| 1 | /* |
| 2 | * Copyright (C) 2008 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #ifndef X86Assembler_h |
| 27 | #define X86Assembler_h |
| 28 | |
| 29 | #include <wtf/Platform.h> |
| 30 | |
| 31 | #if ENABLE(ASSEMBLER) && (CPU(X86) || CPU(X86_64)) |
| 32 | |
| 33 | #include "AssemblerBuffer.h" |
| 34 | #include <stdint.h> |
| 35 | #include <wtf/Assertions.h> |
| 36 | #include <wtf/Vector.h> |
| 37 | |
| 38 | namespace JSC { |
| 39 | |
| 40 | inline bool CAN_SIGN_EXTEND_8_32(int32_t value) { return value == (int32_t)(signed char)value; } |
| 41 | |
| 42 | namespace X86Registers { |
| 43 | typedef enum { |
| 44 | eax, |
| 45 | ecx, |
| 46 | edx, |
| 47 | ebx, |
| 48 | esp, |
| 49 | ebp, |
| 50 | esi, |
| 51 | edi, |
| 52 | |
| 53 | #if CPU(X86_64) |
| 54 | r8, |
| 55 | r9, |
| 56 | r10, |
| 57 | r11, |
| 58 | r12, |
| 59 | r13, |
| 60 | r14, |
| 61 | r15, |
| 62 | #endif |
| 63 | } RegisterID; |
| 64 | |
| 65 | typedef enum { |
| 66 | xmm0, |
| 67 | xmm1, |
| 68 | xmm2, |
| 69 | xmm3, |
| 70 | xmm4, |
| 71 | xmm5, |
| 72 | xmm6, |
| 73 | xmm7, |
| 74 | } XMMRegisterID; |
| 75 | } |
| 76 | |
| 77 | class X86Assembler { |
| 78 | public: |
| 79 | typedef X86Registers::RegisterID RegisterID; |
| 80 | typedef X86Registers::XMMRegisterID XMMRegisterID; |
| 81 | typedef XMMRegisterID FPRegisterID; |
| 82 | |
| 83 | typedef enum { |
| 84 | ConditionO, |
| 85 | ConditionNO, |
| 86 | ConditionB, |
| 87 | ConditionAE, |
| 88 | ConditionE, |
| 89 | ConditionNE, |
| 90 | ConditionBE, |
| 91 | ConditionA, |
| 92 | ConditionS, |
| 93 | ConditionNS, |
| 94 | ConditionP, |
| 95 | ConditionNP, |
| 96 | ConditionL, |
| 97 | ConditionGE, |
| 98 | ConditionLE, |
| 99 | ConditionG, |
| 100 | |
| 101 | ConditionC = ConditionB, |
| 102 | ConditionNC = ConditionAE, |
| 103 | } Condition; |
| 104 | |
| 105 | private: |
| 106 | typedef enum { |
| 107 | OP_ADD_EvGv = 0x01, |
| 108 | OP_ADD_GvEv = 0x03, |
| 109 | OP_OR_EvGv = 0x09, |
| 110 | OP_OR_GvEv = 0x0B, |
| 111 | OP_2BYTE_ESCAPE = 0x0F, |
| 112 | OP_AND_EvGv = 0x21, |
| 113 | OP_AND_GvEv = 0x23, |
| 114 | OP_SUB_EvGv = 0x29, |
| 115 | OP_SUB_GvEv = 0x2B, |
| 116 | PRE_PREDICT_BRANCH_NOT_TAKEN = 0x2E, |
| 117 | OP_XOR_EvGv = 0x31, |
| 118 | OP_XOR_GvEv = 0x33, |
| 119 | OP_CMP_EvGv = 0x39, |
| 120 | OP_CMP_GvEv = 0x3B, |
| 121 | #if CPU(X86_64) |
| 122 | PRE_REX = 0x40, |
| 123 | #endif |
| 124 | OP_PUSH_EAX = 0x50, |
| 125 | OP_POP_EAX = 0x58, |
| 126 | #if CPU(X86_64) |
| 127 | OP_MOVSXD_GvEv = 0x63, |
| 128 | #endif |
| 129 | PRE_OPERAND_SIZE = 0x66, |
| 130 | PRE_SSE_66 = 0x66, |
| 131 | OP_PUSH_Iz = 0x68, |
| 132 | OP_IMUL_GvEvIz = 0x69, |
| 133 | OP_GROUP1_EvIz = 0x81, |
| 134 | OP_GROUP1_EvIb = 0x83, |
| 135 | OP_TEST_EvGv = 0x85, |
| 136 | OP_XCHG_EvGv = 0x87, |
| 137 | OP_MOV_EvGv = 0x89, |
| 138 | OP_MOV_GvEv = 0x8B, |
| 139 | OP_LEA = 0x8D, |
| 140 | OP_GROUP1A_Ev = 0x8F, |
| 141 | OP_CDQ = 0x99, |
| 142 | OP_MOV_EAXOv = 0xA1, |
| 143 | OP_MOV_OvEAX = 0xA3, |
| 144 | OP_MOV_EAXIv = 0xB8, |
| 145 | OP_GROUP2_EvIb = 0xC1, |
| 146 | OP_RET = 0xC3, |
| 147 | OP_GROUP11_EvIz = 0xC7, |
| 148 | OP_INT3 = 0xCC, |
| 149 | OP_GROUP2_Ev1 = 0xD1, |
| 150 | OP_GROUP2_EvCL = 0xD3, |
| 151 | OP_CALL_rel32 = 0xE8, |
| 152 | OP_JMP_rel32 = 0xE9, |
| 153 | PRE_SSE_F2 = 0xF2, |
| 154 | OP_HLT = 0xF4, |
| 155 | OP_GROUP3_EbIb = 0xF6, |
| 156 | OP_GROUP3_Ev = 0xF7, |
| 157 | OP_GROUP3_EvIz = 0xF7, // OP_GROUP3_Ev has an immediate, when instruction is a test. |
| 158 | OP_GROUP5_Ev = 0xFF, |
| 159 | } OneByteOpcodeID; |
| 160 | |
| 161 | typedef enum { |
| 162 | OP2_MOVSD_VsdWsd = 0x10, |
| 163 | OP2_MOVSD_WsdVsd = 0x11, |
| 164 | OP2_CVTSI2SD_VsdEd = 0x2A, |
| 165 | OP2_CVTTSD2SI_GdWsd = 0x2C, |
| 166 | OP2_UCOMISD_VsdWsd = 0x2E, |
| 167 | OP2_ADDSD_VsdWsd = 0x58, |
| 168 | OP2_MULSD_VsdWsd = 0x59, |
| 169 | OP2_SUBSD_VsdWsd = 0x5C, |
| 170 | OP2_DIVSD_VsdWsd = 0x5E, |
| 171 | OP2_XORPD_VpdWpd = 0x57, |
| 172 | OP2_MOVD_VdEd = 0x6E, |
| 173 | OP2_MOVD_EdVd = 0x7E, |
| 174 | OP2_JCC_rel32 = 0x80, |
| 175 | OP_SETCC = 0x90, |
| 176 | OP2_IMUL_GvEv = 0xAF, |
| 177 | OP2_MOVZX_GvEb = 0xB6, |
| 178 | OP2_MOVZX_GvEw = 0xB7, |
| 179 | OP2_PEXTRW_GdUdIb = 0xC5, |
| 180 | } TwoByteOpcodeID; |
| 181 | |
| 182 | TwoByteOpcodeID jccRel32(Condition cond) |
| 183 | { |
| 184 | return (TwoByteOpcodeID)(OP2_JCC_rel32 + cond); |
| 185 | } |
| 186 | |
| 187 | TwoByteOpcodeID setccOpcode(Condition cond) |
| 188 | { |
| 189 | return (TwoByteOpcodeID)(OP_SETCC + cond); |
| 190 | } |
| 191 | |
| 192 | typedef enum { |
| 193 | GROUP1_OP_ADD = 0, |
| 194 | GROUP1_OP_OR = 1, |
| 195 | GROUP1_OP_ADC = 2, |
| 196 | GROUP1_OP_AND = 4, |
| 197 | GROUP1_OP_SUB = 5, |
| 198 | GROUP1_OP_XOR = 6, |
| 199 | GROUP1_OP_CMP = 7, |
| 200 | |
| 201 | GROUP1A_OP_POP = 0, |
| 202 | |
| 203 | GROUP2_OP_SHL = 4, |
| 204 | GROUP2_OP_SAR = 7, |
| 205 | |
| 206 | GROUP3_OP_TEST = 0, |
| 207 | GROUP3_OP_NOT = 2, |
| 208 | GROUP3_OP_NEG = 3, |
| 209 | GROUP3_OP_IDIV = 7, |
| 210 | |
| 211 | GROUP5_OP_CALLN = 2, |
| 212 | GROUP5_OP_JMPN = 4, |
| 213 | GROUP5_OP_PUSH = 6, |
| 214 | |
| 215 | GROUP11_MOV = 0, |
| 216 | } GroupOpcodeID; |
| 217 | |
| 218 | class X86InstructionFormatter; |
| 219 | public: |
| 220 | |
| 221 | class JmpSrc { |
| 222 | friend class X86Assembler; |
| 223 | friend class X86InstructionFormatter; |
| 224 | public: |
| 225 | JmpSrc() |
| 226 | : m_offset(-1) |
| 227 | { |
| 228 | } |
| 229 | |
| 230 | private: |
| 231 | JmpSrc(int offset) |
| 232 | : m_offset(offset) |
| 233 | { |
| 234 | } |
| 235 | |
| 236 | int m_offset; |
| 237 | }; |
| 238 | |
| 239 | class JmpDst { |
| 240 | friend class X86Assembler; |
| 241 | friend class X86InstructionFormatter; |
| 242 | public: |
| 243 | JmpDst() |
| 244 | : m_offset(-1) |
| 245 | , m_used(false) |
| 246 | { |
| 247 | } |
| 248 | |
| 249 | bool isUsed() const { return m_used; } |
| 250 | void used() { m_used = true; } |
| 251 | private: |
| 252 | JmpDst(int offset) |
| 253 | : m_offset(offset) |
| 254 | , m_used(false) |
| 255 | { |
| 256 | ASSERT(m_offset == offset); |
| 257 | } |
| 258 | |
| 259 | int m_offset : 31; |
| 260 | bool m_used : 1; |
| 261 | }; |
| 262 | |
| 263 | X86Assembler() |
| 264 | { |
| 265 | } |
| 266 | |
| 267 | size_t size() const { return m_formatter.size(); } |
| 268 | |
| 269 | // Stack operations: |
| 270 | |
| 271 | void push_r(RegisterID reg) |
| 272 | { |
| 273 | m_formatter.oneByteOp(opcode: OP_PUSH_EAX, reg); |
| 274 | } |
| 275 | |
| 276 | void pop_r(RegisterID reg) |
| 277 | { |
| 278 | m_formatter.oneByteOp(opcode: OP_POP_EAX, reg); |
| 279 | } |
| 280 | |
| 281 | void push_i32(int imm) |
| 282 | { |
| 283 | m_formatter.oneByteOp(opcode: OP_PUSH_Iz); |
| 284 | m_formatter.immediate32(imm); |
| 285 | } |
| 286 | |
| 287 | void push_m(int offset, RegisterID base) |
| 288 | { |
| 289 | m_formatter.oneByteOp(opcode: OP_GROUP5_Ev, reg: GROUP5_OP_PUSH, base, offset); |
| 290 | } |
| 291 | |
| 292 | void pop_m(int offset, RegisterID base) |
| 293 | { |
| 294 | m_formatter.oneByteOp(opcode: OP_GROUP1A_Ev, reg: GROUP1A_OP_POP, base, offset); |
| 295 | } |
| 296 | |
| 297 | // Arithmetic operations: |
| 298 | |
| 299 | #if !CPU(X86_64) |
| 300 | void adcl_im(int imm, void* addr) |
| 301 | { |
| 302 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 303 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADC, addr); |
| 304 | m_formatter.immediate8(imm); |
| 305 | } else { |
| 306 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADC, addr); |
| 307 | m_formatter.immediate32(imm); |
| 308 | } |
| 309 | } |
| 310 | #endif |
| 311 | |
| 312 | void addl_rr(RegisterID src, RegisterID dst) |
| 313 | { |
| 314 | m_formatter.oneByteOp(opcode: OP_ADD_EvGv, reg: src, rm: dst); |
| 315 | } |
| 316 | |
| 317 | void addl_mr(int offset, RegisterID base, RegisterID dst) |
| 318 | { |
| 319 | m_formatter.oneByteOp(opcode: OP_ADD_GvEv, reg: dst, base, offset); |
| 320 | } |
| 321 | |
| 322 | void addl_rm(RegisterID src, int offset, RegisterID base) |
| 323 | { |
| 324 | m_formatter.oneByteOp(opcode: OP_ADD_EvGv, reg: src, base, offset); |
| 325 | } |
| 326 | |
| 327 | void addl_ir(int imm, RegisterID dst) |
| 328 | { |
| 329 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 330 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_ADD, rm: dst); |
| 331 | m_formatter.immediate8(imm); |
| 332 | } else { |
| 333 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_ADD, rm: dst); |
| 334 | m_formatter.immediate32(imm); |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | void addl_im(int imm, int offset, RegisterID base) |
| 339 | { |
| 340 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 341 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_ADD, base, offset); |
| 342 | m_formatter.immediate8(imm); |
| 343 | } else { |
| 344 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_ADD, base, offset); |
| 345 | m_formatter.immediate32(imm); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | #if CPU(X86_64) |
| 350 | void addq_rr(RegisterID src, RegisterID dst) |
| 351 | { |
| 352 | m_formatter.oneByteOp64(opcode: OP_ADD_EvGv, reg: src, rm: dst); |
| 353 | } |
| 354 | |
| 355 | void addq_ir(int imm, RegisterID dst) |
| 356 | { |
| 357 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 358 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_ADD, rm: dst); |
| 359 | m_formatter.immediate8(imm); |
| 360 | } else { |
| 361 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_ADD, rm: dst); |
| 362 | m_formatter.immediate32(imm); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | void addq_im(int imm, int offset, RegisterID base) |
| 367 | { |
| 368 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 369 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_ADD, base, offset); |
| 370 | m_formatter.immediate8(imm); |
| 371 | } else { |
| 372 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_ADD, base, offset); |
| 373 | m_formatter.immediate32(imm); |
| 374 | } |
| 375 | } |
| 376 | #else |
| 377 | void addl_im(int imm, void* addr) |
| 378 | { |
| 379 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 380 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, addr); |
| 381 | m_formatter.immediate8(imm); |
| 382 | } else { |
| 383 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, addr); |
| 384 | m_formatter.immediate32(imm); |
| 385 | } |
| 386 | } |
| 387 | #endif |
| 388 | |
| 389 | void andl_rr(RegisterID src, RegisterID dst) |
| 390 | { |
| 391 | m_formatter.oneByteOp(opcode: OP_AND_EvGv, reg: src, rm: dst); |
| 392 | } |
| 393 | |
| 394 | void andl_mr(int offset, RegisterID base, RegisterID dst) |
| 395 | { |
| 396 | m_formatter.oneByteOp(opcode: OP_AND_GvEv, reg: dst, base, offset); |
| 397 | } |
| 398 | |
| 399 | void andl_rm(RegisterID src, int offset, RegisterID base) |
| 400 | { |
| 401 | m_formatter.oneByteOp(opcode: OP_AND_EvGv, reg: src, base, offset); |
| 402 | } |
| 403 | |
| 404 | void andl_ir(int imm, RegisterID dst) |
| 405 | { |
| 406 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 407 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_AND, rm: dst); |
| 408 | m_formatter.immediate8(imm); |
| 409 | } else { |
| 410 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_AND, rm: dst); |
| 411 | m_formatter.immediate32(imm); |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | void andl_im(int imm, int offset, RegisterID base) |
| 416 | { |
| 417 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 418 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_AND, base, offset); |
| 419 | m_formatter.immediate8(imm); |
| 420 | } else { |
| 421 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_AND, base, offset); |
| 422 | m_formatter.immediate32(imm); |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | #if CPU(X86_64) |
| 427 | void andq_rr(RegisterID src, RegisterID dst) |
| 428 | { |
| 429 | m_formatter.oneByteOp64(opcode: OP_AND_EvGv, reg: src, rm: dst); |
| 430 | } |
| 431 | |
| 432 | void andq_ir(int imm, RegisterID dst) |
| 433 | { |
| 434 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 435 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_AND, rm: dst); |
| 436 | m_formatter.immediate8(imm); |
| 437 | } else { |
| 438 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_AND, rm: dst); |
| 439 | m_formatter.immediate32(imm); |
| 440 | } |
| 441 | } |
| 442 | #else |
| 443 | void andl_im(int imm, void* addr) |
| 444 | { |
| 445 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 446 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, addr); |
| 447 | m_formatter.immediate8(imm); |
| 448 | } else { |
| 449 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, addr); |
| 450 | m_formatter.immediate32(imm); |
| 451 | } |
| 452 | } |
| 453 | #endif |
| 454 | |
| 455 | void negl_r(RegisterID dst) |
| 456 | { |
| 457 | m_formatter.oneByteOp(opcode: OP_GROUP3_Ev, reg: GROUP3_OP_NEG, rm: dst); |
| 458 | } |
| 459 | |
| 460 | void negl_m(int offset, RegisterID base) |
| 461 | { |
| 462 | m_formatter.oneByteOp(opcode: OP_GROUP3_Ev, reg: GROUP3_OP_NEG, base, offset); |
| 463 | } |
| 464 | |
| 465 | void notl_r(RegisterID dst) |
| 466 | { |
| 467 | m_formatter.oneByteOp(opcode: OP_GROUP3_Ev, reg: GROUP3_OP_NOT, rm: dst); |
| 468 | } |
| 469 | |
| 470 | void notl_m(int offset, RegisterID base) |
| 471 | { |
| 472 | m_formatter.oneByteOp(opcode: OP_GROUP3_Ev, reg: GROUP3_OP_NOT, base, offset); |
| 473 | } |
| 474 | |
| 475 | void orl_rr(RegisterID src, RegisterID dst) |
| 476 | { |
| 477 | m_formatter.oneByteOp(opcode: OP_OR_EvGv, reg: src, rm: dst); |
| 478 | } |
| 479 | |
| 480 | void orl_mr(int offset, RegisterID base, RegisterID dst) |
| 481 | { |
| 482 | m_formatter.oneByteOp(opcode: OP_OR_GvEv, reg: dst, base, offset); |
| 483 | } |
| 484 | |
| 485 | void orl_rm(RegisterID src, int offset, RegisterID base) |
| 486 | { |
| 487 | m_formatter.oneByteOp(opcode: OP_OR_EvGv, reg: src, base, offset); |
| 488 | } |
| 489 | |
| 490 | void orl_ir(int imm, RegisterID dst) |
| 491 | { |
| 492 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 493 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_OR, rm: dst); |
| 494 | m_formatter.immediate8(imm); |
| 495 | } else { |
| 496 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_OR, rm: dst); |
| 497 | m_formatter.immediate32(imm); |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | void orl_im(int imm, int offset, RegisterID base) |
| 502 | { |
| 503 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 504 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_OR, base, offset); |
| 505 | m_formatter.immediate8(imm); |
| 506 | } else { |
| 507 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_OR, base, offset); |
| 508 | m_formatter.immediate32(imm); |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | #if CPU(X86_64) |
| 513 | void orq_rr(RegisterID src, RegisterID dst) |
| 514 | { |
| 515 | m_formatter.oneByteOp64(opcode: OP_OR_EvGv, reg: src, rm: dst); |
| 516 | } |
| 517 | |
| 518 | void orq_ir(int imm, RegisterID dst) |
| 519 | { |
| 520 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 521 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_OR, rm: dst); |
| 522 | m_formatter.immediate8(imm); |
| 523 | } else { |
| 524 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_OR, rm: dst); |
| 525 | m_formatter.immediate32(imm); |
| 526 | } |
| 527 | } |
| 528 | #else |
| 529 | void orl_im(int imm, void* addr) |
| 530 | { |
| 531 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 532 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, addr); |
| 533 | m_formatter.immediate8(imm); |
| 534 | } else { |
| 535 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, addr); |
| 536 | m_formatter.immediate32(imm); |
| 537 | } |
| 538 | } |
| 539 | #endif |
| 540 | |
| 541 | void subl_rr(RegisterID src, RegisterID dst) |
| 542 | { |
| 543 | m_formatter.oneByteOp(opcode: OP_SUB_EvGv, reg: src, rm: dst); |
| 544 | } |
| 545 | |
| 546 | void subl_mr(int offset, RegisterID base, RegisterID dst) |
| 547 | { |
| 548 | m_formatter.oneByteOp(opcode: OP_SUB_GvEv, reg: dst, base, offset); |
| 549 | } |
| 550 | |
| 551 | void subl_rm(RegisterID src, int offset, RegisterID base) |
| 552 | { |
| 553 | m_formatter.oneByteOp(opcode: OP_SUB_EvGv, reg: src, base, offset); |
| 554 | } |
| 555 | |
| 556 | void subl_ir(int imm, RegisterID dst) |
| 557 | { |
| 558 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 559 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_SUB, rm: dst); |
| 560 | m_formatter.immediate8(imm); |
| 561 | } else { |
| 562 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_SUB, rm: dst); |
| 563 | m_formatter.immediate32(imm); |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | void subl_im(int imm, int offset, RegisterID base) |
| 568 | { |
| 569 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 570 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_SUB, base, offset); |
| 571 | m_formatter.immediate8(imm); |
| 572 | } else { |
| 573 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_SUB, base, offset); |
| 574 | m_formatter.immediate32(imm); |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | #if CPU(X86_64) |
| 579 | void subq_rr(RegisterID src, RegisterID dst) |
| 580 | { |
| 581 | m_formatter.oneByteOp64(opcode: OP_SUB_EvGv, reg: src, rm: dst); |
| 582 | } |
| 583 | |
| 584 | void subq_ir(int imm, RegisterID dst) |
| 585 | { |
| 586 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 587 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_SUB, rm: dst); |
| 588 | m_formatter.immediate8(imm); |
| 589 | } else { |
| 590 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_SUB, rm: dst); |
| 591 | m_formatter.immediate32(imm); |
| 592 | } |
| 593 | } |
| 594 | #else |
| 595 | void subl_im(int imm, void* addr) |
| 596 | { |
| 597 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 598 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, addr); |
| 599 | m_formatter.immediate8(imm); |
| 600 | } else { |
| 601 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, addr); |
| 602 | m_formatter.immediate32(imm); |
| 603 | } |
| 604 | } |
| 605 | #endif |
| 606 | |
| 607 | void xorl_rr(RegisterID src, RegisterID dst) |
| 608 | { |
| 609 | m_formatter.oneByteOp(opcode: OP_XOR_EvGv, reg: src, rm: dst); |
| 610 | } |
| 611 | |
| 612 | void xorl_mr(int offset, RegisterID base, RegisterID dst) |
| 613 | { |
| 614 | m_formatter.oneByteOp(opcode: OP_XOR_GvEv, reg: dst, base, offset); |
| 615 | } |
| 616 | |
| 617 | void xorl_rm(RegisterID src, int offset, RegisterID base) |
| 618 | { |
| 619 | m_formatter.oneByteOp(opcode: OP_XOR_EvGv, reg: src, base, offset); |
| 620 | } |
| 621 | |
| 622 | void xorl_im(int imm, int offset, RegisterID base) |
| 623 | { |
| 624 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 625 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_XOR, base, offset); |
| 626 | m_formatter.immediate8(imm); |
| 627 | } else { |
| 628 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_XOR, base, offset); |
| 629 | m_formatter.immediate32(imm); |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | void xorl_ir(int imm, RegisterID dst) |
| 634 | { |
| 635 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 636 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_XOR, rm: dst); |
| 637 | m_formatter.immediate8(imm); |
| 638 | } else { |
| 639 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_XOR, rm: dst); |
| 640 | m_formatter.immediate32(imm); |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | #if CPU(X86_64) |
| 645 | void xorq_rr(RegisterID src, RegisterID dst) |
| 646 | { |
| 647 | m_formatter.oneByteOp64(opcode: OP_XOR_EvGv, reg: src, rm: dst); |
| 648 | } |
| 649 | |
| 650 | void xorq_ir(int imm, RegisterID dst) |
| 651 | { |
| 652 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 653 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_XOR, rm: dst); |
| 654 | m_formatter.immediate8(imm); |
| 655 | } else { |
| 656 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_XOR, rm: dst); |
| 657 | m_formatter.immediate32(imm); |
| 658 | } |
| 659 | } |
| 660 | #endif |
| 661 | |
| 662 | void sarl_i8r(int imm, RegisterID dst) |
| 663 | { |
| 664 | if (imm == 1) |
| 665 | m_formatter.oneByteOp(opcode: OP_GROUP2_Ev1, reg: GROUP2_OP_SAR, rm: dst); |
| 666 | else { |
| 667 | m_formatter.oneByteOp(opcode: OP_GROUP2_EvIb, reg: GROUP2_OP_SAR, rm: dst); |
| 668 | m_formatter.immediate8(imm); |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | void sarl_CLr(RegisterID dst) |
| 673 | { |
| 674 | m_formatter.oneByteOp(opcode: OP_GROUP2_EvCL, reg: GROUP2_OP_SAR, rm: dst); |
| 675 | } |
| 676 | |
| 677 | void shll_i8r(int imm, RegisterID dst) |
| 678 | { |
| 679 | if (imm == 1) |
| 680 | m_formatter.oneByteOp(opcode: OP_GROUP2_Ev1, reg: GROUP2_OP_SHL, rm: dst); |
| 681 | else { |
| 682 | m_formatter.oneByteOp(opcode: OP_GROUP2_EvIb, reg: GROUP2_OP_SHL, rm: dst); |
| 683 | m_formatter.immediate8(imm); |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | void shll_CLr(RegisterID dst) |
| 688 | { |
| 689 | m_formatter.oneByteOp(opcode: OP_GROUP2_EvCL, reg: GROUP2_OP_SHL, rm: dst); |
| 690 | } |
| 691 | |
| 692 | #if CPU(X86_64) |
| 693 | void sarq_CLr(RegisterID dst) |
| 694 | { |
| 695 | m_formatter.oneByteOp64(opcode: OP_GROUP2_EvCL, reg: GROUP2_OP_SAR, rm: dst); |
| 696 | } |
| 697 | |
| 698 | void sarq_i8r(int imm, RegisterID dst) |
| 699 | { |
| 700 | if (imm == 1) |
| 701 | m_formatter.oneByteOp64(opcode: OP_GROUP2_Ev1, reg: GROUP2_OP_SAR, rm: dst); |
| 702 | else { |
| 703 | m_formatter.oneByteOp64(opcode: OP_GROUP2_EvIb, reg: GROUP2_OP_SAR, rm: dst); |
| 704 | m_formatter.immediate8(imm); |
| 705 | } |
| 706 | } |
| 707 | #endif |
| 708 | |
| 709 | void imull_rr(RegisterID src, RegisterID dst) |
| 710 | { |
| 711 | m_formatter.twoByteOp(opcode: OP2_IMUL_GvEv, reg: dst, rm: src); |
| 712 | } |
| 713 | |
| 714 | void imull_mr(int offset, RegisterID base, RegisterID dst) |
| 715 | { |
| 716 | m_formatter.twoByteOp(opcode: OP2_IMUL_GvEv, reg: dst, base, offset); |
| 717 | } |
| 718 | |
| 719 | void imull_i32r(RegisterID src, int32_t value, RegisterID dst) |
| 720 | { |
| 721 | m_formatter.oneByteOp(opcode: OP_IMUL_GvEvIz, reg: dst, rm: src); |
| 722 | m_formatter.immediate32(imm: value); |
| 723 | } |
| 724 | |
| 725 | void idivl_r(RegisterID dst) |
| 726 | { |
| 727 | m_formatter.oneByteOp(opcode: OP_GROUP3_Ev, reg: GROUP3_OP_IDIV, rm: dst); |
| 728 | } |
| 729 | |
| 730 | // Comparisons: |
| 731 | |
| 732 | void cmpl_rr(RegisterID src, RegisterID dst) |
| 733 | { |
| 734 | m_formatter.oneByteOp(opcode: OP_CMP_EvGv, reg: src, rm: dst); |
| 735 | } |
| 736 | |
| 737 | void cmpl_rm(RegisterID src, int offset, RegisterID base) |
| 738 | { |
| 739 | m_formatter.oneByteOp(opcode: OP_CMP_EvGv, reg: src, base, offset); |
| 740 | } |
| 741 | |
| 742 | void cmpl_mr(int offset, RegisterID base, RegisterID src) |
| 743 | { |
| 744 | m_formatter.oneByteOp(opcode: OP_CMP_GvEv, reg: src, base, offset); |
| 745 | } |
| 746 | |
| 747 | void cmpl_ir(int imm, RegisterID dst) |
| 748 | { |
| 749 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 750 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, rm: dst); |
| 751 | m_formatter.immediate8(imm); |
| 752 | } else { |
| 753 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, rm: dst); |
| 754 | m_formatter.immediate32(imm); |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | void cmpl_ir_force32(int imm, RegisterID dst) |
| 759 | { |
| 760 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, rm: dst); |
| 761 | m_formatter.immediate32(imm); |
| 762 | } |
| 763 | |
| 764 | void cmpl_im(int imm, int offset, RegisterID base) |
| 765 | { |
| 766 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 767 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, base, offset); |
| 768 | m_formatter.immediate8(imm); |
| 769 | } else { |
| 770 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, base, offset); |
| 771 | m_formatter.immediate32(imm); |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | void cmpl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 776 | { |
| 777 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 778 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 779 | m_formatter.immediate8(imm); |
| 780 | } else { |
| 781 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 782 | m_formatter.immediate32(imm); |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | void cmpl_im_force32(int imm, int offset, RegisterID base) |
| 787 | { |
| 788 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, base, offset); |
| 789 | m_formatter.immediate32(imm); |
| 790 | } |
| 791 | |
| 792 | #if CPU(X86_64) |
| 793 | void cmpq_rr(RegisterID src, RegisterID dst) |
| 794 | { |
| 795 | m_formatter.oneByteOp64(opcode: OP_CMP_EvGv, reg: src, rm: dst); |
| 796 | } |
| 797 | |
| 798 | void cmpq_rm(RegisterID src, int offset, RegisterID base) |
| 799 | { |
| 800 | m_formatter.oneByteOp64(opcode: OP_CMP_EvGv, reg: src, base, offset); |
| 801 | } |
| 802 | |
| 803 | void cmpq_mr(int offset, RegisterID base, RegisterID src) |
| 804 | { |
| 805 | m_formatter.oneByteOp64(opcode: OP_CMP_GvEv, reg: src, base, offset); |
| 806 | } |
| 807 | |
| 808 | void cmpq_ir(int imm, RegisterID dst) |
| 809 | { |
| 810 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 811 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, rm: dst); |
| 812 | m_formatter.immediate8(imm); |
| 813 | } else { |
| 814 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, rm: dst); |
| 815 | m_formatter.immediate32(imm); |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | void cmpq_im(int imm, int offset, RegisterID base) |
| 820 | { |
| 821 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 822 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, base, offset); |
| 823 | m_formatter.immediate8(imm); |
| 824 | } else { |
| 825 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, base, offset); |
| 826 | m_formatter.immediate32(imm); |
| 827 | } |
| 828 | } |
| 829 | |
| 830 | void cmpq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 831 | { |
| 832 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 833 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 834 | m_formatter.immediate8(imm); |
| 835 | } else { |
| 836 | m_formatter.oneByteOp64(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 837 | m_formatter.immediate32(imm); |
| 838 | } |
| 839 | } |
| 840 | #else |
| 841 | void cmpl_rm(RegisterID reg, void* addr) |
| 842 | { |
| 843 | m_formatter.oneByteOp(OP_CMP_EvGv, reg, addr); |
| 844 | } |
| 845 | |
| 846 | void cmpl_im(int imm, void* addr) |
| 847 | { |
| 848 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 849 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, addr); |
| 850 | m_formatter.immediate8(imm); |
| 851 | } else { |
| 852 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, addr); |
| 853 | m_formatter.immediate32(imm); |
| 854 | } |
| 855 | } |
| 856 | #endif |
| 857 | |
| 858 | void cmpw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 859 | { |
| 860 | m_formatter.prefix(pre: PRE_OPERAND_SIZE); |
| 861 | m_formatter.oneByteOp(opcode: OP_CMP_EvGv, reg: src, base, index, scale, offset); |
| 862 | } |
| 863 | |
| 864 | void cmpw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 865 | { |
| 866 | if (CAN_SIGN_EXTEND_8_32(value: imm)) { |
| 867 | m_formatter.prefix(pre: PRE_OPERAND_SIZE); |
| 868 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIb, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 869 | m_formatter.immediate8(imm); |
| 870 | } else { |
| 871 | m_formatter.prefix(pre: PRE_OPERAND_SIZE); |
| 872 | m_formatter.oneByteOp(opcode: OP_GROUP1_EvIz, reg: GROUP1_OP_CMP, base, index, scale, offset); |
| 873 | m_formatter.immediate16(imm); |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | void testl_rr(RegisterID src, RegisterID dst) |
| 878 | { |
| 879 | m_formatter.oneByteOp(opcode: OP_TEST_EvGv, reg: src, rm: dst); |
| 880 | } |
| 881 | |
| 882 | void testl_i32r(int imm, RegisterID dst) |
| 883 | { |
| 884 | m_formatter.oneByteOp(opcode: OP_GROUP3_EvIz, reg: GROUP3_OP_TEST, rm: dst); |
| 885 | m_formatter.immediate32(imm); |
| 886 | } |
| 887 | |
| 888 | void testl_i32m(int imm, int offset, RegisterID base) |
| 889 | { |
| 890 | m_formatter.oneByteOp(opcode: OP_GROUP3_EvIz, reg: GROUP3_OP_TEST, base, offset); |
| 891 | m_formatter.immediate32(imm); |
| 892 | } |
| 893 | |
| 894 | void testl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 895 | { |
| 896 | m_formatter.oneByteOp(opcode: OP_GROUP3_EvIz, reg: GROUP3_OP_TEST, base, index, scale, offset); |
| 897 | m_formatter.immediate32(imm); |
| 898 | } |
| 899 | |
| 900 | #if CPU(X86_64) |
| 901 | void testq_rr(RegisterID src, RegisterID dst) |
| 902 | { |
| 903 | m_formatter.oneByteOp64(opcode: OP_TEST_EvGv, reg: src, rm: dst); |
| 904 | } |
| 905 | |
| 906 | void testq_i32r(int imm, RegisterID dst) |
| 907 | { |
| 908 | m_formatter.oneByteOp64(opcode: OP_GROUP3_EvIz, reg: GROUP3_OP_TEST, rm: dst); |
| 909 | m_formatter.immediate32(imm); |
| 910 | } |
| 911 | |
| 912 | void testq_i32m(int imm, int offset, RegisterID base) |
| 913 | { |
| 914 | m_formatter.oneByteOp64(opcode: OP_GROUP3_EvIz, reg: GROUP3_OP_TEST, base, offset); |
| 915 | m_formatter.immediate32(imm); |
| 916 | } |
| 917 | |
| 918 | void testq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 919 | { |
| 920 | m_formatter.oneByteOp64(opcode: OP_GROUP3_EvIz, reg: GROUP3_OP_TEST, base, index, scale, offset); |
| 921 | m_formatter.immediate32(imm); |
| 922 | } |
| 923 | #endif |
| 924 | |
| 925 | void testw_rr(RegisterID src, RegisterID dst) |
| 926 | { |
| 927 | m_formatter.prefix(pre: PRE_OPERAND_SIZE); |
| 928 | m_formatter.oneByteOp(opcode: OP_TEST_EvGv, reg: src, rm: dst); |
| 929 | } |
| 930 | |
| 931 | void testb_i8r(int imm, RegisterID dst) |
| 932 | { |
| 933 | m_formatter.oneByteOp8(opcode: OP_GROUP3_EbIb, groupOp: GROUP3_OP_TEST, rm: dst); |
| 934 | m_formatter.immediate8(imm); |
| 935 | } |
| 936 | |
| 937 | void setCC_r(Condition cond, RegisterID dst) |
| 938 | { |
| 939 | m_formatter.twoByteOp8(opcode: setccOpcode(cond), groupOp: (GroupOpcodeID)0, rm: dst); |
| 940 | } |
| 941 | |
| 942 | void sete_r(RegisterID dst) |
| 943 | { |
| 944 | m_formatter.twoByteOp8(opcode: setccOpcode(ConditionE), groupOp: (GroupOpcodeID)0, rm: dst); |
| 945 | } |
| 946 | |
| 947 | void setz_r(RegisterID dst) |
| 948 | { |
| 949 | sete_r(dst); |
| 950 | } |
| 951 | |
| 952 | void setne_r(RegisterID dst) |
| 953 | { |
| 954 | m_formatter.twoByteOp8(opcode: setccOpcode(ConditionNE), groupOp: (GroupOpcodeID)0, rm: dst); |
| 955 | } |
| 956 | |
| 957 | void setnz_r(RegisterID dst) |
| 958 | { |
| 959 | setne_r(dst); |
| 960 | } |
| 961 | |
| 962 | // Various move ops: |
| 963 | |
| 964 | void cdq() |
| 965 | { |
| 966 | m_formatter.oneByteOp(opcode: OP_CDQ); |
| 967 | } |
| 968 | |
| 969 | void xchgl_rr(RegisterID src, RegisterID dst) |
| 970 | { |
| 971 | m_formatter.oneByteOp(opcode: OP_XCHG_EvGv, reg: src, rm: dst); |
| 972 | } |
| 973 | |
| 974 | #if CPU(X86_64) |
| 975 | void xchgq_rr(RegisterID src, RegisterID dst) |
| 976 | { |
| 977 | m_formatter.oneByteOp64(opcode: OP_XCHG_EvGv, reg: src, rm: dst); |
| 978 | } |
| 979 | #endif |
| 980 | |
| 981 | void movl_rr(RegisterID src, RegisterID dst) |
| 982 | { |
| 983 | m_formatter.oneByteOp(opcode: OP_MOV_EvGv, reg: src, rm: dst); |
| 984 | } |
| 985 | |
| 986 | void movl_rm(RegisterID src, int offset, RegisterID base) |
| 987 | { |
| 988 | m_formatter.oneByteOp(opcode: OP_MOV_EvGv, reg: src, base, offset); |
| 989 | } |
| 990 | |
| 991 | void movl_rm_disp32(RegisterID src, int offset, RegisterID base) |
| 992 | { |
| 993 | m_formatter.oneByteOp_disp32(opcode: OP_MOV_EvGv, reg: src, base, offset); |
| 994 | } |
| 995 | |
| 996 | void movl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 997 | { |
| 998 | m_formatter.oneByteOp(opcode: OP_MOV_EvGv, reg: src, base, index, scale, offset); |
| 999 | } |
| 1000 | |
| 1001 | void movl_mEAX(void* addr) |
| 1002 | { |
| 1003 | m_formatter.oneByteOp(opcode: OP_MOV_EAXOv); |
| 1004 | #if CPU(X86_64) |
| 1005 | m_formatter.immediate64(imm: reinterpret_cast<int64_t>(addr)); |
| 1006 | #else |
| 1007 | m_formatter.immediate32(reinterpret_cast<int>(addr)); |
| 1008 | #endif |
| 1009 | } |
| 1010 | |
| 1011 | void movl_mr(int offset, RegisterID base, RegisterID dst) |
| 1012 | { |
| 1013 | m_formatter.oneByteOp(opcode: OP_MOV_GvEv, reg: dst, base, offset); |
| 1014 | } |
| 1015 | |
| 1016 | void movl_mr_disp32(int offset, RegisterID base, RegisterID dst) |
| 1017 | { |
| 1018 | m_formatter.oneByteOp_disp32(opcode: OP_MOV_GvEv, reg: dst, base, offset); |
| 1019 | } |
| 1020 | |
| 1021 | void movl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1022 | { |
| 1023 | m_formatter.oneByteOp(opcode: OP_MOV_GvEv, reg: dst, base, index, scale, offset); |
| 1024 | } |
| 1025 | |
| 1026 | void movl_i32r(int imm, RegisterID dst) |
| 1027 | { |
| 1028 | m_formatter.oneByteOp(opcode: OP_MOV_EAXIv, reg: dst); |
| 1029 | m_formatter.immediate32(imm); |
| 1030 | } |
| 1031 | |
| 1032 | void movl_i32m(int imm, int offset, RegisterID base) |
| 1033 | { |
| 1034 | m_formatter.oneByteOp(opcode: OP_GROUP11_EvIz, reg: GROUP11_MOV, base, offset); |
| 1035 | m_formatter.immediate32(imm); |
| 1036 | } |
| 1037 | |
| 1038 | void movl_EAXm(void* addr) |
| 1039 | { |
| 1040 | m_formatter.oneByteOp(opcode: OP_MOV_OvEAX); |
| 1041 | #if CPU(X86_64) |
| 1042 | m_formatter.immediate64(imm: reinterpret_cast<int64_t>(addr)); |
| 1043 | #else |
| 1044 | m_formatter.immediate32(reinterpret_cast<int>(addr)); |
| 1045 | #endif |
| 1046 | } |
| 1047 | |
| 1048 | #if CPU(X86_64) |
| 1049 | void movq_rr(RegisterID src, RegisterID dst) |
| 1050 | { |
| 1051 | m_formatter.oneByteOp64(opcode: OP_MOV_EvGv, reg: src, rm: dst); |
| 1052 | } |
| 1053 | |
| 1054 | void movq_rm(RegisterID src, int offset, RegisterID base) |
| 1055 | { |
| 1056 | m_formatter.oneByteOp64(opcode: OP_MOV_EvGv, reg: src, base, offset); |
| 1057 | } |
| 1058 | |
| 1059 | void movq_rm_disp32(RegisterID src, int offset, RegisterID base) |
| 1060 | { |
| 1061 | m_formatter.oneByteOp64_disp32(opcode: OP_MOV_EvGv, reg: src, base, offset); |
| 1062 | } |
| 1063 | |
| 1064 | void movq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1065 | { |
| 1066 | m_formatter.oneByteOp64(opcode: OP_MOV_EvGv, reg: src, base, index, scale, offset); |
| 1067 | } |
| 1068 | |
| 1069 | void movq_mEAX(void* addr) |
| 1070 | { |
| 1071 | m_formatter.oneByteOp64(opcode: OP_MOV_EAXOv); |
| 1072 | m_formatter.immediate64(imm: reinterpret_cast<int64_t>(addr)); |
| 1073 | } |
| 1074 | |
| 1075 | void movq_EAXm(void* addr) |
| 1076 | { |
| 1077 | m_formatter.oneByteOp64(opcode: OP_MOV_OvEAX); |
| 1078 | m_formatter.immediate64(imm: reinterpret_cast<int64_t>(addr)); |
| 1079 | } |
| 1080 | |
| 1081 | void movq_mr(int offset, RegisterID base, RegisterID dst) |
| 1082 | { |
| 1083 | m_formatter.oneByteOp64(opcode: OP_MOV_GvEv, reg: dst, base, offset); |
| 1084 | } |
| 1085 | |
| 1086 | void movq_mr_disp32(int offset, RegisterID base, RegisterID dst) |
| 1087 | { |
| 1088 | m_formatter.oneByteOp64_disp32(opcode: OP_MOV_GvEv, reg: dst, base, offset); |
| 1089 | } |
| 1090 | |
| 1091 | void movq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1092 | { |
| 1093 | m_formatter.oneByteOp64(opcode: OP_MOV_GvEv, reg: dst, base, index, scale, offset); |
| 1094 | } |
| 1095 | |
| 1096 | void movq_i32m(int imm, int offset, RegisterID base) |
| 1097 | { |
| 1098 | m_formatter.oneByteOp64(opcode: OP_GROUP11_EvIz, reg: GROUP11_MOV, base, offset); |
| 1099 | m_formatter.immediate32(imm); |
| 1100 | } |
| 1101 | |
| 1102 | void movq_i64r(int64_t imm, RegisterID dst) |
| 1103 | { |
| 1104 | m_formatter.oneByteOp64(opcode: OP_MOV_EAXIv, reg: dst); |
| 1105 | m_formatter.immediate64(imm); |
| 1106 | } |
| 1107 | |
| 1108 | void movsxd_rr(RegisterID src, RegisterID dst) |
| 1109 | { |
| 1110 | m_formatter.oneByteOp64(opcode: OP_MOVSXD_GvEv, reg: dst, rm: src); |
| 1111 | } |
| 1112 | |
| 1113 | |
| 1114 | #else |
| 1115 | void movl_rm(RegisterID src, void* addr) |
| 1116 | { |
| 1117 | if (src == X86Registers::eax) |
| 1118 | movl_EAXm(addr); |
| 1119 | else |
| 1120 | m_formatter.oneByteOp(OP_MOV_EvGv, src, addr); |
| 1121 | } |
| 1122 | |
| 1123 | void movl_mr(void* addr, RegisterID dst) |
| 1124 | { |
| 1125 | if (dst == X86Registers::eax) |
| 1126 | movl_mEAX(addr); |
| 1127 | else |
| 1128 | m_formatter.oneByteOp(OP_MOV_GvEv, dst, addr); |
| 1129 | } |
| 1130 | |
| 1131 | void movl_i32m(int imm, void* addr) |
| 1132 | { |
| 1133 | m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, addr); |
| 1134 | m_formatter.immediate32(imm); |
| 1135 | } |
| 1136 | #endif |
| 1137 | |
| 1138 | void movzwl_mr(int offset, RegisterID base, RegisterID dst) |
| 1139 | { |
| 1140 | m_formatter.twoByteOp(opcode: OP2_MOVZX_GvEw, reg: dst, base, offset); |
| 1141 | } |
| 1142 | |
| 1143 | void movzwl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1144 | { |
| 1145 | m_formatter.twoByteOp(opcode: OP2_MOVZX_GvEw, reg: dst, base, index, scale, offset); |
| 1146 | } |
| 1147 | |
| 1148 | void movzbl_rr(RegisterID src, RegisterID dst) |
| 1149 | { |
| 1150 | // In 64-bit, this may cause an unnecessary REX to be planted (if the dst register |
| 1151 | // is in the range ESP-EDI, and the src would not have required a REX). Unneeded |
| 1152 | // REX prefixes are defined to be silently ignored by the processor. |
| 1153 | m_formatter.twoByteOp8(opcode: OP2_MOVZX_GvEb, reg: dst, rm: src); |
| 1154 | } |
| 1155 | |
| 1156 | void leal_mr(int offset, RegisterID base, RegisterID dst) |
| 1157 | { |
| 1158 | m_formatter.oneByteOp(opcode: OP_LEA, reg: dst, base, offset); |
| 1159 | } |
| 1160 | #if CPU(X86_64) |
| 1161 | void leaq_mr(int offset, RegisterID base, RegisterID dst) |
| 1162 | { |
| 1163 | m_formatter.oneByteOp64(opcode: OP_LEA, reg: dst, base, offset); |
| 1164 | } |
| 1165 | #endif |
| 1166 | |
| 1167 | // Flow control: |
| 1168 | |
| 1169 | JmpSrc call() |
| 1170 | { |
| 1171 | m_formatter.oneByteOp(opcode: OP_CALL_rel32); |
| 1172 | return m_formatter.immediateRel32(); |
| 1173 | } |
| 1174 | |
| 1175 | JmpSrc call(RegisterID dst) |
| 1176 | { |
| 1177 | m_formatter.oneByteOp(opcode: OP_GROUP5_Ev, reg: GROUP5_OP_CALLN, rm: dst); |
| 1178 | return JmpSrc(m_formatter.size()); |
| 1179 | } |
| 1180 | |
| 1181 | void call_m(int offset, RegisterID base) |
| 1182 | { |
| 1183 | m_formatter.oneByteOp(opcode: OP_GROUP5_Ev, reg: GROUP5_OP_CALLN, base, offset); |
| 1184 | } |
| 1185 | |
| 1186 | JmpSrc jmp() |
| 1187 | { |
| 1188 | m_formatter.oneByteOp(opcode: OP_JMP_rel32); |
| 1189 | return m_formatter.immediateRel32(); |
| 1190 | } |
| 1191 | |
| 1192 | // Return a JmpSrc so we have a label to the jump, so we can use this |
| 1193 | // To make a tail recursive call on x86-64. The MacroAssembler |
| 1194 | // really shouldn't wrap this as a Jump, since it can't be linked. :-/ |
| 1195 | JmpSrc jmp_r(RegisterID dst) |
| 1196 | { |
| 1197 | m_formatter.oneByteOp(opcode: OP_GROUP5_Ev, reg: GROUP5_OP_JMPN, rm: dst); |
| 1198 | return JmpSrc(m_formatter.size()); |
| 1199 | } |
| 1200 | |
| 1201 | void jmp_m(int offset, RegisterID base) |
| 1202 | { |
| 1203 | m_formatter.oneByteOp(opcode: OP_GROUP5_Ev, reg: GROUP5_OP_JMPN, base, offset); |
| 1204 | } |
| 1205 | |
| 1206 | JmpSrc jne() |
| 1207 | { |
| 1208 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionNE)); |
| 1209 | return m_formatter.immediateRel32(); |
| 1210 | } |
| 1211 | |
| 1212 | JmpSrc jnz() |
| 1213 | { |
| 1214 | return jne(); |
| 1215 | } |
| 1216 | |
| 1217 | JmpSrc je() |
| 1218 | { |
| 1219 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionE)); |
| 1220 | return m_formatter.immediateRel32(); |
| 1221 | } |
| 1222 | |
| 1223 | JmpSrc jz() |
| 1224 | { |
| 1225 | return je(); |
| 1226 | } |
| 1227 | |
| 1228 | JmpSrc jl() |
| 1229 | { |
| 1230 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionL)); |
| 1231 | return m_formatter.immediateRel32(); |
| 1232 | } |
| 1233 | |
| 1234 | JmpSrc jb() |
| 1235 | { |
| 1236 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionB)); |
| 1237 | return m_formatter.immediateRel32(); |
| 1238 | } |
| 1239 | |
| 1240 | JmpSrc jle() |
| 1241 | { |
| 1242 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionLE)); |
| 1243 | return m_formatter.immediateRel32(); |
| 1244 | } |
| 1245 | |
| 1246 | JmpSrc jbe() |
| 1247 | { |
| 1248 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionBE)); |
| 1249 | return m_formatter.immediateRel32(); |
| 1250 | } |
| 1251 | |
| 1252 | JmpSrc jge() |
| 1253 | { |
| 1254 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionGE)); |
| 1255 | return m_formatter.immediateRel32(); |
| 1256 | } |
| 1257 | |
| 1258 | JmpSrc jg() |
| 1259 | { |
| 1260 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionG)); |
| 1261 | return m_formatter.immediateRel32(); |
| 1262 | } |
| 1263 | |
| 1264 | JmpSrc ja() |
| 1265 | { |
| 1266 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionA)); |
| 1267 | return m_formatter.immediateRel32(); |
| 1268 | } |
| 1269 | |
| 1270 | JmpSrc jae() |
| 1271 | { |
| 1272 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionAE)); |
| 1273 | return m_formatter.immediateRel32(); |
| 1274 | } |
| 1275 | |
| 1276 | JmpSrc jo() |
| 1277 | { |
| 1278 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionO)); |
| 1279 | return m_formatter.immediateRel32(); |
| 1280 | } |
| 1281 | |
| 1282 | JmpSrc jp() |
| 1283 | { |
| 1284 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionP)); |
| 1285 | return m_formatter.immediateRel32(); |
| 1286 | } |
| 1287 | |
| 1288 | JmpSrc js() |
| 1289 | { |
| 1290 | m_formatter.twoByteOp(opcode: jccRel32(cond: ConditionS)); |
| 1291 | return m_formatter.immediateRel32(); |
| 1292 | } |
| 1293 | |
| 1294 | JmpSrc jCC(Condition cond) |
| 1295 | { |
| 1296 | m_formatter.twoByteOp(opcode: jccRel32(cond)); |
| 1297 | return m_formatter.immediateRel32(); |
| 1298 | } |
| 1299 | |
| 1300 | // SSE operations: |
| 1301 | |
| 1302 | void addsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1303 | { |
| 1304 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1305 | m_formatter.twoByteOp(opcode: OP2_ADDSD_VsdWsd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1306 | } |
| 1307 | |
| 1308 | void addsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1309 | { |
| 1310 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1311 | m_formatter.twoByteOp(opcode: OP2_ADDSD_VsdWsd, reg: (RegisterID)dst, base, offset); |
| 1312 | } |
| 1313 | |
| 1314 | void cvtsi2sd_rr(RegisterID src, XMMRegisterID dst) |
| 1315 | { |
| 1316 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1317 | m_formatter.twoByteOp(opcode: OP2_CVTSI2SD_VsdEd, reg: (RegisterID)dst, rm: src); |
| 1318 | } |
| 1319 | |
| 1320 | void cvtsi2sd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1321 | { |
| 1322 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1323 | m_formatter.twoByteOp(opcode: OP2_CVTSI2SD_VsdEd, reg: (RegisterID)dst, base, offset); |
| 1324 | } |
| 1325 | |
| 1326 | #if !CPU(X86_64) |
| 1327 | void cvtsi2sd_mr(void* address, XMMRegisterID dst) |
| 1328 | { |
| 1329 | m_formatter.prefix(PRE_SSE_F2); |
| 1330 | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, address); |
| 1331 | } |
| 1332 | #endif |
| 1333 | |
| 1334 | void cvttsd2si_rr(XMMRegisterID src, RegisterID dst) |
| 1335 | { |
| 1336 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1337 | m_formatter.twoByteOp(opcode: OP2_CVTTSD2SI_GdWsd, reg: dst, rm: (RegisterID)src); |
| 1338 | } |
| 1339 | |
| 1340 | void movd_rr(XMMRegisterID src, RegisterID dst) |
| 1341 | { |
| 1342 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1343 | m_formatter.twoByteOp(opcode: OP2_MOVD_EdVd, reg: (RegisterID)src, rm: dst); |
| 1344 | } |
| 1345 | |
| 1346 | #if CPU(X86_64) |
| 1347 | void movq_rr(XMMRegisterID src, RegisterID dst) |
| 1348 | { |
| 1349 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1350 | m_formatter.twoByteOp64(opcode: OP2_MOVD_EdVd, reg: (RegisterID)src, rm: dst); |
| 1351 | } |
| 1352 | |
| 1353 | void movq_rr(RegisterID src, XMMRegisterID dst) |
| 1354 | { |
| 1355 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1356 | m_formatter.twoByteOp64(opcode: OP2_MOVD_VdEd, reg: (RegisterID)dst, rm: src); |
| 1357 | } |
| 1358 | #endif |
| 1359 | |
| 1360 | void movsd_rm(XMMRegisterID src, int offset, RegisterID base) |
| 1361 | { |
| 1362 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1363 | m_formatter.twoByteOp(opcode: OP2_MOVSD_WsdVsd, reg: (RegisterID)src, base, offset); |
| 1364 | } |
| 1365 | |
| 1366 | void movsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1367 | { |
| 1368 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1369 | m_formatter.twoByteOp(opcode: OP2_MOVSD_VsdWsd, reg: (RegisterID)dst, base, offset); |
| 1370 | } |
| 1371 | |
| 1372 | #if !CPU(X86_64) |
| 1373 | void movsd_mr(void* address, XMMRegisterID dst) |
| 1374 | { |
| 1375 | m_formatter.prefix(PRE_SSE_F2); |
| 1376 | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, address); |
| 1377 | } |
| 1378 | #endif |
| 1379 | |
| 1380 | void mulsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1381 | { |
| 1382 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1383 | m_formatter.twoByteOp(opcode: OP2_MULSD_VsdWsd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1384 | } |
| 1385 | |
| 1386 | void mulsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1387 | { |
| 1388 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1389 | m_formatter.twoByteOp(opcode: OP2_MULSD_VsdWsd, reg: (RegisterID)dst, base, offset); |
| 1390 | } |
| 1391 | |
| 1392 | void pextrw_irr(int whichWord, XMMRegisterID src, RegisterID dst) |
| 1393 | { |
| 1394 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1395 | m_formatter.twoByteOp(opcode: OP2_PEXTRW_GdUdIb, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1396 | m_formatter.immediate8(imm: whichWord); |
| 1397 | } |
| 1398 | |
| 1399 | void subsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1400 | { |
| 1401 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1402 | m_formatter.twoByteOp(opcode: OP2_SUBSD_VsdWsd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1403 | } |
| 1404 | |
| 1405 | void subsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1406 | { |
| 1407 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1408 | m_formatter.twoByteOp(opcode: OP2_SUBSD_VsdWsd, reg: (RegisterID)dst, base, offset); |
| 1409 | } |
| 1410 | |
| 1411 | void ucomisd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1412 | { |
| 1413 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1414 | m_formatter.twoByteOp(opcode: OP2_UCOMISD_VsdWsd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1415 | } |
| 1416 | |
| 1417 | void ucomisd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1418 | { |
| 1419 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1420 | m_formatter.twoByteOp(opcode: OP2_UCOMISD_VsdWsd, reg: (RegisterID)dst, base, offset); |
| 1421 | } |
| 1422 | |
| 1423 | void divsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1424 | { |
| 1425 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1426 | m_formatter.twoByteOp(opcode: OP2_DIVSD_VsdWsd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1427 | } |
| 1428 | |
| 1429 | void divsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 1430 | { |
| 1431 | m_formatter.prefix(pre: PRE_SSE_F2); |
| 1432 | m_formatter.twoByteOp(opcode: OP2_DIVSD_VsdWsd, reg: (RegisterID)dst, base, offset); |
| 1433 | } |
| 1434 | |
| 1435 | void xorpd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 1436 | { |
| 1437 | m_formatter.prefix(pre: PRE_SSE_66); |
| 1438 | m_formatter.twoByteOp(opcode: OP2_XORPD_VpdWpd, reg: (RegisterID)dst, rm: (RegisterID)src); |
| 1439 | } |
| 1440 | |
| 1441 | // Misc instructions: |
| 1442 | |
| 1443 | void int3() |
| 1444 | { |
| 1445 | m_formatter.oneByteOp(opcode: OP_INT3); |
| 1446 | } |
| 1447 | |
| 1448 | void ret() |
| 1449 | { |
| 1450 | m_formatter.oneByteOp(opcode: OP_RET); |
| 1451 | } |
| 1452 | |
| 1453 | void predictNotTaken() |
| 1454 | { |
| 1455 | m_formatter.prefix(pre: PRE_PREDICT_BRANCH_NOT_TAKEN); |
| 1456 | } |
| 1457 | |
| 1458 | // Assembler admin methods: |
| 1459 | |
| 1460 | JmpDst label() |
| 1461 | { |
| 1462 | return JmpDst(m_formatter.size()); |
| 1463 | } |
| 1464 | |
| 1465 | static JmpDst labelFor(JmpSrc jump, intptr_t offset = 0) |
| 1466 | { |
| 1467 | return JmpDst(jump.m_offset + offset); |
| 1468 | } |
| 1469 | |
| 1470 | JmpDst align(int alignment) |
| 1471 | { |
| 1472 | while (!m_formatter.isAligned(alignment)) |
| 1473 | m_formatter.oneByteOp(opcode: OP_HLT); |
| 1474 | |
| 1475 | return label(); |
| 1476 | } |
| 1477 | |
| 1478 | // Linking & patching: |
| 1479 | // |
| 1480 | // 'link' and 'patch' methods are for use on unprotected code - such as the code |
| 1481 | // within the AssemblerBuffer, and code being patched by the patch buffer. Once |
| 1482 | // code has been finalized it is (platform support permitting) within a non- |
| 1483 | // writable region of memory; to modify the code in an execute-only execuable |
| 1484 | // pool the 'repatch' and 'relink' methods should be used. |
| 1485 | |
| 1486 | void linkJump(JmpSrc from, JmpDst to) |
| 1487 | { |
| 1488 | ASSERT(from.m_offset != -1); |
| 1489 | ASSERT(to.m_offset != -1); |
| 1490 | |
| 1491 | char* code = reinterpret_cast<char*>(m_formatter.data()); |
| 1492 | setRel32(from: code + from.m_offset, to: code + to.m_offset); |
| 1493 | } |
| 1494 | |
| 1495 | static void linkJump(void* code, JmpSrc from, void* to) |
| 1496 | { |
| 1497 | ASSERT(from.m_offset != -1); |
| 1498 | |
| 1499 | setRel32(from: reinterpret_cast<char*>(code) + from.m_offset, to); |
| 1500 | } |
| 1501 | |
| 1502 | static void linkCall(void* code, JmpSrc from, void* to) |
| 1503 | { |
| 1504 | ASSERT(from.m_offset != -1); |
| 1505 | |
| 1506 | setRel32(from: reinterpret_cast<char*>(code) + from.m_offset, to); |
| 1507 | } |
| 1508 | |
| 1509 | static void linkPointer(void* code, JmpDst where, void* value) |
| 1510 | { |
| 1511 | ASSERT(where.m_offset != -1); |
| 1512 | |
| 1513 | setPointer(where: reinterpret_cast<char*>(code) + where.m_offset, value); |
| 1514 | } |
| 1515 | |
| 1516 | static void relinkJump(void* from, void* to) |
| 1517 | { |
| 1518 | setRel32(from, to); |
| 1519 | } |
| 1520 | |
| 1521 | static void relinkCall(void* from, void* to) |
| 1522 | { |
| 1523 | setRel32(from, to); |
| 1524 | } |
| 1525 | |
| 1526 | static void repatchInt32(void* where, int32_t value) |
| 1527 | { |
| 1528 | setInt32(where, value); |
| 1529 | } |
| 1530 | |
| 1531 | static void repatchPointer(void* where, void* value) |
| 1532 | { |
| 1533 | setPointer(where, value); |
| 1534 | } |
| 1535 | |
| 1536 | static void repatchLoadPtrToLEA(void* where) |
| 1537 | { |
| 1538 | #if CPU(X86_64) |
| 1539 | // On x86-64 pointer memory accesses require a 64-bit operand, and as such a REX prefix. |
| 1540 | // Skip over the prefix byte. |
| 1541 | where = reinterpret_cast<char*>(where) + 1; |
| 1542 | #endif |
| 1543 | *reinterpret_cast<unsigned char*>(where) = static_cast<unsigned char>(OP_LEA); |
| 1544 | } |
| 1545 | |
| 1546 | static unsigned getCallReturnOffset(JmpSrc call) |
| 1547 | { |
| 1548 | ASSERT(call.m_offset >= 0); |
| 1549 | return call.m_offset; |
| 1550 | } |
| 1551 | |
| 1552 | static void* getRelocatedAddress(void* code, JmpSrc jump) |
| 1553 | { |
| 1554 | ASSERT(jump.m_offset != -1); |
| 1555 | |
| 1556 | return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + jump.m_offset); |
| 1557 | } |
| 1558 | |
| 1559 | static void* getRelocatedAddress(void* code, JmpDst destination) |
| 1560 | { |
| 1561 | ASSERT(destination.m_offset != -1); |
| 1562 | |
| 1563 | return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + destination.m_offset); |
| 1564 | } |
| 1565 | |
| 1566 | static int getDifferenceBetweenLabels(JmpDst src, JmpDst dst) |
| 1567 | { |
| 1568 | return dst.m_offset - src.m_offset; |
| 1569 | } |
| 1570 | |
| 1571 | static int getDifferenceBetweenLabels(JmpDst src, JmpSrc dst) |
| 1572 | { |
| 1573 | return dst.m_offset - src.m_offset; |
| 1574 | } |
| 1575 | |
| 1576 | static int getDifferenceBetweenLabels(JmpSrc src, JmpDst dst) |
| 1577 | { |
| 1578 | return dst.m_offset - src.m_offset; |
| 1579 | } |
| 1580 | |
| 1581 | void* executableCopy(ExecutablePool* allocator) |
| 1582 | { |
| 1583 | void* copy = m_formatter.executableCopy(allocator); |
| 1584 | ASSERT(copy); |
| 1585 | return copy; |
| 1586 | } |
| 1587 | |
| 1588 | private: |
| 1589 | |
| 1590 | static void setPointer(void* where, void* value) |
| 1591 | { |
| 1592 | reinterpret_cast<void**>(where)[-1] = value; |
| 1593 | } |
| 1594 | |
| 1595 | static void setInt32(void* where, int32_t value) |
| 1596 | { |
| 1597 | reinterpret_cast<int32_t*>(where)[-1] = value; |
| 1598 | } |
| 1599 | |
| 1600 | static void setRel32(void* from, void* to) |
| 1601 | { |
| 1602 | intptr_t offset = reinterpret_cast<intptr_t>(to) - reinterpret_cast<intptr_t>(from); |
| 1603 | ASSERT(offset == static_cast<int32_t>(offset)); |
| 1604 | |
| 1605 | setInt32(where: from, value: offset); |
| 1606 | } |
| 1607 | |
| 1608 | class X86InstructionFormatter { |
| 1609 | |
| 1610 | static const int maxInstructionSize = 16; |
| 1611 | |
| 1612 | public: |
| 1613 | |
| 1614 | // Legacy prefix bytes: |
| 1615 | // |
| 1616 | // These are emmitted prior to the instruction. |
| 1617 | |
| 1618 | void prefix(OneByteOpcodeID pre) |
| 1619 | { |
| 1620 | m_buffer.putByte(value: pre); |
| 1621 | } |
| 1622 | |
| 1623 | // Word-sized operands / no operand instruction formatters. |
| 1624 | // |
| 1625 | // In addition to the opcode, the following operand permutations are supported: |
| 1626 | // * None - instruction takes no operands. |
| 1627 | // * One register - the low three bits of the RegisterID are added into the opcode. |
| 1628 | // * Two registers - encode a register form ModRm (for all ModRm formats, the reg field is passed first, and a GroupOpcodeID may be passed in its place). |
| 1629 | // * Three argument ModRM - a register, and a register and an offset describing a memory operand. |
| 1630 | // * Five argument ModRM - a register, and a base register, an index, scale, and offset describing a memory operand. |
| 1631 | // |
| 1632 | // For 32-bit x86 targets, the address operand may also be provided as a void*. |
| 1633 | // On 64-bit targets REX prefixes will be planted as necessary, where high numbered registers are used. |
| 1634 | // |
| 1635 | // The twoByteOp methods plant two-byte Intel instructions sequences (first opcode byte 0x0F). |
| 1636 | |
| 1637 | void oneByteOp(OneByteOpcodeID opcode) |
| 1638 | { |
| 1639 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1640 | m_buffer.putByteUnchecked(value: opcode); |
| 1641 | } |
| 1642 | |
| 1643 | void oneByteOp(OneByteOpcodeID opcode, RegisterID reg) |
| 1644 | { |
| 1645 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1646 | emitRexIfNeeded(r: 0, x: 0, b: reg); |
| 1647 | m_buffer.putByteUnchecked(value: opcode + (reg & 7)); |
| 1648 | } |
| 1649 | |
| 1650 | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID rm) |
| 1651 | { |
| 1652 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1653 | emitRexIfNeeded(r: reg, x: 0, b: rm); |
| 1654 | m_buffer.putByteUnchecked(value: opcode); |
| 1655 | registerModRM(reg, rm); |
| 1656 | } |
| 1657 | |
| 1658 | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 1659 | { |
| 1660 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1661 | emitRexIfNeeded(r: reg, x: 0, b: base); |
| 1662 | m_buffer.putByteUnchecked(value: opcode); |
| 1663 | memoryModRM(reg, base, offset); |
| 1664 | } |
| 1665 | |
| 1666 | void oneByteOp_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 1667 | { |
| 1668 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1669 | emitRexIfNeeded(r: reg, x: 0, b: base); |
| 1670 | m_buffer.putByteUnchecked(value: opcode); |
| 1671 | memoryModRM_disp32(reg, base, offset); |
| 1672 | } |
| 1673 | |
| 1674 | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 1675 | { |
| 1676 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1677 | emitRexIfNeeded(r: reg, x: index, b: base); |
| 1678 | m_buffer.putByteUnchecked(value: opcode); |
| 1679 | memoryModRM(reg, base, index, scale, offset); |
| 1680 | } |
| 1681 | |
| 1682 | #if !CPU(X86_64) |
| 1683 | void oneByteOp(OneByteOpcodeID opcode, int reg, void* address) |
| 1684 | { |
| 1685 | m_buffer.ensureSpace(maxInstructionSize); |
| 1686 | m_buffer.putByteUnchecked(opcode); |
| 1687 | memoryModRM(reg, address); |
| 1688 | } |
| 1689 | #endif |
| 1690 | |
| 1691 | void twoByteOp(TwoByteOpcodeID opcode) |
| 1692 | { |
| 1693 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1694 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 1695 | m_buffer.putByteUnchecked(value: opcode); |
| 1696 | } |
| 1697 | |
| 1698 | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID rm) |
| 1699 | { |
| 1700 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1701 | emitRexIfNeeded(r: reg, x: 0, b: rm); |
| 1702 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 1703 | m_buffer.putByteUnchecked(value: opcode); |
| 1704 | registerModRM(reg, rm); |
| 1705 | } |
| 1706 | |
| 1707 | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 1708 | { |
| 1709 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1710 | emitRexIfNeeded(r: reg, x: 0, b: base); |
| 1711 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 1712 | m_buffer.putByteUnchecked(value: opcode); |
| 1713 | memoryModRM(reg, base, offset); |
| 1714 | } |
| 1715 | |
| 1716 | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 1717 | { |
| 1718 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1719 | emitRexIfNeeded(r: reg, x: index, b: base); |
| 1720 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 1721 | m_buffer.putByteUnchecked(value: opcode); |
| 1722 | memoryModRM(reg, base, index, scale, offset); |
| 1723 | } |
| 1724 | |
| 1725 | #if !CPU(X86_64) |
| 1726 | void twoByteOp(TwoByteOpcodeID opcode, int reg, void* address) |
| 1727 | { |
| 1728 | m_buffer.ensureSpace(maxInstructionSize); |
| 1729 | m_buffer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 1730 | m_buffer.putByteUnchecked(opcode); |
| 1731 | memoryModRM(reg, address); |
| 1732 | } |
| 1733 | #endif |
| 1734 | |
| 1735 | #if CPU(X86_64) |
| 1736 | // Quad-word-sized operands: |
| 1737 | // |
| 1738 | // Used to format 64-bit operantions, planting a REX.w prefix. |
| 1739 | // When planting d64 or f64 instructions, not requiring a REX.w prefix, |
| 1740 | // the normal (non-'64'-postfixed) formatters should be used. |
| 1741 | |
| 1742 | void oneByteOp64(OneByteOpcodeID opcode) |
| 1743 | { |
| 1744 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1745 | emitRexW(r: 0, x: 0, b: 0); |
| 1746 | m_buffer.putByteUnchecked(value: opcode); |
| 1747 | } |
| 1748 | |
| 1749 | void oneByteOp64(OneByteOpcodeID opcode, RegisterID reg) |
| 1750 | { |
| 1751 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1752 | emitRexW(r: 0, x: 0, b: reg); |
| 1753 | m_buffer.putByteUnchecked(value: opcode + (reg & 7)); |
| 1754 | } |
| 1755 | |
| 1756 | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID rm) |
| 1757 | { |
| 1758 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1759 | emitRexW(r: reg, x: 0, b: rm); |
| 1760 | m_buffer.putByteUnchecked(value: opcode); |
| 1761 | registerModRM(reg, rm); |
| 1762 | } |
| 1763 | |
| 1764 | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 1765 | { |
| 1766 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1767 | emitRexW(r: reg, x: 0, b: base); |
| 1768 | m_buffer.putByteUnchecked(value: opcode); |
| 1769 | memoryModRM(reg, base, offset); |
| 1770 | } |
| 1771 | |
| 1772 | void oneByteOp64_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 1773 | { |
| 1774 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1775 | emitRexW(r: reg, x: 0, b: base); |
| 1776 | m_buffer.putByteUnchecked(value: opcode); |
| 1777 | memoryModRM_disp32(reg, base, offset); |
| 1778 | } |
| 1779 | |
| 1780 | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 1781 | { |
| 1782 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1783 | emitRexW(r: reg, x: index, b: base); |
| 1784 | m_buffer.putByteUnchecked(value: opcode); |
| 1785 | memoryModRM(reg, base, index, scale, offset); |
| 1786 | } |
| 1787 | |
| 1788 | void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID rm) |
| 1789 | { |
| 1790 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1791 | emitRexW(r: reg, x: 0, b: rm); |
| 1792 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 1793 | m_buffer.putByteUnchecked(value: opcode); |
| 1794 | registerModRM(reg, rm); |
| 1795 | } |
| 1796 | #endif |
| 1797 | |
| 1798 | // Byte-operands: |
| 1799 | // |
| 1800 | // These methods format byte operations. Byte operations differ from the normal |
| 1801 | // formatters in the circumstances under which they will decide to emit REX prefixes. |
| 1802 | // These should be used where any register operand signifies a byte register. |
| 1803 | // |
| 1804 | // The disctinction is due to the handling of register numbers in the range 4..7 on |
| 1805 | // x86-64. These register numbers may either represent the second byte of the first |
| 1806 | // four registers (ah..bh) or the first byte of the second four registers (spl..dil). |
| 1807 | // |
| 1808 | // Since ah..bh cannot be used in all permutations of operands (specifically cannot |
| 1809 | // be accessed where a REX prefix is present), these are likely best treated as |
| 1810 | // deprecated. In order to ensure the correct registers spl..dil are selected a |
| 1811 | // REX prefix will be emitted for any byte register operand in the range 4..15. |
| 1812 | // |
| 1813 | // These formatters may be used in instructions where a mix of operand sizes, in which |
| 1814 | // case an unnecessary REX will be emitted, for example: |
| 1815 | // movzbl %al, %edi |
| 1816 | // In this case a REX will be planted since edi is 7 (and were this a byte operand |
| 1817 | // a REX would be required to specify dil instead of bh). Unneeded REX prefixes will |
| 1818 | // be silently ignored by the processor. |
| 1819 | // |
| 1820 | // Address operands should still be checked using regRequiresRex(), while byteRegRequiresRex() |
| 1821 | // is provided to check byte register operands. |
| 1822 | |
| 1823 | void oneByteOp8(OneByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) |
| 1824 | { |
| 1825 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1826 | emitRexIf(condition: byteRegRequiresRex(reg: rm), r: 0, x: 0, b: rm); |
| 1827 | m_buffer.putByteUnchecked(value: opcode); |
| 1828 | registerModRM(reg: groupOp, rm); |
| 1829 | } |
| 1830 | |
| 1831 | void twoByteOp8(TwoByteOpcodeID opcode, RegisterID reg, RegisterID rm) |
| 1832 | { |
| 1833 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1834 | emitRexIf(condition: byteRegRequiresRex(reg)|byteRegRequiresRex(reg: rm), r: reg, x: 0, b: rm); |
| 1835 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 1836 | m_buffer.putByteUnchecked(value: opcode); |
| 1837 | registerModRM(reg, rm); |
| 1838 | } |
| 1839 | |
| 1840 | void twoByteOp8(TwoByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) |
| 1841 | { |
| 1842 | m_buffer.ensureSpace(space: maxInstructionSize); |
| 1843 | emitRexIf(condition: byteRegRequiresRex(reg: rm), r: 0, x: 0, b: rm); |
| 1844 | m_buffer.putByteUnchecked(value: OP_2BYTE_ESCAPE); |
| 1845 | m_buffer.putByteUnchecked(value: opcode); |
| 1846 | registerModRM(reg: groupOp, rm); |
| 1847 | } |
| 1848 | |
| 1849 | // Immediates: |
| 1850 | // |
| 1851 | // An immedaite should be appended where appropriate after an op has been emitted. |
| 1852 | // The writes are unchecked since the opcode formatters above will have ensured space. |
| 1853 | |
| 1854 | void immediate8(int imm) |
| 1855 | { |
| 1856 | m_buffer.putByteUnchecked(value: imm); |
| 1857 | } |
| 1858 | |
| 1859 | void immediate16(int imm) |
| 1860 | { |
| 1861 | m_buffer.putShortUnchecked(value: imm); |
| 1862 | } |
| 1863 | |
| 1864 | void immediate32(int imm) |
| 1865 | { |
| 1866 | m_buffer.putIntUnchecked(value: imm); |
| 1867 | } |
| 1868 | |
| 1869 | void immediate64(int64_t imm) |
| 1870 | { |
| 1871 | m_buffer.putInt64Unchecked(value: imm); |
| 1872 | } |
| 1873 | |
| 1874 | JmpSrc immediateRel32() |
| 1875 | { |
| 1876 | m_buffer.putIntUnchecked(value: 0); |
| 1877 | return JmpSrc(m_buffer.size()); |
| 1878 | } |
| 1879 | |
| 1880 | // Administrative methods: |
| 1881 | |
| 1882 | size_t size() const { return m_buffer.size(); } |
| 1883 | bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); } |
| 1884 | void* data() const { return m_buffer.data(); } |
| 1885 | void* executableCopy(ExecutablePool* allocator) { return m_buffer.executableCopy(allocator); } |
| 1886 | |
| 1887 | private: |
| 1888 | |
| 1889 | // Internals; ModRm and REX formatters. |
| 1890 | |
| 1891 | static const RegisterID noBase = X86Registers::ebp; |
| 1892 | static const RegisterID hasSib = X86Registers::esp; |
| 1893 | static const RegisterID noIndex = X86Registers::esp; |
| 1894 | #if CPU(X86_64) |
| 1895 | static const RegisterID noBase2 = X86Registers::r13; |
| 1896 | static const RegisterID hasSib2 = X86Registers::r12; |
| 1897 | |
| 1898 | // Registers r8 & above require a REX prefixe. |
| 1899 | inline bool regRequiresRex(int reg) |
| 1900 | { |
| 1901 | return (reg >= X86Registers::r8); |
| 1902 | } |
| 1903 | |
| 1904 | // Byte operand register spl & above require a REX prefix (to prevent the 'H' registers be accessed). |
| 1905 | inline bool byteRegRequiresRex(int reg) |
| 1906 | { |
| 1907 | return (reg >= X86Registers::esp); |
| 1908 | } |
| 1909 | |
| 1910 | // Format a REX prefix byte. |
| 1911 | inline void emitRex(bool w, int r, int x, int b) |
| 1912 | { |
| 1913 | m_buffer.putByteUnchecked(value: PRE_REX | ((int)w << 3) | ((r>>3)<<2) | ((x>>3)<<1) | (b>>3)); |
| 1914 | } |
| 1915 | |
| 1916 | // Used to plant a REX byte with REX.w set (for 64-bit operations). |
| 1917 | inline void emitRexW(int r, int x, int b) |
| 1918 | { |
| 1919 | emitRex(w: true, r, x, b); |
| 1920 | } |
| 1921 | |
| 1922 | // Used for operations with byte operands - use byteRegRequiresRex() to check register operands, |
| 1923 | // regRequiresRex() to check other registers (i.e. address base & index). |
| 1924 | inline void emitRexIf(bool condition, int r, int x, int b) |
| 1925 | { |
| 1926 | if (condition) emitRex(w: false, r, x, b); |
| 1927 | } |
| 1928 | |
| 1929 | // Used for word sized operations, will plant a REX prefix if necessary (if any register is r8 or above). |
| 1930 | inline void emitRexIfNeeded(int r, int x, int b) |
| 1931 | { |
| 1932 | emitRexIf(condition: regRequiresRex(reg: r) || regRequiresRex(reg: x) || regRequiresRex(reg: b), r, x, b); |
| 1933 | } |
| 1934 | #else |
| 1935 | // No REX prefix bytes on 32-bit x86. |
| 1936 | inline bool regRequiresRex(int) { return false; } |
| 1937 | inline bool byteRegRequiresRex(int) { return false; } |
| 1938 | inline void emitRexIf(bool, int, int, int) {} |
| 1939 | inline void emitRexIfNeeded(int, int, int) {} |
| 1940 | #endif |
| 1941 | |
| 1942 | enum ModRmMode { |
| 1943 | ModRmMemoryNoDisp, |
| 1944 | ModRmMemoryDisp8, |
| 1945 | ModRmMemoryDisp32, |
| 1946 | ModRmRegister, |
| 1947 | }; |
| 1948 | |
| 1949 | void putModRm(ModRmMode mode, int reg, RegisterID rm) |
| 1950 | { |
| 1951 | m_buffer.putByteUnchecked(value: (mode << 6) | ((reg & 7) << 3) | (rm & 7)); |
| 1952 | } |
| 1953 | |
| 1954 | void putModRmSib(ModRmMode mode, int reg, RegisterID base, RegisterID index, int scale) |
| 1955 | { |
| 1956 | ASSERT(mode != ModRmRegister); |
| 1957 | |
| 1958 | putModRm(mode, reg, rm: hasSib); |
| 1959 | m_buffer.putByteUnchecked(value: (scale << 6) | ((index & 7) << 3) | (base & 7)); |
| 1960 | } |
| 1961 | |
| 1962 | void registerModRM(int reg, RegisterID rm) |
| 1963 | { |
| 1964 | putModRm(mode: ModRmRegister, reg, rm); |
| 1965 | } |
| 1966 | |
| 1967 | void memoryModRM(int reg, RegisterID base, int offset) |
| 1968 | { |
| 1969 | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. |
| 1970 | #if CPU(X86_64) |
| 1971 | if ((base == hasSib) || (base == hasSib2)) { |
| 1972 | #else |
| 1973 | if (base == hasSib) { |
| 1974 | #endif |
| 1975 | if (!offset) // No need to check if the base is noBase, since we know it is hasSib! |
| 1976 | putModRmSib(mode: ModRmMemoryNoDisp, reg, base, index: noIndex, scale: 0); |
| 1977 | else if (CAN_SIGN_EXTEND_8_32(value: offset)) { |
| 1978 | putModRmSib(mode: ModRmMemoryDisp8, reg, base, index: noIndex, scale: 0); |
| 1979 | m_buffer.putByteUnchecked(value: offset); |
| 1980 | } else { |
| 1981 | putModRmSib(mode: ModRmMemoryDisp32, reg, base, index: noIndex, scale: 0); |
| 1982 | m_buffer.putIntUnchecked(value: offset); |
| 1983 | } |
| 1984 | } else { |
| 1985 | #if CPU(X86_64) |
| 1986 | if (!offset && (base != noBase) && (base != noBase2)) |
| 1987 | #else |
| 1988 | if (!offset && (base != noBase)) |
| 1989 | #endif |
| 1990 | putModRm(mode: ModRmMemoryNoDisp, reg, rm: base); |
| 1991 | else if (CAN_SIGN_EXTEND_8_32(value: offset)) { |
| 1992 | putModRm(mode: ModRmMemoryDisp8, reg, rm: base); |
| 1993 | m_buffer.putByteUnchecked(value: offset); |
| 1994 | } else { |
| 1995 | putModRm(mode: ModRmMemoryDisp32, reg, rm: base); |
| 1996 | m_buffer.putIntUnchecked(value: offset); |
| 1997 | } |
| 1998 | } |
| 1999 | } |
| 2000 | |
| 2001 | void memoryModRM_disp32(int reg, RegisterID base, int offset) |
| 2002 | { |
| 2003 | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. |
| 2004 | #if CPU(X86_64) |
| 2005 | if ((base == hasSib) || (base == hasSib2)) { |
| 2006 | #else |
| 2007 | if (base == hasSib) { |
| 2008 | #endif |
| 2009 | putModRmSib(mode: ModRmMemoryDisp32, reg, base, index: noIndex, scale: 0); |
| 2010 | m_buffer.putIntUnchecked(value: offset); |
| 2011 | } else { |
| 2012 | putModRm(mode: ModRmMemoryDisp32, reg, rm: base); |
| 2013 | m_buffer.putIntUnchecked(value: offset); |
| 2014 | } |
| 2015 | } |
| 2016 | |
| 2017 | void memoryModRM(int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 2018 | { |
| 2019 | ASSERT(index != noIndex); |
| 2020 | |
| 2021 | #if CPU(X86_64) |
| 2022 | if (!offset && (base != noBase) && (base != noBase2)) |
| 2023 | #else |
| 2024 | if (!offset && (base != noBase)) |
| 2025 | #endif |
| 2026 | putModRmSib(mode: ModRmMemoryNoDisp, reg, base, index, scale); |
| 2027 | else if (CAN_SIGN_EXTEND_8_32(value: offset)) { |
| 2028 | putModRmSib(mode: ModRmMemoryDisp8, reg, base, index, scale); |
| 2029 | m_buffer.putByteUnchecked(value: offset); |
| 2030 | } else { |
| 2031 | putModRmSib(mode: ModRmMemoryDisp32, reg, base, index, scale); |
| 2032 | m_buffer.putIntUnchecked(value: offset); |
| 2033 | } |
| 2034 | } |
| 2035 | |
| 2036 | #if !CPU(X86_64) |
| 2037 | void memoryModRM(int reg, void* address) |
| 2038 | { |
| 2039 | // noBase + ModRmMemoryNoDisp means noBase + ModRmMemoryDisp32! |
| 2040 | putModRm(ModRmMemoryNoDisp, reg, noBase); |
| 2041 | m_buffer.putIntUnchecked(reinterpret_cast<int32_t>(address)); |
| 2042 | } |
| 2043 | #endif |
| 2044 | |
| 2045 | AssemblerBuffer m_buffer; |
| 2046 | } m_formatter; |
| 2047 | }; |
| 2048 | |
| 2049 | } // namespace JSC |
| 2050 | |
| 2051 | #endif // ENABLE(ASSEMBLER) && CPU(X86) |
| 2052 | |
| 2053 | #endif // X86Assembler_h |
| 2054 | |