| 1 | /* | 
| 2 |  * Copyright (C) 2009, 2012 Apple Inc. All rights reserved. | 
| 3 |  * | 
| 4 |  * Redistribution and use in source and binary forms, with or without | 
| 5 |  * modification, are permitted provided that the following conditions | 
| 6 |  * are met: | 
| 7 |  * 1. Redistributions of source code must retain the above copyright | 
| 8 |  *    notice, this list of conditions and the following disclaimer. | 
| 9 |  * 2. Redistributions in binary form must reproduce the above copyright | 
| 10 |  *    notice, this list of conditions and the following disclaimer in the | 
| 11 |  *    documentation and/or other materials provided with the distribution. | 
| 12 |  * | 
| 13 |  * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | 
| 14 |  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
| 15 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
| 16 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR | 
| 17 |  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
| 18 |  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
| 19 |  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| 20 |  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
| 21 |  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| 22 |  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| 23 |  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
| 24 |  */ | 
| 25 |  | 
| 26 | #ifndef MacroAssemblerCodeRef_h | 
| 27 | #define MacroAssemblerCodeRef_h | 
| 28 |  | 
| 29 | #include "Disassembler.h" | 
| 30 | #include <wtf/Platform.h> | 
| 31 | #include "ExecutableAllocator.h" | 
| 32 | #include "LLIntData.h" | 
| 33 | #include <wtf/DataLog.h> | 
| 34 | #include <wtf/PassRefPtr.h> | 
| 35 | #include <wtf/RefPtr.h> | 
| 36 | #include <wtf/UnusedParam.h> | 
| 37 | #include <qglobal.h> | 
| 38 |  | 
| 39 | // ASSERT_VALID_CODE_POINTER checks that ptr is a non-null pointer, and that it is a valid | 
| 40 | // instruction address on the platform (for example, check any alignment requirements). | 
| 41 | #if CPU(ARM_THUMB2) | 
| 42 | // ARM/thumb instructions must be 16-bit aligned, but all code pointers to be loaded | 
| 43 | // into the processor are decorated with the bottom bit set, indicating that this is | 
| 44 | // thumb code (as oposed to 32-bit traditional ARM).  The first test checks for both | 
| 45 | // decorated and undectorated null, and the second test ensures that the pointer is | 
| 46 | // decorated. | 
| 47 | #define ASSERT_VALID_CODE_POINTER(ptr) \ | 
| 48 |     ASSERT(reinterpret_cast<intptr_t>(ptr) & ~1); | 
| 49 | #define ASSERT_VALID_CODE_OFFSET(offset) \ | 
| 50 |     ASSERT(!(offset & 1)) // Must be multiple of 2. | 
| 51 | #else | 
| 52 | #define ASSERT_VALID_CODE_POINTER(ptr) \ | 
| 53 |     ASSERT(ptr) | 
| 54 | #define ASSERT_VALID_CODE_OFFSET(offset) // Anything goes! | 
| 55 | #endif | 
| 56 |  | 
| 57 | #if CPU(X86) && OS(WINDOWS) | 
| 58 | #define CALLING_CONVENTION_IS_STDCALL 1 | 
| 59 | #ifndef CDECL | 
| 60 | #if COMPILER(MSVC) | 
| 61 | #define CDECL __cdecl | 
| 62 | #else | 
| 63 | #define CDECL __attribute__ ((__cdecl)) | 
| 64 | #endif // COMPILER(MSVC) | 
| 65 | #endif // CDECL | 
| 66 | #else | 
| 67 | #define CALLING_CONVENTION_IS_STDCALL 0 | 
| 68 | #endif | 
| 69 |  | 
| 70 | #if CPU(X86) && !OS(INTEGRITY) | 
| 71 | #define HAS_FASTCALL_CALLING_CONVENTION 1 | 
| 72 | #ifndef FASTCALL | 
| 73 | #if COMPILER(MSVC) | 
| 74 | #define FASTCALL __fastcall | 
| 75 | #else | 
| 76 | #define FASTCALL  __attribute__ ((fastcall)) | 
| 77 | #endif // COMPILER(MSVC) | 
| 78 | #endif // FASTCALL | 
| 79 | #else | 
| 80 | #define HAS_FASTCALL_CALLING_CONVENTION 0 | 
| 81 | #endif // CPU(X86) | 
| 82 |  | 
| 83 | namespace JSC { | 
| 84 |  | 
| 85 | // FunctionPtr: | 
| 86 | // | 
| 87 | // FunctionPtr should be used to wrap pointers to C/C++ functions in JSC | 
| 88 | // (particularly, the stub functions). | 
| 89 | class FunctionPtr { | 
| 90 | public: | 
| 91 |     FunctionPtr() | 
| 92 |         : m_value(0) | 
| 93 |     { | 
| 94 |     } | 
| 95 |  | 
| 96 |     template<typename returnType> | 
| 97 |     FunctionPtr(returnType(*value)()) | 
| 98 |         : m_value((void*)value) | 
| 99 |     { | 
| 100 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 101 |     } | 
| 102 |  | 
| 103 |     template<typename returnType, typename argType1> | 
| 104 |     FunctionPtr(returnType(*value)(argType1)) | 
| 105 |         : m_value((void*)value) | 
| 106 |     { | 
| 107 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 108 |     } | 
| 109 |  | 
| 110 |     template<typename returnType, typename argType1, typename argType2> | 
| 111 |     FunctionPtr(returnType(*value)(argType1, argType2)) | 
| 112 |         : m_value((void*)value) | 
| 113 |     { | 
| 114 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 115 |     } | 
| 116 |  | 
| 117 |     template<typename returnType, typename argType1, typename argType2, typename argType3> | 
| 118 |     FunctionPtr(returnType(*value)(argType1, argType2, argType3)) | 
| 119 |         : m_value((void*)value) | 
| 120 |     { | 
| 121 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 122 |     } | 
| 123 |  | 
| 124 |     template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4> | 
| 125 |     FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4)) | 
| 126 |         : m_value((void*)value) | 
| 127 |     { | 
| 128 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 129 |     } | 
| 130 |  | 
| 131 |     template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4, typename argType5> | 
| 132 |     FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4, argType5)) | 
| 133 |         : m_value((void*)value) | 
| 134 |     { | 
| 135 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 136 |     } | 
| 137 |  | 
| 138 |     template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4, typename argType5, typename argType6> | 
| 139 |     FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4, argType5, argType6)) | 
| 140 |         : m_value((void*)value) | 
| 141 |     { | 
| 142 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 143 |     } | 
| 144 |  | 
| 145 |     inline FunctionPtr(MacroAssemblerCodePtr ptr); | 
| 146 |  | 
| 147 | // MSVC doesn't seem to treat functions with different calling conventions as | 
| 148 | // different types; these methods already defined for fastcall, below. | 
| 149 | #if CALLING_CONVENTION_IS_STDCALL && !OS(WINDOWS) | 
| 150 |  | 
| 151 |     template<typename returnType> | 
| 152 |     FunctionPtr(returnType (CDECL *value)()) | 
| 153 |         : m_value((void*)value) | 
| 154 |     { | 
| 155 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 156 |     } | 
| 157 |  | 
| 158 |     template<typename returnType, typename argType1> | 
| 159 |     FunctionPtr(returnType (CDECL *value)(argType1)) | 
| 160 |         : m_value((void*)value) | 
| 161 |     { | 
| 162 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 163 |     } | 
| 164 |  | 
| 165 |     template<typename returnType, typename argType1, typename argType2> | 
| 166 |     FunctionPtr(returnType (CDECL *value)(argType1, argType2)) | 
| 167 |         : m_value((void*)value) | 
| 168 |     { | 
| 169 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 170 |     } | 
| 171 |  | 
| 172 |     template<typename returnType, typename argType1, typename argType2, typename argType3> | 
| 173 |     FunctionPtr(returnType (CDECL *value)(argType1, argType2, argType3)) | 
| 174 |         : m_value((void*)value) | 
| 175 |     { | 
| 176 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 177 |     } | 
| 178 |  | 
| 179 |     template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4> | 
| 180 |     FunctionPtr(returnType (CDECL *value)(argType1, argType2, argType3, argType4)) | 
| 181 |         : m_value((void*)value) | 
| 182 |     { | 
| 183 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 184 |     } | 
| 185 | #endif | 
| 186 |  | 
| 187 | #if HAS_FASTCALL_CALLING_CONVENTION | 
| 188 |  | 
| 189 |     template<typename returnType> | 
| 190 |     FunctionPtr(returnType (FASTCALL *value)()) | 
| 191 |         : m_value((void*)value) | 
| 192 |     { | 
| 193 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 194 |     } | 
| 195 |  | 
| 196 |     template<typename returnType, typename argType1> | 
| 197 |     FunctionPtr(returnType (FASTCALL *value)(argType1)) | 
| 198 |         : m_value((void*)value) | 
| 199 |     { | 
| 200 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 201 |     } | 
| 202 |  | 
| 203 |     template<typename returnType, typename argType1, typename argType2> | 
| 204 |     FunctionPtr(returnType (FASTCALL *value)(argType1, argType2)) | 
| 205 |         : m_value((void*)value) | 
| 206 |     { | 
| 207 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 208 |     } | 
| 209 |  | 
| 210 |     template<typename returnType, typename argType1, typename argType2, typename argType3> | 
| 211 |     FunctionPtr(returnType (FASTCALL *value)(argType1, argType2, argType3)) | 
| 212 |         : m_value((void*)value) | 
| 213 |     { | 
| 214 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 215 |     } | 
| 216 |  | 
| 217 |     template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4> | 
| 218 |     FunctionPtr(returnType (FASTCALL *value)(argType1, argType2, argType3, argType4)) | 
| 219 |         : m_value((void*)value) | 
| 220 |     { | 
| 221 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 222 |     } | 
| 223 | #endif | 
| 224 |  | 
| 225 |     template<typename FunctionType> | 
| 226 |     explicit FunctionPtr(FunctionType* value) | 
| 227 |         // Using a C-ctyle cast here to avoid compiler error on RVTC: | 
| 228 |         // Error:  #694: reinterpret_cast cannot cast away const or other type qualifiers | 
| 229 |         // (I guess on RVTC function pointers have a different constness to GCC/MSVC?) | 
| 230 |         : m_value((void*)value) | 
| 231 |     { | 
| 232 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 233 |     } | 
| 234 |  | 
| 235 |     void* value() const { return m_value; } | 
| 236 |     void* executableAddress() const { return m_value; } | 
| 237 |  | 
| 238 |  | 
| 239 | private: | 
| 240 |     void* m_value; | 
| 241 | }; | 
| 242 |  | 
| 243 | // ReturnAddressPtr: | 
| 244 | // | 
| 245 | // ReturnAddressPtr should be used to wrap return addresses generated by processor | 
| 246 | // 'call' instructions exectued in JIT code.  We use return addresses to look up | 
| 247 | // exception and optimization information, and to repatch the call instruction | 
| 248 | // that is the source of the return address. | 
| 249 | class ReturnAddressPtr { | 
| 250 | public: | 
| 251 |     ReturnAddressPtr() | 
| 252 |         : m_value(0) | 
| 253 |     { | 
| 254 |     } | 
| 255 |  | 
| 256 |     explicit ReturnAddressPtr(void* value) | 
| 257 |         : m_value(value) | 
| 258 |     { | 
| 259 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 260 |     } | 
| 261 |  | 
| 262 |     explicit ReturnAddressPtr(FunctionPtr function) | 
| 263 |         : m_value(function.value()) | 
| 264 |     { | 
| 265 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 266 |     } | 
| 267 |  | 
| 268 |     void* value() const { return m_value; } | 
| 269 |  | 
| 270 | private: | 
| 271 |     void* m_value; | 
| 272 | }; | 
| 273 |  | 
| 274 | // MacroAssemblerCodePtr: | 
| 275 | // | 
| 276 | // MacroAssemblerCodePtr should be used to wrap pointers to JIT generated code. | 
| 277 | class MacroAssemblerCodePtr { | 
| 278 | public: | 
| 279 |     MacroAssemblerCodePtr() | 
| 280 |         : m_value(0) | 
| 281 |     { | 
| 282 |     } | 
| 283 |  | 
| 284 |     explicit MacroAssemblerCodePtr(void* value) | 
| 285 | #if CPU(ARM_THUMB2) | 
| 286 |         // Decorate the pointer as a thumb code pointer. | 
| 287 |         : m_value(reinterpret_cast<char*>(value) + 1) | 
| 288 | #else | 
| 289 |         : m_value(value) | 
| 290 | #endif | 
| 291 |     { | 
| 292 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 293 |     } | 
| 294 |      | 
| 295 |     static MacroAssemblerCodePtr createFromExecutableAddress(void* value) | 
| 296 |     { | 
| 297 |         ASSERT_VALID_CODE_POINTER(value); | 
| 298 |         MacroAssemblerCodePtr result; | 
| 299 |         result.m_value = value; | 
| 300 |         return result; | 
| 301 |     } | 
| 302 |  | 
| 303 | #if ENABLE(LLINT) | 
| 304 |     static MacroAssemblerCodePtr createLLIntCodePtr(LLIntCode codeId) | 
| 305 |     { | 
| 306 |         return createFromExecutableAddress(LLInt::getCodePtr(codeId)); | 
| 307 |     } | 
| 308 | #endif | 
| 309 |  | 
| 310 |     explicit MacroAssemblerCodePtr(ReturnAddressPtr ra) | 
| 311 |         : m_value(ra.value()) | 
| 312 |     { | 
| 313 |         ASSERT_VALID_CODE_POINTER(m_value); | 
| 314 |     } | 
| 315 |  | 
| 316 |     void* executableAddress() const { return m_value; } | 
| 317 | #if CPU(ARM_THUMB2) | 
| 318 |     // To use this pointer as a data address remove the decoration. | 
| 319 |     void* dataLocation() const { ASSERT_VALID_CODE_POINTER(m_value); return reinterpret_cast<char*>(m_value) - 1; } | 
| 320 | #else | 
| 321 |     void* dataLocation() const { ASSERT_VALID_CODE_POINTER(m_value); return m_value; } | 
| 322 | #endif | 
| 323 |  | 
| 324 |     bool operator!() const | 
| 325 |     { | 
| 326 |         return !m_value; | 
| 327 |     } | 
| 328 |  | 
| 329 | private: | 
| 330 |     void* m_value; | 
| 331 | }; | 
| 332 |  | 
| 333 |  | 
| 334 | FunctionPtr::FunctionPtr(MacroAssemblerCodePtr ptr) | 
| 335 |     : m_value(ptr.executableAddress()) | 
| 336 | { | 
| 337 | } | 
| 338 |  | 
| 339 | // MacroAssemblerCodeRef: | 
| 340 | // | 
| 341 | // A reference to a section of JIT generated code.  A CodeRef consists of a | 
| 342 | // pointer to the code, and a ref pointer to the pool from within which it | 
| 343 | // was allocated. | 
| 344 | class MacroAssemblerCodeRef { | 
| 345 | private: | 
| 346 |     // This is private because it's dangerous enough that we want uses of it | 
| 347 |     // to be easy to find - hence the static create method below. | 
| 348 |     explicit MacroAssemblerCodeRef(MacroAssemblerCodePtr codePtr) | 
| 349 |         : m_codePtr(codePtr) | 
| 350 |     { | 
| 351 |         ASSERT(m_codePtr); | 
| 352 |     } | 
| 353 |  | 
| 354 | public: | 
| 355 |     MacroAssemblerCodeRef() | 
| 356 |     { | 
| 357 |     } | 
| 358 |  | 
| 359 |     MacroAssemblerCodeRef(PassRefPtr<ExecutableMemoryHandle> executableMemory) | 
| 360 |         : m_codePtr(executableMemory->codeStart()) | 
| 361 |         , m_executableMemory(executableMemory) | 
| 362 |     { | 
| 363 |         ASSERT(m_executableMemory->isManaged()); | 
| 364 |         ASSERT(m_executableMemory->codeStart()); | 
| 365 |         ASSERT(m_codePtr); | 
| 366 |     } | 
| 367 |      | 
| 368 |     // Use this only when you know that the codePtr refers to code that is | 
| 369 |     // already being kept alive through some other means. Typically this means | 
| 370 |     // that codePtr is immortal. | 
| 371 |     static MacroAssemblerCodeRef createSelfManagedCodeRef(MacroAssemblerCodePtr codePtr) | 
| 372 |     { | 
| 373 |         return MacroAssemblerCodeRef(codePtr); | 
| 374 |     } | 
| 375 |      | 
| 376 | #if ENABLE(LLINT) | 
| 377 |     // Helper for creating self-managed code refs from LLInt. | 
| 378 |     static MacroAssemblerCodeRef createLLIntCodeRef(LLIntCode codeId) | 
| 379 |     { | 
| 380 |         return createSelfManagedCodeRef(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(codeId))); | 
| 381 |     } | 
| 382 | #endif | 
| 383 |  | 
| 384 |     ExecutableMemoryHandle* executableMemory() const | 
| 385 |     { | 
| 386 |         return m_executableMemory.get(); | 
| 387 |     } | 
| 388 |      | 
| 389 |     MacroAssemblerCodePtr code() const | 
| 390 |     { | 
| 391 |         return m_codePtr; | 
| 392 |     } | 
| 393 |      | 
| 394 |     size_t size() const | 
| 395 |     { | 
| 396 |         if (!m_executableMemory) | 
| 397 |             return 0; | 
| 398 |         return m_executableMemory->codeSize(); | 
| 399 |     } | 
| 400 |      | 
| 401 |     bool tryToDisassemble(const char* prefix) const | 
| 402 |     { | 
| 403 |         return JSC::tryToDisassemble(m_codePtr, size(), prefix, WTF::dataFile()); | 
| 404 |     } | 
| 405 |      | 
| 406 |     bool operator!() const { return !m_codePtr; } | 
| 407 |  | 
| 408 | private: | 
| 409 |     MacroAssemblerCodePtr m_codePtr; | 
| 410 |     RefPtr<ExecutableMemoryHandle> m_executableMemory; | 
| 411 | }; | 
| 412 |  | 
| 413 | } // namespace JSC | 
| 414 |  | 
| 415 | #endif // MacroAssemblerCodeRef_h | 
| 416 |  |