| 1 | /* |
| 2 | * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors |
| 3 | * http://code.google.com/p/poly2tri/ |
| 4 | * |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without modification, |
| 8 | * are permitted provided that the following conditions are met: |
| 9 | * |
| 10 | * * Redistributions of source code must retain the above copyright notice, |
| 11 | * this list of conditions and the following disclaimer. |
| 12 | * * Redistributions in binary form must reproduce the above copyright notice, |
| 13 | * this list of conditions and the following disclaimer in the documentation |
| 14 | * and/or other materials provided with the distribution. |
| 15 | * * Neither the name of Poly2Tri nor the names of its contributors may be |
| 16 | * used to endorse or promote products derived from this software without specific |
| 17 | * prior written permission. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 23 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 24 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 25 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 26 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 27 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 28 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 29 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | */ |
| 31 | |
| 32 | // Include guard |
| 33 | #ifndef SHAPES_H |
| 34 | #define SHAPES_H |
| 35 | |
| 36 | #include <vector> |
| 37 | #include <cstddef> |
| 38 | #include <assert.h> |
| 39 | #include <cmath> |
| 40 | |
| 41 | namespace p2t { |
| 42 | |
| 43 | struct Edge; |
| 44 | |
| 45 | struct Point { |
| 46 | |
| 47 | double x, y; |
| 48 | |
| 49 | /// Default constructor does nothing (for performance). |
| 50 | Point() |
| 51 | { |
| 52 | x = 0.0; |
| 53 | y = 0.0; |
| 54 | } |
| 55 | |
| 56 | /// The edges this point constitutes an upper ending point |
| 57 | std::vector<Edge*> edge_list; |
| 58 | |
| 59 | /// Construct using coordinates. |
| 60 | Point(double x, double y) : x(x), y(y) {} |
| 61 | |
| 62 | /// Set this point to all zeros. |
| 63 | void set_zero() |
| 64 | { |
| 65 | x = 0.0; |
| 66 | y = 0.0; |
| 67 | } |
| 68 | |
| 69 | /// Set this point to some specified coordinates. |
| 70 | void set(double x_, double y_) |
| 71 | { |
| 72 | x = x_; |
| 73 | y = y_; |
| 74 | } |
| 75 | |
| 76 | /// Negate this point. |
| 77 | Point operator -() const |
| 78 | { |
| 79 | Point v; |
| 80 | v.set(x_: -x, y_: -y); |
| 81 | return v; |
| 82 | } |
| 83 | |
| 84 | /// Add a point to this point. |
| 85 | void operator +=(const Point& v) |
| 86 | { |
| 87 | x += v.x; |
| 88 | y += v.y; |
| 89 | } |
| 90 | |
| 91 | /// Subtract a point from this point. |
| 92 | void operator -=(const Point& v) |
| 93 | { |
| 94 | x -= v.x; |
| 95 | y -= v.y; |
| 96 | } |
| 97 | |
| 98 | /// Multiply this point by a scalar. |
| 99 | void operator *=(double a) |
| 100 | { |
| 101 | x *= a; |
| 102 | y *= a; |
| 103 | } |
| 104 | |
| 105 | /// Get the length of this point (the norm). |
| 106 | double Length() const |
| 107 | { |
| 108 | return std::sqrt(x: x * x + y * y); |
| 109 | } |
| 110 | |
| 111 | /// Convert this point into a unit point. Returns the Length. |
| 112 | double Normalize() |
| 113 | { |
| 114 | double len = Length(); |
| 115 | x /= len; |
| 116 | y /= len; |
| 117 | return len; |
| 118 | } |
| 119 | |
| 120 | }; |
| 121 | |
| 122 | // Represents a simple polygon's edge |
| 123 | struct Edge { |
| 124 | |
| 125 | Point* p, *q; |
| 126 | |
| 127 | /// Constructor |
| 128 | Edge(Point& p1, Point& p2) : p(&p1), q(&p2) |
| 129 | { |
| 130 | if (p1.y > p2.y) { |
| 131 | q = &p1; |
| 132 | p = &p2; |
| 133 | } else if (p1.y == p2.y) { |
| 134 | if (p1.x > p2.x) { |
| 135 | q = &p1; |
| 136 | p = &p2; |
| 137 | } else if (p1.x == p2.x) { |
| 138 | // Repeat points |
| 139 | assert(false); |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | q->edge_list.push_back(x: this); |
| 144 | } |
| 145 | }; |
| 146 | |
| 147 | // Triangle-based data structures are know to have better performance than quad-edge structures |
| 148 | // See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator" |
| 149 | // "Triangulations in CGAL" |
| 150 | class Triangle { |
| 151 | public: |
| 152 | |
| 153 | /// Constructor |
| 154 | Triangle(Point& a, Point& b, Point& c); |
| 155 | |
| 156 | /// Flags to determine if an edge is a Constrained edge |
| 157 | bool constrained_edge[3]; |
| 158 | /// Flags to determine if an edge is a Delauney edge |
| 159 | bool delaunay_edge[3]; |
| 160 | |
| 161 | Point* GetPoint(const int& index); |
| 162 | Point* PointCW(Point& point); |
| 163 | Point* PointCCW(Point& point); |
| 164 | Point* OppositePoint(Triangle& t, Point& p); |
| 165 | |
| 166 | Triangle* GetNeighbor(const int& index); |
| 167 | void MarkNeighbor(Point* p1, Point* p2, Triangle* t); |
| 168 | void MarkNeighbor(Triangle& t); |
| 169 | |
| 170 | void MarkConstrainedEdge(const int index); |
| 171 | void MarkConstrainedEdge(Edge& edge); |
| 172 | void MarkConstrainedEdge(Point* p, Point* q); |
| 173 | |
| 174 | int Index(const Point* p); |
| 175 | int EdgeIndex(const Point* p1, const Point* p2); |
| 176 | |
| 177 | Triangle* NeighborCW(Point& point); |
| 178 | Triangle* NeighborCCW(Point& point); |
| 179 | bool GetConstrainedEdgeCCW(Point& p); |
| 180 | bool GetConstrainedEdgeCW(Point& p); |
| 181 | void SetConstrainedEdgeCCW(Point& p, bool ce); |
| 182 | void SetConstrainedEdgeCW(Point& p, bool ce); |
| 183 | bool GetDelunayEdgeCCW(Point& p); |
| 184 | bool GetDelunayEdgeCW(Point& p); |
| 185 | void SetDelunayEdgeCCW(Point& p, bool e); |
| 186 | void SetDelunayEdgeCW(Point& p, bool e); |
| 187 | |
| 188 | bool Contains(Point* p); |
| 189 | bool Contains(const Edge& e); |
| 190 | bool Contains(Point* p, Point* q); |
| 191 | void Legalize(Point& point); |
| 192 | void Legalize(Point& opoint, Point& npoint); |
| 193 | /** |
| 194 | * Clears all references to all other triangles and points |
| 195 | */ |
| 196 | void Clear(); |
| 197 | void ClearNeighbor(Triangle *triangle ); |
| 198 | void ClearNeighbors(); |
| 199 | void ClearDelunayEdges(); |
| 200 | |
| 201 | inline bool IsInterior(); |
| 202 | inline void IsInterior(bool b); |
| 203 | |
| 204 | Triangle& NeighborAcross(Point& opoint); |
| 205 | |
| 206 | void DebugPrint(); |
| 207 | |
| 208 | private: |
| 209 | |
| 210 | /// Triangle points |
| 211 | Point* points_[3]; |
| 212 | /// Neighbor list |
| 213 | Triangle* neighbors_[3]; |
| 214 | |
| 215 | /// Has this triangle been marked as an interior triangle? |
| 216 | bool interior_; |
| 217 | }; |
| 218 | |
| 219 | inline bool cmp(const Point* a, const Point* b) |
| 220 | { |
| 221 | if (a->y < b->y) { |
| 222 | return true; |
| 223 | } else if (a->y == b->y) { |
| 224 | // Make sure q is point with greater x value |
| 225 | if (a->x < b->x) { |
| 226 | return true; |
| 227 | } |
| 228 | } |
| 229 | return false; |
| 230 | } |
| 231 | |
| 232 | /// Add two points_ component-wise. |
| 233 | inline Point operator +(const Point& a, const Point& b) |
| 234 | { |
| 235 | return Point(a.x + b.x, a.y + b.y); |
| 236 | } |
| 237 | |
| 238 | /// Subtract two points_ component-wise. |
| 239 | inline Point operator -(const Point& a, const Point& b) |
| 240 | { |
| 241 | return Point(a.x - b.x, a.y - b.y); |
| 242 | } |
| 243 | |
| 244 | /// Multiply point by scalar |
| 245 | inline Point operator *(double s, const Point& a) |
| 246 | { |
| 247 | return Point(s * a.x, s * a.y); |
| 248 | } |
| 249 | |
| 250 | inline bool operator ==(const Point& a, const Point& b) |
| 251 | { |
| 252 | return a.x == b.x && a.y == b.y; |
| 253 | } |
| 254 | |
| 255 | inline bool operator !=(const Point& a, const Point& b) |
| 256 | { |
| 257 | return !(a.x == b.x) && !(a.y == b.y); |
| 258 | } |
| 259 | |
| 260 | /// Peform the dot product on two vectors. |
| 261 | inline double Dot(const Point& a, const Point& b) |
| 262 | { |
| 263 | return a.x * b.x + a.y * b.y; |
| 264 | } |
| 265 | |
| 266 | /// Perform the cross product on two vectors. In 2D this produces a scalar. |
| 267 | inline double Cross(const Point& a, const Point& b) |
| 268 | { |
| 269 | return a.x * b.y - a.y * b.x; |
| 270 | } |
| 271 | |
| 272 | /// Perform the cross product on a point and a scalar. In 2D this produces |
| 273 | /// a point. |
| 274 | inline Point Cross(const Point& a, double s) |
| 275 | { |
| 276 | return Point(s * a.y, -s * a.x); |
| 277 | } |
| 278 | |
| 279 | /// Perform the cross product on a scalar and a point. In 2D this produces |
| 280 | /// a point. |
| 281 | inline Point Cross(const double s, const Point& a) |
| 282 | { |
| 283 | return Point(-s * a.y, s * a.x); |
| 284 | } |
| 285 | |
| 286 | inline Point* Triangle::GetPoint(const int& index) |
| 287 | { |
| 288 | return points_[index]; |
| 289 | } |
| 290 | |
| 291 | inline Triangle* Triangle::GetNeighbor(const int& index) |
| 292 | { |
| 293 | return neighbors_[index]; |
| 294 | } |
| 295 | |
| 296 | inline bool Triangle::Contains(Point* p) |
| 297 | { |
| 298 | return p == points_[0] || p == points_[1] || p == points_[2]; |
| 299 | } |
| 300 | |
| 301 | inline bool Triangle::Contains(const Edge& e) |
| 302 | { |
| 303 | return Contains(p: e.p) && Contains(p: e.q); |
| 304 | } |
| 305 | |
| 306 | inline bool Triangle::Contains(Point* p, Point* q) |
| 307 | { |
| 308 | return Contains(p) && Contains(p: q); |
| 309 | } |
| 310 | |
| 311 | inline bool Triangle::IsInterior() |
| 312 | { |
| 313 | return interior_; |
| 314 | } |
| 315 | |
| 316 | inline void Triangle::IsInterior(bool b) |
| 317 | { |
| 318 | interior_ = b; |
| 319 | } |
| 320 | |
| 321 | } |
| 322 | |
| 323 | #endif |
| 324 | |
| 325 | |
| 326 | |