| 1 | /**************************************************************************** |
| 2 | ** earcut.hpp v2.2.1 |
| 3 | ** |
| 4 | ** ISC License |
| 5 | ** |
| 6 | ** Copyright (c) 2015, Mapbox |
| 7 | ** |
| 8 | ** Permission to use, copy, modify, and/or distribute this software for any purpose |
| 9 | ** with or without fee is hereby granted, provided that the above copyright notice |
| 10 | ** and this permission notice appear in all copies. |
| 11 | ** |
| 12 | ** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH |
| 13 | ** REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND |
| 14 | ** FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, |
| 15 | ** INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS |
| 16 | ** OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER |
| 17 | ** TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF |
| 18 | ** THIS SOFTWARE. |
| 19 | ****************************************************************************/ |
| 20 | |
| 21 | #pragma once |
| 22 | #ifndef EARCUT_HPP |
| 23 | #define EARCUT_HPP |
| 24 | |
| 25 | #pragma once |
| 26 | |
| 27 | #include <algorithm> |
| 28 | #include <cassert> |
| 29 | #include <cmath> |
| 30 | #include <memory> |
| 31 | #include <vector> |
| 32 | |
| 33 | namespace qt_mapbox { |
| 34 | |
| 35 | namespace util { |
| 36 | |
| 37 | template <std::size_t I, typename T> struct nth { |
| 38 | inline static typename std::tuple_element<I, T>::type |
| 39 | get(const T& t) { return std::get<I>(t); }; |
| 40 | }; |
| 41 | |
| 42 | } |
| 43 | |
| 44 | namespace detail { |
| 45 | |
| 46 | template <typename N = uint32_t> |
| 47 | class Earcut { |
| 48 | public: |
| 49 | std::vector<N> indices; |
| 50 | std::size_t vertices = 0; |
| 51 | |
| 52 | template <typename Polygon> |
| 53 | void operator()(const Polygon& points); |
| 54 | |
| 55 | private: |
| 56 | struct Node { |
| 57 | Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {} |
| 58 | Node(const Node&) = delete; |
| 59 | Node& operator=(const Node&) = delete; |
| 60 | Node(Node&&) = delete; |
| 61 | Node& operator=(Node&&) = delete; |
| 62 | |
| 63 | const N i; |
| 64 | const double x; |
| 65 | const double y; |
| 66 | |
| 67 | // previous and next vertice nodes in a polygon ring |
| 68 | Node* prev = nullptr; |
| 69 | Node* next = nullptr; |
| 70 | |
| 71 | // z-order curve value |
| 72 | int32_t z = 0; |
| 73 | |
| 74 | // previous and next nodes in z-order |
| 75 | Node* prevZ = nullptr; |
| 76 | Node* nextZ = nullptr; |
| 77 | |
| 78 | // indicates whether this is a steiner point |
| 79 | bool steiner = false; |
| 80 | }; |
| 81 | |
| 82 | template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise); |
| 83 | Node* filterPoints(Node* start, Node* end = nullptr); |
| 84 | void earcutLinked(Node* ear, int pass = 0); |
| 85 | bool isEar(Node* ear); |
| 86 | bool isEarHashed(Node* ear); |
| 87 | Node* cureLocalIntersections(Node* start); |
| 88 | void splitEarcut(Node* start); |
| 89 | template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode); |
| 90 | void eliminateHole(Node* hole, Node* outerNode); |
| 91 | Node* findHoleBridge(Node* hole, Node* outerNode); |
| 92 | bool sectorContainsSector(const Node* m, const Node* p); |
| 93 | void indexCurve(Node* start); |
| 94 | Node* sortLinked(Node* list); |
| 95 | int32_t zOrder(const double x_, const double y_); |
| 96 | Node* getLeftmost(Node* start); |
| 97 | bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const; |
| 98 | bool isValidDiagonal(Node* a, Node* b); |
| 99 | double area(const Node* p, const Node* q, const Node* r) const; |
| 100 | bool equals(const Node* p1, const Node* p2); |
| 101 | bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2); |
| 102 | bool onSegment(const Node* p, const Node* q, const Node* r); |
| 103 | int sign(double val); |
| 104 | bool intersectsPolygon(const Node* a, const Node* b); |
| 105 | bool locallyInside(const Node* a, const Node* b); |
| 106 | bool middleInside(const Node* a, const Node* b); |
| 107 | Node* splitPolygon(Node* a, Node* b); |
| 108 | template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last); |
| 109 | void removeNode(Node* p); |
| 110 | |
| 111 | bool hashing; |
| 112 | double minX, maxX; |
| 113 | double minY, maxY; |
| 114 | double inv_size = 0; |
| 115 | |
| 116 | template <typename T, typename Alloc = std::allocator<T>> |
| 117 | class ObjectPool { |
| 118 | public: |
| 119 | ObjectPool() { } |
| 120 | ObjectPool(std::size_t blockSize_) { |
| 121 | reset(newBlockSize: blockSize_); |
| 122 | } |
| 123 | ~ObjectPool() { |
| 124 | clear(); |
| 125 | } |
| 126 | template <typename... Args> |
| 127 | T* construct(Args&&... args) { |
| 128 | if (currentIndex >= blockSize) { |
| 129 | currentBlock = alloc_traits::allocate(alloc, blockSize); |
| 130 | allocations.emplace_back(currentBlock); |
| 131 | currentIndex = 0; |
| 132 | } |
| 133 | T* object = ¤tBlock[currentIndex++]; |
| 134 | alloc_traits::construct(alloc, object, std::forward<Args>(args)...); |
| 135 | return object; |
| 136 | } |
| 137 | void reset(std::size_t newBlockSize) { |
| 138 | for (auto allocation : allocations) { |
| 139 | alloc_traits::deallocate(alloc, allocation, blockSize); |
| 140 | } |
| 141 | allocations.clear(); |
| 142 | blockSize = std::max<std::size_t>(a: 1, b: newBlockSize); |
| 143 | currentBlock = nullptr; |
| 144 | currentIndex = blockSize; |
| 145 | } |
| 146 | void clear() { reset(newBlockSize: blockSize); } |
| 147 | private: |
| 148 | T* currentBlock = nullptr; |
| 149 | std::size_t currentIndex = 1; |
| 150 | std::size_t blockSize = 1; |
| 151 | std::vector<T*> allocations; |
| 152 | Alloc alloc; |
| 153 | typedef typename std::allocator_traits<Alloc> alloc_traits; |
| 154 | }; |
| 155 | ObjectPool<Node> nodes; |
| 156 | }; |
| 157 | |
| 158 | template <typename N> template <typename Polygon> |
| 159 | void Earcut<N>::operator()(const Polygon& points) { |
| 160 | // reset |
| 161 | indices.clear(); |
| 162 | vertices = 0; |
| 163 | |
| 164 | if (points.empty()) return; |
| 165 | |
| 166 | double x; |
| 167 | double y; |
| 168 | int threshold = 80; |
| 169 | std::size_t len = 0; |
| 170 | |
| 171 | for (size_t i = 0; threshold >= 0 && i < points.size(); i++) { |
| 172 | threshold -= static_cast<int>(points[i].size()); |
| 173 | len += points[i].size(); |
| 174 | } |
| 175 | |
| 176 | //estimate size of nodes and indices |
| 177 | nodes.reset(len * 3 / 2); |
| 178 | indices.reserve(len + points[0].size()); |
| 179 | |
| 180 | Node* outerNode = linkedList(points[0], true); |
| 181 | if (!outerNode || outerNode->prev == outerNode->next) return; |
| 182 | |
| 183 | if (points.size() > 1) outerNode = eliminateHoles(points, outerNode); |
| 184 | |
| 185 | // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox |
| 186 | hashing = threshold < 0; |
| 187 | if (hashing) { |
| 188 | Node* p = outerNode->next; |
| 189 | minX = maxX = outerNode->x; |
| 190 | minY = maxY = outerNode->y; |
| 191 | do { |
| 192 | x = p->x; |
| 193 | y = p->y; |
| 194 | minX = std::min<double>(a: minX, b: x); |
| 195 | minY = std::min<double>(a: minY, b: y); |
| 196 | maxX = std::max<double>(a: maxX, b: x); |
| 197 | maxY = std::max<double>(a: maxY, b: y); |
| 198 | p = p->next; |
| 199 | } while (p != outerNode); |
| 200 | |
| 201 | // minX, minY and size are later used to transform coords into integers for z-order calculation |
| 202 | inv_size = std::max<double>(a: maxX - minX, b: maxY - minY); |
| 203 | inv_size = inv_size != .0 ? (1. / inv_size) : .0; |
| 204 | } |
| 205 | |
| 206 | earcutLinked(ear: outerNode); |
| 207 | |
| 208 | nodes.clear(); |
| 209 | } |
| 210 | |
| 211 | // create a circular doubly linked list from polygon points in the specified winding order |
| 212 | template <typename N> template <typename Ring> |
| 213 | typename Earcut<N>::Node* |
| 214 | Earcut<N>::linkedList(const Ring& points, const bool clockwise) { |
| 215 | using Point = typename Ring::value_type; |
| 216 | double sum = 0; |
| 217 | const std::size_t len = points.size(); |
| 218 | std::size_t i, j; |
| 219 | Node* last = nullptr; |
| 220 | |
| 221 | // calculate original winding order of a polygon ring |
| 222 | for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) { |
| 223 | const auto& p1 = points[i]; |
| 224 | const auto& p2 = points[j]; |
| 225 | const double p20 = util::nth<0, Point>::get(p2); |
| 226 | const double p10 = util::nth<0, Point>::get(p1); |
| 227 | const double p11 = util::nth<1, Point>::get(p1); |
| 228 | const double p21 = util::nth<1, Point>::get(p2); |
| 229 | sum += (p20 - p10) * (p11 + p21); |
| 230 | } |
| 231 | |
| 232 | // link points into circular doubly-linked list in the specified winding order |
| 233 | if (clockwise == (sum > 0)) { |
| 234 | for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last); |
| 235 | } else { |
| 236 | for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last); |
| 237 | } |
| 238 | |
| 239 | if (last && equals(p1: last, p2: last->next)) { |
| 240 | removeNode(p: last); |
| 241 | last = last->next; |
| 242 | } |
| 243 | |
| 244 | vertices += len; |
| 245 | |
| 246 | return last; |
| 247 | } |
| 248 | |
| 249 | // eliminate colinear or duplicate points |
| 250 | template <typename N> |
| 251 | typename Earcut<N>::Node* |
| 252 | Earcut<N>::filterPoints(Node* start, Node* end) { |
| 253 | if (!end) end = start; |
| 254 | |
| 255 | Node* p = start; |
| 256 | bool again; |
| 257 | do { |
| 258 | again = false; |
| 259 | |
| 260 | if (!p->steiner && (equals(p1: p, p2: p->next) || area(p: p->prev, q: p, r: p->next) == 0)) { |
| 261 | removeNode(p); |
| 262 | p = end = p->prev; |
| 263 | |
| 264 | if (p == p->next) break; |
| 265 | again = true; |
| 266 | |
| 267 | } else { |
| 268 | p = p->next; |
| 269 | } |
| 270 | } while (again || p != end); |
| 271 | |
| 272 | return end; |
| 273 | } |
| 274 | |
| 275 | // main ear slicing loop which triangulates a polygon (given as a linked list) |
| 276 | template <typename N> |
| 277 | void Earcut<N>::earcutLinked(Node* ear, int pass) { |
| 278 | if (!ear) return; |
| 279 | |
| 280 | // interlink polygon nodes in z-order |
| 281 | if (!pass && hashing) indexCurve(start: ear); |
| 282 | |
| 283 | Node* stop = ear; |
| 284 | Node* prev; |
| 285 | Node* next; |
| 286 | |
| 287 | int iterations = 0; |
| 288 | |
| 289 | // iterate through ears, slicing them one by one |
| 290 | while (ear->prev != ear->next) { |
| 291 | iterations++; |
| 292 | prev = ear->prev; |
| 293 | next = ear->next; |
| 294 | |
| 295 | if (hashing ? isEarHashed(ear) : isEar(ear)) { |
| 296 | // cut off the triangle |
| 297 | indices.emplace_back(prev->i); |
| 298 | indices.emplace_back(ear->i); |
| 299 | indices.emplace_back(next->i); |
| 300 | |
| 301 | removeNode(p: ear); |
| 302 | |
| 303 | // skipping the next vertice leads to less sliver triangles |
| 304 | ear = next->next; |
| 305 | stop = next->next; |
| 306 | |
| 307 | continue; |
| 308 | } |
| 309 | |
| 310 | ear = next; |
| 311 | |
| 312 | // if we looped through the whole remaining polygon and can't find any more ears |
| 313 | if (ear == stop) { |
| 314 | // try filtering points and slicing again |
| 315 | if (!pass) earcutLinked(ear: filterPoints(start: ear), pass: 1); |
| 316 | |
| 317 | // if this didn't work, try curing all small self-intersections locally |
| 318 | else if (pass == 1) { |
| 319 | ear = cureLocalIntersections(start: filterPoints(start: ear)); |
| 320 | earcutLinked(ear, pass: 2); |
| 321 | |
| 322 | // as a last resort, try splitting the remaining polygon into two |
| 323 | } else if (pass == 2) splitEarcut(start: ear); |
| 324 | |
| 325 | break; |
| 326 | } |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | // check whether a polygon node forms a valid ear with adjacent nodes |
| 331 | template <typename N> |
| 332 | bool Earcut<N>::isEar(Node* ear) { |
| 333 | const Node* a = ear->prev; |
| 334 | const Node* b = ear; |
| 335 | const Node* c = ear->next; |
| 336 | |
| 337 | if (area(p: a, q: b, r: c) >= 0) return false; // reflex, can't be an ear |
| 338 | |
| 339 | // now make sure we don't have other points inside the potential ear |
| 340 | Node* p = ear->next->next; |
| 341 | |
| 342 | while (p != ear->prev) { |
| 343 | if (pointInTriangle(ax: a->x, ay: a->y, bx: b->x, by: b->y, cx: c->x, cy: c->y, px: p->x, py: p->y) && |
| 344 | area(p: p->prev, q: p, r: p->next) >= 0) return false; |
| 345 | p = p->next; |
| 346 | } |
| 347 | |
| 348 | return true; |
| 349 | } |
| 350 | |
| 351 | template <typename N> |
| 352 | bool Earcut<N>::isEarHashed(Node* ear) { |
| 353 | const Node* a = ear->prev; |
| 354 | const Node* b = ear; |
| 355 | const Node* c = ear->next; |
| 356 | |
| 357 | if (area(p: a, q: b, r: c) >= 0) return false; // reflex, can't be an ear |
| 358 | |
| 359 | // triangle bbox; min & max are calculated like this for speed |
| 360 | const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x)); |
| 361 | const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y)); |
| 362 | const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x)); |
| 363 | const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y)); |
| 364 | |
| 365 | // z-order range for the current triangle bbox; |
| 366 | const int32_t minZ = zOrder(x_: minTX, y_: minTY); |
| 367 | const int32_t maxZ = zOrder(x_: maxTX, y_: maxTY); |
| 368 | |
| 369 | // first look for points inside the triangle in increasing z-order |
| 370 | Node* p = ear->nextZ; |
| 371 | |
| 372 | while (p && p->z <= maxZ) { |
| 373 | if (p != ear->prev && p != ear->next && |
| 374 | pointInTriangle(ax: a->x, ay: a->y, bx: b->x, by: b->y, cx: c->x, cy: c->y, px: p->x, py: p->y) && |
| 375 | area(p: p->prev, q: p, r: p->next) >= 0) return false; |
| 376 | p = p->nextZ; |
| 377 | } |
| 378 | |
| 379 | // then look for points in decreasing z-order |
| 380 | p = ear->prevZ; |
| 381 | |
| 382 | while (p && p->z >= minZ) { |
| 383 | if (p != ear->prev && p != ear->next && |
| 384 | pointInTriangle(ax: a->x, ay: a->y, bx: b->x, by: b->y, cx: c->x, cy: c->y, px: p->x, py: p->y) && |
| 385 | area(p: p->prev, q: p, r: p->next) >= 0) return false; |
| 386 | p = p->prevZ; |
| 387 | } |
| 388 | |
| 389 | return true; |
| 390 | } |
| 391 | |
| 392 | // go through all polygon nodes and cure small local self-intersections |
| 393 | template <typename N> |
| 394 | typename Earcut<N>::Node* |
| 395 | Earcut<N>::cureLocalIntersections(Node* start) { |
| 396 | Node* p = start; |
| 397 | do { |
| 398 | Node* a = p->prev; |
| 399 | Node* b = p->next->next; |
| 400 | |
| 401 | // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2]) |
| 402 | if (!equals(p1: a, p2: b) && intersects(p1: a, q1: p, p2: p->next, q2: b) && locallyInside(a, b) && locallyInside(a: b, b: a)) { |
| 403 | indices.emplace_back(a->i); |
| 404 | indices.emplace_back(p->i); |
| 405 | indices.emplace_back(b->i); |
| 406 | |
| 407 | // remove two nodes involved |
| 408 | removeNode(p); |
| 409 | removeNode(p: p->next); |
| 410 | |
| 411 | p = start = b; |
| 412 | } |
| 413 | p = p->next; |
| 414 | } while (p != start); |
| 415 | |
| 416 | return filterPoints(start: p); |
| 417 | } |
| 418 | |
| 419 | // try splitting polygon into two and triangulate them independently |
| 420 | template <typename N> |
| 421 | void Earcut<N>::splitEarcut(Node* start) { |
| 422 | // look for a valid diagonal that divides the polygon into two |
| 423 | Node* a = start; |
| 424 | do { |
| 425 | Node* b = a->next->next; |
| 426 | while (b != a->prev) { |
| 427 | if (a->i != b->i && isValidDiagonal(a, b)) { |
| 428 | // split the polygon in two by the diagonal |
| 429 | Node* c = splitPolygon(a, b); |
| 430 | |
| 431 | // filter colinear points around the cuts |
| 432 | a = filterPoints(start: a, end: a->next); |
| 433 | c = filterPoints(start: c, end: c->next); |
| 434 | |
| 435 | // run earcut on each half |
| 436 | earcutLinked(ear: a); |
| 437 | earcutLinked(ear: c); |
| 438 | return; |
| 439 | } |
| 440 | b = b->next; |
| 441 | } |
| 442 | a = a->next; |
| 443 | } while (a != start); |
| 444 | } |
| 445 | |
| 446 | // link every hole into the outer loop, producing a single-ring polygon without holes |
| 447 | template <typename N> template <typename Polygon> |
| 448 | typename Earcut<N>::Node* |
| 449 | Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) { |
| 450 | const size_t len = points.size(); |
| 451 | |
| 452 | std::vector<Node*> queue; |
| 453 | for (size_t i = 1; i < len; i++) { |
| 454 | Node* list = linkedList(points[i], false); |
| 455 | if (list) { |
| 456 | if (list == list->next) list->steiner = true; |
| 457 | queue.push_back(getLeftmost(start: list)); |
| 458 | } |
| 459 | } |
| 460 | std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) { |
| 461 | return a->x < b->x; |
| 462 | }); |
| 463 | |
| 464 | // process holes from left to right |
| 465 | for (size_t i = 0; i < queue.size(); i++) { |
| 466 | eliminateHole(hole: queue[i], outerNode); |
| 467 | outerNode = filterPoints(start: outerNode, end: outerNode->next); |
| 468 | } |
| 469 | |
| 470 | return outerNode; |
| 471 | } |
| 472 | |
| 473 | // find a bridge between vertices that connects hole with an outer ring and and link it |
| 474 | template <typename N> |
| 475 | void Earcut<N>::eliminateHole(Node* hole, Node* outerNode) { |
| 476 | outerNode = findHoleBridge(hole, outerNode); |
| 477 | if (outerNode) { |
| 478 | Node* b = splitPolygon(a: outerNode, b: hole); |
| 479 | filterPoints(start: b, end: b->next); |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | // David Eberly's algorithm for finding a bridge between hole and outer polygon |
| 484 | template <typename N> |
| 485 | typename Earcut<N>::Node* |
| 486 | Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) { |
| 487 | Node* p = outerNode; |
| 488 | double hx = hole->x; |
| 489 | double hy = hole->y; |
| 490 | double qx = -std::numeric_limits<double>::infinity(); |
| 491 | Node* m = nullptr; |
| 492 | |
| 493 | // find a segment intersected by a ray from the hole's leftmost Vertex to the left; |
| 494 | // segment's endpoint with lesser x will be potential connection Vertex |
| 495 | do { |
| 496 | if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) { |
| 497 | double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y); |
| 498 | if (x <= hx && x > qx) { |
| 499 | qx = x; |
| 500 | if (x == hx) { |
| 501 | if (hy == p->y) return p; |
| 502 | if (hy == p->next->y) return p->next; |
| 503 | } |
| 504 | m = p->x < p->next->x ? p : p->next; |
| 505 | } |
| 506 | } |
| 507 | p = p->next; |
| 508 | } while (p != outerNode); |
| 509 | |
| 510 | if (!m) return 0; |
| 511 | |
| 512 | if (hx == qx) return m; // hole touches outer segment; pick leftmost endpoint |
| 513 | |
| 514 | // look for points inside the triangle of hole Vertex, segment intersection and endpoint; |
| 515 | // if there are no points found, we have a valid connection; |
| 516 | // otherwise choose the Vertex of the minimum angle with the ray as connection Vertex |
| 517 | |
| 518 | const Node* stop = m; |
| 519 | double tanMin = std::numeric_limits<double>::infinity(); |
| 520 | double tanCur = 0; |
| 521 | |
| 522 | p = m; |
| 523 | double mx = m->x; |
| 524 | double my = m->y; |
| 525 | |
| 526 | do { |
| 527 | if (hx >= p->x && p->x >= mx && hx != p->x && |
| 528 | pointInTriangle(ax: hy < my ? hx : qx, ay: hy, bx: mx, by: my, cx: hy < my ? qx : hx, cy: hy, px: p->x, py: p->y)) { |
| 529 | |
| 530 | tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential |
| 531 | |
| 532 | if (locallyInside(a: p, b: hole) && |
| 533 | (tanCur < tanMin || (tanCur == tanMin && (p->x > m->x || sectorContainsSector(m, p))))) { |
| 534 | m = p; |
| 535 | tanMin = tanCur; |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | p = p->next; |
| 540 | } while (p != stop); |
| 541 | |
| 542 | return m; |
| 543 | } |
| 544 | |
| 545 | // whether sector in vertex m contains sector in vertex p in the same coordinates |
| 546 | template <typename N> |
| 547 | bool Earcut<N>::sectorContainsSector(const Node* m, const Node* p) { |
| 548 | return area(p: m->prev, q: m, r: p->prev) < 0 && area(p: p->next, q: m, r: m->next) < 0; |
| 549 | } |
| 550 | |
| 551 | // interlink polygon nodes in z-order |
| 552 | template <typename N> |
| 553 | void Earcut<N>::indexCurve(Node* start) { |
| 554 | assert(start); |
| 555 | Node* p = start; |
| 556 | |
| 557 | do { |
| 558 | p->z = p->z ? p->z : zOrder(x_: p->x, y_: p->y); |
| 559 | p->prevZ = p->prev; |
| 560 | p->nextZ = p->next; |
| 561 | p = p->next; |
| 562 | } while (p != start); |
| 563 | |
| 564 | p->prevZ->nextZ = nullptr; |
| 565 | p->prevZ = nullptr; |
| 566 | |
| 567 | sortLinked(list: p); |
| 568 | } |
| 569 | |
| 570 | // Simon Tatham's linked list merge sort algorithm |
| 571 | // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html |
| 572 | template <typename N> |
| 573 | typename Earcut<N>::Node* |
| 574 | Earcut<N>::sortLinked(Node* list) { |
| 575 | assert(list); |
| 576 | Node* p; |
| 577 | Node* q; |
| 578 | Node* e; |
| 579 | Node* tail; |
| 580 | int i, numMerges, pSize, qSize; |
| 581 | int inSize = 1; |
| 582 | |
| 583 | for (;;) { |
| 584 | p = list; |
| 585 | list = nullptr; |
| 586 | tail = nullptr; |
| 587 | numMerges = 0; |
| 588 | |
| 589 | while (p) { |
| 590 | numMerges++; |
| 591 | q = p; |
| 592 | pSize = 0; |
| 593 | for (i = 0; i < inSize; i++) { |
| 594 | pSize++; |
| 595 | q = q->nextZ; |
| 596 | if (!q) break; |
| 597 | } |
| 598 | |
| 599 | qSize = inSize; |
| 600 | |
| 601 | while (pSize > 0 || (qSize > 0 && q)) { |
| 602 | |
| 603 | if (pSize == 0) { |
| 604 | e = q; |
| 605 | q = q->nextZ; |
| 606 | qSize--; |
| 607 | } else if (qSize == 0 || !q) { |
| 608 | e = p; |
| 609 | p = p->nextZ; |
| 610 | pSize--; |
| 611 | } else if (p->z <= q->z) { |
| 612 | e = p; |
| 613 | p = p->nextZ; |
| 614 | pSize--; |
| 615 | } else { |
| 616 | e = q; |
| 617 | q = q->nextZ; |
| 618 | qSize--; |
| 619 | } |
| 620 | |
| 621 | if (tail) tail->nextZ = e; |
| 622 | else list = e; |
| 623 | |
| 624 | e->prevZ = tail; |
| 625 | tail = e; |
| 626 | } |
| 627 | |
| 628 | p = q; |
| 629 | } |
| 630 | |
| 631 | tail->nextZ = nullptr; |
| 632 | |
| 633 | if (numMerges <= 1) return list; |
| 634 | |
| 635 | inSize *= 2; |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | // z-order of a Vertex given coords and size of the data bounding box |
| 640 | template <typename N> |
| 641 | int32_t Earcut<N>::zOrder(const double x_, const double y_) { |
| 642 | // coords are transformed into non-negative 15-bit integer range |
| 643 | int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) * inv_size); |
| 644 | int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) * inv_size); |
| 645 | |
| 646 | x = (x | (x << 8)) & 0x00FF00FF; |
| 647 | x = (x | (x << 4)) & 0x0F0F0F0F; |
| 648 | x = (x | (x << 2)) & 0x33333333; |
| 649 | x = (x | (x << 1)) & 0x55555555; |
| 650 | |
| 651 | y = (y | (y << 8)) & 0x00FF00FF; |
| 652 | y = (y | (y << 4)) & 0x0F0F0F0F; |
| 653 | y = (y | (y << 2)) & 0x33333333; |
| 654 | y = (y | (y << 1)) & 0x55555555; |
| 655 | |
| 656 | return x | (y << 1); |
| 657 | } |
| 658 | |
| 659 | // find the leftmost node of a polygon ring |
| 660 | template <typename N> |
| 661 | typename Earcut<N>::Node* |
| 662 | Earcut<N>::getLeftmost(Node* start) { |
| 663 | Node* p = start; |
| 664 | Node* leftmost = start; |
| 665 | do { |
| 666 | if (p->x < leftmost->x || (p->x == leftmost->x && p->y < leftmost->y)) |
| 667 | leftmost = p; |
| 668 | p = p->next; |
| 669 | } while (p != start); |
| 670 | |
| 671 | return leftmost; |
| 672 | } |
| 673 | |
| 674 | // check if a point lies within a convex triangle |
| 675 | template <typename N> |
| 676 | bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const { |
| 677 | return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && |
| 678 | (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && |
| 679 | (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0; |
| 680 | } |
| 681 | |
| 682 | // check if a diagonal between two polygon nodes is valid (lies in polygon interior) |
| 683 | template <typename N> |
| 684 | bool Earcut<N>::isValidDiagonal(Node* a, Node* b) { |
| 685 | return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) && // dones't intersect other edges |
| 686 | ((locallyInside(a, b) && locallyInside(a: b, b: a) && middleInside(a, b) && // locally visible |
| 687 | (area(p: a->prev, q: a, r: b->prev) != 0.0 || area(p: a, q: b->prev, r: b) != 0.0)) || // does not create opposite-facing sectors |
| 688 | (equals(p1: a, p2: b) && area(p: a->prev, q: a, r: a->next) > 0 && area(p: b->prev, q: b, r: b->next) > 0)); // special zero-length case |
| 689 | } |
| 690 | |
| 691 | // signed area of a triangle |
| 692 | template <typename N> |
| 693 | double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const { |
| 694 | return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y); |
| 695 | } |
| 696 | |
| 697 | // check if two points are equal |
| 698 | template <typename N> |
| 699 | bool Earcut<N>::equals(const Node* p1, const Node* p2) { |
| 700 | return p1->x == p2->x && p1->y == p2->y; |
| 701 | } |
| 702 | |
| 703 | // check if two segments intersect |
| 704 | template <typename N> |
| 705 | bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) { |
| 706 | int o1 = sign(val: area(p: p1, q: q1, r: p2)); |
| 707 | int o2 = sign(val: area(p: p1, q: q1, r: q2)); |
| 708 | int o3 = sign(val: area(p: p2, q: q2, r: p1)); |
| 709 | int o4 = sign(val: area(p: p2, q: q2, r: q1)); |
| 710 | |
| 711 | if (o1 != o2 && o3 != o4) return true; // general case |
| 712 | |
| 713 | if (o1 == 0 && onSegment(p: p1, q: p2, r: q1)) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1 |
| 714 | if (o2 == 0 && onSegment(p: p1, q: q2, r: q1)) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1 |
| 715 | if (o3 == 0 && onSegment(p: p2, q: p1, r: q2)) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2 |
| 716 | if (o4 == 0 && onSegment(p: p2, q: q1, r: q2)) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2 |
| 717 | |
| 718 | return false; |
| 719 | } |
| 720 | |
| 721 | // for collinear points p, q, r, check if point q lies on segment pr |
| 722 | template <typename N> |
| 723 | bool Earcut<N>::onSegment(const Node* p, const Node* q, const Node* r) { |
| 724 | return q->x <= std::max<double>(p->x, r->x) && |
| 725 | q->x >= std::min<double>(p->x, r->x) && |
| 726 | q->y <= std::max<double>(p->y, r->y) && |
| 727 | q->y >= std::min<double>(p->y, r->y); |
| 728 | } |
| 729 | |
| 730 | template <typename N> |
| 731 | int Earcut<N>::sign(double val) { |
| 732 | return (0.0 < val) - (val < 0.0); |
| 733 | } |
| 734 | |
| 735 | // check if a polygon diagonal intersects any polygon segments |
| 736 | template <typename N> |
| 737 | bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) { |
| 738 | const Node* p = a; |
| 739 | do { |
| 740 | if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i && |
| 741 | intersects(p1: p, q1: p->next, p2: a, q2: b)) return true; |
| 742 | p = p->next; |
| 743 | } while (p != a); |
| 744 | |
| 745 | return false; |
| 746 | } |
| 747 | |
| 748 | // check if a polygon diagonal is locally inside the polygon |
| 749 | template <typename N> |
| 750 | bool Earcut<N>::locallyInside(const Node* a, const Node* b) { |
| 751 | return area(p: a->prev, q: a, r: a->next) < 0 ? |
| 752 | area(p: a, q: b, r: a->next) >= 0 && area(p: a, q: a->prev, r: b) >= 0 : |
| 753 | area(p: a, q: b, r: a->prev) < 0 || area(p: a, q: a->next, r: b) < 0; |
| 754 | } |
| 755 | |
| 756 | // check if the middle Vertex of a polygon diagonal is inside the polygon |
| 757 | template <typename N> |
| 758 | bool Earcut<N>::middleInside(const Node* a, const Node* b) { |
| 759 | const Node* p = a; |
| 760 | bool inside = false; |
| 761 | double px = (a->x + b->x) / 2; |
| 762 | double py = (a->y + b->y) / 2; |
| 763 | do { |
| 764 | if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y && |
| 765 | (px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x)) |
| 766 | inside = !inside; |
| 767 | p = p->next; |
| 768 | } while (p != a); |
| 769 | |
| 770 | return inside; |
| 771 | } |
| 772 | |
| 773 | // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits |
| 774 | // polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a |
| 775 | // single ring |
| 776 | template <typename N> |
| 777 | typename Earcut<N>::Node* |
| 778 | Earcut<N>::splitPolygon(Node* a, Node* b) { |
| 779 | Node* a2 = nodes.construct(a->i, a->x, a->y); |
| 780 | Node* b2 = nodes.construct(b->i, b->x, b->y); |
| 781 | Node* an = a->next; |
| 782 | Node* bp = b->prev; |
| 783 | |
| 784 | a->next = b; |
| 785 | b->prev = a; |
| 786 | |
| 787 | a2->next = an; |
| 788 | an->prev = a2; |
| 789 | |
| 790 | b2->next = a2; |
| 791 | a2->prev = b2; |
| 792 | |
| 793 | bp->next = b2; |
| 794 | b2->prev = bp; |
| 795 | |
| 796 | return b2; |
| 797 | } |
| 798 | |
| 799 | // create a node and util::optionally link it with previous one (in a circular doubly linked list) |
| 800 | template <typename N> template <typename Point> |
| 801 | typename Earcut<N>::Node* |
| 802 | Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) { |
| 803 | Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt)); |
| 804 | |
| 805 | if (!last) { |
| 806 | p->prev = p; |
| 807 | p->next = p; |
| 808 | |
| 809 | } else { |
| 810 | assert(last); |
| 811 | p->next = last->next; |
| 812 | p->prev = last; |
| 813 | last->next->prev = p; |
| 814 | last->next = p; |
| 815 | } |
| 816 | return p; |
| 817 | } |
| 818 | |
| 819 | template <typename N> |
| 820 | void Earcut<N>::removeNode(Node* p) { |
| 821 | p->next->prev = p->prev; |
| 822 | p->prev->next = p->next; |
| 823 | |
| 824 | if (p->prevZ) p->prevZ->nextZ = p->nextZ; |
| 825 | if (p->nextZ) p->nextZ->prevZ = p->prevZ; |
| 826 | } |
| 827 | } |
| 828 | |
| 829 | template <typename N = uint32_t, typename Polygon> |
| 830 | std::vector<N> earcut(const Polygon& poly) { |
| 831 | qt_mapbox::detail::Earcut<N> earcut; |
| 832 | earcut(poly); |
| 833 | return std::move(earcut.indices); |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | #endif //EARCUT_HPP |
| 838 | |