1 | /* |
2 | * Copyright (C) 2008 Apple Inc. All Rights Reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #pragma once |
27 | |
28 | #include <cmath> |
29 | #include <tuple> |
30 | |
31 | namespace mbgl { |
32 | namespace util { |
33 | |
34 | struct UnitBezier { |
35 | // Calculate the polynomial coefficients, implicit first and last control points are (0,0) and (1,1). |
36 | constexpr UnitBezier(double p1x, double p1y, double p2x, double p2y) |
37 | : cx(3.0 * p1x) |
38 | , bx(3.0 * (p2x - p1x) - (3.0 * p1x)) |
39 | , ax(1.0 - (3.0 * p1x) - (3.0 * (p2x - p1x) - (3.0 * p1x))) |
40 | , cy(3.0 * p1y) |
41 | , by(3.0 * (p2y - p1y) - (3.0 * p1y)) |
42 | , ay(1.0 - (3.0 * p1y) - (3.0 * (p2y - p1y) - (3.0 * p1y))) { |
43 | } |
44 | |
45 | std::pair<double, double> getP1() const { |
46 | return { cx / 3.0, cy / 3.0 }; |
47 | } |
48 | |
49 | std::pair<double, double> getP2() const { |
50 | return { |
51 | (bx + (3.0 * cx / 3.0) + cx) / 3.0, |
52 | (by + (3.0 * cy / 3.0) + cy) / 3.0, |
53 | }; |
54 | } |
55 | |
56 | double sampleCurveX(double t) const { |
57 | // `ax t^3 + bx t^2 + cx t' expanded using Horner's rule. |
58 | return ((ax * t + bx) * t + cx) * t; |
59 | } |
60 | |
61 | double sampleCurveY(double t) const { |
62 | return ((ay * t + by) * t + cy) * t; |
63 | } |
64 | |
65 | double sampleCurveDerivativeX(double t) const { |
66 | return (3.0 * ax * t + 2.0 * bx) * t + cx; |
67 | } |
68 | |
69 | // Given an x value, find a parametric value it came from. |
70 | double solveCurveX(double x, double epsilon) const { |
71 | double t0; |
72 | double t1; |
73 | double t2; |
74 | double x2; |
75 | double d2; |
76 | int i; |
77 | |
78 | // First try a few iterations of Newton's method -- normally very fast. |
79 | for (t2 = x, i = 0; i < 8; ++i) { |
80 | x2 = sampleCurveX(t: t2) - x; |
81 | if (fabs (x: x2) < epsilon) |
82 | return t2; |
83 | d2 = sampleCurveDerivativeX(t: t2); |
84 | if (fabs(x: d2) < 1e-6) |
85 | break; |
86 | t2 = t2 - x2 / d2; |
87 | } |
88 | |
89 | // Fall back to the bisection method for reliability. |
90 | t0 = 0.0; |
91 | t1 = 1.0; |
92 | t2 = x; |
93 | |
94 | if (t2 < t0) |
95 | return t0; |
96 | if (t2 > t1) |
97 | return t1; |
98 | |
99 | while (t0 < t1) { |
100 | x2 = sampleCurveX(t: t2); |
101 | if (fabs(x: x2 - x) < epsilon) |
102 | return t2; |
103 | if (x > x2) |
104 | t0 = t2; |
105 | else |
106 | t1 = t2; |
107 | t2 = (t1 - t0) * .5 + t0; |
108 | } |
109 | |
110 | // Failure. |
111 | return t2; |
112 | } |
113 | |
114 | double solve(double x, double epsilon) const { |
115 | return sampleCurveY(t: solveCurveX(x, epsilon)); |
116 | } |
117 | |
118 | bool operator==(const UnitBezier& rhs) const { |
119 | return std::tie(args: cx, args: bx, args: ax, args: cy, args: by, args: ay) == |
120 | std::tie(args: rhs.cx, args: rhs.bx, args: rhs.ax, args: rhs.cy, args: rhs.by, args: rhs.ay); |
121 | } |
122 | |
123 | private: |
124 | const double cx; |
125 | const double bx; |
126 | const double ax; |
127 | |
128 | const double cy; |
129 | const double by; |
130 | const double ay; |
131 | }; |
132 | |
133 | } // namespace util |
134 | } // namespace mbgl |
135 | |