BufferLoadStore Storage buffer load and store |
2785 | */ |
2786 | |
2787 | /*! |
2788 | \enum QRhiShaderResourceBinding::StageFlag |
2789 | Flag values to indicate which stages the shader resource is visible in |
2790 | |
2791 | \value VertexStage Vertex stage |
2792 | \value FragmentStage Fragment (pixel) stage |
2793 | \value ComputeStage Compute stage |
2794 | */ |
2795 | |
2796 | /*! |
2797 | \internal |
2798 | */ |
2799 | QRhiShaderResourceBinding::QRhiShaderResourceBinding() |
2800 | { |
2801 | // Zero out everything, including possible padding, because will use |
2802 | // qHashBits on it. |
2803 | memset(s: &d.u, c: 0, n: sizeof(d.u)); |
2804 | } |
2805 | |
2806 | /*! |
2807 | \return \c true if the layout is compatible with \a other. The layout does not |
2808 | include the actual resource (such as, buffer or texture) and related |
2809 | parameters (such as, offset or size). |
2810 | |
2811 | For example, \c a and \c b below are not equal, but are compatible layout-wise: |
2812 | |
2813 | \badcode |
2814 | auto a = QRhiShaderResourceBinding::uniformBuffer(0, QRhiShaderResourceBinding::VertexStage, buffer); |
2815 | auto b = QRhiShaderResourceBinding::uniformBuffer(0, QRhiShaderResourceBinding::VertexStage, someOtherBuffer, 256); |
2816 | \endcode |
2817 | */ |
2818 | bool QRhiShaderResourceBinding::isLayoutCompatible(const QRhiShaderResourceBinding &other) const |
2819 | { |
2820 | return d.binding == other.d.binding && d.stage == other.d.stage && d.type == other.d.type; |
2821 | } |
2822 | |
2823 | /*! |
2824 | \return a shader resource binding for the given binding number, pipeline |
2825 | stages, and buffer specified by \a binding, \a stage, and \a buf. |
2826 | |
2827 | \note \a buf must have been created with QRhiBuffer::UniformBuffer. |
2828 | */ |
2829 | QRhiShaderResourceBinding QRhiShaderResourceBinding::uniformBuffer( |
2830 | int binding, StageFlags stage, QRhiBuffer *buf) |
2831 | { |
2832 | QRhiShaderResourceBinding b; |
2833 | b.d.binding = binding; |
2834 | b.d.stage = stage; |
2835 | b.d.type = UniformBuffer; |
2836 | b.d.u.ubuf.buf = buf; |
2837 | b.d.u.ubuf.offset = 0; |
2838 | b.d.u.ubuf.maybeSize = 0; // entire buffer |
2839 | b.d.u.ubuf.hasDynamicOffset = false; |
2840 | return b; |
2841 | } |
2842 | |
2843 | /*! |
2844 | \return a shader resource binding for the given binding number, pipeline |
2845 | stages, and buffer specified by \a binding, \a stage, and \a buf. This |
2846 | overload binds a region only, as specified by \a offset and \a size. |
2847 | |
2848 | \note It is up to the user to ensure the offset is aligned to |
2849 | QRhi::ubufAlignment(). |
2850 | |
2851 | \note \a size must be greater than 0. |
2852 | |
2853 | \note \a buf must have been created with QRhiBuffer::UniformBuffer. |
2854 | */ |
2855 | QRhiShaderResourceBinding QRhiShaderResourceBinding::uniformBuffer( |
2856 | int binding, StageFlags stage, QRhiBuffer *buf, int offset, int size) |
2857 | { |
2858 | Q_ASSERT(size > 0); |
2859 | QRhiShaderResourceBinding b = uniformBuffer(binding, stage, buf); |
2860 | b.d.u.ubuf.offset = offset; |
2861 | b.d.u.ubuf.maybeSize = size; |
2862 | return b; |
2863 | } |
2864 | |
2865 | /*! |
2866 | \return a shader resource binding for the given binding number, pipeline |
2867 | stages, and buffer specified by \a binding, \a stage, and \a buf. The |
2868 | uniform buffer is assumed to have dynamic offset. The dynamic offset can be |
2869 | specified in QRhiCommandBuffer::setShaderResources(), thus allowing using |
2870 | varying offset values without creating new bindings for the buffer. The |
2871 | size of the bound region is specified by \a size. Like with non-dynamic |
2872 | offsets, \c{offset + size} cannot exceed the size of \a buf. |
2873 | |
2874 | \note \a buf must have been created with QRhiBuffer::UniformBuffer. |
2875 | */ |
2876 | QRhiShaderResourceBinding QRhiShaderResourceBinding::uniformBufferWithDynamicOffset( |
2877 | int binding, StageFlags stage, QRhiBuffer *buf, int size) |
2878 | { |
2879 | QRhiShaderResourceBinding b = uniformBuffer(binding, stage, buf, offset: 0, size); |
2880 | b.d.u.ubuf.hasDynamicOffset = true; |
2881 | return b; |
2882 | } |
2883 | |
2884 | /*! |
2885 | \return a shader resource binding for the given binding number, pipeline |
2886 | stages, texture, and sampler specified by \a binding, \a stage, \a tex, |
2887 | \a sampler. |
2888 | |
2889 | \note This function is equivalent to calling sampledTextures() with a |
2890 | \c count of 1. |
2891 | |
2892 | \sa sampledTextures() |
2893 | */ |
2894 | QRhiShaderResourceBinding QRhiShaderResourceBinding::sampledTexture( |
2895 | int binding, StageFlags stage, QRhiTexture *tex, QRhiSampler *sampler) |
2896 | { |
2897 | const TextureAndSampler texSampler = { .tex: tex, .sampler: sampler }; |
2898 | return sampledTextures(binding, stage, count: 1, texSamplers: &texSampler); |
2899 | } |
2900 | |
2901 | /*! |
2902 | \return a shader resource binding for the given binding number, pipeline |
2903 | stages, and the array of texture-sampler pairs specified by \a binding, \a |
2904 | stage, \a count, and \a texSamplers. |
2905 | |
2906 | \note \a count must be at least 1, and not larger than 16. |
2907 | |
2908 | \note When \a count is 1, this function is equivalent to sampledTexture(). |
2909 | |
2910 | This function is relevant when arrays of combined image samplers are |
2911 | involved. For example, in GLSL \c{layout(binding = 5) uniform sampler2D |
2912 | shadowMaps[8];} declares an array of combined image samplers. The |
2913 | application is then expected provide a QRhiShaderResourceBinding for |
2914 | binding point 5, set up by calling this function with \a count set to 8 and |
2915 | a valid texture and sampler for each element of the array. |
2916 | |
2917 | \warning All elements of the array must be specified. With the above |
2918 | example, the only valid, portable approach is calling this function with a |
2919 | \a count of 8. Additionally, all QRhiTexture and QRhiSampler instances must |
2920 | be valid, meaning nullptr is not an accepted value. This is due to some of |
2921 | the underlying APIs, such as, Vulkan, that require a valid image and |
2922 | sampler object for each element in descriptor arrays. Applications are |
2923 | advised to provide "dummy" samplers and textures if some array elements are |
2924 | not relevant (due to not being accessed in the shader). |
2925 | |
2926 | \sa sampledTexture() |
2927 | */ |
2928 | QRhiShaderResourceBinding QRhiShaderResourceBinding::sampledTextures( |
2929 | int binding, StageFlags stage, int count, const TextureAndSampler *texSamplers) |
2930 | { |
2931 | Q_ASSERT(count >= 1 && count <= Data::MAX_TEX_SAMPLER_ARRAY_SIZE); |
2932 | QRhiShaderResourceBinding b; |
2933 | b.d.binding = binding; |
2934 | b.d.stage = stage; |
2935 | b.d.type = SampledTexture; |
2936 | b.d.u.stex.count = count; |
2937 | for (int i = 0; i < count; ++i) |
2938 | b.d.u.stex.texSamplers[i] = texSamplers[i]; |
2939 | return b; |
2940 | } |
2941 | |
2942 | /*! |
2943 | \return a shader resource binding for a read-only storage image with the |
2944 | given \a binding number and pipeline \a stage. The image load operations |
2945 | will have access to all layers of the specified \a level. (so if the texture |
2946 | is a cubemap, the shader must use imageCube instead of image2D) |
2947 | |
2948 | \note \a tex must have been created with QRhiTexture::UsedWithLoadStore. |
2949 | */ |
2950 | QRhiShaderResourceBinding QRhiShaderResourceBinding::imageLoad( |
2951 | int binding, StageFlags stage, QRhiTexture *tex, int level) |
2952 | { |
2953 | QRhiShaderResourceBinding b; |
2954 | b.d.binding = binding; |
2955 | b.d.stage = stage; |
2956 | b.d.type = ImageLoad; |
2957 | b.d.u.simage.tex = tex; |
2958 | b.d.u.simage.level = level; |
2959 | return b; |
2960 | } |
2961 | |
2962 | /*! |
2963 | \return a shader resource binding for a write-only storage image with the |
2964 | given \a binding number and pipeline \a stage. The image store operations |
2965 | will have access to all layers of the specified \a level. (so if the texture |
2966 | is a cubemap, the shader must use imageCube instead of image2D) |
2967 | |
2968 | \note \a tex must have been created with QRhiTexture::UsedWithLoadStore. |
2969 | */ |
2970 | QRhiShaderResourceBinding QRhiShaderResourceBinding::imageStore( |
2971 | int binding, StageFlags stage, QRhiTexture *tex, int level) |
2972 | { |
2973 | QRhiShaderResourceBinding b = imageLoad(binding, stage, tex, level); |
2974 | b.d.type = ImageStore; |
2975 | return b; |
2976 | } |
2977 | |
2978 | /*! |
2979 | \return a shader resource binding for a read/write storage image with the |
2980 | given \a binding number and pipeline \a stage. The image load/store operations |
2981 | will have access to all layers of the specified \a level. (so if the texture |
2982 | is a cubemap, the shader must use imageCube instead of image2D) |
2983 | |
2984 | \note \a tex must have been created with QRhiTexture::UsedWithLoadStore. |
2985 | */ |
2986 | QRhiShaderResourceBinding QRhiShaderResourceBinding::imageLoadStore( |
2987 | int binding, StageFlags stage, QRhiTexture *tex, int level) |
2988 | { |
2989 | QRhiShaderResourceBinding b = imageLoad(binding, stage, tex, level); |
2990 | b.d.type = ImageLoadStore; |
2991 | return b; |
2992 | } |
2993 | |
2994 | /*! |
2995 | \return a shader resource binding for a read-only storage buffer with the |
2996 | given \a binding number and pipeline \a stage. |
2997 | |
2998 | \note \a buf must have been created with QRhiBuffer::StorageBuffer. |
2999 | */ |
3000 | QRhiShaderResourceBinding QRhiShaderResourceBinding::bufferLoad( |
3001 | int binding, StageFlags stage, QRhiBuffer *buf) |
3002 | { |
3003 | QRhiShaderResourceBinding b; |
3004 | b.d.binding = binding; |
3005 | b.d.stage = stage; |
3006 | b.d.type = BufferLoad; |
3007 | b.d.u.sbuf.buf = buf; |
3008 | b.d.u.sbuf.offset = 0; |
3009 | b.d.u.sbuf.maybeSize = 0; // entire buffer |
3010 | return b; |
3011 | } |
3012 | |
3013 | /*! |
3014 | \return a shader resource binding for a read-only storage buffer with the |
3015 | given \a binding number and pipeline \a stage. This overload binds a region |
3016 | only, as specified by \a offset and \a size. |
3017 | |
3018 | \note \a buf must have been created with QRhiBuffer::StorageBuffer. |
3019 | */ |
3020 | QRhiShaderResourceBinding QRhiShaderResourceBinding::bufferLoad( |
3021 | int binding, StageFlags stage, QRhiBuffer *buf, int offset, int size) |
3022 | { |
3023 | Q_ASSERT(size > 0); |
3024 | QRhiShaderResourceBinding b = bufferLoad(binding, stage, buf); |
3025 | b.d.u.sbuf.offset = offset; |
3026 | b.d.u.sbuf.maybeSize = size; |
3027 | return b; |
3028 | } |
3029 | |
3030 | /*! |
3031 | \return a shader resource binding for a write-only storage buffer with the |
3032 | given \a binding number and pipeline \a stage. |
3033 | |
3034 | \note \a buf must have been created with QRhiBuffer::StorageBuffer. |
3035 | */ |
3036 | QRhiShaderResourceBinding QRhiShaderResourceBinding::bufferStore( |
3037 | int binding, StageFlags stage, QRhiBuffer *buf) |
3038 | { |
3039 | QRhiShaderResourceBinding b = bufferLoad(binding, stage, buf); |
3040 | b.d.type = BufferStore; |
3041 | return b; |
3042 | } |
3043 | |
3044 | /*! |
3045 | \return a shader resource binding for a write-only storage buffer with the |
3046 | given \a binding number and pipeline \a stage. This overload binds a region |
3047 | only, as specified by \a offset and \a size. |
3048 | |
3049 | \note \a buf must have been created with QRhiBuffer::StorageBuffer. |
3050 | */ |
3051 | QRhiShaderResourceBinding QRhiShaderResourceBinding::bufferStore( |
3052 | int binding, StageFlags stage, QRhiBuffer *buf, int offset, int size) |
3053 | { |
3054 | Q_ASSERT(size > 0); |
3055 | QRhiShaderResourceBinding b = bufferStore(binding, stage, buf); |
3056 | b.d.u.sbuf.offset = offset; |
3057 | b.d.u.sbuf.maybeSize = size; |
3058 | return b; |
3059 | } |
3060 | |
3061 | /*! |
3062 | \return a shader resource binding for a read-write storage buffer with the |
3063 | given \a binding number and pipeline \a stage. |
3064 | |
3065 | \note \a buf must have been created with QRhiBuffer::StorageBuffer. |
3066 | */ |
3067 | QRhiShaderResourceBinding QRhiShaderResourceBinding::bufferLoadStore( |
3068 | int binding, StageFlags stage, QRhiBuffer *buf) |
3069 | { |
3070 | QRhiShaderResourceBinding b = bufferLoad(binding, stage, buf); |
3071 | b.d.type = BufferLoadStore; |
3072 | return b; |
3073 | } |
3074 | |
3075 | /*! |
3076 | \return a shader resource binding for a read-write storage buffer with the |
3077 | given \a binding number and pipeline \a stage. This overload binds a region |
3078 | only, as specified by \a offset and \a size. |
3079 | |
3080 | \note \a buf must have been created with QRhiBuffer::StorageBuffer. |
3081 | */ |
3082 | QRhiShaderResourceBinding QRhiShaderResourceBinding::bufferLoadStore( |
3083 | int binding, StageFlags stage, QRhiBuffer *buf, int offset, int size) |
3084 | { |
3085 | Q_ASSERT(size > 0); |
3086 | QRhiShaderResourceBinding b = bufferLoadStore(binding, stage, buf); |
3087 | b.d.u.sbuf.offset = offset; |
3088 | b.d.u.sbuf.maybeSize = size; |
3089 | return b; |
3090 | } |
3091 | |
3092 | /*! |
3093 | \return \c true if the contents of the two QRhiShaderResourceBinding |
3094 | objects \a a and \a b are equal. This includes the resources (buffer, |
3095 | texture) and related parameters (offset, size) as well. To only compare |
3096 | layouts (binding point, pipeline stage, resource type), use |
3097 | \l{QRhiShaderResourceBinding::isLayoutCompatible()}{isLayoutCompatible()} |
3098 | instead. |
3099 | |
3100 | \relates QRhiShaderResourceBinding |
3101 | */ |
3102 | bool operator==(const QRhiShaderResourceBinding &a, const QRhiShaderResourceBinding &b) Q_DECL_NOTHROW |
3103 | { |
3104 | const QRhiShaderResourceBinding::Data *da = a.data(); |
3105 | const QRhiShaderResourceBinding::Data *db = b.data(); |
3106 | |
3107 | if (da == db) |
3108 | return true; |
3109 | |
3110 | |
3111 | if (da->binding != db->binding |
3112 | || da->stage != db->stage |
3113 | || da->type != db->type) |
3114 | { |
3115 | return false; |
3116 | } |
3117 | |
3118 | switch (da->type) { |
3119 | case QRhiShaderResourceBinding::UniformBuffer: |
3120 | if (da->u.ubuf.buf != db->u.ubuf.buf |
3121 | || da->u.ubuf.offset != db->u.ubuf.offset |
3122 | || da->u.ubuf.maybeSize != db->u.ubuf.maybeSize) |
3123 | { |
3124 | return false; |
3125 | } |
3126 | break; |
3127 | case QRhiShaderResourceBinding::SampledTexture: |
3128 | if (da->u.stex.count != db->u.stex.count) |
3129 | return false; |
3130 | for (int i = 0; i < da->u.stex.count; ++i) { |
3131 | if (da->u.stex.texSamplers[i].tex != db->u.stex.texSamplers[i].tex |
3132 | || da->u.stex.texSamplers[i].sampler != db->u.stex.texSamplers[i].sampler) |
3133 | { |
3134 | return false; |
3135 | } |
3136 | } |
3137 | break; |
3138 | case QRhiShaderResourceBinding::ImageLoad: |
3139 | Q_FALLTHROUGH(); |
3140 | case QRhiShaderResourceBinding::ImageStore: |
3141 | Q_FALLTHROUGH(); |
3142 | case QRhiShaderResourceBinding::ImageLoadStore: |
3143 | if (da->u.simage.tex != db->u.simage.tex |
3144 | || da->u.simage.level != db->u.simage.level) |
3145 | { |
3146 | return false; |
3147 | } |
3148 | break; |
3149 | case QRhiShaderResourceBinding::BufferLoad: |
3150 | Q_FALLTHROUGH(); |
3151 | case QRhiShaderResourceBinding::BufferStore: |
3152 | Q_FALLTHROUGH(); |
3153 | case QRhiShaderResourceBinding::BufferLoadStore: |
3154 | if (da->u.sbuf.buf != db->u.sbuf.buf |
3155 | || da->u.sbuf.offset != db->u.sbuf.offset |
3156 | || da->u.sbuf.maybeSize != db->u.sbuf.maybeSize) |
3157 | { |
3158 | return false; |
3159 | } |
3160 | break; |
3161 | default: |
3162 | Q_UNREACHABLE(); |
3163 | return false; |
3164 | } |
3165 | |
3166 | return true; |
3167 | } |
3168 | |
3169 | /*! |
3170 | \return \c false if all the bindings in the two QRhiShaderResourceBinding |
3171 | objects \a a and \a b are equal; otherwise returns \c true. |
3172 | |
3173 | \relates QRhiShaderResourceBinding |
3174 | */ |
3175 | bool operator!=(const QRhiShaderResourceBinding &a, const QRhiShaderResourceBinding &b) Q_DECL_NOTHROW |
3176 | { |
3177 | return !(a == b); |
3178 | } |
3179 | |
3180 | /*! |
3181 | \return the hash value for \a b, using \a seed to seed the calculation. |
3182 | |
3183 | \relates QRhiShaderResourceBinding |
3184 | */ |
3185 | uint qHash(const QRhiShaderResourceBinding &b, uint seed) Q_DECL_NOTHROW |
3186 | { |
3187 | const QRhiShaderResourceBinding::Data *d = b.data(); |
3188 | return seed + uint(d->binding) + 10 * uint(d->stage) + 100 * uint(d->type) |
3189 | + qHashBits(p: &d->u, size: sizeof(d->u), seed); |
3190 | } |
3191 | |
3192 | #ifndef QT_NO_DEBUG_STREAM |
3193 | QDebug operator<<(QDebug dbg, const QRhiShaderResourceBinding &b) |
3194 | { |
3195 | QDebugStateSaver saver(dbg); |
3196 | const QRhiShaderResourceBinding::Data *d = b.data(); |
3197 | dbg.nospace() << "QRhiShaderResourceBinding(" |
3198 | << "binding=" << d->binding |
3199 | << " stage=" << d->stage |
3200 | << " type=" << d->type; |
3201 | switch (d->type) { |
3202 | case QRhiShaderResourceBinding::UniformBuffer: |
3203 | dbg.nospace() << " UniformBuffer(" |
3204 | << "buffer=" << d->u.ubuf.buf |
3205 | << " offset=" << d->u.ubuf.offset |
3206 | << " maybeSize=" << d->u.ubuf.maybeSize |
3207 | << ')'; |
3208 | break; |
3209 | case QRhiShaderResourceBinding::SampledTexture: |
3210 | dbg.nospace() << " SampledTextures(" |
3211 | << "count=" << d->u.stex.count; |
3212 | for (int i = 0; i < d->u.stex.count; ++i) { |
3213 | dbg.nospace() << " texture=" << d->u.stex.texSamplers[i].tex |
3214 | << " sampler=" << d->u.stex.texSamplers[i].sampler; |
3215 | } |
3216 | dbg.nospace() << ')'; |
3217 | break; |
3218 | case QRhiShaderResourceBinding::ImageLoad: |
3219 | dbg.nospace() << " ImageLoad(" |
3220 | << "texture=" << d->u.simage.tex |
3221 | << " level=" << d->u.simage.level |
3222 | << ')'; |
3223 | break; |
3224 | case QRhiShaderResourceBinding::ImageStore: |
3225 | dbg.nospace() << " ImageStore(" |
3226 | << "texture=" << d->u.simage.tex |
3227 | << " level=" << d->u.simage.level |
3228 | << ')'; |
3229 | break; |
3230 | case QRhiShaderResourceBinding::ImageLoadStore: |
3231 | dbg.nospace() << " ImageLoadStore(" |
3232 | << "texture=" << d->u.simage.tex |
3233 | << " level=" << d->u.simage.level |
3234 | << ')'; |
3235 | break; |
3236 | case QRhiShaderResourceBinding::BufferLoad: |
3237 | dbg.nospace() << " BufferLoad(" |
3238 | << "buffer=" << d->u.sbuf.buf |
3239 | << " offset=" << d->u.sbuf.offset |
3240 | << " maybeSize=" << d->u.sbuf.maybeSize |
3241 | << ')'; |
3242 | break; |
3243 | case QRhiShaderResourceBinding::BufferStore: |
3244 | dbg.nospace() << " BufferStore(" |
3245 | << "buffer=" << d->u.sbuf.buf |
3246 | << " offset=" << d->u.sbuf.offset |
3247 | << " maybeSize=" << d->u.sbuf.maybeSize |
3248 | << ')'; |
3249 | break; |
3250 | case QRhiShaderResourceBinding::BufferLoadStore: |
3251 | dbg.nospace() << " BufferLoadStore(" |
3252 | << "buffer=" << d->u.sbuf.buf |
3253 | << " offset=" << d->u.sbuf.offset |
3254 | << " maybeSize=" << d->u.sbuf.maybeSize |
3255 | << ')'; |
3256 | break; |
3257 | default: |
3258 | Q_UNREACHABLE(); |
3259 | break; |
3260 | } |
3261 | dbg.nospace() << ')'; |
3262 | return dbg; |
3263 | } |
3264 | #endif |
3265 | |
3266 | #ifndef QT_NO_DEBUG_STREAM |
3267 | QDebug operator<<(QDebug dbg, const QRhiShaderResourceBindings &srb) |
3268 | { |
3269 | QDebugStateSaver saver(dbg); |
3270 | dbg.nospace() << "QRhiShaderResourceBindings(" |
3271 | << srb.m_bindings |
3272 | << ')'; |
3273 | return dbg; |
3274 | } |
3275 | #endif |
3276 | |
3277 | /*! |
3278 | \class QRhiGraphicsPipeline |
3279 | \internal |
3280 | \inmodule QtGui |
3281 | \brief Graphics pipeline state resource. |
3282 | |
3283 | \note Setting the shader stages is mandatory. There must be at least one |
3284 | stage, and there must be a vertex stage. |
3285 | |
3286 | \note Setting the shader resource bindings is mandatory. The referenced |
3287 | QRhiShaderResourceBindings must already be built by the time build() is |
3288 | called. Associating with a QRhiShaderResourceBindings that has no bindings |
3289 | is also valid, as long as no shader in any stage expects any resources. |
3290 | |
3291 | \note Setting the render pass descriptor is mandatory. To obtain a |
3292 | QRhiRenderPassDescriptor that can be passed to setRenderPassDescriptor(), |
3293 | use either QRhiTextureRenderTarget::newCompatibleRenderPassDescriptor() or |
3294 | QRhiSwapChain::newCompatibleRenderPassDescriptor(). |
3295 | |
3296 | \note Setting the vertex input layout is mandatory. |
3297 | |
3298 | \note sampleCount() defaults to 1 and must match the sample count of the |
3299 | render target's color and depth stencil attachments. |
3300 | |
3301 | \note The depth test, depth write, and stencil test are disabled by |
3302 | default. |
3303 | |
3304 | \note stencilReadMask() and stencilWriteMask() apply to both faces. They |
3305 | both default to 0xFF. |
3306 | */ |
3307 | |
3308 | /*! |
3309 | \fn void QRhiGraphicsPipeline::setTargetBlends(const QVector<TargetBlend> &blends) |
3310 | |
3311 | Sets the blend specification for color attachments. Each element in \a |
3312 | blends corresponds to a color attachment of the render target. |
3313 | |
3314 | By default no blends are set, which is a shortcut to disabling blending and |
3315 | enabling color write for all four channels. |
3316 | */ |
3317 | |
3318 | /*! |
3319 | \enum QRhiGraphicsPipeline::Flag |
3320 | |
3321 | Flag values for describing the dynamic state of the pipeline. The viewport is always dynamic. |
3322 | |
3323 | \value UsesBlendConstants Indicates that a blend color constant will be set |
3324 | via QRhiCommandBuffer::setBlendConstants() |
3325 | |
3326 | \value UsesStencilRef Indicates that a stencil reference value will be set |
3327 | via QRhiCommandBuffer::setStencilRef() |
3328 | |
3329 | \value UsesScissor Indicates that a scissor rectangle will be set via |
3330 | QRhiCommandBuffer::setScissor() |
3331 | */ |
3332 | |
3333 | /*! |
3334 | \enum QRhiGraphicsPipeline::Topology |
3335 | Specifies the primitive topology |
3336 | |
3337 | \value Triangles (default) |
3338 | \value TriangleStrip |
3339 | \value TriangleFan (only available if QRhi::TriangleFanTopology is supported) |
3340 | \value Lines |
3341 | \value LineStrip |
3342 | \value Points |
3343 | */ |
3344 | |
3345 | /*! |
3346 | \enum QRhiGraphicsPipeline::CullMode |
3347 | Specifies the culling mode |
3348 | |
3349 | \value None No culling (default) |
3350 | \value Front Cull front faces |
3351 | \value Back Cull back faces |
3352 | */ |
3353 | |
3354 | /*! |
3355 | \enum QRhiGraphicsPipeline::FrontFace |
3356 | Specifies the front face winding order |
3357 | |
3358 | \value CCW Counter clockwise (default) |
3359 | \value CW Clockwise |
3360 | */ |
3361 | |
3362 | /*! |
3363 | \enum QRhiGraphicsPipeline::ColorMaskComponent |
3364 | Flag values for specifying the color write mask |
3365 | |
3366 | \value R |
3367 | \value G |
3368 | \value B |
3369 | \value A |
3370 | */ |
3371 | |
3372 | /*! |
3373 | \enum QRhiGraphicsPipeline::BlendFactor |
3374 | Specifies the blend factor |
3375 | |
3376 | \value Zero |
3377 | \value One |
3378 | \value SrcColor |
3379 | \value OneMinusSrcColor |
3380 | \value DstColor |
3381 | \value OneMinusDstColor |
3382 | \value SrcAlpha |
3383 | \value OneMinusSrcAlpha |
3384 | \value DstAlpha |
3385 | \value OneMinusDstAlpha |
3386 | \value ConstantColor |
3387 | \value OneMinusConstantColor |
3388 | \value ConstantAlpha |
3389 | \value OneMinusConstantAlpha |
3390 | \value SrcAlphaSaturate |
3391 | \value Src1Color |
3392 | \value OneMinusSrc1Color |
3393 | \value Src1Alpha |
3394 | \value OneMinusSrc1Alpha |
3395 | */ |
3396 | |
3397 | /*! |
3398 | \enum QRhiGraphicsPipeline::BlendOp |
3399 | Specifies the blend operation |
3400 | |
3401 | \value Add |
3402 | \value Subtract |
3403 | \value ReverseSubtract |
3404 | \value Min |
3405 | \value Max |
3406 | */ |
3407 | |
3408 | /*! |
3409 | \enum QRhiGraphicsPipeline::CompareOp |
3410 | Specifies the depth or stencil comparison function |
3411 | |
3412 | \value Never |
3413 | \value Less (default for depth) |
3414 | \value Equal |
3415 | \value LessOrEqual |
3416 | \value Greater |
3417 | \value NotEqual |
3418 | \value GreaterOrEqual |
3419 | \value Always (default for stencil) |
3420 | */ |
3421 | |
3422 | /*! |
3423 | \enum QRhiGraphicsPipeline::StencilOp |
3424 | Specifies the stencil operation |
3425 | |
3426 | \value StencilZero |
3427 | \value Keep (default) |
3428 | \value Replace |
3429 | \value IncrementAndClamp |
3430 | \value DecrementAndClamp |
3431 | \value Invert |
3432 | \value IncrementAndWrap |
3433 | \value DecrementAndWrap |
3434 | */ |
3435 | |
3436 | /*! |
3437 | \class QRhiGraphicsPipeline::TargetBlend |
3438 | \internal |
3439 | \inmodule QtGui |
3440 | \brief Describes the blend state for one color attachment. |
3441 | |
3442 | Defaults to color write enabled, blending disabled. The blend values are |
3443 | set up for pre-multiplied alpha (One, OneMinusSrcAlpha, One, |
3444 | OneMinusSrcAlpha) by default. |
3445 | */ |
3446 | |
3447 | /*! |
3448 | \class QRhiGraphicsPipeline::StencilOpState |
3449 | \internal |
3450 | \inmodule QtGui |
3451 | \brief Describes the stencil operation state. |
3452 | */ |
3453 | |
3454 | /*! |
3455 | \internal |
3456 | */ |
3457 | QRhiGraphicsPipeline::QRhiGraphicsPipeline(QRhiImplementation *rhi) |
3458 | : QRhiResource(rhi) |
3459 | { |
3460 | } |
3461 | |
3462 | /*! |
3463 | \return the resource type. |
3464 | */ |
3465 | QRhiResource::Type QRhiGraphicsPipeline::resourceType() const |
3466 | { |
3467 | return GraphicsPipeline; |
3468 | } |
3469 | |
3470 | /*! |
3471 | \fn bool QRhiGraphicsPipeline::build() |
3472 | |
3473 | Creates the corresponding native graphics resources. If there are already |
3474 | resources present due to an earlier build() with no corresponding |
3475 | release(), then release() is called implicitly first. |
3476 | |
3477 | \return \c true when successful, \c false when a graphics operation failed. |
3478 | Regardless of the return value, calling release() is always safe. |
3479 | */ |
3480 | |
3481 | /*! |
3482 | \fn void QRhiGraphicsPipeline::setDepthTest(bool enable) |
3483 | |
3484 | Enables or disables depth testing. Both depth test and the writing out of |
3485 | depth data are disabled by default. |
3486 | |
3487 | \sa setDepthWrite() |
3488 | */ |
3489 | |
3490 | /*! |
3491 | \fn void QRhiGraphicsPipeline::setDepthWrite(bool enable) |
3492 | |
3493 | Controls the writing out of depth data into the depth buffer. By default |
3494 | this is disabled. Depth write is typically enabled together with the depth |
3495 | test. |
3496 | |
3497 | \note Enabling depth write without having depth testing enabled may not |
3498 | lead to the desired result, and should be avoided. |
3499 | |
3500 | \sa setDepthTest() |
3501 | */ |
3502 | |
3503 | /*! |
3504 | \class QRhiSwapChain |
3505 | \internal |
3506 | \inmodule QtGui |
3507 | \brief Swapchain resource. |
3508 | |
3509 | A swapchain enables presenting rendering results to a surface. A swapchain |
3510 | is typically backed by a set of color buffers. Of these, one is displayed |
3511 | at a time. |
3512 | |
3513 | Below is a typical pattern for creating and managing a swapchain and some |
3514 | associated resources in order to render onto a QWindow: |
3515 | |
3516 | \badcode |
3517 | void init() |
3518 | { |
3519 | sc = rhi->newSwapChain(); |
3520 | ds = rhi->newRenderBuffer(QRhiRenderBuffer::DepthStencil, |
3521 | QSize(), // no need to set the size here due to UsedWithSwapChainOnly |
3522 | 1, |
3523 | QRhiRenderBuffer::UsedWithSwapChainOnly); |
3524 | sc->setWindow(window); |
3525 | sc->setDepthStencil(ds); |
3526 | rp = sc->newCompatibleRenderPassDescriptor(); |
3527 | sc->setRenderPassDescriptor(rp); |
3528 | resizeSwapChain(); |
3529 | } |
3530 | |
3531 | void resizeSwapChain() |
3532 | { |
3533 | hasSwapChain = sc->buildOrResize(); |
3534 | } |
3535 | |
3536 | void render() |
3537 | { |
3538 | if (!hasSwapChain || notExposed) |
3539 | return; |
3540 | |
3541 | if (sc->currentPixelSize() != sc->surfacePixelSize() || newlyExposed) { |
3542 | resizeSwapChain(); |
3543 | if (!hasSwapChain) |
3544 | return; |
3545 | newlyExposed = false; |
3546 | } |
3547 | |
3548 | rhi->beginFrame(sc); |
3549 | // ... |
3550 | rhi->endFrame(sc); |
3551 | } |
3552 | \endcode |
3553 | |
3554 | Avoid relying on QWindow resize events to resize swapchains, especially |
3555 | considering that surface sizes may not always fully match the QWindow |
3556 | reported dimensions. The safe, cross-platform approach is to do the check |
3557 | via surfacePixelSize() whenever starting a new frame. |
3558 | |
3559 | Releasing the swapchain must happen while the QWindow and the underlying |
3560 | native window is fully up and running. Building on the previous example: |
3561 | |
3562 | \badcode |
3563 | void releaseSwapChain() |
3564 | { |
3565 | if (hasSwapChain) { |
3566 | sc->release(); |
3567 | hasSwapChain = false; |
3568 | } |
3569 | } |
3570 | |
3571 | // assuming Window is our QWindow subclass |
3572 | bool Window::event(QEvent *e) |
3573 | { |
3574 | switch (e->type()) { |
3575 | case QEvent::UpdateRequest: // for QWindow::requestUpdate() |
3576 | render(); |
3577 | break; |
3578 | case QEvent::PlatformSurface: |
3579 | if (static_cast<QPlatformSurfaceEvent *>(e)->surfaceEventType() == QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed) |
3580 | releaseSwapChain(); |
3581 | break; |
3582 | default: |
3583 | break; |
3584 | } |
3585 | return QWindow::event(e); |
3586 | } |
3587 | \endcode |
3588 | |
3589 | Initializing the swapchain and starting to render the first frame cannot |
3590 | start at any time. The safe, cross-platform approach is to rely on expose |
3591 | events. QExposeEvent is a loosely specified event that is sent whenever a |
3592 | window gets mapped, obscured, and resized, depending on the platform. |
3593 | |
3594 | \badcode |
3595 | void Window::exposeEvent(QExposeEvent *) |
3596 | { |
3597 | // initialize and start rendering when the window becomes usable for graphics purposes |
3598 | if (isExposed() && !running) { |
3599 | running = true; |
3600 | init(); |
3601 | } |
3602 | |
3603 | // stop pushing frames when not exposed or size becomes 0 |
3604 | if ((!isExposed() || (hasSwapChain && sc->surfacePixelSize().isEmpty())) && running) |
3605 | notExposed = true; |
3606 | |
3607 | // continue when exposed again and the surface has a valid size |
3608 | if (isExposed() && running && notExposed && !sc->surfacePixelSize().isEmpty()) { |
3609 | notExposed = false; |
3610 | newlyExposed = true; |
3611 | } |
3612 | |
3613 | if (isExposed() && !sc->surfacePixelSize().isEmpty()) |
3614 | render(); |
3615 | } |
3616 | \endcode |
3617 | |
3618 | Once the rendering has started, a simple way to request a new frame is |
3619 | QWindow::requestUpdate(). While on some platforms this is merely a small |
3620 | timer, on others it has a specific implementation: for instance on macOS or |
3621 | iOS it may be backed by |
3622 | \l{https://developer.apple.com/documentation/corevideo/cvdisplaylink?language=objc}{CVDisplayLink}. |
3623 | The example above is already prepared for update requests by handling |
3624 | QEvent::UpdateRequest. |
3625 | |
3626 | While acting as a QRhiRenderTarget, QRhiSwapChain also manages a |
3627 | QRhiCommandBuffer. Calling QRhi::endFrame() submits the recorded commands |
3628 | and also enqueues a \c present request. The default behavior is to do this |
3629 | with a swap interval of 1, meaning synchronizing to the display's vertical |
3630 | refresh is enabled. Thus the rendering thread calling beginFrame() and |
3631 | endFrame() will get throttled to vsync. On some backends this can be |
3632 | disabled by passing QRhiSwapChain:NoVSync in flags(). |
3633 | |
3634 | Multisampling (MSAA) is handled transparently to the applications when |
3635 | requested via setSampleCount(). Where applicable, QRhiSwapChain will take |
3636 | care of creating additional color buffers and issuing a multisample resolve |
3637 | command at the end of a frame. For OpenGL, it is necessary to request the |
3638 | appropriate sample count also via QSurfaceFormat, by calling |
3639 | QSurfaceFormat::setDefaultFormat() before initializing the QRhi. |
3640 | */ |
3641 | |
3642 | /*! |
3643 | \enum QRhiSwapChain::Flag |
3644 | Flag values to describe swapchain properties |
3645 | |
3646 | \value SurfaceHasPreMulAlpha Indicates that the target surface has |
3647 | transparency with premultiplied alpha. For example, this is what Qt Quick |
3648 | uses when the alpha channel is enabled on the target QWindow, because the |
3649 | scenegraph rendrerer always outputs fragments with alpha multiplied into |
3650 | the red, green, and blue values. To ensure identical behavior across |
3651 | platforms, always set QSurfaceFormat::alphaBufferSize() to a non-zero value |
3652 | on the target QWindow whenever this flag is set on the swapchain. |
3653 | |
3654 | \value SurfaceHasNonPreMulAlpha Indicates the target surface has |
3655 | transparency with non-premultiplied alpha. Be aware that this may not be |
3656 | supported on some systems, if the system compositor always expects content |
3657 | with premultiplied alpha. In that case the behavior with this flag set is |
3658 | expected to be equivalent to SurfaceHasPreMulAlpha. |
3659 | |
3660 | \value sRGB Requests to pick an sRGB format for the swapchain and/or its |
3661 | render target views, where applicable. Note that this implies that sRGB |
3662 | framebuffer update and blending will get enabled for all content targeting |
3663 | this swapchain, and opting out is not possible. For OpenGL, set |
3664 | \l{QSurfaceFormat::sRGBColorSpace}{sRGBColorSpace} on the QSurfaceFormat of |
3665 | the QWindow in addition. |
3666 | |
3667 | \value UsedAsTransferSource Indicates the swapchain will be used as the |
3668 | source of a readback in QRhiResourceUpdateBatch::readBackTexture(). |
3669 | |
3670 | \value NoVSync Requests disabling waiting for vertical sync, also avoiding |
3671 | throttling the rendering thread. The behavior is backend specific and |
3672 | applicable only where it is possible to control this. Some may ignore the |
3673 | request altogether. For OpenGL, try instead setting the swap interval to 0 |
3674 | on the QWindow via QSurfaceFormat::setSwapInterval(). |
3675 | |
3676 | \value MinimalBufferCount Requests creating the swapchain with the minimum |
3677 | number of buffers, which is in practice 2, unless the graphics |
3678 | implementation has a higher minimum number than that. Only applicable with |
3679 | backends where such control is available via the graphics API, for example, |
3680 | Vulkan. By default it is up to the backend to decide what number of buffers |
3681 | it requests (in practice this is almost always either 2 or 3), and it is |
3682 | not the applications' concern. However, on Vulkan for instance the backend |
3683 | will likely prefer the higher number (3), for example to avoid odd |
3684 | performance issues with some Vulkan implementations on mobile devices. It |
3685 | could be that on some platforms it can prove to be beneficial to force the |
3686 | lower buffer count (2), so this flag allows forcing that. Note that all |
3687 | this has no effect on the number of frames kept in flight, so the CPU |
3688 | (QRhi) will still prepare frames at most \c{N - 1} frames ahead of the GPU, |
3689 | even when the swapchain image buffer count larger than \c N. (\c{N} = |
3690 | QRhi::FramesInFlight and typically 2). |
3691 | */ |
3692 | |
3693 | /*! |
3694 | \internal |
3695 | */ |
3696 | QRhiSwapChain::QRhiSwapChain(QRhiImplementation *rhi) |
3697 | : QRhiResource(rhi) |
3698 | { |
3699 | } |
3700 | |
3701 | /*! |
3702 | \return the resource type. |
3703 | */ |
3704 | QRhiResource::Type QRhiSwapChain::resourceType() const |
3705 | { |
3706 | return SwapChain; |
3707 | } |
3708 | |
3709 | /*! |
3710 | \fn QSize QRhiSwapChain::currentPixelSize() const |
3711 | |
3712 | \return the size with which the swapchain was last successfully built. Use |
3713 | this to decide if buildOrResize() needs to be called again: if |
3714 | \c{currentPixelSize() != surfacePixelSize()} then the swapchain needs to be |
3715 | resized. |
3716 | |
3717 | \note Typical rendering logic will call this function to get the output |
3718 | size when starting to prepare a new frame, and base dependent calculations |
3719 | (such as, the viewport) on the size returned from this function. |
3720 | |
3721 | While in many cases the value is the same as \c{QWindow::size() * |
3722 | QWindow::devicePixelRatio()}, relying on the QWindow-reported size is not |
3723 | guaranteed to be correct on all platforms and graphics API implementations. |
3724 | Using this function is therefore strongly recommended whenever there is a |
3725 | need to identify the dimensions, in pixels, of the output layer or surface. |
3726 | |
3727 | This also has the added benefit of avoiding potential data races when QRhi |
3728 | is used on a dedicated rendering thread, because the need to call QWindow |
3729 | functions, that may then access data updated on the main thread, is |
3730 | avoided. |
3731 | |
3732 | \sa surfacePixelSize() |
3733 | */ |
3734 | |
3735 | /*! |
3736 | \fn QSize QRhiSwapChain::surfacePixelSize() |
3737 | |
3738 | \return The size of the window's associated surface or layer. |
3739 | |
3740 | \warning Do not assume this is the same as \c{QWindow::size() * |
3741 | QWindow::devicePixelRatio()}. With some graphics APIs and windowing system |
3742 | interfaces (for example, Vulkan) there is a theoretical possibility for a |
3743 | surface to assume a size different from the associated window. To support |
3744 | these cases, rendering logic must always base size-derived calculations |
3745 | (such as, viewports) on the size reported from QRhiSwapChain, and never on |
3746 | the size queried from QWindow. |
3747 | |
3748 | \note Can also be called before buildOrResize(), if at least window() is |
3749 | already set) This in combination with currentPixelSize() allows to detect |
3750 | when a swapchain needs to be resized. However, watch out for the fact that |
3751 | the size of the underlying native object (surface, layer, or similar) is |
3752 | "live", so whenever this function is called, it returns the latest value |
3753 | reported by the underlying implementation, without any atomicity guarantee. |
3754 | Therefore, using this function to determine pixel sizes for graphics |
3755 | resources that are used in a frame is strongly discouraged. Rely on |
3756 | currentPixelSize() instead which returns a size that is atomic and will not |
3757 | change between buildOrResize() invocations. |
3758 | |
3759 | \note For depth-stencil buffers used in combination with the swapchain's |
3760 | color buffers, it is strongly recommended to rely on the automatic sizing |
3761 | and rebuilding behavior provided by the |
3762 | QRhiRenderBuffer:UsedWithSwapChainOnly flag. Avoid querying the surface |
3763 | size via this function just to get a size that can be passed to |
3764 | QRhiRenderBuffer::setPixelSize() as that would suffer from the lack of |
3765 | atomicity as described above. |
3766 | |
3767 | \sa currentPixelSize() |
3768 | */ |
3769 | |
3770 | /*! |
3771 | \fn QRhiCommandBuffer *QRhiSwapChain::currentFrameCommandBuffer() |
3772 | |
3773 | \return a command buffer on which rendering commands can be recorded. Only |
3774 | valid within a QRhi::beginFrame() - QRhi::endFrame() block where |
3775 | beginFrame() was called with this swapchain. |
3776 | |
3777 | \note the value must not be cached and reused between frames |
3778 | */ |
3779 | |
3780 | /*! |
3781 | \fn QRhiRenderTarget *QRhiSwapChain::currentFrameRenderTarget() |
3782 | |
3783 | \return a render target that can used with beginPass() in order to render |
3784 | the swapchain's current backbuffer. Only valid within a |
3785 | QRhi::beginFrame() - QRhi::endFrame() block where beginFrame() was called |
3786 | with this swapchain. |
3787 | |
3788 | \note the value must not be cached and reused between frames |
3789 | */ |
3790 | |
3791 | /*! |
3792 | \fn bool QRhiSwapChain::buildOrResize() |
3793 | |
3794 | Creates the swapchain if not already done and resizes the swapchain buffers |
3795 | to match the current size of the targeted surface. Call this whenever the |
3796 | size of the target surface is different than before. |
3797 | |
3798 | \note call release() only when the swapchain needs to be released |
3799 | completely, typically upon |
3800 | QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed. To perform resizing, just |
3801 | call buildOrResize(). |
3802 | |
3803 | \return \c true when successful, \c false when a graphics operation failed. |
3804 | Regardless of the return value, calling release() is always safe. |
3805 | */ |
3806 | |
3807 | /*! |
3808 | \class QRhiComputePipeline |
3809 | \internal |
3810 | \inmodule QtGui |
3811 | \brief Compute pipeline state resource. |
3812 | |
3813 | \note Setting the shader resource bindings is mandatory. The referenced |
3814 | QRhiShaderResourceBindings must already be built by the time build() is |
3815 | called. |
3816 | |
3817 | \note Setting the shader is mandatory. |
3818 | */ |
3819 | |
3820 | /*! |
3821 | \return the resource type. |
3822 | */ |
3823 | QRhiResource::Type QRhiComputePipeline::resourceType() const |
3824 | { |
3825 | return ComputePipeline; |
3826 | } |
3827 | |
3828 | /*! |
3829 | \internal |
3830 | */ |
3831 | QRhiComputePipeline::QRhiComputePipeline(QRhiImplementation *rhi) |
3832 | : QRhiResource(rhi) |
3833 | { |
3834 | } |
3835 | |
3836 | /*! |
3837 | \class QRhiCommandBuffer |
3838 | \internal |
3839 | \inmodule QtGui |
3840 | \brief Command buffer resource. |
3841 | |
3842 | Not creatable by applications at the moment. The only ways to obtain a |
3843 | valid QRhiCommandBuffer are to get it from the targeted swapchain via |
3844 | QRhiSwapChain::currentFrameCommandBuffer(), or, in case of rendering |
3845 | completely offscreen, initializing one via QRhi::beginOffscreenFrame(). |
3846 | */ |
3847 | |
3848 | /*! |
3849 | \enum QRhiCommandBuffer::IndexFormat |
3850 | Specifies the index data type |
3851 | |
3852 | \value IndexUInt16 Unsigned 16-bit (quint16) |
3853 | \value IndexUInt32 Unsigned 32-bit (quint32) |
3854 | */ |
3855 | |
3856 | /*! |
3857 | \typedef QRhiCommandBuffer::DynamicOffset |
3858 | |
3859 | Synonym for QPair<int, quint32>. The first entry is the binding, the second |
3860 | is the offset in the buffer. |
3861 | */ |
3862 | |
3863 | /*! |
3864 | \typedef QRhiCommandBuffer::VertexInput |
3865 | |
3866 | Synonym for QPair<QRhiBuffer *, quint32>. The second entry is an offset in |
3867 | the buffer specified by the first. |
3868 | */ |
3869 | |
3870 | /*! |
3871 | \internal |
3872 | */ |
3873 | QRhiCommandBuffer::QRhiCommandBuffer(QRhiImplementation *rhi) |
3874 | : QRhiResource(rhi) |
3875 | { |
3876 | } |
3877 | |
3878 | /*! |
3879 | \return the resource type. |
3880 | */ |
3881 | QRhiResource::Type QRhiCommandBuffer::resourceType() const |
3882 | { |
3883 | return CommandBuffer; |
3884 | } |
3885 | |
3886 | #ifndef QT_NO_DEBUG |
3887 | static const char *resourceTypeStr(QRhiResource *res) |
3888 | { |
3889 | switch (res->resourceType()) { |
3890 | case QRhiResource::Buffer: |
3891 | return "Buffer" ; |
3892 | case QRhiResource::Texture: |
3893 | return "Texture" ; |
3894 | case QRhiResource::Sampler: |
3895 | return "Sampler" ; |
3896 | case QRhiResource::RenderBuffer: |
3897 | return "RenderBuffer" ; |
3898 | case QRhiResource::RenderPassDescriptor: |
3899 | return "RenderPassDescriptor" ; |
3900 | case QRhiResource::RenderTarget: |
3901 | return "RenderTarget" ; |
3902 | case QRhiResource::TextureRenderTarget: |
3903 | return "TextureRenderTarget" ; |
3904 | case QRhiResource::ShaderResourceBindings: |
3905 | return "ShaderResourceBindings" ; |
3906 | case QRhiResource::GraphicsPipeline: |
3907 | return "GraphicsPipeline" ; |
3908 | case QRhiResource::SwapChain: |
3909 | return "SwapChain" ; |
3910 | case QRhiResource::ComputePipeline: |
3911 | return "ComputePipeline" ; |
3912 | case QRhiResource::CommandBuffer: |
3913 | return "CommandBuffer" ; |
3914 | default: |
3915 | Q_UNREACHABLE(); |
3916 | break; |
3917 | } |
3918 | return "" ; |
3919 | } |
3920 | #endif |
3921 | |
3922 | QRhiImplementation::~QRhiImplementation() |
3923 | { |
3924 | qDeleteAll(c: resUpdPool); |
3925 | |
3926 | // Be nice and show something about leaked stuff. Though we may not get |
3927 | // this far with some backends where the allocator or the api may check |
3928 | // and freak out for unfreed graphics objects in the derived dtor already. |
3929 | #ifndef QT_NO_DEBUG |
3930 | if (!resources.isEmpty()) { |
3931 | qWarning(msg: "QRhi %p going down with %d unreleased resources that own native graphics objects. This is not nice." , |
3932 | q, resources.count()); |
3933 | for (QRhiResource *res : qAsConst(t&: resources)) { |
3934 | qWarning(msg: " %s resource %p (%s)" , resourceTypeStr(res), res, res->m_objectName.constData()); |
3935 | res->m_rhi = nullptr; |
3936 | } |
3937 | } |
3938 | #endif |
3939 | } |
3940 | |
3941 | bool QRhiImplementation::isCompressedFormat(QRhiTexture::Format format) const |
3942 | { |
3943 | return (format >= QRhiTexture::BC1 && format <= QRhiTexture::BC7) |
3944 | || (format >= QRhiTexture::ETC2_RGB8 && format <= QRhiTexture::ETC2_RGBA8) |
3945 | || (format >= QRhiTexture::ASTC_4x4 && format <= QRhiTexture::ASTC_12x12); |
3946 | } |
3947 | |
3948 | void QRhiImplementation::compressedFormatInfo(QRhiTexture::Format format, const QSize &size, |
3949 | quint32 *bpl, quint32 *byteSize, |
3950 | QSize *blockDim) const |
3951 | { |
3952 | int xdim = 4; |
3953 | int ydim = 4; |
3954 | quint32 blockSize = 0; |
3955 | |
3956 | switch (format) { |
3957 | case QRhiTexture::BC1: |
3958 | blockSize = 8; |
3959 | break; |
3960 | case QRhiTexture::BC2: |
3961 | blockSize = 16; |
3962 | break; |
3963 | case QRhiTexture::BC3: |
3964 | blockSize = 16; |
3965 | break; |
3966 | case QRhiTexture::BC4: |
3967 | blockSize = 8; |
3968 | break; |
3969 | case QRhiTexture::BC5: |
3970 | blockSize = 16; |
3971 | break; |
3972 | case QRhiTexture::BC6H: |
3973 | blockSize = 16; |
3974 | break; |
3975 | case QRhiTexture::BC7: |
3976 | blockSize = 16; |
3977 | break; |
3978 | |
3979 | case QRhiTexture::ETC2_RGB8: |
3980 | blockSize = 8; |
3981 | break; |
3982 | case QRhiTexture::ETC2_RGB8A1: |
3983 | blockSize = 8; |
3984 | break; |
3985 | case QRhiTexture::ETC2_RGBA8: |
3986 | blockSize = 16; |
3987 | break; |
3988 | |
3989 | case QRhiTexture::ASTC_4x4: |
3990 | blockSize = 16; |
3991 | break; |
3992 | case QRhiTexture::ASTC_5x4: |
3993 | blockSize = 16; |
3994 | xdim = 5; |
3995 | break; |
3996 | case QRhiTexture::ASTC_5x5: |
3997 | blockSize = 16; |
3998 | xdim = ydim = 5; |
3999 | break; |
4000 | case QRhiTexture::ASTC_6x5: |
4001 | blockSize = 16; |
4002 | xdim = 6; |
4003 | ydim = 5; |
4004 | break; |
4005 | case QRhiTexture::ASTC_6x6: |
4006 | blockSize = 16; |
4007 | xdim = ydim = 6; |
4008 | break; |
4009 | case QRhiTexture::ASTC_8x5: |
4010 | blockSize = 16; |
4011 | xdim = 8; |
4012 | ydim = 5; |
4013 | break; |
4014 | case QRhiTexture::ASTC_8x6: |
4015 | blockSize = 16; |
4016 | xdim = 8; |
4017 | ydim = 6; |
4018 | break; |
4019 | case QRhiTexture::ASTC_8x8: |
4020 | blockSize = 16; |
4021 | xdim = ydim = 8; |
4022 | break; |
4023 | case QRhiTexture::ASTC_10x5: |
4024 | blockSize = 16; |
4025 | xdim = 10; |
4026 | ydim = 5; |
4027 | break; |
4028 | case QRhiTexture::ASTC_10x6: |
4029 | blockSize = 16; |
4030 | xdim = 10; |
4031 | ydim = 6; |
4032 | break; |
4033 | case QRhiTexture::ASTC_10x8: |
4034 | blockSize = 16; |
4035 | xdim = 10; |
4036 | ydim = 8; |
4037 | break; |
4038 | case QRhiTexture::ASTC_10x10: |
4039 | blockSize = 16; |
4040 | xdim = ydim = 10; |
4041 | break; |
4042 | case QRhiTexture::ASTC_12x10: |
4043 | blockSize = 16; |
4044 | xdim = 12; |
4045 | ydim = 10; |
4046 | break; |
4047 | case QRhiTexture::ASTC_12x12: |
4048 | blockSize = 16; |
4049 | xdim = ydim = 12; |
4050 | break; |
4051 | |
4052 | default: |
4053 | Q_UNREACHABLE(); |
4054 | break; |
4055 | } |
4056 | |
4057 | const quint32 wblocks = uint((size.width() + xdim - 1) / xdim); |
4058 | const quint32 hblocks = uint((size.height() + ydim - 1) / ydim); |
4059 | |
4060 | if (bpl) |
4061 | *bpl = wblocks * blockSize; |
4062 | if (byteSize) |
4063 | *byteSize = wblocks * hblocks * blockSize; |
4064 | if (blockDim) |
4065 | *blockDim = QSize(xdim, ydim); |
4066 | } |
4067 | |
4068 | void QRhiImplementation::textureFormatInfo(QRhiTexture::Format format, const QSize &size, |
4069 | quint32 *bpl, quint32 *byteSize) const |
4070 | { |
4071 | if (isCompressedFormat(format)) { |
4072 | compressedFormatInfo(format, size, bpl, byteSize, blockDim: nullptr); |
4073 | return; |
4074 | } |
4075 | |
4076 | quint32 bpc = 0; |
4077 | switch (format) { |
4078 | case QRhiTexture::RGBA8: |
4079 | bpc = 4; |
4080 | break; |
4081 | case QRhiTexture::BGRA8: |
4082 | bpc = 4; |
4083 | break; |
4084 | case QRhiTexture::R8: |
4085 | bpc = 1; |
4086 | break; |
4087 | case QRhiTexture::R16: |
4088 | bpc = 2; |
4089 | break; |
4090 | case QRhiTexture::RED_OR_ALPHA8: |
4091 | bpc = 1; |
4092 | break; |
4093 | |
4094 | case QRhiTexture::RGBA16F: |
4095 | bpc = 8; |
4096 | break; |
4097 | case QRhiTexture::RGBA32F: |
4098 | bpc = 16; |
4099 | break; |
4100 | case QRhiTexture::R16F: |
4101 | bpc = 2; |
4102 | break; |
4103 | case QRhiTexture::R32F: |
4104 | bpc = 4; |
4105 | break; |
4106 | |
4107 | case QRhiTexture::D16: |
4108 | bpc = 2; |
4109 | break; |
4110 | case QRhiTexture::D32F: |
4111 | bpc = 4; |
4112 | break; |
4113 | |
4114 | default: |
4115 | Q_UNREACHABLE(); |
4116 | break; |
4117 | } |
4118 | |
4119 | if (bpl) |
4120 | *bpl = uint(size.width()) * bpc; |
4121 | if (byteSize) |
4122 | *byteSize = uint(size.width() * size.height()) * bpc; |
4123 | } |
4124 | |
4125 | // Approximate because it excludes subresource alignment or multisampling. |
4126 | quint32 QRhiImplementation::approxByteSizeForTexture(QRhiTexture::Format format, const QSize &baseSize, |
4127 | int mipCount, int layerCount) |
4128 | { |
4129 | quint32 approxSize = 0; |
4130 | for (int level = 0; level < mipCount; ++level) { |
4131 | quint32 byteSize = 0; |
4132 | const QSize size(qFloor(v: qreal(qMax(a: 1, b: baseSize.width() >> level))), |
4133 | qFloor(v: qreal(qMax(a: 1, b: baseSize.height() >> level)))); |
4134 | textureFormatInfo(format, size, bpl: nullptr, byteSize: &byteSize); |
4135 | approxSize += byteSize; |
4136 | } |
4137 | approxSize *= uint(layerCount); |
4138 | return approxSize; |
4139 | } |
4140 | |
4141 | bool QRhiImplementation::sanityCheckGraphicsPipeline(QRhiGraphicsPipeline *ps) |
4142 | { |
4143 | if (ps->cbeginShaderStages() == ps->cendShaderStages()) { |
4144 | qWarning(msg: "Cannot build a graphics pipeline without any stages" ); |
4145 | return false; |
4146 | } |
4147 | |
4148 | bool hasVertexStage = false; |
4149 | for (auto it = ps->cbeginShaderStages(), itEnd = ps->cendShaderStages(); it != itEnd; ++it) { |
4150 | if (!it->shader().isValid()) { |
4151 | qWarning(msg: "Empty shader passed to graphics pipeline" ); |
4152 | return false; |
4153 | } |
4154 | if (it->type() == QRhiShaderStage::Vertex) { |
4155 | hasVertexStage = true; |
4156 | const QRhiVertexInputLayout inputLayout = ps->vertexInputLayout(); |
4157 | if (inputLayout.cbeginAttributes() == inputLayout.cendAttributes()) { |
4158 | qWarning(msg: "Vertex stage present without any vertex inputs" ); |
4159 | return false; |
4160 | } |
4161 | } |
4162 | } |
4163 | if (!hasVertexStage) { |
4164 | qWarning(msg: "Cannot build a graphics pipeline without a vertex stage" ); |
4165 | return false; |
4166 | } |
4167 | |
4168 | if (!ps->renderPassDescriptor()) { |
4169 | qWarning(msg: "Cannot build a graphics pipeline without a QRhiRenderPassDescriptor" ); |
4170 | return false; |
4171 | } |
4172 | |
4173 | if (!ps->shaderResourceBindings()) { |
4174 | qWarning(msg: "Cannot build a graphics pipeline without QRhiShaderResourceBindings" ); |
4175 | return false; |
4176 | } |
4177 | |
4178 | return true; |
4179 | } |
4180 | |
4181 | /*! |
4182 | \internal |
4183 | */ |
4184 | QRhi::QRhi() |
4185 | { |
4186 | } |
4187 | |
4188 | /*! |
4189 | Destructor. Destroys the backend and releases resources. |
4190 | */ |
4191 | QRhi::~QRhi() |
4192 | { |
4193 | if (!d) |
4194 | return; |
4195 | |
4196 | qDeleteAll(c: d->pendingReleaseAndDestroyResources); |
4197 | d->pendingReleaseAndDestroyResources.clear(); |
4198 | |
4199 | runCleanup(); |
4200 | |
4201 | d->destroy(); |
4202 | delete d; |
4203 | } |
4204 | |
4205 | /*! |
4206 | \return a new QRhi instance with a backend for the graphics API specified by \a impl. |
4207 | |
4208 | \a params must point to an instance of one of the backend-specific |
4209 | subclasses of QRhiInitParams, such as, QRhiVulkanInitParams, |
4210 | QRhiMetalInitParams, QRhiD3D11InitParams, QRhiGles2InitParams. See these |
4211 | classes for examples on creating a QRhi. |
4212 | |
4213 | \a flags is optional. It is used to enable profile and debug related |
4214 | features that are potentially expensive and should only be used during |
4215 | development. |
4216 | */ |
4217 | QRhi *QRhi::create(Implementation impl, QRhiInitParams *params, Flags flags, QRhiNativeHandles *importDevice) |
4218 | { |
4219 | QScopedPointer<QRhi> r(new QRhi); |
4220 | |
4221 | switch (impl) { |
4222 | case Null: |
4223 | r->d = new QRhiNull(static_cast<QRhiNullInitParams *>(params)); |
4224 | break; |
4225 | case Vulkan: |
4226 | #if QT_CONFIG(vulkan) |
4227 | r->d = new QRhiVulkan(static_cast<QRhiVulkanInitParams *>(params), |
4228 | static_cast<QRhiVulkanNativeHandles *>(importDevice)); |
4229 | break; |
4230 | #else |
4231 | Q_UNUSED(importDevice); |
4232 | qWarning("This build of Qt has no Vulkan support" ); |
4233 | break; |
4234 | #endif |
4235 | case OpenGLES2: |
4236 | #ifndef QT_NO_OPENGL |
4237 | r->d = new QRhiGles2(static_cast<QRhiGles2InitParams *>(params), |
4238 | static_cast<QRhiGles2NativeHandles *>(importDevice)); |
4239 | break; |
4240 | #else |
4241 | qWarning("This build of Qt has no OpenGL support" ); |
4242 | break; |
4243 | #endif |
4244 | case D3D11: |
4245 | #ifdef Q_OS_WIN |
4246 | r->d = new QRhiD3D11(static_cast<QRhiD3D11InitParams *>(params), |
4247 | static_cast<QRhiD3D11NativeHandles *>(importDevice)); |
4248 | break; |
4249 | #else |
4250 | qWarning(msg: "This platform has no Direct3D 11 support" ); |
4251 | break; |
4252 | #endif |
4253 | case Metal: |
4254 | #if defined(Q_OS_MACOS) || defined(Q_OS_IOS) |
4255 | r->d = new QRhiMetal(static_cast<QRhiMetalInitParams *>(params), |
4256 | static_cast<QRhiMetalNativeHandles *>(importDevice)); |
4257 | break; |
4258 | #else |
4259 | qWarning(msg: "This platform has no Metal support" ); |
4260 | break; |
4261 | #endif |
4262 | default: |
4263 | break; |
4264 | } |
4265 | |
4266 | if (r->d) { |
4267 | r->d->q = r.data(); |
4268 | |
4269 | if (flags.testFlag(flag: EnableProfiling)) { |
4270 | QRhiProfilerPrivate *profD = QRhiProfilerPrivate::get(p: &r->d->profiler); |
4271 | profD->rhiDWhenEnabled = r->d; |
4272 | const_cast<QLoggingCategory &>(QRHI_LOG_INFO()).setEnabled(type: QtDebugMsg, enable: true); |
4273 | } |
4274 | |
4275 | // Play nice with QSG_INFO since that is still the most commonly used |
4276 | // way to get graphics info printed from Qt Quick apps, and the Quick |
4277 | // scenegraph is our primary user. |
4278 | if (qEnvironmentVariableIsSet(varName: "QSG_INFO" )) |
4279 | const_cast<QLoggingCategory &>(QRHI_LOG_INFO()).setEnabled(type: QtDebugMsg, enable: true); |
4280 | |
4281 | r->d->debugMarkers = flags.testFlag(flag: EnableDebugMarkers); |
4282 | |
4283 | if (r->d->create(flags)) { |
4284 | r->d->implType = impl; |
4285 | r->d->implThread = QThread::currentThread(); |
4286 | return r.take(); |
4287 | } |
4288 | } |
4289 | |
4290 | return nullptr; |
4291 | } |
4292 | |
4293 | /*! |
4294 | \return the backend type for this QRhi. |
4295 | */ |
4296 | QRhi::Implementation QRhi::backend() const |
4297 | { |
4298 | return d->implType; |
4299 | } |
4300 | |
4301 | /*! |
4302 | \return the thread on which the QRhi was \l{QRhi::create()}{initialized}. |
4303 | */ |
4304 | QThread *QRhi::thread() const |
4305 | { |
4306 | return d->implThread; |
4307 | } |
4308 | |
4309 | /*! |
4310 | Registers a \a callback that is invoked either when the QRhi is destroyed, |
4311 | or when runCleanup() is called. |
4312 | |
4313 | The callback will run with the graphics resource still available, so this |
4314 | provides an opportunity for the application to cleanly release QRhiResource |
4315 | instances belonging to the QRhi. This is particularly useful for managing |
4316 | the lifetime of resources stored in \c cache type of objects, where the |
4317 | cache holds QRhiResources or objects containing QRhiResources. |
4318 | |
4319 | \sa runCleanup(), ~QRhi() |
4320 | */ |
4321 | void QRhi::addCleanupCallback(const CleanupCallback &callback) |
4322 | { |
4323 | d->addCleanupCallback(callback); |
4324 | } |
4325 | |
4326 | /*! |
4327 | Invokes all registered cleanup functions. The list of cleanup callbacks it |
4328 | then cleared. Normally destroying the QRhi does this automatically, but |
4329 | sometimes it can be useful to trigger cleanup in order to release all |
4330 | cached, non-essential resources. |
4331 | |
4332 | \sa addCleanupCallback() |
4333 | */ |
4334 | void QRhi::runCleanup() |
4335 | { |
4336 | for (const CleanupCallback &f : qAsConst(t&: d->cleanupCallbacks)) |
4337 | f(this); |
4338 | |
4339 | d->cleanupCallbacks.clear(); |
4340 | } |
4341 | |
4342 | /*! |
4343 | \class QRhiResourceUpdateBatch |
4344 | \internal |
4345 | \inmodule QtGui |
4346 | \brief Records upload and copy type of operations. |
4347 | |
4348 | With QRhi it is no longer possible to perform copy type of operations at |
4349 | arbitrary times. Instead, all such operations are recorded into batches |
4350 | that are then passed, most commonly, to QRhiCommandBuffer::beginPass(). |
4351 | What then happens under the hood is hidden from the application: the |
4352 | underlying implementations can defer and implement these operations in |
4353 | various different ways. |
4354 | |
4355 | A resource update batch owns no graphics resources and does not perform any |
4356 | actual operations on its own. It should rather be viewed as a command |
4357 | buffer for update, upload, and copy type of commands. |
4358 | |
4359 | To get an available, empty batch from the pool, call |
4360 | QRhi::nextResourceUpdateBatch(). |
4361 | */ |
4362 | |
4363 | /*! |
4364 | \internal |
4365 | */ |
4366 | QRhiResourceUpdateBatch::QRhiResourceUpdateBatch(QRhiImplementation *rhi) |
4367 | : d(new QRhiResourceUpdateBatchPrivate) |
4368 | { |
4369 | d->q = this; |
4370 | d->rhi = rhi; |
4371 | } |
4372 | |
4373 | QRhiResourceUpdateBatch::~QRhiResourceUpdateBatch() |
4374 | { |
4375 | delete d; |
4376 | } |
4377 | |
4378 | /*! |
4379 | \return the batch to the pool. This should only be used when the batch is |
4380 | not passed to one of QRhiCommandBuffer::beginPass(), |
4381 | QRhiCommandBuffer::endPass(), or QRhiCommandBuffer::resourceUpdate() |
4382 | because these implicitly call release(). |
4383 | |
4384 | \note QRhiResourceUpdateBatch instances must never by \c deleted by |
4385 | applications. |
4386 | */ |
4387 | void QRhiResourceUpdateBatch::release() |
4388 | { |
4389 | d->free(); |
4390 | } |
4391 | |
4392 | /*! |
4393 | Copies all queued operations from the \a other batch into this one. |
4394 | |
4395 | \note \a other is not changed in any way, typically it will still need a |
4396 | release() |
4397 | |
4398 | This allows for a convenient pattern where resource updates that are |
4399 | already known during the initialization step are collected into a batch |
4400 | that is then merged into another when starting to first render pass later |
4401 | on: |
4402 | |
4403 | \badcode |
4404 | void init() |
4405 | { |
4406 | ... |
4407 | initialUpdates = rhi->nextResourceUpdateBatch(); |
4408 | initialUpdates->uploadStaticBuffer(vbuf, vertexData); |
4409 | initialUpdates->uploadStaticBuffer(ibuf, indexData); |
4410 | ... |
4411 | } |
4412 | |
4413 | void render() |
4414 | { |
4415 | ... |
4416 | QRhiResourceUpdateBatch *resUpdates = rhi->nextResourceUpdateBatch(); |
4417 | if (initialUpdates) { |
4418 | resUpdates->merge(initialUpdates); |
4419 | initialUpdates->release(); |
4420 | initialUpdates = nullptr; |
4421 | } |
4422 | resUpdates->updateDynamicBuffer(...); |
4423 | ... |
4424 | cb->beginPass(rt, clearCol, clearDs, resUpdates); |
4425 | } |
4426 | \endcode |
4427 | */ |
4428 | void QRhiResourceUpdateBatch::merge(QRhiResourceUpdateBatch *other) |
4429 | { |
4430 | d->merge(other: other->d); |
4431 | } |
4432 | |
4433 | /*! |
4434 | Enqueues updating a region of a QRhiBuffer \a buf created with the type |
4435 | QRhiBuffer::Dynamic. |
4436 | |
4437 | The region is specified \a offset and \a size. The actual bytes to write |
4438 | are specified by \a data which must have at least \a size bytes available. |
4439 | \a data can safely be destroyed or changed once this function returns. |
4440 | |
4441 | \note If host writes are involved, which is the case with |
4442 | updateDynamicBuffer() typically as such buffers are backed by host visible |
4443 | memory with most backends, they may accumulate within a frame. Thus pass 1 |
4444 | reading a region changed by a batch passed to pass 2 may see the changes |
4445 | specified in pass 2's update batch. |
4446 | |
4447 | \note QRhi transparently manages double buffering in order to prevent |
4448 | stalling the graphics pipeline. The fact that a QRhiBuffer may have |
4449 | multiple native underneath can be safely ignored when using the QRhi and |
4450 | QRhiResourceUpdateBatch. |
4451 | */ |
4452 | void QRhiResourceUpdateBatch::updateDynamicBuffer(QRhiBuffer *buf, int offset, int size, const void *data) |
4453 | { |
4454 | if (size > 0) |
4455 | d->bufferOps.append(t: QRhiResourceUpdateBatchPrivate::BufferOp::dynamicUpdate(buf, offset, size, data)); |
4456 | } |
4457 | |
4458 | /*! |
4459 | Enqueues updating a region of a QRhiBuffer \a buf created with the type |
4460 | QRhiBuffer::Immutable or QRhiBuffer::Static. |
4461 | |
4462 | The region is specified \a offset and \a size. The actual bytes to write |
4463 | are specified by \a data which must have at least \a size bytes available. |
4464 | \a data can safely be destroyed or changed once this function returns. |
4465 | */ |
4466 | void QRhiResourceUpdateBatch::uploadStaticBuffer(QRhiBuffer *buf, int offset, int size, const void *data) |
4467 | { |
4468 | if (size > 0) |
4469 | d->bufferOps.append(t: QRhiResourceUpdateBatchPrivate::BufferOp::staticUpload(buf, offset, size, data)); |
4470 | } |
4471 | |
4472 | /*! |
4473 | Enqueues updating the entire QRhiBuffer \a buf created with the type |
4474 | QRhiBuffer::Immutable or QRhiBuffer::Static. |
4475 | */ |
4476 | void QRhiResourceUpdateBatch::uploadStaticBuffer(QRhiBuffer *buf, const void *data) |
4477 | { |
4478 | if (buf->size() > 0) |
4479 | d->bufferOps.append(t: QRhiResourceUpdateBatchPrivate::BufferOp::staticUpload(buf, offset: 0, size: 0, data)); |
4480 | } |
4481 | |
4482 | /*! |
4483 | Enqueues reading back a region of the QRhiBuffer \a buf. The size of the |
4484 | region is specified by \a size in bytes, \a offset is the offset in bytes |
4485 | to start reading from. |
4486 | |
4487 | A readback is asynchronous. \a result contains a callback that is invoked |
4488 | when the operation has completed. The data is provided in |
4489 | QRhiBufferReadbackResult::data. Upon successful completion that QByteArray |
4490 | will have a size equal to \a size. On failure the QByteArray will be empty. |
4491 | |
4492 | \note Reading buffers with a usage different than QRhiBuffer::UniformBuffer |
4493 | is supported only when the QRhi::ReadBackNonUniformBuffer feature is |
4494 | reported as supported. |
4495 | |
4496 | \note The asynchronous readback is guaranteed to have completed when one of |
4497 | the following conditions is met: \l{QRhi::finish()}{finish()} has been |
4498 | called; or, at least \c N frames have been \l{QRhi::endFrame()}{submitted}, |
4499 | including the frame that issued the readback operation, and the |
4500 | \l{QRhi::beginFrame()}{recording of a new frame} has been started, where \c |
4501 | N is the \l{QRhi::resourceLimit()}{resource limit value} returned for |
4502 | QRhi::MaxAsyncReadbackFrames. |
4503 | |
4504 | \sa readBackTexture(), QRhi::isFeatureSupported(), QRhi::resourceLimit() |
4505 | */ |
4506 | void QRhiResourceUpdateBatch::readBackBuffer(QRhiBuffer *buf, int offset, int size, QRhiBufferReadbackResult *result) |
4507 | { |
4508 | d->bufferOps.append(t: QRhiResourceUpdateBatchPrivate::BufferOp::read(buf, offset, size, result)); |
4509 | } |
4510 | |
4511 | /*! |
4512 | Enqueues uploading the image data for one or more mip levels in one or more |
4513 | layers of the texture \a tex. |
4514 | |
4515 | The details of the copy (source QImage or compressed texture data, regions, |
4516 | target layers and levels) are described in \a desc. |
4517 | */ |
4518 | void QRhiResourceUpdateBatch::uploadTexture(QRhiTexture *tex, const QRhiTextureUploadDescription &desc) |
4519 | { |
4520 | if (desc.cbeginEntries() != desc.cendEntries()) |
4521 | d->textureOps.append(t: QRhiResourceUpdateBatchPrivate::TextureOp::upload(tex, desc)); |
4522 | } |
4523 | |
4524 | /*! |
4525 | Enqueues uploading the image data for mip level 0 of layer 0 of the texture |
4526 | \a tex. |
4527 | |
4528 | \a tex must have an uncompressed format. Its format must also be compatible |
4529 | with the QImage::format() of \a image. The source data is given in \a |
4530 | image. |
4531 | */ |
4532 | void QRhiResourceUpdateBatch::uploadTexture(QRhiTexture *tex, const QImage &image) |
4533 | { |
4534 | uploadTexture(tex, desc: QRhiTextureUploadEntry(0, 0, image)); |
4535 | } |
4536 | |
4537 | /*! |
4538 | Enqueues a texture-to-texture copy operation from \a src into \a dst as |
4539 | described by \a desc. |
4540 | |
4541 | \note The source texture \a src must be created with |
4542 | QRhiTexture::UsedAsTransferSource. |
4543 | */ |
4544 | void QRhiResourceUpdateBatch::copyTexture(QRhiTexture *dst, QRhiTexture *src, const QRhiTextureCopyDescription &desc) |
4545 | { |
4546 | d->textureOps.append(t: QRhiResourceUpdateBatchPrivate::TextureOp::copy(dst, src, desc)); |
4547 | } |
4548 | |
4549 | /*! |
4550 | Enqueues a texture-to-host copy operation as described by \a rb. |
4551 | |
4552 | Normally \a rb will specify a QRhiTexture as the source. However, when the |
4553 | swapchain in the current frame was created with |
4554 | QRhiSwapChain::UsedAsTransferSource, it can also be the source of the |
4555 | readback. For this, leave the texture set to null in \a rb. |
4556 | |
4557 | Unlike other operations, the results here need to be processed by the |
4558 | application. Therefore, \a result provides not just the data but also a |
4559 | callback as operations on the batch are asynchronous by nature: |
4560 | |
4561 | \badcode |
4562 | beginFrame(sc); |
4563 | beginPass |
4564 | ... |
4565 | QRhiReadbackResult *rbResult = new QRhiReadbackResult; |
4566 | rbResult->completed = [rbResult] { |
4567 | { |
4568 | const QImage::Format fmt = QImage::Format_RGBA8888_Premultiplied; // fits QRhiTexture::RGBA8 |
4569 | const uchar *p = reinterpret_cast<const uchar *>(rbResult->data.constData()); |
4570 | QImage image(p, rbResult->pixelSize.width(), rbResult->pixelSize.height(), fmt); |
4571 | image.save("result.png"); |
4572 | } |
4573 | delete rbResult; |
4574 | }; |
4575 | u = nextResourceUpdateBatch(); |
4576 | QRhiReadbackDescription rb; // no texture -> uses the current backbuffer of sc |
4577 | u->readBackTexture(rb, rbResult); |
4578 | endPass(u); |
4579 | endFrame(sc); |
4580 | \endcode |
4581 | |
4582 | \note The texture must be created with QRhiTexture::UsedAsTransferSource. |
4583 | |
4584 | \note Multisample textures cannot be read back. |
4585 | |
4586 | \note The readback returns raw byte data, in order to allow the applications |
4587 | to interpret it in any way they see fit. Be aware of the blending settings |
4588 | of rendering code: if the blending is set up to rely on premultiplied alpha, |
4589 | the results of the readback must also be interpreted as Premultiplied. |
4590 | |
4591 | \note When interpreting the resulting raw data, be aware that the readback |
4592 | happens with a byte ordered format. A \l{QRhiTexture::RGBA8}{RGBA8} texture |
4593 | maps therefore to byte ordered QImage formats, such as, |
4594 | QImage::Format_RGBA8888. |
4595 | |
4596 | \note The asynchronous readback is guaranteed to have completed when one of |
4597 | the following conditions is met: \l{QRhi::finish()}{finish()} has been |
4598 | called; or, at least \c N frames have been \l{QRhi::endFrame()}{submitted}, |
4599 | including the frame that issued the readback operation, and the |
4600 | \l{QRhi::beginFrame()}{recording of a new frame} has been started, where \c |
4601 | N is the \l{QRhi::resourceLimit()}{resource limit value} returned for |
4602 | QRhi::MaxAsyncReadbackFrames. |
4603 | |
4604 | \sa readBackBuffer(), QRhi::resourceLimit() |
4605 | */ |
4606 | void QRhiResourceUpdateBatch::readBackTexture(const QRhiReadbackDescription &rb, QRhiReadbackResult *result) |
4607 | { |
4608 | d->textureOps.append(t: QRhiResourceUpdateBatchPrivate::TextureOp::read(rb, result)); |
4609 | } |
4610 | |
4611 | /*! |
4612 | Enqueues a mipmap generation operation for the specified \a layer of texture |
4613 | \a tex. |
4614 | |
4615 | \note The texture must be created with QRhiTexture::MipMapped and |
4616 | QRhiTexture::UsedWithGenerateMips. |
4617 | */ |
4618 | void QRhiResourceUpdateBatch::generateMips(QRhiTexture *tex, int layer) |
4619 | { |
4620 | d->textureOps.append(t: QRhiResourceUpdateBatchPrivate::TextureOp::genMips(tex, layer)); |
4621 | } |
4622 | |
4623 | /*! |
4624 | \return an available, empty batch to which copy type of operations can be |
4625 | recorded. |
4626 | |
4627 | \note the return value is not owned by the caller and must never be |
4628 | destroyed. Instead, the batch is returned the pool for reuse by passing |
4629 | it to QRhiCommandBuffer::beginPass(), QRhiCommandBuffer::endPass(), or |
4630 | QRhiCommandBuffer::resourceUpdate(), or by calling |
4631 | QRhiResourceUpdateBatch::release() on it. |
4632 | |
4633 | \note Can be called outside beginFrame() - endFrame() as well since a batch |
4634 | instance just collects data on its own, it does not perform any operations. |
4635 | */ |
4636 | QRhiResourceUpdateBatch *QRhi::nextResourceUpdateBatch() |
4637 | { |
4638 | auto nextFreeBatch = [this]() -> QRhiResourceUpdateBatch * { |
4639 | for (int i = 0, ie = d->resUpdPoolMap.count(); i != ie; ++i) { |
4640 | if (!d->resUpdPoolMap.testBit(i)) { |
4641 | d->resUpdPoolMap.setBit(i); |
4642 | QRhiResourceUpdateBatch *u = d->resUpdPool[i]; |
4643 | QRhiResourceUpdateBatchPrivate::get(b: u)->poolIndex = i; |
4644 | return u; |
4645 | } |
4646 | } |
4647 | return nullptr; |
4648 | }; |
4649 | |
4650 | QRhiResourceUpdateBatch *u = nextFreeBatch(); |
4651 | if (!u) { |
4652 | const int oldSize = d->resUpdPool.count(); |
4653 | const int newSize = oldSize + 4; |
4654 | d->resUpdPool.resize(asize: newSize); |
4655 | d->resUpdPoolMap.resize(size: newSize); |
4656 | for (int i = oldSize; i < newSize; ++i) |
4657 | d->resUpdPool[i] = new QRhiResourceUpdateBatch(d); |
4658 | u = nextFreeBatch(); |
4659 | Q_ASSERT(u); |
4660 | } |
4661 | |
4662 | return u; |
4663 | } |
4664 | |
4665 | void QRhiResourceUpdateBatchPrivate::free() |
4666 | { |
4667 | Q_ASSERT(poolIndex >= 0 && rhi->resUpdPool[poolIndex] == q); |
4668 | |
4669 | bufferOps.clear(); |
4670 | textureOps.clear(); |
4671 | |
4672 | rhi->resUpdPoolMap.clearBit(i: poolIndex); |
4673 | poolIndex = -1; |
4674 | } |
4675 | |
4676 | void QRhiResourceUpdateBatchPrivate::merge(QRhiResourceUpdateBatchPrivate *other) |
4677 | { |
4678 | bufferOps.reserve(asize: bufferOps.size() + other->bufferOps.size()); |
4679 | for (const BufferOp &op : qAsConst(t&: other->bufferOps)) |
4680 | bufferOps.append(t: op); |
4681 | |
4682 | textureOps.reserve(asize: textureOps.size() + other->textureOps.size()); |
4683 | for (const TextureOp &op : qAsConst(t&: other->textureOps)) |
4684 | textureOps.append(t: op); |
4685 | } |
4686 | |
4687 | /*! |
4688 | Sometimes committing resource updates is necessary without starting a |
4689 | render pass. Not often needed, updates should typically be passed to |
4690 | beginPass (or endPass, in case of readbacks) instead. |
4691 | |
4692 | \note Cannot be called inside a pass. |
4693 | */ |
4694 | void QRhiCommandBuffer::resourceUpdate(QRhiResourceUpdateBatch *resourceUpdates) |
4695 | { |
4696 | if (resourceUpdates) |
4697 | m_rhi->resourceUpdate(cb: this, resourceUpdates); |
4698 | } |
4699 | |
4700 | /*! |
4701 | Records starting a new render pass targeting the render target \a rt. |
4702 | |
4703 | \a resourceUpdates, when not null, specifies a resource update batch that |
4704 | is to be committed and then released. |
4705 | |
4706 | The color and depth/stencil buffers of the render target are normally |
4707 | cleared. The clear values are specified in \a colorClearValue and \a |
4708 | depthStencilClearValue. The exception is when the render target was created |
4709 | with QRhiTextureRenderTarget::PreserveColorContents and/or |
4710 | QRhiTextureRenderTarget::PreserveDepthStencilContents. The clear values are |
4711 | ignored then. |
4712 | |
4713 | \note Enabling preserved color or depth contents leads to decreased |
4714 | performance depending on the underlying hardware. Mobile GPUs with tiled |
4715 | architecture benefit from not having to reload the previous contents into |
4716 | the tile buffer. Similarly, a QRhiTextureRenderTarget with a QRhiTexture as |
4717 | the depth buffer is less efficient than a QRhiRenderBuffer since using a |
4718 | depth texture triggers requiring writing the data out to it, while with |
4719 | renderbuffers this is not needed (as the API does not allow sampling or |
4720 | reading from a renderbuffer). |
4721 | |
4722 | \note Do not assume that any state or resource bindings persist between |
4723 | passes. |
4724 | |
4725 | \note The QRhiCommandBuffer's \c set and \c draw functions can only be |
4726 | called inside a pass. Also, with the exception of setGraphicsPipeline(), |
4727 | they expect to have a pipeline set already on the command buffer. |
4728 | Unspecified issues may arise otherwise, depending on the backend. |
4729 | */ |
4730 | void QRhiCommandBuffer::beginPass(QRhiRenderTarget *rt, |
4731 | const QColor &colorClearValue, |
4732 | const QRhiDepthStencilClearValue &depthStencilClearValue, |
4733 | QRhiResourceUpdateBatch *resourceUpdates) |
4734 | { |
4735 | m_rhi->beginPass(cb: this, rt, colorClearValue, depthStencilClearValue, resourceUpdates); |
4736 | } |
4737 | |
4738 | /*! |
4739 | Records ending the current render pass. |
4740 | |
4741 | \a resourceUpdates, when not null, specifies a resource update batch that |
4742 | is to be committed and then released. |
4743 | */ |
4744 | void QRhiCommandBuffer::endPass(QRhiResourceUpdateBatch *resourceUpdates) |
4745 | { |
4746 | m_rhi->endPass(cb: this, resourceUpdates); |
4747 | } |
4748 | |
4749 | /*! |
4750 | Records setting a new graphics pipeline \a ps. |
4751 | |
4752 | \note This function must be called before recording other \c set or \c draw |
4753 | commands on the command buffer. |
4754 | |
4755 | \note QRhi will optimize out unnecessary invocations within a pass, so |
4756 | therefore overoptimizing to avoid calls to this function is not necessary |
4757 | on the applications' side. |
4758 | |
4759 | \note This function can only be called inside a render pass, meaning |
4760 | between a beginPass() and endPass() call. |
4761 | */ |
4762 | void QRhiCommandBuffer::setGraphicsPipeline(QRhiGraphicsPipeline *ps) |
4763 | { |
4764 | m_rhi->setGraphicsPipeline(cb: this, ps); |
4765 | } |
4766 | |
4767 | /*! |
4768 | Records binding a set of shader resources, such as, uniform buffers or |
4769 | textures, that are made visible to one or more shader stages. |
4770 | |
4771 | \a srb can be null in which case the current graphics or compute pipeline's |
4772 | associated QRhiShaderResourceBindings is used. When \a srb is non-null, it |
4773 | must be |
4774 | \l{QRhiShaderResourceBindings::isLayoutCompatible()}{layout-compatible}, |
4775 | meaning the layout (number of bindings, the type and binding number of each |
4776 | binding) must fully match the QRhiShaderResourceBindings that was |
4777 | associated with the pipeline at the time of calling the pipeline's build(). |
4778 | |
4779 | There are cases when a seemingly unnecessary setShaderResources() call is |
4780 | mandatory: when rebuilding a resource referenced from \a srb, for example |
4781 | changing the size of a QRhiBuffer followed by a QRhiBuffer::build(), this |
4782 | is the place where associated native objects (such as descriptor sets in |
4783 | case of Vulkan) are updated to refer to the current native resources that |
4784 | back the QRhiBuffer, QRhiTexture, QRhiSampler objects referenced from \a |
4785 | srb. In this case setShaderResources() must be called even if \a srb is |
4786 | the same as in the last call. |
4787 | |
4788 | \a dynamicOffsets allows specifying buffer offsets for uniform buffers that |
4789 | were associated with \a srb via |
4790 | QRhiShaderResourceBinding::uniformBufferWithDynamicOffset(). This is |
4791 | different from providing the offset in the \a srb itself: dynamic offsets |
4792 | do not require building a new QRhiShaderResourceBindings for every |
4793 | different offset, can avoid writing the underlying descriptors (with |
4794 | backends where applicable), and so they may be more efficient. Each element |
4795 | of \a dynamicOffsets is a \c binding - \c offset pair. |
4796 | \a dynamicOffsetCount specifies the number of elements in \a dynamicOffsets. |
4797 | |
4798 | \note All offsets in \a dynamicOffsets must be byte aligned to the value |
4799 | returned from QRhi::ubufAlignment(). |
4800 | |
4801 | \note QRhi will optimize out unnecessary invocations within a pass (taking |
4802 | the conditions described above into account), so therefore overoptimizing |
4803 | to avoid calls to this function is not necessary on the applications' side. |
4804 | |
4805 | \note This function can only be called inside a render or compute pass, |
4806 | meaning between a beginPass() and endPass(), or beginComputePass() and |
4807 | endComputePass(). |
4808 | */ |
4809 | void QRhiCommandBuffer::setShaderResources(QRhiShaderResourceBindings *srb, |
4810 | int dynamicOffsetCount, |
4811 | const DynamicOffset *dynamicOffsets) |
4812 | { |
4813 | m_rhi->setShaderResources(cb: this, srb, dynamicOffsetCount, dynamicOffsets); |
4814 | } |
4815 | |
4816 | /*! |
4817 | Records vertex input bindings. |
4818 | |
4819 | The index buffer used by subsequent drawIndexed() commands is specified by |
4820 | \a indexBuf, \a indexOffset, and \a indexFormat. \a indexBuf can be set to |
4821 | null when indexed drawing is not needed. |
4822 | |
4823 | Vertex buffer bindings are batched. \a startBinding specifies the first |
4824 | binding number. The recorded command then binds each buffer from \a |
4825 | bindings to the binding point \c{startBinding + i} where \c i is the index |
4826 | in \a bindings. Each element in \a bindings specifies a QRhiBuffer and an |
4827 | offset. |
4828 | |
4829 | Superfluous vertex input and index changes in the same pass are ignored |
4830 | automatically with most backends and therefore applications do not need to |
4831 | overoptimize to avoid calls to this function. |
4832 | |
4833 | \note This function can only be called inside a render pass, meaning |
4834 | between a beginPass() and endPass() call. |
4835 | |
4836 | As a simple example, take a vertex shader with two inputs: |
4837 | |
4838 | \badcode |
4839 | layout(location = 0) in vec4 position; |
4840 | layout(location = 1) in vec3 color; |
4841 | \endcode |
4842 | |
4843 | and assume we have the data available in interleaved format, using only 2 |
4844 | floats for position (so 5 floats per vertex: x, y, r, g, b). A QRhiGraphicsPipeline for |
4845 | this shader can then be created using the input layout: |
4846 | |
4847 | \badcode |
4848 | QRhiVertexInputLayout inputLayout; |
4849 | inputLayout.setBindings({ |
4850 | { 5 * sizeof(float) } |
4851 | }); |
4852 | inputLayout.setAttributes({ |
4853 | { 0, 0, QRhiVertexInputAttribute::Float2, 0 }, |
4854 | { 0, 1, QRhiVertexInputAttribute::Float3, 2 * sizeof(float) } |
4855 | }); |
4856 | \endcode |
4857 | |
4858 | Here there is one buffer binding (binding number 0), with two inputs |
4859 | referencing it. When recording the pass, once the pipeline is set, the |
4860 | vertex bindings can be specified simply like the following (using C++11 |
4861 | initializer syntax), assuming vbuf is the QRhiBuffer with all the |
4862 | interleaved position+color data: |
4863 | |
4864 | \badcode |
4865 | const QRhiCommandBuffer::VertexInput vbufBinding(vbuf, 0); |
4866 | cb->setVertexInput(0, 1, &vbufBinding); |
4867 | \endcode |
4868 | */ |
4869 | void QRhiCommandBuffer::setVertexInput(int startBinding, int bindingCount, const VertexInput *bindings, |
4870 | QRhiBuffer *indexBuf, quint32 indexOffset, |
4871 | IndexFormat indexFormat) |
4872 | { |
4873 | m_rhi->setVertexInput(cb: this, startBinding, bindingCount, bindings, indexBuf, indexOffset, indexFormat); |
4874 | } |
4875 | |
4876 | /*! |
4877 | Records setting the active viewport rectangle specified in \a viewport. |
4878 | |
4879 | With backends where the underlying graphics API has scissoring always |
4880 | enabled, this function also sets the scissor to match the viewport whenever |
4881 | the active QRhiGraphicsPipeline does not have |
4882 | \l{QRhiGraphicsPipeline::UsesScissor}{UsesScissor} set. |
4883 | |
4884 | \note QRhi assumes OpenGL-style viewport coordinates, meaning x and y are |
4885 | bottom-left. |
4886 | |
4887 | \note This function can only be called inside a render pass, meaning |
4888 | between a beginPass() and endPass() call. |
4889 | */ |
4890 | void QRhiCommandBuffer::setViewport(const QRhiViewport &viewport) |
4891 | { |
4892 | m_rhi->setViewport(cb: this, viewport); |
4893 | } |
4894 | |
4895 | /*! |
4896 | Records setting the active scissor rectangle specified in \a scissor. |
4897 | |
4898 | This can only be called when the bound pipeline has |
4899 | \l{QRhiGraphicsPipeline::UsesScissor}{UsesScissor} set. When the flag is |
4900 | set on the active pipeline, this function must be called because scissor |
4901 | testing will get enabled and so a scissor rectangle must be provided. |
4902 | |
4903 | \note QRhi assumes OpenGL-style viewport coordinates, meaning x and y are |
4904 | bottom-left. |
4905 | |
4906 | \note This function can only be called inside a render pass, meaning |
4907 | between a beginPass() and endPass() call. |
4908 | */ |
4909 | void QRhiCommandBuffer::setScissor(const QRhiScissor &scissor) |
4910 | { |
4911 | m_rhi->setScissor(cb: this, scissor); |
4912 | } |
4913 | |
4914 | /*! |
4915 | Records setting the active blend constants to \a c. |
4916 | |
4917 | This can only be called when the bound pipeline has |
4918 | QRhiGraphicsPipeline::UsesBlendConstants set. |
4919 | |
4920 | \note This function can only be called inside a render pass, meaning |
4921 | between a beginPass() and endPass() call. |
4922 | */ |
4923 | void QRhiCommandBuffer::setBlendConstants(const QColor &c) |
4924 | { |
4925 | m_rhi->setBlendConstants(cb: this, c); |
4926 | } |
4927 | |
4928 | /*! |
4929 | Records setting the active stencil reference value to \a refValue. |
4930 | |
4931 | This can only be called when the bound pipeline has |
4932 | QRhiGraphicsPipeline::UsesStencilRef set. |
4933 | |
4934 | \note This function can only be called inside a render pass, meaning between |
4935 | a beginPass() and endPass() call. |
4936 | */ |
4937 | void QRhiCommandBuffer::setStencilRef(quint32 refValue) |
4938 | { |
4939 | m_rhi->setStencilRef(cb: this, refValue); |
4940 | } |
4941 | |
4942 | /*! |
4943 | Records a non-indexed draw. |
4944 | |
4945 | The number of vertices is specified in \a vertexCount. For instanced |
4946 | drawing set \a instanceCount to a value other than 1. \a firstVertex is the |
4947 | index of the first vertex to draw. When drawing multiple instances, the |
4948 | first instance ID is specified by \a firstInstance. |
4949 | |
4950 | \note \a firstInstance may not be supported, and is ignored when the |
4951 | QRhi::BaseInstance feature is reported as not supported. The first ID is |
4952 | always 0 in that case. |
4953 | |
4954 | \note This function can only be called inside a render pass, meaning |
4955 | between a beginPass() and endPass() call. |
4956 | */ |
4957 | void QRhiCommandBuffer::draw(quint32 vertexCount, |
4958 | quint32 instanceCount, |
4959 | quint32 firstVertex, |
4960 | quint32 firstInstance) |
4961 | { |
4962 | m_rhi->draw(cb: this, vertexCount, instanceCount, firstVertex, firstInstance); |
4963 | } |
4964 | |
4965 | /*! |
4966 | Records an indexed draw. |
4967 | |
4968 | The number of vertices is specified in \a indexCount. \a firstIndex is the |
4969 | base index. The effective offset in the index buffer is given by |
4970 | \c{indexOffset + firstIndex * n} where \c n is 2 or 4 depending on the |
4971 | index element type. \c indexOffset is specified in setVertexInput(). |
4972 | |
4973 | \note The effective offset in the index buffer must be 4 byte aligned with |
4974 | some backends (for example, Metal). With these backends the |
4975 | \l{QRhi::NonFourAlignedEffectiveIndexBufferOffset}{NonFourAlignedEffectiveIndexBufferOffset} |
4976 | feature will be reported as not-supported. |
4977 | |
4978 | For instanced drawing set \a instanceCount to a value other than 1. When |
4979 | drawing multiple instances, the first instance ID is specified by \a |
4980 | firstInstance. |
4981 | |
4982 | \note \a firstInstance may not be supported, and is ignored when the |
4983 | QRhi::BaseInstance feature is reported as not supported. The first ID is |
4984 | always 0 in that case. |
4985 | |
4986 | \a vertexOffset (also called \c{base vertex}) is a signed value that is |
4987 | added to the element index before indexing into the vertex buffer. Support |
4988 | for this is not always available, and the value is ignored when the feature |
4989 | QRhi::BaseVertex is reported as unsupported. |
4990 | |
4991 | \note This function can only be called inside a render pass, meaning |
4992 | between a beginPass() and endPass() call. |
4993 | */ |
4994 | void QRhiCommandBuffer::drawIndexed(quint32 indexCount, |
4995 | quint32 instanceCount, |
4996 | quint32 firstIndex, |
4997 | qint32 vertexOffset, |
4998 | quint32 firstInstance) |
4999 | { |
5000 | m_rhi->drawIndexed(cb: this, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance); |
5001 | } |
5002 | |
5003 | /*! |
5004 | Records a named debug group on the command buffer. This is shown in |
5005 | graphics debugging tools such as \l{https://renderdoc.org/}{RenderDoc} and |
5006 | \l{https://developer.apple.com/xcode/}{XCode}. The end of the grouping is |
5007 | indicated by debugMarkEnd(). |
5008 | |
5009 | \note Ignored when QRhi::DebugMarkers are not supported or |
5010 | QRhi::EnableDebugMarkers is not set. |
5011 | |
5012 | \note Can be called anywhere within the frame, both inside and outside of passes. |
5013 | */ |
5014 | void QRhiCommandBuffer::debugMarkBegin(const QByteArray &name) |
5015 | { |
5016 | m_rhi->debugMarkBegin(cb: this, name); |
5017 | } |
5018 | |
5019 | /*! |
5020 | Records the end of a debug group. |
5021 | |
5022 | \note Ignored when QRhi::DebugMarkers are not supported or |
5023 | QRhi::EnableDebugMarkers is not set. |
5024 | |
5025 | \note Can be called anywhere within the frame, both inside and outside of passes. |
5026 | */ |
5027 | void QRhiCommandBuffer::debugMarkEnd() |
5028 | { |
5029 | m_rhi->debugMarkEnd(cb: this); |
5030 | } |
5031 | |
5032 | /*! |
5033 | Inserts a debug message \a msg into the command stream. |
5034 | |
5035 | \note Ignored when QRhi::DebugMarkers are not supported or |
5036 | QRhi::EnableDebugMarkers is not set. |
5037 | |
5038 | \note With some backends debugMarkMsg() is only supported inside a pass and |
5039 | is ignored when called outside a pass. With others it is recorded anywhere |
5040 | within the frame. |
5041 | */ |
5042 | void QRhiCommandBuffer::debugMarkMsg(const QByteArray &msg) |
5043 | { |
5044 | m_rhi->debugMarkMsg(cb: this, msg); |
5045 | } |
5046 | |
5047 | /*! |
5048 | Records starting a new compute pass. |
5049 | |
5050 | \a resourceUpdates, when not null, specifies a resource update batch that |
5051 | is to be committed and then released. |
5052 | |
5053 | \note Do not assume that any state or resource bindings persist between |
5054 | passes. |
5055 | |
5056 | \note A compute pass can record setComputePipeline(), setShaderResources(), |
5057 | and dispatch() calls, not graphics ones. General functionality, such as, |
5058 | debug markers and beginExternal() is available both in render and compute |
5059 | passes. |
5060 | |
5061 | \note Compute is only available when the \l{QRhi::Compute}{Compute} feature |
5062 | is reported as supported. |
5063 | */ |
5064 | void QRhiCommandBuffer::beginComputePass(QRhiResourceUpdateBatch *resourceUpdates) |
5065 | { |
5066 | m_rhi->beginComputePass(cb: this, resourceUpdates); |
5067 | } |
5068 | |
5069 | /*! |
5070 | Records ending the current compute pass. |
5071 | |
5072 | \a resourceUpdates, when not null, specifies a resource update batch that |
5073 | is to be committed and then released. |
5074 | */ |
5075 | void QRhiCommandBuffer::endComputePass(QRhiResourceUpdateBatch *resourceUpdates) |
5076 | { |
5077 | m_rhi->endComputePass(cb: this, resourceUpdates); |
5078 | } |
5079 | |
5080 | /*! |
5081 | Records setting a new compute pipeline \a ps. |
5082 | |
5083 | \note This function must be called before recording setShaderResources() or |
5084 | dispatch() commands on the command buffer. |
5085 | |
5086 | \note QRhi will optimize out unnecessary invocations within a pass, so |
5087 | therefore overoptimizing to avoid calls to this function is not necessary |
5088 | on the applications' side. |
5089 | |
5090 | \note This function can only be called inside a compute pass, meaning |
5091 | between a beginComputePass() and endComputePass() call. |
5092 | */ |
5093 | void QRhiCommandBuffer::setComputePipeline(QRhiComputePipeline *ps) |
5094 | { |
5095 | m_rhi->setComputePipeline(cb: this, ps); |
5096 | } |
5097 | |
5098 | /*! |
5099 | Records dispatching compute work items, with \a x, \a y, and \a z |
5100 | specifying the number of local workgroups in the corresponding dimension. |
5101 | |
5102 | \note This function can only be called inside a compute pass, meaning |
5103 | between a beginComputePass() and endComputePass() call. |
5104 | */ |
5105 | void QRhiCommandBuffer::dispatch(int x, int y, int z) |
5106 | { |
5107 | m_rhi->dispatch(cb: this, x, y, z); |
5108 | } |
5109 | |
5110 | /*! |
5111 | \return a pointer to a backend-specific QRhiNativeHandles subclass, such as |
5112 | QRhiVulkanCommandBufferNativeHandles. The returned value is \nullptr when |
5113 | exposing the underlying native resources is not supported by, or not |
5114 | applicable to, the backend. |
5115 | |
5116 | \sa QRhiVulkanCommandBufferNativeHandles, |
5117 | QRhiMetalCommandBufferNativeHandles, beginExternal(), endExternal() |
5118 | */ |
5119 | const QRhiNativeHandles *QRhiCommandBuffer::nativeHandles() |
5120 | { |
5121 | return m_rhi->nativeHandles(cb: this); |
5122 | } |
5123 | |
5124 | /*! |
5125 | To be called when the application before the application is about to |
5126 | enqueue commands to the current pass' command buffer by calling graphics |
5127 | API functions directly. |
5128 | |
5129 | \note This is only available when the intent was declared up front in |
5130 | beginFrame(). Therefore this function must only be called when the frame |
5131 | was started with specifying QRhi::ExternalContentsInPass in the flags |
5132 | passed to QRhi::beginFrame(). |
5133 | |
5134 | With Vulkan or Metal one can query the native command buffer or encoder |
5135 | objects via nativeHandles() and enqueue commands to them. With OpenGL or |
5136 | Direct3D 11 the (device) context can be retrieved from |
5137 | QRhi::nativeHandles(). However, this must never be done without ensuring |
5138 | the QRhiCommandBuffer's state stays up-to-date. Hence the requirement for |
5139 | wrapping any externally added command recording between beginExternal() and |
5140 | endExternal(). Conceptually this is the same as QPainter's |
5141 | \l{QPainter::beginNativePainting()}{beginNativePainting()} and |
5142 | \l{QPainter::endNativePainting()}{endNativePainting()} functions. |
5143 | |
5144 | For OpenGL in particular, this function has an additional task: it makes |
5145 | sure the context is made current on the current thread. |
5146 | |
5147 | \note Once beginExternal() is called, no other render pass specific |
5148 | functions (\c set* or \c draw*) must be called on the |
5149 | QRhiCommandBuffer until endExternal(). |
5150 | |
5151 | \warning Some backends may return a native command buffer object from |
5152 | QRhiCommandBuffer::nativeHandles() that is different from the primary one |
5153 | when inside a beginExternal() - endExternal() block. Therefore it is |
5154 | important to (re)query the native command buffer object after calling |
5155 | beginExternal(). In practical terms this means that with Vulkan for example |
5156 | the externally recorded Vulkan commands are placed onto a secondary command |
5157 | buffer (with VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT). |
5158 | nativeHandles() returns this secondary command buffer when called between |
5159 | begin/endExternal. |
5160 | |
5161 | \sa endExternal(), nativeHandles() |
5162 | */ |
5163 | void QRhiCommandBuffer::beginExternal() |
5164 | { |
5165 | m_rhi->beginExternal(cb: this); |
5166 | } |
5167 | |
5168 | /*! |
5169 | To be called once the externally added commands are recorded to the command |
5170 | buffer or context. |
5171 | |
5172 | \note All QRhiCommandBuffer state must be assumed as invalid after calling |
5173 | this function. Pipelines, vertex and index buffers, and other state must be |
5174 | set again if more draw calls are recorded after the external commands. |
5175 | |
5176 | \sa beginExternal(), nativeHandles() |
5177 | */ |
5178 | void QRhiCommandBuffer::endExternal() |
5179 | { |
5180 | m_rhi->endExternal(cb: this); |
5181 | } |
5182 | |
5183 | /*! |
5184 | \return the value (typically an offset) \a v aligned to the uniform buffer |
5185 | alignment given by by ubufAlignment(). |
5186 | */ |
5187 | int QRhi::ubufAligned(int v) const |
5188 | { |
5189 | const int byteAlign = ubufAlignment(); |
5190 | return (v + byteAlign - 1) & ~(byteAlign - 1); |
5191 | } |
5192 | |
5193 | /*! |
5194 | \return the number of mip levels for a given \a size. |
5195 | */ |
5196 | int QRhi::mipLevelsForSize(const QSize &size) const |
5197 | { |
5198 | return qFloor(v: std::log2(x: qMax(a: size.width(), b: size.height()))) + 1; |
5199 | } |
5200 | |
5201 | /*! |
5202 | \return the texture image size for a given \a mipLevel, calculated based on |
5203 | the level 0 size given in \a baseLevelSize. |
5204 | */ |
5205 | QSize QRhi::sizeForMipLevel(int mipLevel, const QSize &baseLevelSize) const |
5206 | { |
5207 | const int w = qMax(a: 1, b: baseLevelSize.width() >> mipLevel); |
5208 | const int h = qMax(a: 1, b: baseLevelSize.height() >> mipLevel); |
5209 | return QSize(w, h); |
5210 | } |
5211 | |
5212 | /*! |
5213 | \return \c true if the underlying graphics API has the Y axis pointing up |
5214 | in framebuffers and images. |
5215 | |
5216 | In practice this is \c true for OpenGL only. |
5217 | */ |
5218 | bool QRhi::isYUpInFramebuffer() const |
5219 | { |
5220 | return d->isYUpInFramebuffer(); |
5221 | } |
5222 | |
5223 | /*! |
5224 | \return \c true if the underlying graphics API has the Y axis pointing up |
5225 | in its normalized device coordinate system. |
5226 | |
5227 | In practice this is \c false for Vulkan only. |
5228 | |
5229 | \note clipSpaceCorrMatrix() includes the corresponding adjustment (to make |
5230 | Y point up) in its returned matrix. |
5231 | */ |
5232 | bool QRhi::isYUpInNDC() const |
5233 | { |
5234 | return d->isYUpInNDC(); |
5235 | } |
5236 | |
5237 | /*! |
5238 | \return \c true if the underlying graphics API uses depth range [0, 1] in |
5239 | clip space. |
5240 | |
5241 | In practice this is \c false for OpenGL only, because OpenGL uses a |
5242 | post-projection depth range of [-1, 1]. (not to be confused with the |
5243 | NDC-to-window mapping controlled by glDepthRange(), which uses a range of |
5244 | [0, 1], unless overridden by the QRhiViewport) In some OpenGL versions |
5245 | glClipControl() could be used to change this, but the OpenGL backend of |
5246 | QRhi does not use that function as it is not available in OpenGL ES or |
5247 | OpenGL versions lower than 4.5. |
5248 | |
5249 | \note clipSpaceCorrMatrix() includes the corresponding adjustment in its |
5250 | returned matrix. Therefore, many users of QRhi do not need to take any |
5251 | further measures apart from pre-multiplying their projection matrices with |
5252 | clipSpaceCorrMatrix(). However, some graphics techniques, such as, some |
5253 | types of shadow mapping, involve working with and outputting depth values |
5254 | in the shaders. These will need to query and take the value of this |
5255 | function into account as appropriate. |
5256 | */ |
5257 | bool QRhi::isClipDepthZeroToOne() const |
5258 | { |
5259 | return d->isClipDepthZeroToOne(); |
5260 | } |
5261 | |
5262 | /*! |
5263 | \return a matrix that can be used to allow applications keep using |
5264 | OpenGL-targeted vertex data and perspective projection matrices (such as, |
5265 | the ones generated by QMatrix4x4::perspective()), regardless of the active |
5266 | QRhi backend. |
5267 | |
5268 | In a typical renderer, once \c{this_matrix * mvp} is used instead of just |
5269 | \c mvp, vertex data with Y up and viewports with depth range 0 - 1 can be |
5270 | used without considering what backend (and so graphics API) is going to be |
5271 | used at run time. This way branching based on isYUpInNDC() and |
5272 | isClipDepthZeroToOne() can be avoided (although such logic may still become |
5273 | required when implementing certain advanced graphics techniques). |
5274 | |
5275 | See |
5276 | \l{https://matthewwellings.com/blog/the-new-vulkan-coordinate-system/}{this |
5277 | page} for a discussion of the topic from Vulkan perspective. |
5278 | */ |
5279 | QMatrix4x4 QRhi::clipSpaceCorrMatrix() const |
5280 | { |
5281 | return d->clipSpaceCorrMatrix(); |
5282 | } |
5283 | |
5284 | /*! |
5285 | \return \c true if the specified texture \a format modified by \a flags is |
5286 | supported. |
5287 | |
5288 | The query is supported both for uncompressed and compressed formats. |
5289 | */ |
5290 | bool QRhi::isTextureFormatSupported(QRhiTexture::Format format, QRhiTexture::Flags flags) const |
5291 | { |
5292 | return d->isTextureFormatSupported(format, flags); |
5293 | } |
5294 | |
5295 | /*! |
5296 | \return \c true if the specified \a feature is supported |
5297 | */ |
5298 | bool QRhi::isFeatureSupported(QRhi::Feature feature) const |
5299 | { |
5300 | return d->isFeatureSupported(feature); |
5301 | } |
5302 | |
5303 | /*! |
5304 | \return the value for the specified resource \a limit. |
5305 | |
5306 | The values are expected to be queried by the backends upon initialization, |
5307 | meaning calling this function is a light operation. |
5308 | */ |
5309 | int QRhi::resourceLimit(ResourceLimit limit) const |
5310 | { |
5311 | return d->resourceLimit(limit); |
5312 | } |
5313 | |
5314 | /*! |
5315 | \return a pointer to the backend-specific collection of native objects |
5316 | for the device, context, and similar concepts used by the backend. |
5317 | |
5318 | Cast to QRhiVulkanNativeHandles, QRhiD3D11NativeHandles, |
5319 | QRhiGles2NativeHandles, QRhiMetalNativeHandles as appropriate. |
5320 | |
5321 | \note No ownership is transferred, neither for the returned pointer nor for |
5322 | any native objects. |
5323 | */ |
5324 | const QRhiNativeHandles *QRhi::nativeHandles() |
5325 | { |
5326 | return d->nativeHandles(); |
5327 | } |
5328 | |
5329 | /*! |
5330 | With OpenGL this makes the OpenGL context current on the current thread. |
5331 | The function has no effect with other backends. |
5332 | |
5333 | Calling this function is relevant typically in Qt framework code, when one |
5334 | has to ensure external OpenGL code provided by the application can still |
5335 | run like it did before with direct usage of OpenGL, as long as the QRhi is |
5336 | using the OpenGL backend. |
5337 | |
5338 | \return false when failed, similarly to QOpenGLContext::makeCurrent(). When |
5339 | the operation failed, isDeviceLost() can be called to determine if there |
5340 | was a loss of context situation. Such a check is equivalent to checking via |
5341 | QOpenGLContext::isValid(). |
5342 | |
5343 | \sa QOpenGLContext::makeCurrent(), QOpenGLContext::isValid() |
5344 | */ |
5345 | bool QRhi::makeThreadLocalNativeContextCurrent() |
5346 | { |
5347 | return d->makeThreadLocalNativeContextCurrent(); |
5348 | } |
5349 | |
5350 | /*! |
5351 | \return the associated QRhiProfiler instance. |
5352 | |
5353 | An instance is always available for each QRhi, but it is not very useful |
5354 | without EnableProfiling because no data is collected without setting the |
5355 | flag upon creation. |
5356 | */ |
5357 | QRhiProfiler *QRhi::profiler() |
5358 | { |
5359 | return &d->profiler; |
5360 | } |
5361 | |
5362 | /*! |
5363 | Attempts to release resources in the backend's caches. This can include both |
5364 | CPU and GPU resources. Only memory and resources that can be recreated |
5365 | automatically are in scope. As an example, if the backend's |
5366 | QRhiGraphicsPipeline implementation maintains a cache of shader compilation |
5367 | results, calling this function leads to emptying that cache, thus |
5368 | potentially freeing up memory and graphics resources. |
5369 | |
5370 | Calling this function makes sense in resource constrained environments, |
5371 | where at a certain point there is a need to ensure minimal resource usage, |
5372 | at the expense of performance. |
5373 | */ |
5374 | void QRhi::releaseCachedResources() |
5375 | { |
5376 | d->releaseCachedResources(); |
5377 | } |
5378 | |
5379 | /*! |
5380 | \return true if the graphics device was lost. |
5381 | |
5382 | The loss of the device is typically detected in beginFrame(), endFrame() or |
5383 | QRhiSwapChain::buildOrResize(), depending on the backend and the underlying |
5384 | native APIs. The most common is endFrame() because that is where presenting |
5385 | happens. With some backends QRhiSwapChain::buildOrResize() can also fail |
5386 | due to a device loss. Therefore this function is provided as a generic way |
5387 | to check if a device loss was detected by a previous operation. |
5388 | |
5389 | When the device is lost, no further operations should be done via the QRhi. |
5390 | Rather, all QRhi resources should be released, followed by destroying the |
5391 | QRhi. A new QRhi can then be attempted to be created. If successful, all |
5392 | graphics resources must be reinitialized. If not, try again later, |
5393 | repeatedly. |
5394 | |
5395 | While simple applications may decide to not care about device loss, |
5396 | on the commonly used desktop platforms a device loss can happen |
5397 | due to a variety of reasons, including physically disconnecting the |
5398 | graphics adapter, disabling the device or driver, uninstalling or upgrading |
5399 | the graphics driver, or due to errors that lead to a graphics device reset. |
5400 | Some of these can happen under perfectly normal circumstances as well, for |
5401 | example the upgrade of the graphics driver to a newer version is a common |
5402 | task that can happen at any time while a Qt application is running. Users |
5403 | may very well expect applications to be able to survive this, even when the |
5404 | application is actively using an API like OpenGL or Direct3D. |
5405 | |
5406 | Qt's own frameworks built on top of QRhi, such as, Qt Quick, can be |
5407 | expected to handle and take appropriate measures when a device loss occurs. |
5408 | If the data for graphics resources, such as textures and buffers, are still |
5409 | available on the CPU side, such an event may not be noticeable on the |
5410 | application level at all since graphics resources can seamlessly be |
5411 | reinitialized then. However, applications and libraries working directly |
5412 | with QRhi are expected to be prepared to check and handle device loss |
5413 | situations themselves. |
5414 | |
5415 | \note With OpenGL, applications may need to opt-in to context reset |
5416 | notifications by setting QSurfaceFormat::ResetNotification on the |
5417 | QOpenGLContext. This is typically done by enabling the flag in |
5418 | QRhiGles2InitParams::format. Keep in mind however that some systems may |
5419 | generate context resets situations even when this flag is not set. |
5420 | */ |
5421 | bool QRhi::isDeviceLost() const |
5422 | { |
5423 | return d->isDeviceLost(); |
5424 | } |
5425 | |
5426 | /*! |
5427 | \return a new graphics pipeline resource. |
5428 | |
5429 | \sa QRhiResource::release() |
5430 | */ |
5431 | QRhiGraphicsPipeline *QRhi::newGraphicsPipeline() |
5432 | { |
5433 | return d->createGraphicsPipeline(); |
5434 | } |
5435 | |
5436 | /*! |
5437 | \return a new compute pipeline resource. |
5438 | |
5439 | \note Compute is only available when the \l{QRhi::Compute}{Compute} feature |
5440 | is reported as supported. |
5441 | |
5442 | \sa QRhiResource::release() |
5443 | */ |
5444 | QRhiComputePipeline *QRhi::newComputePipeline() |
5445 | { |
5446 | return d->createComputePipeline(); |
5447 | } |
5448 | |
5449 | /*! |
5450 | \return a new shader resource binding collection resource. |
5451 | |
5452 | \sa QRhiResource::release() |
5453 | */ |
5454 | QRhiShaderResourceBindings *QRhi::newShaderResourceBindings() |
5455 | { |
5456 | return d->createShaderResourceBindings(); |
5457 | } |
5458 | |
5459 | /*! |
5460 | \return a new buffer with the specified \a type, \a usage, and \a size. |
5461 | |
5462 | \note Some \a usage and \a type combinations may not be supported by all |
5463 | backends. See \l{QRhiBuffer::UsageFlag}{UsageFlags} and |
5464 | \l{QRhi::NonDynamicUniformBuffers}{the feature flags}. |
5465 | |
5466 | \note Backends may choose to allocate buffers bigger than \a size. This is |
5467 | done transparently to applications, so there are no special restrictions on |
5468 | the value of \a size. QRhiBuffer::size() will always report back the value |
5469 | that was requested in \a size. |
5470 | |
5471 | \sa QRhiResource::release() |
5472 | */ |
5473 | QRhiBuffer *QRhi::newBuffer(QRhiBuffer::Type type, |
5474 | QRhiBuffer::UsageFlags usage, |
5475 | int size) |
5476 | { |
5477 | return d->createBuffer(type, usage, size); |
5478 | } |
5479 | |
5480 | /*! |
5481 | \return a new renderbuffer with the specified \a type, \a pixelSize, \a |
5482 | sampleCount, and \a flags. |
5483 | |
5484 | \sa QRhiResource::release() |
5485 | */ |
5486 | QRhiRenderBuffer *QRhi::newRenderBuffer(QRhiRenderBuffer::Type type, |
5487 | const QSize &pixelSize, |
5488 | int sampleCount, |
5489 | QRhiRenderBuffer::Flags flags) |
5490 | { |
5491 | return d->createRenderBuffer(type, pixelSize, sampleCount, flags); |
5492 | } |
5493 | |
5494 | /*! |
5495 | \return a new texture with the specified \a format, \a pixelSize, \a |
5496 | sampleCount, and \a flags. |
5497 | |
5498 | \note \a format specifies the requested internal and external format, |
5499 | meaning the data to be uploaded to the texture will need to be in a |
5500 | compatible format, while the native texture may (but is not guaranteed to, |
5501 | in case of OpenGL at least) use this format internally. |
5502 | |
5503 | \sa QRhiResource::release() |
5504 | */ |
5505 | QRhiTexture *QRhi::newTexture(QRhiTexture::Format format, |
5506 | const QSize &pixelSize, |
5507 | int sampleCount, |
5508 | QRhiTexture::Flags flags) |
5509 | { |
5510 | return d->createTexture(format, pixelSize, sampleCount, flags); |
5511 | } |
5512 | |
5513 | /*! |
5514 | \return a new sampler with the specified magnification filter \a magFilter, |
5515 | minification filter \a minFilter, mipmapping mode \a mipmapMode, and the |
5516 | addressing (wrap) modes \a addressU, \a addressV, and \a addressW. |
5517 | |
5518 | \sa QRhiResource::release() |
5519 | */ |
5520 | QRhiSampler *QRhi::newSampler(QRhiSampler::Filter magFilter, |
5521 | QRhiSampler::Filter minFilter, |
5522 | QRhiSampler::Filter mipmapMode, |
5523 | QRhiSampler::AddressMode addressU, |
5524 | QRhiSampler::AddressMode addressV, |
5525 | QRhiSampler::AddressMode addressW) |
5526 | { |
5527 | return d->createSampler(magFilter, minFilter, mipmapMode, u: addressU, v: addressV, w: addressW); |
5528 | } |
5529 | |
5530 | /*! |
5531 | \return a new texture render target with color and depth/stencil |
5532 | attachments given in \a desc, and with the specified \a flags. |
5533 | |
5534 | \sa QRhiResource::release() |
5535 | */ |
5536 | |
5537 | QRhiTextureRenderTarget *QRhi::newTextureRenderTarget(const QRhiTextureRenderTargetDescription &desc, |
5538 | QRhiTextureRenderTarget::Flags flags) |
5539 | { |
5540 | return d->createTextureRenderTarget(desc, flags); |
5541 | } |
5542 | |
5543 | /*! |
5544 | \return a new swapchain. |
5545 | |
5546 | \sa QRhiResource::release(), QRhiSwapChain::buildOrResize() |
5547 | */ |
5548 | QRhiSwapChain *QRhi::newSwapChain() |
5549 | { |
5550 | return d->createSwapChain(); |
5551 | } |
5552 | |
5553 | /*! |
5554 | Starts a new frame targeting the next available buffer of \a swapChain. |
5555 | |
5556 | A frame consists of resource updates and one or more render and compute |
5557 | passes. |
5558 | |
5559 | \a flags can indicate certain special cases. For example, the fact that |
5560 | QRhiCommandBuffer::beginExternal() will be called within this new frame |
5561 | must be declared up front by setting the ExternalContentsInPass flag. |
5562 | |
5563 | The high level pattern of rendering into a QWindow using a swapchain: |
5564 | |
5565 | \list |
5566 | |
5567 | \li Create a swapchain. |
5568 | |
5569 | \li Call QRhiSwapChain::buildOrResize() whenever the surface size is |
5570 | different than before. |
5571 | |
5572 | \li Call QRhiSwapChain::release() on |
5573 | QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed. |
5574 | |
5575 | \li Then on every frame: |
5576 | \badcode |
5577 | beginFrame(sc); |
5578 | updates = nextResourceUpdateBatch(); |
5579 | updates->... |
5580 | QRhiCommandBuffer *cb = sc->currentFrameCommandBuffer(); |
5581 | cb->beginPass(sc->currentFrameRenderTarget(), colorClear, dsClear, updates); |
5582 | ... |
5583 | cb->endPass(); |
5584 | ... // more passes as necessary |
5585 | endFrame(sc); |
5586 | \endcode |
5587 | |
5588 | \endlist |
5589 | |
5590 | \return QRhi::FrameOpSuccess on success, or another QRhi::FrameOpResult |
5591 | value on failure. Some of these should be treated as soft, "try again |
5592 | later" type of errors: When QRhi::FrameOpSwapChainOutOfDate is returned, |
5593 | the swapchain is to be resized or updated by calling |
5594 | QRhiSwapChain::buildOrResize(). The application should then attempt to |
5595 | generate a new frame. QRhi::FrameOpDeviceLost means the graphics device is |
5596 | lost but this may also be recoverable by releasing all resources, including |
5597 | the QRhi itself, and then recreating all resources. See isDeviceLost() for |
5598 | further discussion. |
5599 | |
5600 | \sa endFrame(), beginOffscreenFrame(), isDeviceLost() |
5601 | */ |
5602 | QRhi::FrameOpResult QRhi::beginFrame(QRhiSwapChain *swapChain, BeginFrameFlags flags) |
5603 | { |
5604 | if (d->inFrame) |
5605 | qWarning(msg: "Attempted to call beginFrame() within a still active frame; ignored" ); |
5606 | |
5607 | QRhi::FrameOpResult r = !d->inFrame ? d->beginFrame(swapChain, flags) : FrameOpSuccess; |
5608 | if (r == FrameOpSuccess) |
5609 | d->inFrame = true; |
5610 | |
5611 | return r; |
5612 | } |
5613 | |
5614 | /*! |
5615 | Ends, commits, and presents a frame that was started in the last |
5616 | beginFrame() on \a swapChain. |
5617 | |
5618 | Double (or triple) buffering is managed internally by the QRhiSwapChain and |
5619 | QRhi. |
5620 | |
5621 | \a flags can optionally be used to change the behavior in certain ways. |
5622 | Passing QRhi::SkipPresent skips queuing the Present command or calling |
5623 | swapBuffers. |
5624 | |
5625 | \return QRhi::FrameOpSuccess on success, or another QRhi::FrameOpResult |
5626 | value on failure. Some of these should be treated as soft, "try again |
5627 | later" type of errors: When QRhi::FrameOpSwapChainOutOfDate is returned, |
5628 | the swapchain is to be resized or updated by calling |
5629 | QRhiSwapChain::buildOrResize(). The application should then attempt to |
5630 | generate a new frame. QRhi::FrameOpDeviceLost means the graphics device is |
5631 | lost but this may also be recoverable by releasing all resources, including |
5632 | the QRhi itself, and then recreating all resources. See isDeviceLost() for |
5633 | further discussion. |
5634 | |
5635 | \sa beginFrame(), isDeviceLost() |
5636 | */ |
5637 | QRhi::FrameOpResult QRhi::endFrame(QRhiSwapChain *swapChain, EndFrameFlags flags) |
5638 | { |
5639 | if (!d->inFrame) |
5640 | qWarning(msg: "Attempted to call endFrame() without an active frame; ignored" ); |
5641 | |
5642 | QRhi::FrameOpResult r = d->inFrame ? d->endFrame(swapChain, flags) : FrameOpSuccess; |
5643 | d->inFrame = false; |
5644 | // releaseAndDestroyLater is a high level QRhi concept the backends know |
5645 | // nothing about - handle it here. |
5646 | qDeleteAll(c: d->pendingReleaseAndDestroyResources); |
5647 | d->pendingReleaseAndDestroyResources.clear(); |
5648 | |
5649 | return r; |
5650 | } |
5651 | |
5652 | /*! |
5653 | \return true when there is an active frame, meaning there was a |
5654 | beginFrame() (or beginOffscreenFrame()) with no corresponding endFrame() |
5655 | (or endOffscreenFrame()) yet. |
5656 | |
5657 | \sa currentFrameSlot(), beginFrame(), endFrame() |
5658 | */ |
5659 | bool QRhi::isRecordingFrame() const |
5660 | { |
5661 | return d->inFrame; |
5662 | } |
5663 | |
5664 | /*! |
5665 | \return the current frame slot index while recording a frame. Unspecified |
5666 | when called outside an active frame (that is, when isRecordingFrame() is \c |
5667 | false). |
5668 | |
5669 | With backends like Vulkan or Metal, it is the responsibility of the QRhi |
5670 | backend to block whenever starting a new frame and finding the CPU is |
5671 | already \c{FramesInFlight - 1} frames ahead of the GPU (because the command |
5672 | buffer submitted in frame no. \c{current} - \c{FramesInFlight} has not yet |
5673 | completed). |
5674 | |
5675 | Resources that tend to change between frames (such as, the native buffer |
5676 | object backing a QRhiBuffer with type QRhiBuffer::Dynamic) exist in |
5677 | multiple versions, so that each frame, that can be submitted while a |
5678 | previous one is still being processed, works with its own copy, thus |
5679 | avoiding the need to stall the pipeline when preparing the frame. (The |
5680 | contents of a resource that may still be in use in the GPU should not be |
5681 | touched, but simply always waiting for the previous frame to finish would |
5682 | reduce GPU utilization and ultimately, performance and efficiency.) |
5683 | |
5684 | Conceptually this is somewhat similar to copy-on-write schemes used by some |
5685 | C++ containers and other types. It may also be similar to what an OpenGL or |
5686 | Direct 3D 11 implementation performs internally for certain type of objects. |
5687 | |
5688 | In practice, such double (or tripple) buffering resources is realized in |
5689 | the Vulkan, Metal, and similar QRhi backends by having a fixed number of |
5690 | native resource (such as, VkBuffer) \c slots behind a QRhiResource. That |
5691 | can then be indexed by a frame slot index running 0, 1, .., |
5692 | FramesInFlight-1, and then wrapping around. |
5693 | |
5694 | All this is managed transparently to the users of QRhi. However, |
5695 | applications that integrate rendering done directly with the graphics API |
5696 | may want to perform a similar double or tripple buffering of their own |
5697 | graphics resources. That is then most easily achieved by knowing the values |
5698 | of the maximum number of in-flight frames (retrievable via resourceLimit()) |
5699 | and the current frame (slot) index (returned by this function). |
5700 | |
5701 | \sa isRecordingFrame(), beginFrame(), endFrame() |
5702 | */ |
5703 | int QRhi::currentFrameSlot() const |
5704 | { |
5705 | return d->currentFrameSlot; |
5706 | } |
5707 | |
5708 | /*! |
5709 | Starts a new offscreen frame. Provides a command buffer suitable for |
5710 | recording rendering commands in \a cb. \a flags is used to indicate |
5711 | certain special cases, just like with beginFrame(). |
5712 | |
5713 | \note The QRhiCommandBuffer stored to *cb is not owned by the caller. |
5714 | |
5715 | Rendering without a swapchain is possible as well. The typical use case is |
5716 | to use it in completely offscreen applications, e.g. to generate image |
5717 | sequences by rendering and reading back without ever showing a window. |
5718 | |
5719 | Usage in on-screen applications (so beginFrame, endFrame, |
5720 | beginOffscreenFrame, endOffscreenFrame, beginFrame, ...) is possible too |
5721 | but it does reduce parallelism so it should be done only infrequently. |
5722 | |
5723 | Offscreen frames do not let the CPU - potentially - generate another frame |
5724 | while the GPU is still processing the previous one. This has the side |
5725 | effect that if readbacks are scheduled, the results are guaranteed to be |
5726 | available once endOffscreenFrame() returns. That is not the case with |
5727 | frames targeting a swapchain. |
5728 | |
5729 | The skeleton of rendering a frame without a swapchain and then reading the |
5730 | frame contents back could look like the following: |
5731 | |
5732 | \badcode |
5733 | QRhiReadbackResult rbResult; |
5734 | QRhiCommandBuffer *cb; |
5735 | beginOffscreenFrame(&cb); |
5736 | beginPass |
5737 | ... |
5738 | u = nextResourceUpdateBatch(); |
5739 | u->readBackTexture(rb, &rbResult); |
5740 | endPass(u); |
5741 | endOffscreenFrame(); |
5742 | // image data available in rbResult |
5743 | \endcode |
5744 | |
5745 | \sa endOffscreenFrame(), beginFrame() |
5746 | */ |
5747 | QRhi::FrameOpResult QRhi::beginOffscreenFrame(QRhiCommandBuffer **cb, BeginFrameFlags flags) |
5748 | { |
5749 | if (d->inFrame) |
5750 | qWarning(msg: "Attempted to call beginOffscreenFrame() within a still active frame; ignored" ); |
5751 | |
5752 | QRhi::FrameOpResult r = !d->inFrame ? d->beginOffscreenFrame(cb, flags) : FrameOpSuccess; |
5753 | if (r == FrameOpSuccess) |
5754 | d->inFrame = true; |
5755 | |
5756 | return r; |
5757 | } |
5758 | |
5759 | /*! |
5760 | Ends and waits for the offscreen frame. |
5761 | |
5762 | \sa beginOffscreenFrame() |
5763 | */ |
5764 | QRhi::FrameOpResult QRhi::endOffscreenFrame(EndFrameFlags flags) |
5765 | { |
5766 | if (!d->inFrame) |
5767 | qWarning(msg: "Attempted to call endOffscreenFrame() without an active frame; ignored" ); |
5768 | |
5769 | QRhi::FrameOpResult r = d->inFrame ? d->endOffscreenFrame(flags) : FrameOpSuccess; |
5770 | d->inFrame = false; |
5771 | qDeleteAll(c: d->pendingReleaseAndDestroyResources); |
5772 | d->pendingReleaseAndDestroyResources.clear(); |
5773 | |
5774 | return r; |
5775 | } |
5776 | |
5777 | /*! |
5778 | Waits for any work on the graphics queue (where applicable) to complete, |
5779 | then executes all deferred operations, like completing readbacks and |
5780 | resource releases. Can be called inside and outside of a frame, but not |
5781 | inside a pass. Inside a frame it implies submitting any work on the |
5782 | command buffer. |
5783 | |
5784 | \note Avoid this function. One case where it may be needed is when the |
5785 | results of an enqueued readback in a swapchain-based frame are needed at a |
5786 | fixed given point and so waiting for the results is desired. |
5787 | */ |
5788 | QRhi::FrameOpResult QRhi::finish() |
5789 | { |
5790 | return d->finish(); |
5791 | } |
5792 | |
5793 | /*! |
5794 | \return the list of supported sample counts. |
5795 | |
5796 | A typical example would be (1, 2, 4, 8). |
5797 | |
5798 | With some backend this list of supported values is fixed in advance, while |
5799 | with some others the (physical) device properties indicate what is |
5800 | supported at run time. |
5801 | */ |
5802 | QVector<int> QRhi::supportedSampleCounts() const |
5803 | { |
5804 | return d->supportedSampleCounts(); |
5805 | } |
5806 | |
5807 | /*! |
5808 | \return the minimum uniform buffer offset alignment in bytes. This is |
5809 | typically 256. |
5810 | |
5811 | Attempting to bind a uniform buffer region with an offset not aligned to |
5812 | this value will lead to failures depending on the backend and the |
5813 | underlying graphics API. |
5814 | |
5815 | \sa ubufAligned() |
5816 | */ |
5817 | int QRhi::ubufAlignment() const |
5818 | { |
5819 | return d->ubufAlignment(); |
5820 | } |
5821 | |
5822 | static QBasicAtomicInteger<QRhiGlobalObjectIdGenerator::Type> counter = Q_BASIC_ATOMIC_INITIALIZER(0); |
5823 | |
5824 | QRhiGlobalObjectIdGenerator::Type QRhiGlobalObjectIdGenerator::newId() |
5825 | { |
5826 | return counter.fetchAndAddRelaxed(valueToAdd: 1) + 1; |
5827 | } |
5828 | |
5829 | bool QRhiPassResourceTracker::isEmpty() const |
5830 | { |
5831 | return m_buffers.isEmpty() && m_textures.isEmpty(); |
5832 | } |
5833 | |
5834 | void QRhiPassResourceTracker::reset() |
5835 | { |
5836 | m_buffers.clear(); |
5837 | m_textures.clear(); |
5838 | } |
5839 | |
5840 | static inline QRhiPassResourceTracker::BufferStage earlierStage(QRhiPassResourceTracker::BufferStage a, |
5841 | QRhiPassResourceTracker::BufferStage b) |
5842 | { |
5843 | return QRhiPassResourceTracker::BufferStage(qMin(a: int(a), b: int(b))); |
5844 | } |
5845 | |
5846 | void QRhiPassResourceTracker::registerBuffer(QRhiBuffer *buf, int slot, BufferAccess *access, BufferStage *stage, |
5847 | const UsageState &state) |
5848 | { |
5849 | auto it = m_buffers.find(akey: buf); |
5850 | if (it != m_buffers.end()) { |
5851 | if (it->access != *access) { |
5852 | const QByteArray name = buf->name(); |
5853 | qWarning(msg: "Buffer %p (%s) used with different accesses within the same pass, this is not allowed." , |
5854 | buf, name.constData()); |
5855 | return; |
5856 | } |
5857 | if (it->stage != *stage) { |
5858 | it->stage = earlierStage(a: it->stage, b: *stage); |
5859 | *stage = it->stage; |
5860 | } |
5861 | return; |
5862 | } |
5863 | |
5864 | Buffer b; |
5865 | b.slot = slot; |
5866 | b.access = *access; |
5867 | b.stage = *stage; |
5868 | b.stateAtPassBegin = state; // first use -> initial state |
5869 | m_buffers.insert(akey: buf, avalue: b); |
5870 | } |
5871 | |
5872 | static inline QRhiPassResourceTracker::TextureStage earlierStage(QRhiPassResourceTracker::TextureStage a, |
5873 | QRhiPassResourceTracker::TextureStage b) |
5874 | { |
5875 | return QRhiPassResourceTracker::TextureStage(qMin(a: int(a), b: int(b))); |
5876 | } |
5877 | |
5878 | static inline bool isImageLoadStore(QRhiPassResourceTracker::TextureAccess access) |
5879 | { |
5880 | return access == QRhiPassResourceTracker::TexStorageLoad |
5881 | || access == QRhiPassResourceTracker::TexStorageStore |
5882 | || access == QRhiPassResourceTracker::TexStorageLoadStore; |
5883 | } |
5884 | |
5885 | void QRhiPassResourceTracker::registerTexture(QRhiTexture *tex, TextureAccess *access, TextureStage *stage, |
5886 | const UsageState &state) |
5887 | { |
5888 | auto it = m_textures.find(akey: tex); |
5889 | if (it != m_textures.end()) { |
5890 | if (it->access != *access) { |
5891 | // Different subresources of a texture may be used for both load |
5892 | // and store in the same pass. (think reading from one mip level |
5893 | // and writing to another one in a compute shader) This we can |
5894 | // handle by treating the entire resource as read-write. |
5895 | if (isImageLoadStore(access: it->access) && isImageLoadStore(access: *access)) { |
5896 | it->access = QRhiPassResourceTracker::TexStorageLoadStore; |
5897 | *access = it->access; |
5898 | } else { |
5899 | const QByteArray name = tex->name(); |
5900 | qWarning(msg: "Texture %p (%s) used with different accesses within the same pass, this is not allowed." , |
5901 | tex, name.constData()); |
5902 | } |
5903 | } |
5904 | if (it->stage != *stage) { |
5905 | it->stage = earlierStage(a: it->stage, b: *stage); |
5906 | *stage = it->stage; |
5907 | } |
5908 | return; |
5909 | } |
5910 | |
5911 | Texture t; |
5912 | t.access = *access; |
5913 | t.stage = *stage; |
5914 | t.stateAtPassBegin = state; // first use -> initial state |
5915 | m_textures.insert(akey: tex, avalue: t); |
5916 | } |
5917 | |
5918 | QRhiPassResourceTracker::BufferStage QRhiPassResourceTracker::toPassTrackerBufferStage(QRhiShaderResourceBinding::StageFlags stages) |
5919 | { |
5920 | // pick the earlier stage (as this is going to be dstAccessMask) |
5921 | if (stages.testFlag(flag: QRhiShaderResourceBinding::VertexStage)) |
5922 | return QRhiPassResourceTracker::BufVertexStage; |
5923 | if (stages.testFlag(flag: QRhiShaderResourceBinding::FragmentStage)) |
5924 | return QRhiPassResourceTracker::BufFragmentStage; |
5925 | if (stages.testFlag(flag: QRhiShaderResourceBinding::ComputeStage)) |
5926 | return QRhiPassResourceTracker::BufComputeStage; |
5927 | |
5928 | Q_UNREACHABLE(); |
5929 | return QRhiPassResourceTracker::BufVertexStage; |
5930 | } |
5931 | |
5932 | QRhiPassResourceTracker::TextureStage QRhiPassResourceTracker::toPassTrackerTextureStage(QRhiShaderResourceBinding::StageFlags stages) |
5933 | { |
5934 | // pick the earlier stage (as this is going to be dstAccessMask) |
5935 | if (stages.testFlag(flag: QRhiShaderResourceBinding::VertexStage)) |
5936 | return QRhiPassResourceTracker::TexVertexStage; |
5937 | if (stages.testFlag(flag: QRhiShaderResourceBinding::FragmentStage)) |
5938 | return QRhiPassResourceTracker::TexFragmentStage; |
5939 | if (stages.testFlag(flag: QRhiShaderResourceBinding::ComputeStage)) |
5940 | return QRhiPassResourceTracker::TexComputeStage; |
5941 | |
5942 | Q_UNREACHABLE(); |
5943 | return QRhiPassResourceTracker::TexVertexStage; |
5944 | } |
5945 | |
5946 | QT_END_NAMESPACE |
5947 | |