| 1 | /* |
| 2 | * Copyright (C) 2009 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | |
| 28 | #include "ExecutableAllocator.h" |
| 29 | |
| 30 | #if ENABLE(EXECUTABLE_ALLOCATOR_FIXED) |
| 31 | |
| 32 | #include <errno.h> |
| 33 | |
| 34 | #include "TCSpinLock.h" |
| 35 | #include <sys/mman.h> |
| 36 | #include <unistd.h> |
| 37 | #include <wtf/AVLTree.h> |
| 38 | #include <wtf/VMTags.h> |
| 39 | |
| 40 | #if CPU(X86_64) |
| 41 | // These limits suitable on 64-bit platforms (particularly x86-64, where we require all jumps to have a 2Gb max range). |
| 42 | #ifdef QT_USE_ONEGB_VMALLOCATOR |
| 43 | #define VM_POOL_SIZE (1024u * 1024u * 1024u) // 1Gb |
| 44 | #else |
| 45 | #define VM_POOL_SIZE (2u * 1024u * 1024u * 1024u) // 2Gb |
| 46 | #endif |
| 47 | #define COALESCE_LIMIT (16u * 1024u * 1024u) // 16Mb |
| 48 | #else |
| 49 | // These limits are hopefully sensible on embedded platforms. |
| 50 | #define VM_POOL_SIZE (32u * 1024u * 1024u) // 32Mb |
| 51 | #define COALESCE_LIMIT (4u * 1024u * 1024u) // 4Mb |
| 52 | #endif |
| 53 | |
| 54 | // ASLR currently only works on darwin (due to arc4random) & 64-bit (due to address space size). |
| 55 | #define VM_POOL_ASLR (OS(DARWIN) && CPU(X86_64)) |
| 56 | |
| 57 | using namespace WTF; |
| 58 | |
| 59 | namespace JSC { |
| 60 | |
| 61 | // FreeListEntry describes a free chunk of memory, stored in the freeList. |
| 62 | struct FreeListEntry { |
| 63 | FreeListEntry(void* pointer, size_t size) |
| 64 | : pointer(pointer) |
| 65 | , size(size) |
| 66 | , nextEntry(0) |
| 67 | , less(0) |
| 68 | , greater(0) |
| 69 | , balanceFactor(0) |
| 70 | { |
| 71 | } |
| 72 | |
| 73 | // All entries of the same size share a single entry |
| 74 | // in the AVLTree, and are linked together in a linked |
| 75 | // list, using nextEntry. |
| 76 | void* pointer; |
| 77 | size_t size; |
| 78 | FreeListEntry* nextEntry; |
| 79 | |
| 80 | // These fields are used by AVLTree. |
| 81 | FreeListEntry* less; |
| 82 | FreeListEntry* greater; |
| 83 | int balanceFactor; |
| 84 | }; |
| 85 | |
| 86 | // Abstractor class for use in AVLTree. |
| 87 | // Nodes in the AVLTree are of type FreeListEntry, keyed on |
| 88 | // (and thus sorted by) their size. |
| 89 | struct AVLTreeAbstractorForFreeList { |
| 90 | typedef FreeListEntry* handle; |
| 91 | typedef int32_t size; |
| 92 | typedef size_t key; |
| 93 | |
| 94 | handle get_less(handle h) { return h->less; } |
| 95 | void set_less(handle h, handle lh) { h->less = lh; } |
| 96 | handle get_greater(handle h) { return h->greater; } |
| 97 | void set_greater(handle h, handle gh) { h->greater = gh; } |
| 98 | int get_balance_factor(handle h) { return h->balanceFactor; } |
| 99 | void set_balance_factor(handle h, int bf) { h->balanceFactor = bf; } |
| 100 | |
| 101 | static handle null() { return 0; } |
| 102 | |
| 103 | int compare_key_key(key va, key vb) { return va - vb; } |
| 104 | int compare_key_node(key k, handle h) { return compare_key_key(va: k, vb: h->size); } |
| 105 | int compare_node_node(handle h1, handle h2) { return compare_key_key(va: h1->size, vb: h2->size); } |
| 106 | }; |
| 107 | |
| 108 | // Used to reverse sort an array of FreeListEntry pointers. |
| 109 | static int reverseSortFreeListEntriesByPointer(const void* leftPtr, const void* rightPtr) |
| 110 | { |
| 111 | FreeListEntry* left = *(FreeListEntry**)leftPtr; |
| 112 | FreeListEntry* right = *(FreeListEntry**)rightPtr; |
| 113 | |
| 114 | return (intptr_t)(right->pointer) - (intptr_t)(left->pointer); |
| 115 | } |
| 116 | |
| 117 | // Used to reverse sort an array of pointers. |
| 118 | static int reverseSortCommonSizedAllocations(const void* leftPtr, const void* rightPtr) |
| 119 | { |
| 120 | void* left = *(void**)leftPtr; |
| 121 | void* right = *(void**)rightPtr; |
| 122 | |
| 123 | return (intptr_t)right - (intptr_t)left; |
| 124 | } |
| 125 | |
| 126 | class FixedVMPoolAllocator |
| 127 | { |
| 128 | // The free list is stored in a sorted tree. |
| 129 | typedef AVLTree<AVLTreeAbstractorForFreeList, 40> SizeSortedFreeTree; |
| 130 | |
| 131 | // Use madvise as apropriate to prevent freed pages from being spilled, |
| 132 | // and to attempt to ensure that used memory is reported correctly. |
| 133 | #if HAVE(MADV_FREE_REUSE) |
| 134 | void release(void* position, size_t size) |
| 135 | { |
| 136 | while (madvise(position, size, MADV_FREE_REUSABLE) == -1 && errno == EAGAIN) { } |
| 137 | } |
| 138 | |
| 139 | void reuse(void* position, size_t size) |
| 140 | { |
| 141 | while (madvise(position, size, MADV_FREE_REUSE) == -1 && errno == EAGAIN) { } |
| 142 | } |
| 143 | #elif HAVE(MADV_DONTNEED) |
| 144 | void release(void* position, size_t size) |
| 145 | { |
| 146 | while (madvise(position, size, MADV_DONTNEED) == -1 && errno == EAGAIN) { } |
| 147 | } |
| 148 | |
| 149 | void reuse(void*, size_t) {} |
| 150 | #else |
| 151 | void release(void*, size_t) {} |
| 152 | void reuse(void*, size_t) {} |
| 153 | #endif |
| 154 | |
| 155 | // All addition to the free list should go through this method, rather than |
| 156 | // calling insert directly, to avoid multiple entries beging added with the |
| 157 | // same key. All nodes being added should be singletons, they should not |
| 158 | // already be a part of a chain. |
| 159 | void addToFreeList(FreeListEntry* entry) |
| 160 | { |
| 161 | ASSERT(!entry->nextEntry); |
| 162 | |
| 163 | if (entry->size == m_commonSize) { |
| 164 | m_commonSizedAllocations.append(val: entry->pointer); |
| 165 | delete entry; |
| 166 | } else if (FreeListEntry* entryInFreeList = m_freeList.search(k: entry->size, st: m_freeList.EQUAL)) { |
| 167 | // m_freeList already contain an entry for this size - insert this node into the chain. |
| 168 | entry->nextEntry = entryInFreeList->nextEntry; |
| 169 | entryInFreeList->nextEntry = entry; |
| 170 | } else |
| 171 | m_freeList.insert(h: entry); |
| 172 | } |
| 173 | |
| 174 | // We do not attempt to coalesce addition, which may lead to fragmentation; |
| 175 | // instead we periodically perform a sweep to try to coalesce neigboring |
| 176 | // entries in m_freeList. Presently this is triggered at the point 16MB |
| 177 | // of memory has been released. |
| 178 | void coalesceFreeSpace() |
| 179 | { |
| 180 | Vector<FreeListEntry*> freeListEntries; |
| 181 | SizeSortedFreeTree::Iterator iter; |
| 182 | iter.start_iter_least(tree&: m_freeList); |
| 183 | |
| 184 | // Empty m_freeList into a Vector. |
| 185 | for (FreeListEntry* entry; (entry = *iter); ++iter) { |
| 186 | // Each entry in m_freeList might correspond to multiple |
| 187 | // free chunks of memory (of the same size). Walk the chain |
| 188 | // (this is likely of couse only be one entry long!) adding |
| 189 | // each entry to the Vector (at reseting the next in chain |
| 190 | // pointer to separate each node out). |
| 191 | FreeListEntry* next; |
| 192 | do { |
| 193 | next = entry->nextEntry; |
| 194 | entry->nextEntry = 0; |
| 195 | freeListEntries.append(val: entry); |
| 196 | } while ((entry = next)); |
| 197 | } |
| 198 | // All entries are now in the Vector; purge the tree. |
| 199 | m_freeList.purge(); |
| 200 | |
| 201 | // Reverse-sort the freeListEntries and m_commonSizedAllocations Vectors. |
| 202 | // We reverse-sort so that we can logically work forwards through memory, |
| 203 | // whilst popping items off the end of the Vectors using last() and removeLast(). |
| 204 | qsort(base: freeListEntries.begin(), nmemb: freeListEntries.size(), size: sizeof(FreeListEntry*), compar: reverseSortFreeListEntriesByPointer); |
| 205 | qsort(base: m_commonSizedAllocations.begin(), nmemb: m_commonSizedAllocations.size(), size: sizeof(void*), compar: reverseSortCommonSizedAllocations); |
| 206 | |
| 207 | // The entries from m_commonSizedAllocations that cannot be |
| 208 | // coalesced into larger chunks will be temporarily stored here. |
| 209 | Vector<void*> newCommonSizedAllocations; |
| 210 | |
| 211 | // Keep processing so long as entries remain in either of the vectors. |
| 212 | while (freeListEntries.size() || m_commonSizedAllocations.size()) { |
| 213 | // We're going to try to find a FreeListEntry node that we can coalesce onto. |
| 214 | FreeListEntry* coalescionEntry = 0; |
| 215 | |
| 216 | // Is the lowest addressed chunk of free memory of common-size, or is it in the free list? |
| 217 | if (m_commonSizedAllocations.size() && (!freeListEntries.size() || (m_commonSizedAllocations.last() < freeListEntries.last()->pointer))) { |
| 218 | // Pop an item from the m_commonSizedAllocations vector - this is the lowest |
| 219 | // addressed free chunk. Find out the begin and end addresses of the memory chunk. |
| 220 | void* begin = m_commonSizedAllocations.last(); |
| 221 | void* end = (void*)((intptr_t)begin + m_commonSize); |
| 222 | m_commonSizedAllocations.removeLast(); |
| 223 | |
| 224 | // Try to find another free chunk abutting onto the end of the one we have already found. |
| 225 | if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) { |
| 226 | // There is an existing FreeListEntry for the next chunk of memory! |
| 227 | // we can reuse this. Pop it off the end of m_freeList. |
| 228 | coalescionEntry = freeListEntries.last(); |
| 229 | freeListEntries.removeLast(); |
| 230 | // Update the existing node to include the common-sized chunk that we also found. |
| 231 | coalescionEntry->pointer = (void*)((intptr_t)coalescionEntry->pointer - m_commonSize); |
| 232 | coalescionEntry->size += m_commonSize; |
| 233 | } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) { |
| 234 | // There is a second common-sized chunk that can be coalesced. |
| 235 | // Allocate a new node. |
| 236 | m_commonSizedAllocations.removeLast(); |
| 237 | coalescionEntry = new FreeListEntry(begin, 2 * m_commonSize); |
| 238 | } else { |
| 239 | // Nope - this poor little guy is all on his own. :-( |
| 240 | // Add him into the newCommonSizedAllocations vector for now, we're |
| 241 | // going to end up adding him back into the m_commonSizedAllocations |
| 242 | // list when we're done. |
| 243 | newCommonSizedAllocations.append(val: begin); |
| 244 | continue; |
| 245 | } |
| 246 | } else { |
| 247 | ASSERT(freeListEntries.size()); |
| 248 | ASSERT(!m_commonSizedAllocations.size() || (freeListEntries.last()->pointer < m_commonSizedAllocations.last())); |
| 249 | // The lowest addressed item is from m_freeList; pop it from the Vector. |
| 250 | coalescionEntry = freeListEntries.last(); |
| 251 | freeListEntries.removeLast(); |
| 252 | } |
| 253 | |
| 254 | // Right, we have a FreeListEntry, we just need check if there is anything else |
| 255 | // to coalesce onto the end. |
| 256 | ASSERT(coalescionEntry); |
| 257 | while (true) { |
| 258 | // Calculate the end address of the chunk we have found so far. |
| 259 | void* end = (void*)((intptr_t)coalescionEntry->pointer - coalescionEntry->size); |
| 260 | |
| 261 | // Is there another chunk adjacent to the one we already have? |
| 262 | if (freeListEntries.size() && (freeListEntries.last()->pointer == end)) { |
| 263 | // Yes - another FreeListEntry -pop it from the list. |
| 264 | FreeListEntry* coalescee = freeListEntries.last(); |
| 265 | freeListEntries.removeLast(); |
| 266 | // Add it's size onto our existing node. |
| 267 | coalescionEntry->size += coalescee->size; |
| 268 | delete coalescee; |
| 269 | } else if (m_commonSizedAllocations.size() && (m_commonSizedAllocations.last() == end)) { |
| 270 | // We can coalesce the next common-sized chunk. |
| 271 | m_commonSizedAllocations.removeLast(); |
| 272 | coalescionEntry->size += m_commonSize; |
| 273 | } else |
| 274 | break; // Nope, nothing to be added - stop here. |
| 275 | } |
| 276 | |
| 277 | // We've coalesced everything we can onto the current chunk. |
| 278 | // Add it back into m_freeList. |
| 279 | addToFreeList(entry: coalescionEntry); |
| 280 | } |
| 281 | |
| 282 | // All chunks of free memory larger than m_commonSize should be |
| 283 | // back in m_freeList by now. All that remains to be done is to |
| 284 | // copy the contents on the newCommonSizedAllocations back into |
| 285 | // the m_commonSizedAllocations Vector. |
| 286 | ASSERT(m_commonSizedAllocations.size() == 0); |
| 287 | m_commonSizedAllocations.append(val: newCommonSizedAllocations); |
| 288 | } |
| 289 | |
| 290 | public: |
| 291 | |
| 292 | FixedVMPoolAllocator(size_t commonSize, size_t totalHeapSize) |
| 293 | : m_commonSize(commonSize) |
| 294 | , m_countFreedSinceLastCoalesce(0) |
| 295 | , m_totalHeapSize(totalHeapSize) |
| 296 | { |
| 297 | // Cook up an address to allocate at, using the following recipe: |
| 298 | // 17 bits of zero, stay in userspace kids. |
| 299 | // 26 bits of randomness for ASLR. |
| 300 | // 21 bits of zero, at least stay aligned within one level of the pagetables. |
| 301 | // |
| 302 | // But! - as a temporary workaround for some plugin problems (rdar://problem/6812854), |
| 303 | // for now instead of 2^26 bits of ASLR lets stick with 25 bits of randomization plus |
| 304 | // 2^24, which should put up somewhere in the middle of usespace (in the address range |
| 305 | // 0x200000000000 .. 0x5fffffffffff). |
| 306 | intptr_t randomLocation = 0; |
| 307 | #if VM_POOL_ASLR |
| 308 | randomLocation = arc4random() & ((1 << 25) - 1); |
| 309 | randomLocation += (1 << 24); |
| 310 | randomLocation <<= 21; |
| 311 | #endif |
| 312 | m_base = mmap(addr: reinterpret_cast<void*>(randomLocation), len: m_totalHeapSize, INITIAL_PROTECTION_FLAGS, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, VM_TAG_FOR_EXECUTABLEALLOCATOR_MEMORY, offset: 0); |
| 313 | if (m_base == MAP_FAILED) |
| 314 | CRASH(); |
| 315 | |
| 316 | // For simplicity, we keep all memory in m_freeList in a 'released' state. |
| 317 | // This means that we can simply reuse all memory when allocating, without |
| 318 | // worrying about it's previous state, and also makes coalescing m_freeList |
| 319 | // simpler since we need not worry about the possibility of coalescing released |
| 320 | // chunks with non-released ones. |
| 321 | release(m_base, m_totalHeapSize); |
| 322 | m_freeList.insert(h: new FreeListEntry(m_base, m_totalHeapSize)); |
| 323 | } |
| 324 | |
| 325 | void* alloc(size_t size) |
| 326 | { |
| 327 | void* result; |
| 328 | |
| 329 | // Freed allocations of the common size are not stored back into the main |
| 330 | // m_freeList, but are instead stored in a separate vector. If the request |
| 331 | // is for a common sized allocation, check this list. |
| 332 | if ((size == m_commonSize) && m_commonSizedAllocations.size()) { |
| 333 | result = m_commonSizedAllocations.last(); |
| 334 | m_commonSizedAllocations.removeLast(); |
| 335 | } else { |
| 336 | // Serach m_freeList for a suitable sized chunk to allocate memory from. |
| 337 | FreeListEntry* entry = m_freeList.search(k: size, st: m_freeList.GREATER_EQUAL); |
| 338 | |
| 339 | // This would be bad news. |
| 340 | if (!entry) { |
| 341 | // Errk! Lets take a last-ditch desparation attempt at defragmentation... |
| 342 | coalesceFreeSpace(); |
| 343 | // Did that free up a large enough chunk? |
| 344 | entry = m_freeList.search(k: size, st: m_freeList.GREATER_EQUAL); |
| 345 | // No?... *BOOM!* |
| 346 | if (!entry) |
| 347 | CRASH(); |
| 348 | } |
| 349 | ASSERT(entry->size != m_commonSize); |
| 350 | |
| 351 | // Remove the entry from m_freeList. But! - |
| 352 | // Each entry in the tree may represent a chain of multiple chunks of the |
| 353 | // same size, and we only want to remove one on them. So, if this entry |
| 354 | // does have a chain, just remove the first-but-one item from the chain. |
| 355 | if (FreeListEntry* next = entry->nextEntry) { |
| 356 | // We're going to leave 'entry' in the tree; remove 'next' from its chain. |
| 357 | entry->nextEntry = next->nextEntry; |
| 358 | next->nextEntry = 0; |
| 359 | entry = next; |
| 360 | } else |
| 361 | m_freeList.remove(k: entry->size); |
| 362 | |
| 363 | // Whoo!, we have a result! |
| 364 | ASSERT(entry->size >= size); |
| 365 | result = entry->pointer; |
| 366 | |
| 367 | // If the allocation exactly fits the chunk we found in the, |
| 368 | // m_freeList then the FreeListEntry node is no longer needed. |
| 369 | if (entry->size == size) |
| 370 | delete entry; |
| 371 | else { |
| 372 | // There is memory left over, and it is not of the common size. |
| 373 | // We can reuse the existing FreeListEntry node to add this back |
| 374 | // into m_freeList. |
| 375 | entry->pointer = (void*)((intptr_t)entry->pointer + size); |
| 376 | entry->size -= size; |
| 377 | addToFreeList(entry); |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | // Call reuse to report to the operating system that this memory is in use. |
| 382 | ASSERT(isWithinVMPool(result, size)); |
| 383 | reuse(result, size); |
| 384 | return result; |
| 385 | } |
| 386 | |
| 387 | void free(void* pointer, size_t size) |
| 388 | { |
| 389 | // Call release to report to the operating system that this |
| 390 | // memory is no longer in use, and need not be paged out. |
| 391 | ASSERT(isWithinVMPool(pointer, size)); |
| 392 | release(pointer, size); |
| 393 | |
| 394 | // Common-sized allocations are stored in the m_commonSizedAllocations |
| 395 | // vector; all other freed chunks are added to m_freeList. |
| 396 | if (size == m_commonSize) |
| 397 | m_commonSizedAllocations.append(val: pointer); |
| 398 | else |
| 399 | addToFreeList(entry: new FreeListEntry(pointer, size)); |
| 400 | |
| 401 | // Do some housekeeping. Every time we reach a point that |
| 402 | // 16MB of allocations have been freed, sweep m_freeList |
| 403 | // coalescing any neighboring fragments. |
| 404 | m_countFreedSinceLastCoalesce += size; |
| 405 | if (m_countFreedSinceLastCoalesce >= COALESCE_LIMIT) { |
| 406 | m_countFreedSinceLastCoalesce = 0; |
| 407 | coalesceFreeSpace(); |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | private: |
| 412 | |
| 413 | #ifndef NDEBUG |
| 414 | bool isWithinVMPool(void* pointer, size_t size) |
| 415 | { |
| 416 | return pointer >= m_base && (reinterpret_cast<char*>(pointer) + size <= reinterpret_cast<char*>(m_base) + m_totalHeapSize); |
| 417 | } |
| 418 | #endif |
| 419 | |
| 420 | // Freed space from the most common sized allocations will be held in this list, ... |
| 421 | const size_t m_commonSize; |
| 422 | Vector<void*> m_commonSizedAllocations; |
| 423 | |
| 424 | // ... and all other freed allocations are held in m_freeList. |
| 425 | SizeSortedFreeTree m_freeList; |
| 426 | |
| 427 | // This is used for housekeeping, to trigger defragmentation of the freed lists. |
| 428 | size_t m_countFreedSinceLastCoalesce; |
| 429 | |
| 430 | void* m_base; |
| 431 | size_t m_totalHeapSize; |
| 432 | }; |
| 433 | |
| 434 | void ExecutableAllocator::intializePageSize() |
| 435 | { |
| 436 | ExecutableAllocator::pageSize = getpagesize(); |
| 437 | } |
| 438 | |
| 439 | static FixedVMPoolAllocator* allocator = 0; |
| 440 | static SpinLock spinlock = SPINLOCK_INITIALIZER; |
| 441 | |
| 442 | ExecutablePool::Allocation ExecutablePool::systemAlloc(size_t size) |
| 443 | { |
| 444 | SpinLockHolder lock_holder(&spinlock); |
| 445 | |
| 446 | if (!allocator) |
| 447 | allocator = new FixedVMPoolAllocator(JIT_ALLOCATOR_LARGE_ALLOC_SIZE, VM_POOL_SIZE); |
| 448 | ExecutablePool::Allocation alloc = {.pages: reinterpret_cast<char*>(allocator->alloc(size)), .size: size}; |
| 449 | return alloc; |
| 450 | } |
| 451 | |
| 452 | void ExecutablePool::systemRelease(const ExecutablePool::Allocation& allocation) |
| 453 | { |
| 454 | SpinLockHolder lock_holder(&spinlock); |
| 455 | |
| 456 | ASSERT(allocator); |
| 457 | allocator->free(pointer: allocation.pages, size: allocation.size); |
| 458 | } |
| 459 | |
| 460 | } |
| 461 | |
| 462 | #endif // HAVE(ASSEMBLER) |
| 463 | |