| 1 | /* | 
| 2 |  * Copyright (C) 2008 Apple Inc. All rights reserved. | 
| 3 |  * | 
| 4 |  * Redistribution and use in source and binary forms, with or without | 
| 5 |  * modification, are permitted provided that the following conditions | 
| 6 |  * are met: | 
| 7 |  * 1. Redistributions of source code must retain the above copyright | 
| 8 |  *    notice, this list of conditions and the following disclaimer. | 
| 9 |  * 2. Redistributions in binary form must reproduce the above copyright | 
| 10 |  *    notice, this list of conditions and the following disclaimer in the | 
| 11 |  *    documentation and/or other materials provided with the distribution. | 
| 12 |  * | 
| 13 |  * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY | 
| 14 |  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
| 15 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
| 16 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR | 
| 17 |  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
| 18 |  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
| 19 |  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| 20 |  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
| 21 |  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| 22 |  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| 23 |  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  | 
| 24 |  */ | 
| 25 |  | 
| 26 | #ifndef AbstractMacroAssembler_h | 
| 27 | #define AbstractMacroAssembler_h | 
| 28 |  | 
| 29 | #include <wtf/Platform.h> | 
| 30 |  | 
| 31 | #include <MacroAssemblerCodeRef.h> | 
| 32 | #include <CodeLocation.h> | 
| 33 | #include <wtf/Noncopyable.h> | 
| 34 | #include <wtf/UnusedParam.h> | 
| 35 |  | 
| 36 | #if ENABLE(ASSEMBLER) | 
| 37 |  | 
| 38 | namespace JSC { | 
| 39 |  | 
| 40 | class LinkBuffer; | 
| 41 | class RepatchBuffer; | 
| 42 |  | 
| 43 | template <class AssemblerType> | 
| 44 | class AbstractMacroAssembler { | 
| 45 | public: | 
| 46 |     typedef AssemblerType AssemblerType_T; | 
| 47 |  | 
| 48 |     typedef MacroAssemblerCodePtr CodePtr; | 
| 49 |     typedef MacroAssemblerCodeRef CodeRef; | 
| 50 |  | 
| 51 |     class Jump; | 
| 52 |  | 
| 53 |     typedef typename AssemblerType::RegisterID RegisterID; | 
| 54 |     typedef typename AssemblerType::FPRegisterID FPRegisterID; | 
| 55 |     typedef typename AssemblerType::JmpSrc JmpSrc; | 
| 56 |     typedef typename AssemblerType::JmpDst JmpDst; | 
| 57 |  | 
| 58 |  | 
| 59 |     // Section 1: MacroAssembler operand types | 
| 60 |     // | 
| 61 |     // The following types are used as operands to MacroAssembler operations, | 
| 62 |     // describing immediate  and memory operands to the instructions to be planted. | 
| 63 |  | 
| 64 |  | 
| 65 |     enum Scale { | 
| 66 |         TimesOne, | 
| 67 |         TimesTwo, | 
| 68 |         TimesFour, | 
| 69 |         TimesEight, | 
| 70 |     }; | 
| 71 |  | 
| 72 |     // Address: | 
| 73 |     // | 
| 74 |     // Describes a simple base-offset address. | 
| 75 |     struct Address { | 
| 76 |         explicit Address(RegisterID base, int32_t offset = 0) | 
| 77 |             : base(base) | 
| 78 |             , offset(offset) | 
| 79 |         { | 
| 80 |         } | 
| 81 |  | 
| 82 |         RegisterID base; | 
| 83 |         int32_t offset; | 
| 84 |     }; | 
| 85 |  | 
| 86 |     // ImplicitAddress: | 
| 87 |     // | 
| 88 |     // This class is used for explicit 'load' and 'store' operations | 
| 89 |     // (as opposed to situations in which a memory operand is provided | 
| 90 |     // to a generic operation, such as an integer arithmetic instruction). | 
| 91 |     // | 
| 92 |     // In the case of a load (or store) operation we want to permit | 
| 93 |     // addresses to be implicitly constructed, e.g. the two calls: | 
| 94 |     // | 
| 95 |     //     load32(Address(addrReg), destReg); | 
| 96 |     //     load32(addrReg, destReg); | 
| 97 |     // | 
| 98 |     // Are equivalent, and the explicit wrapping of the Address in the former | 
| 99 |     // is unnecessary. | 
| 100 |     struct ImplicitAddress { | 
| 101 |         ImplicitAddress(RegisterID base) | 
| 102 |             : base(base) | 
| 103 |             , offset(0) | 
| 104 |         { | 
| 105 |         } | 
| 106 |  | 
| 107 |         ImplicitAddress(Address address) | 
| 108 |             : base(address.base) | 
| 109 |             , offset(address.offset) | 
| 110 |         { | 
| 111 |         } | 
| 112 |  | 
| 113 |         RegisterID base; | 
| 114 |         int32_t offset; | 
| 115 |     }; | 
| 116 |  | 
| 117 |     // BaseIndex: | 
| 118 |     // | 
| 119 |     // Describes a complex addressing mode. | 
| 120 |     struct BaseIndex { | 
| 121 |         BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) | 
| 122 |             : base(base) | 
| 123 |             , index(index) | 
| 124 |             , scale(scale) | 
| 125 |             , offset(offset) | 
| 126 |         { | 
| 127 |         } | 
| 128 |  | 
| 129 |         RegisterID base; | 
| 130 |         RegisterID index; | 
| 131 |         Scale scale; | 
| 132 |         int32_t offset; | 
| 133 |     }; | 
| 134 |  | 
| 135 |     // AbsoluteAddress: | 
| 136 |     // | 
| 137 |     // Describes an memory operand given by a pointer.  For regular load & store | 
| 138 |     // operations an unwrapped void* will be used, rather than using this. | 
| 139 |     struct AbsoluteAddress { | 
| 140 |         explicit AbsoluteAddress(void* ptr) | 
| 141 |             : m_ptr(ptr) | 
| 142 |         { | 
| 143 |         } | 
| 144 |  | 
| 145 |         void* m_ptr; | 
| 146 |     }; | 
| 147 |  | 
| 148 |     // ImmPtr: | 
| 149 |     // | 
| 150 |     // A pointer sized immediate operand to an instruction - this is wrapped | 
| 151 |     // in a class requiring explicit construction in order to differentiate | 
| 152 |     // from pointers used as absolute addresses to memory operations | 
| 153 |     struct ImmPtr { | 
| 154 |         explicit ImmPtr(void* value) | 
| 155 |             : m_value(value) | 
| 156 |         { | 
| 157 |         } | 
| 158 |  | 
| 159 |         intptr_t asIntptr() | 
| 160 |         { | 
| 161 |             return reinterpret_cast<intptr_t>(m_value); | 
| 162 |         } | 
| 163 |  | 
| 164 |         void* m_value; | 
| 165 |     }; | 
| 166 |  | 
| 167 |     // Imm32: | 
| 168 |     // | 
| 169 |     // A 32bit immediate operand to an instruction - this is wrapped in a | 
| 170 |     // class requiring explicit construction in order to prevent RegisterIDs | 
| 171 |     // (which are implemented as an enum) from accidentally being passed as | 
| 172 |     // immediate values. | 
| 173 |     struct Imm32 { | 
| 174 |         explicit Imm32(int32_t value) | 
| 175 |             : m_value(value) | 
| 176 | #if CPU(ARM) | 
| 177 |             , m_isPointer(false) | 
| 178 | #endif | 
| 179 |         { | 
| 180 |         } | 
| 181 |  | 
| 182 | #if !CPU(X86_64) | 
| 183 |         explicit Imm32(ImmPtr ptr) | 
| 184 |             : m_value(ptr.asIntptr()) | 
| 185 | #if CPU(ARM) | 
| 186 |             , m_isPointer(true) | 
| 187 | #endif | 
| 188 |         { | 
| 189 |         } | 
| 190 | #endif | 
| 191 |  | 
| 192 |         int32_t m_value; | 
| 193 | #if CPU(ARM) | 
| 194 |         // We rely on being able to regenerate code to recover exception handling | 
| 195 |         // information.  Since ARMv7 supports 16-bit immediates there is a danger | 
| 196 |         // that if pointer values change the layout of the generated code will change. | 
| 197 |         // To avoid this problem, always generate pointers (and thus Imm32s constructed | 
| 198 |         // from ImmPtrs) with a code sequence that is able  to represent  any pointer | 
| 199 |         // value - don't use a more compact form in these cases. | 
| 200 |         bool m_isPointer; | 
| 201 | #endif | 
| 202 |     }; | 
| 203 |  | 
| 204 |  | 
| 205 |     // Section 2: MacroAssembler code buffer handles | 
| 206 |     // | 
| 207 |     // The following types are used to reference items in the code buffer | 
| 208 |     // during JIT code generation.  For example, the type Jump is used to | 
| 209 |     // track the location of a jump instruction so that it may later be | 
| 210 |     // linked to a label marking its destination. | 
| 211 |  | 
| 212 |  | 
| 213 |     // Label: | 
| 214 |     // | 
| 215 |     // A Label records a point in the generated instruction stream, typically such that | 
| 216 |     // it may be used as a destination for a jump. | 
| 217 |     class Label { | 
| 218 |         template<class TemplateAssemblerType> | 
| 219 |         friend class AbstractMacroAssembler; | 
| 220 |         friend class Jump; | 
| 221 |         friend class MacroAssemblerCodeRef; | 
| 222 |         friend class LinkBuffer; | 
| 223 |  | 
| 224 |     public: | 
| 225 |         Label() | 
| 226 |         { | 
| 227 |         } | 
| 228 |  | 
| 229 |         Label(AbstractMacroAssembler<AssemblerType>* masm) | 
| 230 |             : m_label(masm->m_assembler.label()) | 
| 231 |         { | 
| 232 |         } | 
| 233 |          | 
| 234 |         bool isUsed() const { return m_label.isUsed(); } | 
| 235 |         void used() { m_label.used(); } | 
| 236 |     private: | 
| 237 |         JmpDst m_label; | 
| 238 |     }; | 
| 239 |  | 
| 240 |     // DataLabelPtr: | 
| 241 |     // | 
| 242 |     // A DataLabelPtr is used to refer to a location in the code containing a pointer to be | 
| 243 |     // patched after the code has been generated. | 
| 244 |     class DataLabelPtr { | 
| 245 |         template<class TemplateAssemblerType> | 
| 246 |         friend class AbstractMacroAssembler; | 
| 247 |         friend class LinkBuffer; | 
| 248 |     public: | 
| 249 |         DataLabelPtr() | 
| 250 |         { | 
| 251 |         } | 
| 252 |  | 
| 253 |         DataLabelPtr(AbstractMacroAssembler<AssemblerType>* masm) | 
| 254 |             : m_label(masm->m_assembler.label()) | 
| 255 |         { | 
| 256 |         } | 
| 257 |          | 
| 258 |     private: | 
| 259 |         JmpDst m_label; | 
| 260 |     }; | 
| 261 |  | 
| 262 |     // DataLabel32: | 
| 263 |     // | 
| 264 |     // A DataLabelPtr is used to refer to a location in the code containing a pointer to be | 
| 265 |     // patched after the code has been generated. | 
| 266 |     class DataLabel32 { | 
| 267 |         template<class TemplateAssemblerType> | 
| 268 |         friend class AbstractMacroAssembler; | 
| 269 |         friend class LinkBuffer; | 
| 270 |     public: | 
| 271 |         DataLabel32() | 
| 272 |         { | 
| 273 |         } | 
| 274 |  | 
| 275 |         DataLabel32(AbstractMacroAssembler<AssemblerType>* masm) | 
| 276 |             : m_label(masm->m_assembler.label()) | 
| 277 |         { | 
| 278 |         } | 
| 279 |  | 
| 280 |     private: | 
| 281 |         JmpDst m_label; | 
| 282 |     }; | 
| 283 |  | 
| 284 |     // Call: | 
| 285 |     // | 
| 286 |     // A Call object is a reference to a call instruction that has been planted | 
| 287 |     // into the code buffer - it is typically used to link the call, setting the | 
| 288 |     // relative offset such that when executed it will call to the desired | 
| 289 |     // destination. | 
| 290 |     class Call { | 
| 291 |         template<class TemplateAssemblerType> | 
| 292 |         friend class AbstractMacroAssembler; | 
| 293 |  | 
| 294 |     public: | 
| 295 |         enum Flags { | 
| 296 |             None = 0x0, | 
| 297 |             Linkable = 0x1, | 
| 298 |             Near = 0x2, | 
| 299 |             LinkableNear = 0x3, | 
| 300 |         }; | 
| 301 |  | 
| 302 |         Call() | 
| 303 |             : m_flags(None) | 
| 304 |         { | 
| 305 |         } | 
| 306 |          | 
| 307 |         Call(JmpSrc jmp, Flags flags) | 
| 308 |             : m_jmp(jmp) | 
| 309 |             , m_flags(flags) | 
| 310 |         { | 
| 311 |         } | 
| 312 |  | 
| 313 |         bool isFlagSet(Flags flag) | 
| 314 |         { | 
| 315 |             return m_flags & flag; | 
| 316 |         } | 
| 317 |  | 
| 318 |         static Call fromTailJump(Jump jump) | 
| 319 |         { | 
| 320 |             return Call(jump.m_jmp, Linkable); | 
| 321 |         } | 
| 322 |  | 
| 323 |         JmpSrc m_jmp; | 
| 324 |     private: | 
| 325 |         Flags m_flags; | 
| 326 |     }; | 
| 327 |  | 
| 328 |     // Jump: | 
| 329 |     // | 
| 330 |     // A jump object is a reference to a jump instruction that has been planted | 
| 331 |     // into the code buffer - it is typically used to link the jump, setting the | 
| 332 |     // relative offset such that when executed it will jump to the desired | 
| 333 |     // destination. | 
| 334 |     class Jump { | 
| 335 |         template<class TemplateAssemblerType> | 
| 336 |         friend class AbstractMacroAssembler; | 
| 337 |         friend class Call; | 
| 338 |         friend class LinkBuffer; | 
| 339 |     public: | 
| 340 |         Jump() | 
| 341 |         { | 
| 342 |         } | 
| 343 |          | 
| 344 |         Jump(JmpSrc jmp)     | 
| 345 |             : m_jmp(jmp) | 
| 346 |         { | 
| 347 |         } | 
| 348 |          | 
| 349 |         void link(AbstractMacroAssembler<AssemblerType>* masm) | 
| 350 |         { | 
| 351 |             masm->m_assembler.linkJump(m_jmp, masm->m_assembler.label()); | 
| 352 |         } | 
| 353 |          | 
| 354 |         void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) | 
| 355 |         { | 
| 356 |             masm->m_assembler.linkJump(m_jmp, label.m_label); | 
| 357 |         } | 
| 358 |  | 
| 359 |     private: | 
| 360 |         JmpSrc m_jmp; | 
| 361 |     }; | 
| 362 |  | 
| 363 |     // JumpList: | 
| 364 |     // | 
| 365 |     // A JumpList is a set of Jump objects. | 
| 366 |     // All jumps in the set will be linked to the same destination. | 
| 367 |     class JumpList { | 
| 368 |         friend class LinkBuffer; | 
| 369 |  | 
| 370 |     public: | 
| 371 |         typedef Vector<Jump, 16> JumpVector; | 
| 372 |  | 
| 373 |         void link(AbstractMacroAssembler<AssemblerType>* masm) | 
| 374 |         { | 
| 375 |             size_t size = m_jumps.size(); | 
| 376 |             for (size_t i = 0; i < size; ++i) | 
| 377 |                 m_jumps[i].link(masm); | 
| 378 |             m_jumps.clear(); | 
| 379 |         } | 
| 380 |          | 
| 381 |         void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) | 
| 382 |         { | 
| 383 |             size_t size = m_jumps.size(); | 
| 384 |             for (size_t i = 0; i < size; ++i) | 
| 385 |                 m_jumps[i].linkTo(label, masm); | 
| 386 |             m_jumps.clear(); | 
| 387 |         } | 
| 388 |          | 
| 389 |         void append(Jump jump) | 
| 390 |         { | 
| 391 |             m_jumps.append(jump); | 
| 392 |         } | 
| 393 |          | 
| 394 |         void append(JumpList& other) | 
| 395 |         { | 
| 396 |             m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); | 
| 397 |         } | 
| 398 |  | 
| 399 |         bool empty() | 
| 400 |         { | 
| 401 |             return !m_jumps.size(); | 
| 402 |         } | 
| 403 |          | 
| 404 |         const JumpVector& jumps() { return m_jumps; } | 
| 405 |  | 
| 406 |     private: | 
| 407 |         JumpVector m_jumps; | 
| 408 |     }; | 
| 409 |  | 
| 410 |  | 
| 411 |     // Section 3: Misc admin methods | 
| 412 |  | 
| 413 |     static CodePtr trampolineAt(CodeRef ref, Label label) | 
| 414 |     { | 
| 415 |         return CodePtr(AssemblerType::getRelocatedAddress(ref.m_code.dataLocation(), label.m_label)); | 
| 416 |     } | 
| 417 |  | 
| 418 |     size_t size() | 
| 419 |     { | 
| 420 |         return m_assembler.size(); | 
| 421 |     } | 
| 422 |  | 
| 423 |     Label label() | 
| 424 |     { | 
| 425 |         return Label(this); | 
| 426 |     } | 
| 427 |      | 
| 428 |     Label align() | 
| 429 |     { | 
| 430 |         m_assembler.align(16); | 
| 431 |         return Label(this); | 
| 432 |     } | 
| 433 |  | 
| 434 |     ptrdiff_t differenceBetween(Label from, Jump to) | 
| 435 |     { | 
| 436 |         return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); | 
| 437 |     } | 
| 438 |  | 
| 439 |     ptrdiff_t differenceBetween(Label from, Call to) | 
| 440 |     { | 
| 441 |         return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); | 
| 442 |     } | 
| 443 |  | 
| 444 |     ptrdiff_t differenceBetween(Label from, Label to) | 
| 445 |     { | 
| 446 |         return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); | 
| 447 |     } | 
| 448 |  | 
| 449 |     ptrdiff_t differenceBetween(Label from, DataLabelPtr to) | 
| 450 |     { | 
| 451 |         return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); | 
| 452 |     } | 
| 453 |  | 
| 454 |     ptrdiff_t differenceBetween(Label from, DataLabel32 to) | 
| 455 |     { | 
| 456 |         return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); | 
| 457 |     } | 
| 458 |  | 
| 459 |     ptrdiff_t differenceBetween(DataLabelPtr from, Jump to) | 
| 460 |     { | 
| 461 |         return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); | 
| 462 |     } | 
| 463 |  | 
| 464 |     ptrdiff_t differenceBetween(DataLabelPtr from, DataLabelPtr to) | 
| 465 |     { | 
| 466 |         return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); | 
| 467 |     } | 
| 468 |  | 
| 469 |     ptrdiff_t differenceBetween(DataLabelPtr from, Call to) | 
| 470 |     { | 
| 471 |         return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); | 
| 472 |     } | 
| 473 |  | 
| 474 | protected: | 
| 475 |     AssemblerType m_assembler; | 
| 476 |  | 
| 477 |     friend class LinkBuffer; | 
| 478 |     friend class RepatchBuffer; | 
| 479 |  | 
| 480 |     static void linkJump(void* code, Jump jump, CodeLocationLabel target) | 
| 481 |     { | 
| 482 |         AssemblerType::linkJump(code, jump.m_jmp, target.dataLocation()); | 
| 483 |     } | 
| 484 |  | 
| 485 |     static void linkPointer(void* code, typename AssemblerType::JmpDst label, void* value) | 
| 486 |     { | 
| 487 |         AssemblerType::linkPointer(code, label, value); | 
| 488 |     } | 
| 489 |  | 
| 490 |     static void* getLinkerAddress(void* code, typename AssemblerType::JmpSrc label) | 
| 491 |     { | 
| 492 |         return AssemblerType::getRelocatedAddress(code, label); | 
| 493 |     } | 
| 494 |  | 
| 495 |     static void* getLinkerAddress(void* code, typename AssemblerType::JmpDst label) | 
| 496 |     { | 
| 497 |         return AssemblerType::getRelocatedAddress(code, label); | 
| 498 |     } | 
| 499 |  | 
| 500 |     static unsigned getLinkerCallReturnOffset(Call call) | 
| 501 |     { | 
| 502 |         return AssemblerType::getCallReturnOffset(call.m_jmp); | 
| 503 |     } | 
| 504 |  | 
| 505 |     static void repatchJump(CodeLocationJump jump, CodeLocationLabel destination) | 
| 506 |     { | 
| 507 |         AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation()); | 
| 508 |     } | 
| 509 |  | 
| 510 |     static void repatchNearCall(CodeLocationNearCall nearCall, CodeLocationLabel destination) | 
| 511 |     { | 
| 512 |         AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress()); | 
| 513 |     } | 
| 514 |  | 
| 515 |     static void repatchInt32(CodeLocationDataLabel32 dataLabel32, int32_t value) | 
| 516 |     { | 
| 517 |         AssemblerType::repatchInt32(dataLabel32.dataLocation(), value); | 
| 518 |     } | 
| 519 |  | 
| 520 |     static void repatchPointer(CodeLocationDataLabelPtr dataLabelPtr, void* value) | 
| 521 |     { | 
| 522 |         AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value); | 
| 523 |     } | 
| 524 |  | 
| 525 |     static void repatchLoadPtrToLEA(CodeLocationInstruction instruction) | 
| 526 |     { | 
| 527 |         AssemblerType::repatchLoadPtrToLEA(instruction.dataLocation()); | 
| 528 |     } | 
| 529 | }; | 
| 530 |  | 
| 531 | } // namespace JSC | 
| 532 |  | 
| 533 | #endif // ENABLE(ASSEMBLER) | 
| 534 |  | 
| 535 | #endif // AbstractMacroAssembler_h | 
| 536 |  |