| 1 | /* This is JavaScriptCore's variant of the PCRE library. While this library |
| 2 | started out as a copy of PCRE, many of the features of PCRE have been |
| 3 | removed. This library now supports only the regular expression features |
| 4 | required by the JavaScript language specification, and has only the functions |
| 5 | needed by JavaScriptCore and the rest of WebKit. |
| 6 | |
| 7 | Originally written by Philip Hazel |
| 8 | Copyright (c) 1997-2006 University of Cambridge |
| 9 | Copyright (C) 2002, 2004, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved. |
| 10 | Copyright (C) 2007 Eric Seidel <eric@webkit.org> |
| 11 | |
| 12 | ----------------------------------------------------------------------------- |
| 13 | Redistribution and use in source and binary forms, with or without |
| 14 | modification, are permitted provided that the following conditions are met: |
| 15 | |
| 16 | * Redistributions of source code must retain the above copyright notice, |
| 17 | this list of conditions and the following disclaimer. |
| 18 | |
| 19 | * Redistributions in binary form must reproduce the above copyright |
| 20 | notice, this list of conditions and the following disclaimer in the |
| 21 | documentation and/or other materials provided with the distribution. |
| 22 | |
| 23 | * Neither the name of the University of Cambridge nor the names of its |
| 24 | contributors may be used to endorse or promote products derived from |
| 25 | this software without specific prior written permission. |
| 26 | |
| 27 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 28 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 29 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 30 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 31 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 32 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 33 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 34 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 35 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 36 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 37 | POSSIBILITY OF SUCH DAMAGE. |
| 38 | ----------------------------------------------------------------------------- |
| 39 | */ |
| 40 | |
| 41 | /* This module contains the external function jsRegExpExecute(), along with |
| 42 | supporting internal functions that are not used by other modules. */ |
| 43 | |
| 44 | #include "config.h" |
| 45 | |
| 46 | #include "pcre_internal.h" |
| 47 | |
| 48 | #include <string.h> |
| 49 | #include <wtf/ASCIICType.h> |
| 50 | #include <wtf/FastMalloc.h> |
| 51 | |
| 52 | using namespace WTF; |
| 53 | |
| 54 | /* Negative values for the firstchar and reqchar variables */ |
| 55 | |
| 56 | #define REQ_UNSET (-2) |
| 57 | #define REQ_NONE (-1) |
| 58 | |
| 59 | /************************************************* |
| 60 | * Code parameters and static tables * |
| 61 | *************************************************/ |
| 62 | |
| 63 | /* Maximum number of items on the nested bracket stacks at compile time. This |
| 64 | applies to the nesting of all kinds of parentheses. It does not limit |
| 65 | un-nested, non-capturing parentheses. This number can be made bigger if |
| 66 | necessary - it is used to dimension one int and one unsigned char vector at |
| 67 | compile time. */ |
| 68 | |
| 69 | #define BRASTACK_SIZE 200 |
| 70 | |
| 71 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
| 72 | are simple data values; negative values are for special things like \d and so |
| 73 | on. Zero means further processing is needed (for things like \x), or the escape |
| 74 | is invalid. */ |
| 75 | |
| 76 | static const short escapes[] = { |
| 77 | 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */ |
| 78 | 0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */ |
| 79 | '@', 0, -ESC_B, 0, -ESC_D, 0, 0, 0, /* @ - G */ |
| 80 | 0, 0, 0, 0, 0, 0, 0, 0, /* H - O */ |
| 81 | 0, 0, 0, -ESC_S, 0, 0, 0, -ESC_W, /* P - W */ |
| 82 | 0, 0, 0, '[', '\\', ']', '^', '_', /* X - _ */ |
| 83 | '`', 7, -ESC_b, 0, -ESC_d, 0, '\f', 0, /* ` - g */ |
| 84 | 0, 0, 0, 0, 0, 0, '\n', 0, /* h - o */ |
| 85 | 0, 0, '\r', -ESC_s, '\t', 0, '\v', -ESC_w, /* p - w */ |
| 86 | 0, 0, 0 /* x - z */ |
| 87 | }; |
| 88 | |
| 89 | /* Error code numbers. They are given names so that they can more easily be |
| 90 | tracked. */ |
| 91 | |
| 92 | enum ErrorCode { |
| 93 | ERR0, ERR1, ERR2, ERR3, ERR4, ERR5, ERR6, ERR7, ERR8, ERR9, |
| 94 | ERR10, ERR11, ERR12, ERR13, ERR14, ERR15, ERR16, ERR17 |
| 95 | }; |
| 96 | |
| 97 | /* The texts of compile-time error messages. These are "char *" because they |
| 98 | are passed to the outside world. */ |
| 99 | |
| 100 | static const char* errorText(ErrorCode code) |
| 101 | { |
| 102 | static const char errorTexts[] = |
| 103 | /* 1 */ |
| 104 | "\\ at end of pattern\0" |
| 105 | "\\c at end of pattern\0" |
| 106 | "character value in \\x{...} sequence is too large\0" |
| 107 | "numbers out of order in {} quantifier\0" |
| 108 | /* 5 */ |
| 109 | "number too big in {} quantifier\0" |
| 110 | "missing terminating ] for character class\0" |
| 111 | "internal error: code overflow\0" |
| 112 | "range out of order in character class\0" |
| 113 | "nothing to repeat\0" |
| 114 | /* 10 */ |
| 115 | "unmatched parentheses\0" |
| 116 | "internal error: unexpected repeat\0" |
| 117 | "unrecognized character after (?\0" |
| 118 | "failed to get memory\0" |
| 119 | "missing )\0" |
| 120 | /* 15 */ |
| 121 | "reference to non-existent subpattern\0" |
| 122 | "regular expression too large\0" |
| 123 | "parentheses nested too deeply" |
| 124 | ; |
| 125 | |
| 126 | int i = code; |
| 127 | const char* text = errorTexts; |
| 128 | while (i > 1) |
| 129 | i -= !*text++; |
| 130 | return text; |
| 131 | } |
| 132 | |
| 133 | /* Structure for passing "static" information around between the functions |
| 134 | doing the compiling. */ |
| 135 | |
| 136 | struct CompileData { |
| 137 | CompileData() { |
| 138 | topBackref = 0; |
| 139 | backrefMap = 0; |
| 140 | reqVaryOpt = 0; |
| 141 | needOuterBracket = false; |
| 142 | numCapturingBrackets = 0; |
| 143 | } |
| 144 | int topBackref; /* Maximum back reference */ |
| 145 | unsigned backrefMap; /* Bitmap of low back refs */ |
| 146 | int reqVaryOpt; /* "After variable item" flag for reqByte */ |
| 147 | bool needOuterBracket; |
| 148 | int numCapturingBrackets; |
| 149 | }; |
| 150 | |
| 151 | /* Definitions to allow mutual recursion */ |
| 152 | |
| 153 | static bool compileBracket(int, int*, unsigned char**, const UChar**, const UChar*, ErrorCode*, int, int*, int*, CompileData&); |
| 154 | static bool bracketIsAnchored(const unsigned char* code); |
| 155 | static bool bracketNeedsLineStart(const unsigned char* code, unsigned captureMap, unsigned backrefMap); |
| 156 | static int bracketFindFirstAssertedCharacter(const unsigned char* code, bool inassert); |
| 157 | |
| 158 | /************************************************* |
| 159 | * Handle escapes * |
| 160 | *************************************************/ |
| 161 | |
| 162 | /* This function is called when a \ has been encountered. It either returns a |
| 163 | positive value for a simple escape such as \n, or a negative value which |
| 164 | encodes one of the more complicated things such as \d. When UTF-8 is enabled, |
| 165 | a positive value greater than 255 may be returned. On entry, ptr is pointing at |
| 166 | the \. On exit, it is on the final character of the escape sequence. |
| 167 | |
| 168 | Arguments: |
| 169 | ptrPtr points to the pattern position pointer |
| 170 | errorCodePtr points to the errorcode variable |
| 171 | bracount number of previous extracting brackets |
| 172 | options the options bits |
| 173 | isClass true if inside a character class |
| 174 | |
| 175 | Returns: zero or positive => a data character |
| 176 | negative => a special escape sequence |
| 177 | on error, errorPtr is set |
| 178 | */ |
| 179 | |
| 180 | static int checkEscape(const UChar** ptrPtr, const UChar* patternEnd, ErrorCode* errorCodePtr, int bracount, bool isClass) |
| 181 | { |
| 182 | const UChar* ptr = *ptrPtr + 1; |
| 183 | |
| 184 | /* If backslash is at the end of the pattern, it's an error. */ |
| 185 | if (ptr == patternEnd) { |
| 186 | *errorCodePtr = ERR1; |
| 187 | *ptrPtr = ptr; |
| 188 | return 0; |
| 189 | } |
| 190 | |
| 191 | int c = *ptr; |
| 192 | |
| 193 | /* Non-alphamerics are literals. For digits or letters, do an initial lookup in |
| 194 | a table. A non-zero result is something that can be returned immediately. |
| 195 | Otherwise further processing may be required. */ |
| 196 | |
| 197 | if (c < '0' || c > 'z') { /* Not alphameric */ |
| 198 | } else if (int escapeValue = escapes[c - '0']) { |
| 199 | c = escapeValue; |
| 200 | if (isClass) { |
| 201 | if (-c == ESC_b) |
| 202 | c = '\b'; /* \b is backslash in a class */ |
| 203 | else if (-c == ESC_B) |
| 204 | c = 'B'; /* and \B is a capital B in a class (in browsers event though ECMAScript 15.10.2.19 says it raises an error) */ |
| 205 | } |
| 206 | /* Escapes that need further processing, or are illegal. */ |
| 207 | |
| 208 | } else { |
| 209 | switch (c) { |
| 210 | case '1': |
| 211 | case '2': |
| 212 | case '3': |
| 213 | case '4': |
| 214 | case '5': |
| 215 | case '6': |
| 216 | case '7': |
| 217 | case '8': |
| 218 | case '9': |
| 219 | /* Escape sequences starting with a non-zero digit are backreferences, |
| 220 | unless there are insufficient brackets, in which case they are octal |
| 221 | escape sequences. Those sequences end on the first non-octal character |
| 222 | or when we overflow 0-255, whichever comes first. */ |
| 223 | |
| 224 | if (!isClass) { |
| 225 | const UChar* oldptr = ptr; |
| 226 | c -= '0'; |
| 227 | while ((ptr + 1 < patternEnd) && isASCIIDigit(c: ptr[1]) && c <= bracount) |
| 228 | c = c * 10 + *(++ptr) - '0'; |
| 229 | if (c <= bracount) { |
| 230 | c = -(ESC_REF + c); |
| 231 | break; |
| 232 | } |
| 233 | ptr = oldptr; /* Put the pointer back and fall through */ |
| 234 | } |
| 235 | |
| 236 | /* Handle an octal number following \. If the first digit is 8 or 9, |
| 237 | this is not octal. */ |
| 238 | |
| 239 | if ((c = *ptr) >= '8') { |
| 240 | c = '\\'; |
| 241 | ptr -= 1; |
| 242 | break; |
| 243 | } |
| 244 | |
| 245 | /* \0 always starts an octal number, but we may drop through to here with a |
| 246 | larger first octal digit. */ |
| 247 | |
| 248 | case '0': { |
| 249 | c -= '0'; |
| 250 | int i; |
| 251 | for (i = 1; i <= 2; ++i) { |
| 252 | if (ptr + i >= patternEnd || ptr[i] < '0' || ptr[i] > '7') |
| 253 | break; |
| 254 | int cc = c * 8 + ptr[i] - '0'; |
| 255 | if (cc > 255) |
| 256 | break; |
| 257 | c = cc; |
| 258 | } |
| 259 | ptr += i - 1; |
| 260 | break; |
| 261 | } |
| 262 | |
| 263 | case 'x': { |
| 264 | c = 0; |
| 265 | int i; |
| 266 | for (i = 1; i <= 2; ++i) { |
| 267 | if (ptr + i >= patternEnd || !isASCIIHexDigit(c: ptr[i])) { |
| 268 | c = 'x'; |
| 269 | i = 1; |
| 270 | break; |
| 271 | } |
| 272 | int cc = ptr[i]; |
| 273 | if (cc >= 'a') |
| 274 | cc -= 32; /* Convert to upper case */ |
| 275 | c = c * 16 + cc - ((cc < 'A') ? '0' : ('A' - 10)); |
| 276 | } |
| 277 | ptr += i - 1; |
| 278 | break; |
| 279 | } |
| 280 | |
| 281 | case 'u': { |
| 282 | c = 0; |
| 283 | int i; |
| 284 | for (i = 1; i <= 4; ++i) { |
| 285 | if (ptr + i >= patternEnd || !isASCIIHexDigit(c: ptr[i])) { |
| 286 | c = 'u'; |
| 287 | i = 1; |
| 288 | break; |
| 289 | } |
| 290 | int cc = ptr[i]; |
| 291 | if (cc >= 'a') |
| 292 | cc -= 32; /* Convert to upper case */ |
| 293 | c = c * 16 + cc - ((cc < 'A') ? '0' : ('A' - 10)); |
| 294 | } |
| 295 | ptr += i - 1; |
| 296 | break; |
| 297 | } |
| 298 | |
| 299 | case 'c': |
| 300 | if (++ptr == patternEnd) { |
| 301 | *errorCodePtr = ERR2; |
| 302 | return 0; |
| 303 | } |
| 304 | |
| 305 | c = *ptr; |
| 306 | |
| 307 | /* To match Firefox, inside a character class, we also accept |
| 308 | numbers and '_' as control characters */ |
| 309 | if ((!isClass && !isASCIIAlpha(c)) || (!isASCIIAlphanumeric(c) && c != '_')) { |
| 310 | c = '\\'; |
| 311 | ptr -= 2; |
| 312 | break; |
| 313 | } |
| 314 | |
| 315 | /* A letter is upper-cased; then the 0x40 bit is flipped. This coding |
| 316 | is ASCII-specific, but then the whole concept of \cx is ASCII-specific. */ |
| 317 | c = toASCIIUpper(c) ^ 0x40; |
| 318 | break; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | *ptrPtr = ptr; |
| 323 | return c; |
| 324 | } |
| 325 | |
| 326 | /************************************************* |
| 327 | * Check for counted repeat * |
| 328 | *************************************************/ |
| 329 | |
| 330 | /* This function is called when a '{' is encountered in a place where it might |
| 331 | start a quantifier. It looks ahead to see if it really is a quantifier or not. |
| 332 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
| 333 | where the ddds are digits. |
| 334 | |
| 335 | Arguments: |
| 336 | p pointer to the first char after '{' |
| 337 | |
| 338 | Returns: true or false |
| 339 | */ |
| 340 | |
| 341 | static bool isCountedRepeat(const UChar* p, const UChar* patternEnd) |
| 342 | { |
| 343 | if (p >= patternEnd || !isASCIIDigit(c: *p)) |
| 344 | return false; |
| 345 | p++; |
| 346 | while (p < patternEnd && isASCIIDigit(c: *p)) |
| 347 | p++; |
| 348 | if (p < patternEnd && *p == '}') |
| 349 | return true; |
| 350 | |
| 351 | if (p >= patternEnd || *p++ != ',') |
| 352 | return false; |
| 353 | if (p < patternEnd && *p == '}') |
| 354 | return true; |
| 355 | |
| 356 | if (p >= patternEnd || !isASCIIDigit(c: *p)) |
| 357 | return false; |
| 358 | p++; |
| 359 | while (p < patternEnd && isASCIIDigit(c: *p)) |
| 360 | p++; |
| 361 | |
| 362 | return (p < patternEnd && *p == '}'); |
| 363 | } |
| 364 | |
| 365 | /************************************************* |
| 366 | * Read repeat counts * |
| 367 | *************************************************/ |
| 368 | |
| 369 | /* Read an item of the form {n,m} and return the values. This is called only |
| 370 | after isCountedRepeat() has confirmed that a repeat-count quantifier exists, |
| 371 | so the syntax is guaranteed to be correct, but we need to check the values. |
| 372 | |
| 373 | Arguments: |
| 374 | p pointer to first char after '{' |
| 375 | minp pointer to int for min |
| 376 | maxp pointer to int for max |
| 377 | returned as -1 if no max |
| 378 | errorCodePtr points to error code variable |
| 379 | |
| 380 | Returns: pointer to '}' on success; |
| 381 | current ptr on error, with errorCodePtr set non-zero |
| 382 | */ |
| 383 | |
| 384 | static const UChar* readRepeatCounts(const UChar* p, int* minp, int* maxp, ErrorCode* errorCodePtr) |
| 385 | { |
| 386 | int min = 0; |
| 387 | int max = -1; |
| 388 | |
| 389 | /* Read the minimum value and do a paranoid check: a negative value indicates |
| 390 | an integer overflow. */ |
| 391 | |
| 392 | while (isASCIIDigit(c: *p)) |
| 393 | min = min * 10 + *p++ - '0'; |
| 394 | if (min < 0 || min > 65535) { |
| 395 | *errorCodePtr = ERR5; |
| 396 | return p; |
| 397 | } |
| 398 | |
| 399 | /* Read the maximum value if there is one, and again do a paranoid on its size. |
| 400 | Also, max must not be less than min. */ |
| 401 | |
| 402 | if (*p == '}') |
| 403 | max = min; |
| 404 | else { |
| 405 | if (*(++p) != '}') { |
| 406 | max = 0; |
| 407 | while (isASCIIDigit(c: *p)) |
| 408 | max = max * 10 + *p++ - '0'; |
| 409 | if (max < 0 || max > 65535) { |
| 410 | *errorCodePtr = ERR5; |
| 411 | return p; |
| 412 | } |
| 413 | if (max < min) { |
| 414 | *errorCodePtr = ERR4; |
| 415 | return p; |
| 416 | } |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | /* Fill in the required variables, and pass back the pointer to the terminating |
| 421 | '}'. */ |
| 422 | |
| 423 | *minp = min; |
| 424 | *maxp = max; |
| 425 | return p; |
| 426 | } |
| 427 | |
| 428 | /************************************************* |
| 429 | * Find first significant op code * |
| 430 | *************************************************/ |
| 431 | |
| 432 | /* This is called by several functions that scan a compiled expression looking |
| 433 | for a fixed first character, or an anchoring op code etc. It skips over things |
| 434 | that do not influence this. |
| 435 | |
| 436 | Arguments: |
| 437 | code pointer to the start of the group |
| 438 | Returns: pointer to the first significant opcode |
| 439 | */ |
| 440 | |
| 441 | static const unsigned char* firstSignificantOpcode(const unsigned char* code) |
| 442 | { |
| 443 | while (*code == OP_BRANUMBER) |
| 444 | code += 3; |
| 445 | return code; |
| 446 | } |
| 447 | |
| 448 | static const unsigned char* firstSignificantOpcodeSkippingAssertions(const unsigned char* code) |
| 449 | { |
| 450 | while (true) { |
| 451 | switch (*code) { |
| 452 | case OP_ASSERT_NOT: |
| 453 | advanceToEndOfBracket(opcodePtr&: code); |
| 454 | code += 1 + LINK_SIZE; |
| 455 | break; |
| 456 | case OP_WORD_BOUNDARY: |
| 457 | case OP_NOT_WORD_BOUNDARY: |
| 458 | ++code; |
| 459 | break; |
| 460 | case OP_BRANUMBER: |
| 461 | code += 3; |
| 462 | break; |
| 463 | default: |
| 464 | return code; |
| 465 | } |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | /************************************************* |
| 470 | * Get othercase range * |
| 471 | *************************************************/ |
| 472 | |
| 473 | /* This function is passed the start and end of a class range, in UTF-8 mode |
| 474 | with UCP support. It searches up the characters, looking for internal ranges of |
| 475 | characters in the "other" case. Each call returns the next one, updating the |
| 476 | start address. |
| 477 | |
| 478 | Arguments: |
| 479 | cptr points to starting character value; updated |
| 480 | d end value |
| 481 | ocptr where to put start of othercase range |
| 482 | odptr where to put end of othercase range |
| 483 | |
| 484 | Yield: true when range returned; false when no more |
| 485 | */ |
| 486 | |
| 487 | static bool getOthercaseRange(int* cptr, int d, int* ocptr, int* odptr) |
| 488 | { |
| 489 | int c, othercase = 0; |
| 490 | |
| 491 | for (c = *cptr; c <= d; c++) { |
| 492 | if ((othercase = jsc_pcre_ucp_othercase(c)) >= 0) |
| 493 | break; |
| 494 | } |
| 495 | |
| 496 | if (c > d) |
| 497 | return false; |
| 498 | |
| 499 | *ocptr = othercase; |
| 500 | int next = othercase + 1; |
| 501 | |
| 502 | for (++c; c <= d; c++) { |
| 503 | if (jsc_pcre_ucp_othercase(c) != next) |
| 504 | break; |
| 505 | next++; |
| 506 | } |
| 507 | |
| 508 | *odptr = next - 1; |
| 509 | *cptr = c; |
| 510 | |
| 511 | return true; |
| 512 | } |
| 513 | |
| 514 | /************************************************* |
| 515 | * Convert character value to UTF-8 * |
| 516 | *************************************************/ |
| 517 | |
| 518 | /* This function takes an integer value in the range 0 - 0x7fffffff |
| 519 | and encodes it as a UTF-8 character in 0 to 6 bytes. |
| 520 | |
| 521 | Arguments: |
| 522 | cvalue the character value |
| 523 | buffer pointer to buffer for result - at least 6 bytes long |
| 524 | |
| 525 | Returns: number of characters placed in the buffer |
| 526 | */ |
| 527 | |
| 528 | static int encodeUTF8(int cvalue, unsigned char *buffer) |
| 529 | { |
| 530 | int i; |
| 531 | for (i = 0; i < jsc_pcre_utf8_table1_size; i++) |
| 532 | if (cvalue <= jsc_pcre_utf8_table1[i]) |
| 533 | break; |
| 534 | buffer += i; |
| 535 | for (int j = i; j > 0; j--) { |
| 536 | *buffer-- = 0x80 | (cvalue & 0x3f); |
| 537 | cvalue >>= 6; |
| 538 | } |
| 539 | *buffer = jsc_pcre_utf8_table2[i] | cvalue; |
| 540 | return i + 1; |
| 541 | } |
| 542 | |
| 543 | /************************************************* |
| 544 | * Compile one branch * |
| 545 | *************************************************/ |
| 546 | |
| 547 | /* Scan the pattern, compiling it into the code vector. |
| 548 | |
| 549 | Arguments: |
| 550 | options the option bits |
| 551 | brackets points to number of extracting brackets used |
| 552 | codePtr points to the pointer to the current code point |
| 553 | ptrPtr points to the current pattern pointer |
| 554 | errorCodePtr points to error code variable |
| 555 | firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE) |
| 556 | reqbyteptr set to the last literal character required, else < 0 |
| 557 | cd contains pointers to tables etc. |
| 558 | |
| 559 | Returns: true on success |
| 560 | false, with *errorCodePtr set non-zero on error |
| 561 | */ |
| 562 | |
| 563 | static inline bool safelyCheckNextChar(const UChar* ptr, const UChar* patternEnd, UChar expected) |
| 564 | { |
| 565 | return ((ptr + 1 < patternEnd) && ptr[1] == expected); |
| 566 | } |
| 567 | |
| 568 | static bool |
| 569 | compileBranch(int options, int* brackets, unsigned char** codePtr, |
| 570 | const UChar** ptrPtr, const UChar* patternEnd, ErrorCode* errorCodePtr, int *firstbyteptr, |
| 571 | int* reqbyteptr, CompileData& cd) |
| 572 | { |
| 573 | int repeatType, opType; |
| 574 | int repeatMin = 0, repeat_max = 0; /* To please picky compilers */ |
| 575 | int bravalue = 0; |
| 576 | int reqvary, tempreqvary; |
| 577 | int c; |
| 578 | unsigned char* code = *codePtr; |
| 579 | unsigned char* tempcode; |
| 580 | bool didGroupSetFirstByte = false; |
| 581 | const UChar* ptr = *ptrPtr; |
| 582 | unsigned char* previous = NULL; |
| 583 | unsigned char classbits[32]; |
| 584 | |
| 585 | bool class_utf8; |
| 586 | unsigned char* class_utf8data; |
| 587 | unsigned char utf8_char[6]; |
| 588 | |
| 589 | /* Initialize no first byte, no required byte. REQ_UNSET means "no char |
| 590 | matching encountered yet". It gets changed to REQ_NONE if we hit something that |
| 591 | matches a non-fixed char first char; reqByte just remains unset if we never |
| 592 | find one. |
| 593 | |
| 594 | When we hit a repeat whose minimum is zero, we may have to adjust these values |
| 595 | to take the zero repeat into account. This is implemented by setting them to |
| 596 | zeroFirstByte and zeroReqByte when such a repeat is encountered. The individual |
| 597 | item types that can be repeated set these backoff variables appropriately. */ |
| 598 | |
| 599 | int firstByte = REQ_UNSET; |
| 600 | int reqByte = REQ_UNSET; |
| 601 | int zeroReqByte = REQ_UNSET; |
| 602 | int zeroFirstByte = REQ_UNSET; |
| 603 | |
| 604 | /* The variable reqCaseOpt contains either the REQ_IGNORE_CASE value or zero, |
| 605 | according to the current setting of the ignores-case flag. REQ_IGNORE_CASE is a bit |
| 606 | value > 255. It is added into the firstByte or reqByte variables to record the |
| 607 | case status of the value. This is used only for ASCII characters. */ |
| 608 | |
| 609 | int reqCaseOpt = (options & IgnoreCaseOption) ? REQ_IGNORE_CASE : 0; |
| 610 | |
| 611 | /* Switch on next character until the end of the branch */ |
| 612 | |
| 613 | for (;; ptr++) { |
| 614 | bool negateClass; |
| 615 | bool shouldFlipNegation; /* If a negative special such as \S is used, we should negate the whole class to properly support Unicode. */ |
| 616 | int classCharCount; |
| 617 | int classLastChar; |
| 618 | int skipBytes; |
| 619 | int subReqByte; |
| 620 | int subFirstByte; |
| 621 | int mcLength; |
| 622 | unsigned char mcbuffer[8]; |
| 623 | |
| 624 | /* Next byte in the pattern */ |
| 625 | |
| 626 | c = ptr < patternEnd ? *ptr : 0; |
| 627 | |
| 628 | /* Fill in length of a previous callout, except when the next thing is |
| 629 | a quantifier. */ |
| 630 | |
| 631 | bool isQuantifier = c == '*' || c == '+' || c == '?' || (c == '{' && isCountedRepeat(p: ptr + 1, patternEnd)); |
| 632 | |
| 633 | switch (c) { |
| 634 | /* The branch terminates at end of string, |, or ). */ |
| 635 | |
| 636 | case 0: |
| 637 | if (ptr < patternEnd) |
| 638 | goto NORMAL_CHAR; |
| 639 | // End of string; fall through |
| 640 | case '|': |
| 641 | case ')': |
| 642 | *firstbyteptr = firstByte; |
| 643 | *reqbyteptr = reqByte; |
| 644 | *codePtr = code; |
| 645 | *ptrPtr = ptr; |
| 646 | return true; |
| 647 | |
| 648 | /* Handle single-character metacharacters. In multiline mode, ^ disables |
| 649 | the setting of any following char as a first character. */ |
| 650 | |
| 651 | case '^': |
| 652 | if (options & MatchAcrossMultipleLinesOption) { |
| 653 | if (firstByte == REQ_UNSET) |
| 654 | firstByte = REQ_NONE; |
| 655 | *code++ = OP_BOL; |
| 656 | } else |
| 657 | *code++ = OP_CIRC; |
| 658 | previous = NULL; |
| 659 | break; |
| 660 | |
| 661 | case '$': |
| 662 | previous = NULL; |
| 663 | if (options & MatchAcrossMultipleLinesOption) |
| 664 | *code++ = OP_EOL; |
| 665 | else |
| 666 | *code++ = OP_DOLL; |
| 667 | break; |
| 668 | |
| 669 | /* There can never be a first char if '.' is first, whatever happens about |
| 670 | repeats. The value of reqByte doesn't change either. */ |
| 671 | |
| 672 | case '.': |
| 673 | if (firstByte == REQ_UNSET) |
| 674 | firstByte = REQ_NONE; |
| 675 | zeroFirstByte = firstByte; |
| 676 | zeroReqByte = reqByte; |
| 677 | previous = code; |
| 678 | *code++ = OP_NOT_NEWLINE; |
| 679 | break; |
| 680 | |
| 681 | /* Character classes. If the included characters are all < 256, we build a |
| 682 | 32-byte bitmap of the permitted characters, except in the special case |
| 683 | where there is only one such character. For negated classes, we build the |
| 684 | map as usual, then invert it at the end. However, we use a different opcode |
| 685 | so that data characters > 255 can be handled correctly. |
| 686 | |
| 687 | If the class contains characters outside the 0-255 range, a different |
| 688 | opcode is compiled. It may optionally have a bit map for characters < 256, |
| 689 | but those above are are explicitly listed afterwards. A flag byte tells |
| 690 | whether the bitmap is present, and whether this is a negated class or not. |
| 691 | */ |
| 692 | |
| 693 | case '[': { |
| 694 | previous = code; |
| 695 | shouldFlipNegation = false; |
| 696 | |
| 697 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
| 698 | they are encountered at the top level, so we'll do that too. */ |
| 699 | |
| 700 | /* If the first character is '^', set the negation flag and skip it. */ |
| 701 | |
| 702 | if (ptr + 1 >= patternEnd) { |
| 703 | *errorCodePtr = ERR6; |
| 704 | return false; |
| 705 | } |
| 706 | |
| 707 | if (ptr[1] == '^') { |
| 708 | negateClass = true; |
| 709 | ++ptr; |
| 710 | } else |
| 711 | negateClass = false; |
| 712 | |
| 713 | /* Keep a count of chars with values < 256 so that we can optimize the case |
| 714 | of just a single character (as long as it's < 256). For higher valued UTF-8 |
| 715 | characters, we don't yet do any optimization. */ |
| 716 | |
| 717 | classCharCount = 0; |
| 718 | classLastChar = -1; |
| 719 | |
| 720 | class_utf8 = false; /* No chars >= 256 */ |
| 721 | class_utf8data = code + LINK_SIZE + 34; /* For UTF-8 items */ |
| 722 | |
| 723 | /* Initialize the 32-char bit map to all zeros. We have to build the |
| 724 | map in a temporary bit of store, in case the class contains only 1 |
| 725 | character (< 256), because in that case the compiled code doesn't use the |
| 726 | bit map. */ |
| 727 | |
| 728 | memset(s: classbits, c: 0, n: 32 * sizeof(unsigned char)); |
| 729 | |
| 730 | /* Process characters until ] is reached. The first pass |
| 731 | through the regex checked the overall syntax, so we don't need to be very |
| 732 | strict here. At the start of the loop, c contains the first byte of the |
| 733 | character. */ |
| 734 | |
| 735 | while ((++ptr < patternEnd) && (c = *ptr) != ']') { |
| 736 | /* Backslash may introduce a single character, or it may introduce one |
| 737 | of the specials, which just set a flag. Escaped items are checked for |
| 738 | validity in the pre-compiling pass. The sequence \b is a special case. |
| 739 | Inside a class (and only there) it is treated as backspace. Elsewhere |
| 740 | it marks a word boundary. Other escapes have preset maps ready to |
| 741 | or into the one we are building. We assume they have more than one |
| 742 | character in them, so set classCharCount bigger than one. */ |
| 743 | |
| 744 | if (c == '\\') { |
| 745 | c = checkEscape(ptrPtr: &ptr, patternEnd, errorCodePtr, bracount: cd.numCapturingBrackets, isClass: true); |
| 746 | if (c < 0) { |
| 747 | classCharCount += 2; /* Greater than 1 is what matters */ |
| 748 | switch (-c) { |
| 749 | case ESC_d: |
| 750 | for (c = 0; c < 32; c++) |
| 751 | classbits[c] |= classBitmapForChar(c: c + cbit_digit); |
| 752 | continue; |
| 753 | |
| 754 | case ESC_D: |
| 755 | shouldFlipNegation = true; |
| 756 | for (c = 0; c < 32; c++) |
| 757 | classbits[c] |= ~classBitmapForChar(c: c + cbit_digit); |
| 758 | continue; |
| 759 | |
| 760 | case ESC_w: |
| 761 | for (c = 0; c < 32; c++) |
| 762 | classbits[c] |= classBitmapForChar(c: c + cbit_word); |
| 763 | continue; |
| 764 | |
| 765 | case ESC_W: |
| 766 | shouldFlipNegation = true; |
| 767 | for (c = 0; c < 32; c++) |
| 768 | classbits[c] |= ~classBitmapForChar(c: c + cbit_word); |
| 769 | continue; |
| 770 | |
| 771 | case ESC_s: |
| 772 | for (c = 0; c < 32; c++) |
| 773 | classbits[c] |= classBitmapForChar(c: c + cbit_space); |
| 774 | continue; |
| 775 | |
| 776 | case ESC_S: |
| 777 | shouldFlipNegation = true; |
| 778 | for (c = 0; c < 32; c++) |
| 779 | classbits[c] |= ~classBitmapForChar(c: c + cbit_space); |
| 780 | continue; |
| 781 | |
| 782 | /* Unrecognized escapes are faulted if PCRE is running in its |
| 783 | strict mode. By default, for compatibility with Perl, they are |
| 784 | treated as literals. */ |
| 785 | |
| 786 | default: |
| 787 | c = *ptr; /* The final character */ |
| 788 | classCharCount -= 2; /* Undo the default count from above */ |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | /* Fall through if we have a single character (c >= 0). This may be |
| 793 | > 256 in UTF-8 mode. */ |
| 794 | |
| 795 | } /* End of backslash handling */ |
| 796 | |
| 797 | /* A single character may be followed by '-' to form a range. However, |
| 798 | Perl does not permit ']' to be the end of the range. A '-' character |
| 799 | here is treated as a literal. */ |
| 800 | |
| 801 | if ((ptr + 2 < patternEnd) && ptr[1] == '-' && ptr[2] != ']') { |
| 802 | ptr += 2; |
| 803 | |
| 804 | int d = *ptr; |
| 805 | |
| 806 | /* The second part of a range can be a single-character escape, but |
| 807 | not any of the other escapes. Perl 5.6 treats a hyphen as a literal |
| 808 | in such circumstances. */ |
| 809 | |
| 810 | if (d == '\\') { |
| 811 | const UChar* oldptr = ptr; |
| 812 | d = checkEscape(ptrPtr: &ptr, patternEnd, errorCodePtr, bracount: cd.numCapturingBrackets, isClass: true); |
| 813 | |
| 814 | /* \X is literal X; any other special means the '-' was literal */ |
| 815 | if (d < 0) { |
| 816 | ptr = oldptr - 2; |
| 817 | goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | /* The check that the two values are in the correct order happens in |
| 822 | the pre-pass. Optimize one-character ranges */ |
| 823 | |
| 824 | if (d == c) |
| 825 | goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
| 826 | |
| 827 | /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless |
| 828 | matching, we have to use an XCLASS with extra data items. Caseless |
| 829 | matching for characters > 127 is available only if UCP support is |
| 830 | available. */ |
| 831 | |
| 832 | if ((d > 255 || ((options & IgnoreCaseOption) && d > 127))) { |
| 833 | class_utf8 = true; |
| 834 | |
| 835 | /* With UCP support, we can find the other case equivalents of |
| 836 | the relevant characters. There may be several ranges. Optimize how |
| 837 | they fit with the basic range. */ |
| 838 | |
| 839 | if (options & IgnoreCaseOption) { |
| 840 | int occ, ocd; |
| 841 | int cc = c; |
| 842 | int origd = d; |
| 843 | while (getOthercaseRange(cptr: &cc, d: origd, ocptr: &occ, odptr: &ocd)) { |
| 844 | if (occ >= c && ocd <= d) |
| 845 | continue; /* Skip embedded ranges */ |
| 846 | |
| 847 | if (occ < c && ocd >= c - 1) /* Extend the basic range */ |
| 848 | { /* if there is overlap, */ |
| 849 | c = occ; /* noting that if occ < c */ |
| 850 | continue; /* we can't have ocd > d */ |
| 851 | } /* because a subrange is */ |
| 852 | if (ocd > d && occ <= d + 1) /* always shorter than */ |
| 853 | { /* the basic range. */ |
| 854 | d = ocd; |
| 855 | continue; |
| 856 | } |
| 857 | |
| 858 | if (occ == ocd) |
| 859 | *class_utf8data++ = XCL_SINGLE; |
| 860 | else { |
| 861 | *class_utf8data++ = XCL_RANGE; |
| 862 | class_utf8data += encodeUTF8(cvalue: occ, buffer: class_utf8data); |
| 863 | } |
| 864 | class_utf8data += encodeUTF8(cvalue: ocd, buffer: class_utf8data); |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | /* Now record the original range, possibly modified for UCP caseless |
| 869 | overlapping ranges. */ |
| 870 | |
| 871 | *class_utf8data++ = XCL_RANGE; |
| 872 | class_utf8data += encodeUTF8(cvalue: c, buffer: class_utf8data); |
| 873 | class_utf8data += encodeUTF8(cvalue: d, buffer: class_utf8data); |
| 874 | |
| 875 | /* With UCP support, we are done. Without UCP support, there is no |
| 876 | caseless matching for UTF-8 characters > 127; we can use the bit map |
| 877 | for the smaller ones. */ |
| 878 | |
| 879 | continue; /* With next character in the class */ |
| 880 | } |
| 881 | |
| 882 | /* We use the bit map for all cases when not in UTF-8 mode; else |
| 883 | ranges that lie entirely within 0-127 when there is UCP support; else |
| 884 | for partial ranges without UCP support. */ |
| 885 | |
| 886 | for (; c <= d; c++) { |
| 887 | classbits[c/8] |= (1 << (c&7)); |
| 888 | if (options & IgnoreCaseOption) { |
| 889 | int uc = flipCase(c); |
| 890 | classbits[uc/8] |= (1 << (uc&7)); |
| 891 | } |
| 892 | classCharCount++; /* in case a one-char range */ |
| 893 | classLastChar = c; |
| 894 | } |
| 895 | |
| 896 | continue; /* Go get the next char in the class */ |
| 897 | } |
| 898 | |
| 899 | /* Handle a lone single character - we can get here for a normal |
| 900 | non-escape char, or after \ that introduces a single character or for an |
| 901 | apparent range that isn't. */ |
| 902 | |
| 903 | LONE_SINGLE_CHARACTER: |
| 904 | |
| 905 | /* Handle a character that cannot go in the bit map */ |
| 906 | |
| 907 | if ((c > 255 || ((options & IgnoreCaseOption) && c > 127))) { |
| 908 | class_utf8 = true; |
| 909 | *class_utf8data++ = XCL_SINGLE; |
| 910 | class_utf8data += encodeUTF8(cvalue: c, buffer: class_utf8data); |
| 911 | |
| 912 | if (options & IgnoreCaseOption) { |
| 913 | int othercase; |
| 914 | if ((othercase = jsc_pcre_ucp_othercase(c)) >= 0) { |
| 915 | *class_utf8data++ = XCL_SINGLE; |
| 916 | class_utf8data += encodeUTF8(cvalue: othercase, buffer: class_utf8data); |
| 917 | } |
| 918 | } |
| 919 | } else { |
| 920 | /* Handle a single-byte character */ |
| 921 | classbits[c/8] |= (1 << (c&7)); |
| 922 | if (options & IgnoreCaseOption) { |
| 923 | c = flipCase(c); |
| 924 | classbits[c/8] |= (1 << (c&7)); |
| 925 | } |
| 926 | classCharCount++; |
| 927 | classLastChar = c; |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | /* If classCharCount is 1, we saw precisely one character whose value is |
| 932 | less than 256. In non-UTF-8 mode we can always optimize. In UTF-8 mode, we |
| 933 | can optimize the negative case only if there were no characters >= 128 |
| 934 | because OP_NOT and the related opcodes like OP_NOTSTAR operate on |
| 935 | single-bytes only. This is an historical hangover. Maybe one day we can |
| 936 | tidy these opcodes to handle multi-byte characters. |
| 937 | |
| 938 | The optimization throws away the bit map. We turn the item into a |
| 939 | 1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note |
| 940 | that OP_NOT does not support multibyte characters. In the positive case, it |
| 941 | can cause firstByte to be set. Otherwise, there can be no first char if |
| 942 | this item is first, whatever repeat count may follow. In the case of |
| 943 | reqByte, save the previous value for reinstating. */ |
| 944 | |
| 945 | if (classCharCount == 1 && (!class_utf8 && (!negateClass || classLastChar < 128))) { |
| 946 | zeroReqByte = reqByte; |
| 947 | |
| 948 | /* The OP_NOT opcode works on one-byte characters only. */ |
| 949 | |
| 950 | if (negateClass) { |
| 951 | if (firstByte == REQ_UNSET) |
| 952 | firstByte = REQ_NONE; |
| 953 | zeroFirstByte = firstByte; |
| 954 | *code++ = OP_NOT; |
| 955 | *code++ = classLastChar; |
| 956 | break; |
| 957 | } |
| 958 | |
| 959 | /* For a single, positive character, get the value into c, and |
| 960 | then we can handle this with the normal one-character code. */ |
| 961 | |
| 962 | c = classLastChar; |
| 963 | goto NORMAL_CHAR; |
| 964 | } /* End of 1-char optimization */ |
| 965 | |
| 966 | /* The general case - not the one-char optimization. If this is the first |
| 967 | thing in the branch, there can be no first char setting, whatever the |
| 968 | repeat count. Any reqByte setting must remain unchanged after any kind of |
| 969 | repeat. */ |
| 970 | |
| 971 | if (firstByte == REQ_UNSET) firstByte = REQ_NONE; |
| 972 | zeroFirstByte = firstByte; |
| 973 | zeroReqByte = reqByte; |
| 974 | |
| 975 | /* If there are characters with values > 255, we have to compile an |
| 976 | extended class, with its own opcode. If there are no characters < 256, |
| 977 | we can omit the bitmap. */ |
| 978 | |
| 979 | if (class_utf8 && !shouldFlipNegation) { |
| 980 | *class_utf8data++ = XCL_END; /* Marks the end of extra data */ |
| 981 | *code++ = OP_XCLASS; |
| 982 | code += LINK_SIZE; |
| 983 | *code = negateClass? XCL_NOT : 0; |
| 984 | |
| 985 | /* If the map is required, install it, and move on to the end of |
| 986 | the extra data */ |
| 987 | |
| 988 | if (classCharCount > 0) { |
| 989 | *code++ |= XCL_MAP; |
| 990 | memcpy(dest: code, src: classbits, n: 32); |
| 991 | code = class_utf8data; |
| 992 | } |
| 993 | |
| 994 | /* If the map is not required, slide down the extra data. */ |
| 995 | |
| 996 | else { |
| 997 | int len = class_utf8data - (code + 33); |
| 998 | memmove(dest: code + 1, src: code + 33, n: len); |
| 999 | code += len + 1; |
| 1000 | } |
| 1001 | |
| 1002 | /* Now fill in the complete length of the item */ |
| 1003 | |
| 1004 | putLinkValue(opcodePtr: previous + 1, value: code - previous); |
| 1005 | break; /* End of class handling */ |
| 1006 | } |
| 1007 | |
| 1008 | /* If there are no characters > 255, negate the 32-byte map if necessary, |
| 1009 | and copy it into the code vector. If this is the first thing in the branch, |
| 1010 | there can be no first char setting, whatever the repeat count. Any reqByte |
| 1011 | setting must remain unchanged after any kind of repeat. */ |
| 1012 | |
| 1013 | *code++ = (negateClass == shouldFlipNegation) ? OP_CLASS : OP_NCLASS; |
| 1014 | if (negateClass) |
| 1015 | for (c = 0; c < 32; c++) |
| 1016 | code[c] = ~classbits[c]; |
| 1017 | else |
| 1018 | memcpy(dest: code, src: classbits, n: 32); |
| 1019 | code += 32; |
| 1020 | break; |
| 1021 | } |
| 1022 | |
| 1023 | /* Various kinds of repeat; '{' is not necessarily a quantifier, but this |
| 1024 | has been tested above. */ |
| 1025 | |
| 1026 | case '{': |
| 1027 | if (!isQuantifier) |
| 1028 | goto NORMAL_CHAR; |
| 1029 | ptr = readRepeatCounts(p: ptr + 1, minp: &repeatMin, maxp: &repeat_max, errorCodePtr); |
| 1030 | if (*errorCodePtr) |
| 1031 | goto FAILED; |
| 1032 | goto REPEAT; |
| 1033 | |
| 1034 | case '*': |
| 1035 | repeatMin = 0; |
| 1036 | repeat_max = -1; |
| 1037 | goto REPEAT; |
| 1038 | |
| 1039 | case '+': |
| 1040 | repeatMin = 1; |
| 1041 | repeat_max = -1; |
| 1042 | goto REPEAT; |
| 1043 | |
| 1044 | case '?': |
| 1045 | repeatMin = 0; |
| 1046 | repeat_max = 1; |
| 1047 | |
| 1048 | REPEAT: |
| 1049 | if (!previous) { |
| 1050 | *errorCodePtr = ERR9; |
| 1051 | goto FAILED; |
| 1052 | } |
| 1053 | |
| 1054 | if (repeatMin == 0) { |
| 1055 | firstByte = zeroFirstByte; /* Adjust for zero repeat */ |
| 1056 | reqByte = zeroReqByte; /* Ditto */ |
| 1057 | } |
| 1058 | |
| 1059 | /* Remember whether this is a variable length repeat */ |
| 1060 | |
| 1061 | reqvary = (repeatMin == repeat_max) ? 0 : REQ_VARY; |
| 1062 | |
| 1063 | opType = 0; /* Default single-char op codes */ |
| 1064 | |
| 1065 | /* Save start of previous item, in case we have to move it up to make space |
| 1066 | for an inserted OP_ONCE for the additional '+' extension. */ |
| 1067 | /* FIXME: Probably don't need this because we don't use OP_ONCE. */ |
| 1068 | |
| 1069 | tempcode = previous; |
| 1070 | |
| 1071 | /* If the next character is '+', we have a possessive quantifier. This |
| 1072 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. |
| 1073 | If the next character is '?' this is a minimizing repeat, by default, |
| 1074 | but if PCRE_UNGREEDY is set, it works the other way round. We change the |
| 1075 | repeat type to the non-default. */ |
| 1076 | |
| 1077 | if (safelyCheckNextChar(ptr, patternEnd, expected: '?')) { |
| 1078 | repeatType = 1; |
| 1079 | ptr++; |
| 1080 | } else |
| 1081 | repeatType = 0; |
| 1082 | |
| 1083 | /* If previous was a character match, abolish the item and generate a |
| 1084 | repeat item instead. If a char item has a minumum of more than one, ensure |
| 1085 | that it is set in reqByte - it might not be if a sequence such as x{3} is |
| 1086 | the first thing in a branch because the x will have gone into firstByte |
| 1087 | instead. */ |
| 1088 | |
| 1089 | if (*previous == OP_CHAR || *previous == OP_CHAR_IGNORING_CASE) { |
| 1090 | /* Deal with UTF-8 characters that take up more than one byte. It's |
| 1091 | easier to write this out separately than try to macrify it. Use c to |
| 1092 | hold the length of the character in bytes, plus 0x80 to flag that it's a |
| 1093 | length rather than a small character. */ |
| 1094 | |
| 1095 | if (code[-1] & 0x80) { |
| 1096 | unsigned char *lastchar = code - 1; |
| 1097 | while((*lastchar & 0xc0) == 0x80) |
| 1098 | lastchar--; |
| 1099 | c = code - lastchar; /* Length of UTF-8 character */ |
| 1100 | memcpy(dest: utf8_char, src: lastchar, n: c); /* Save the char */ |
| 1101 | c |= 0x80; /* Flag c as a length */ |
| 1102 | } |
| 1103 | else { |
| 1104 | c = code[-1]; |
| 1105 | if (repeatMin > 1) |
| 1106 | reqByte = c | reqCaseOpt | cd.reqVaryOpt; |
| 1107 | } |
| 1108 | |
| 1109 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
| 1110 | } |
| 1111 | |
| 1112 | else if (*previous == OP_ASCII_CHAR || *previous == OP_ASCII_LETTER_IGNORING_CASE) { |
| 1113 | c = previous[1]; |
| 1114 | if (repeatMin > 1) |
| 1115 | reqByte = c | reqCaseOpt | cd.reqVaryOpt; |
| 1116 | goto OUTPUT_SINGLE_REPEAT; |
| 1117 | } |
| 1118 | |
| 1119 | /* If previous was a single negated character ([^a] or similar), we use |
| 1120 | one of the special opcodes, replacing it. The code is shared with single- |
| 1121 | character repeats by setting opt_type to add a suitable offset into |
| 1122 | repeatType. OP_NOT is currently used only for single-byte chars. */ |
| 1123 | |
| 1124 | else if (*previous == OP_NOT) { |
| 1125 | opType = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */ |
| 1126 | c = previous[1]; |
| 1127 | goto OUTPUT_SINGLE_REPEAT; |
| 1128 | } |
| 1129 | |
| 1130 | /* If previous was a character type match (\d or similar), abolish it and |
| 1131 | create a suitable repeat item. The code is shared with single-character |
| 1132 | repeats by setting opType to add a suitable offset into repeatType. */ |
| 1133 | |
| 1134 | else if (*previous <= OP_NOT_NEWLINE) { |
| 1135 | opType = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
| 1136 | c = *previous; |
| 1137 | |
| 1138 | OUTPUT_SINGLE_REPEAT: |
| 1139 | int prop_type = -1; |
| 1140 | int prop_value = -1; |
| 1141 | |
| 1142 | unsigned char* oldcode = code; |
| 1143 | code = previous; /* Usually overwrite previous item */ |
| 1144 | |
| 1145 | /* If the maximum is zero then the minimum must also be zero; Perl allows |
| 1146 | this case, so we do too - by simply omitting the item altogether. */ |
| 1147 | |
| 1148 | if (repeat_max == 0) |
| 1149 | goto END_REPEAT; |
| 1150 | |
| 1151 | /* Combine the opType with the repeatType */ |
| 1152 | |
| 1153 | repeatType += opType; |
| 1154 | |
| 1155 | /* A minimum of zero is handled either as the special case * or ?, or as |
| 1156 | an UPTO, with the maximum given. */ |
| 1157 | |
| 1158 | if (repeatMin == 0) { |
| 1159 | if (repeat_max == -1) |
| 1160 | *code++ = OP_STAR + repeatType; |
| 1161 | else if (repeat_max == 1) |
| 1162 | *code++ = OP_QUERY + repeatType; |
| 1163 | else { |
| 1164 | *code++ = OP_UPTO + repeatType; |
| 1165 | put2ByteValueAndAdvance(opcodePtr&: code, value: repeat_max); |
| 1166 | } |
| 1167 | } |
| 1168 | |
| 1169 | /* A repeat minimum of 1 is optimized into some special cases. If the |
| 1170 | maximum is unlimited, we use OP_PLUS. Otherwise, the original item it |
| 1171 | left in place and, if the maximum is greater than 1, we use OP_UPTO with |
| 1172 | one less than the maximum. */ |
| 1173 | |
| 1174 | else if (repeatMin == 1) { |
| 1175 | if (repeat_max == -1) |
| 1176 | *code++ = OP_PLUS + repeatType; |
| 1177 | else { |
| 1178 | code = oldcode; /* leave previous item in place */ |
| 1179 | if (repeat_max == 1) |
| 1180 | goto END_REPEAT; |
| 1181 | *code++ = OP_UPTO + repeatType; |
| 1182 | put2ByteValueAndAdvance(opcodePtr&: code, value: repeat_max - 1); |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | /* The case {n,n} is just an EXACT, while the general case {n,m} is |
| 1187 | handled as an EXACT followed by an UPTO. */ |
| 1188 | |
| 1189 | else { |
| 1190 | *code++ = OP_EXACT + opType; /* NB EXACT doesn't have repeatType */ |
| 1191 | put2ByteValueAndAdvance(opcodePtr&: code, value: repeatMin); |
| 1192 | |
| 1193 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, |
| 1194 | we have to insert the character for the previous code. For a repeated |
| 1195 | Unicode property match, there are two extra bytes that define the |
| 1196 | required property. In UTF-8 mode, long characters have their length in |
| 1197 | c, with the 0x80 bit as a flag. */ |
| 1198 | |
| 1199 | if (repeat_max < 0) { |
| 1200 | if (c >= 128) { |
| 1201 | memcpy(dest: code, src: utf8_char, n: c & 7); |
| 1202 | code += c & 7; |
| 1203 | } else { |
| 1204 | *code++ = c; |
| 1205 | if (prop_type >= 0) { |
| 1206 | *code++ = prop_type; |
| 1207 | *code++ = prop_value; |
| 1208 | } |
| 1209 | } |
| 1210 | *code++ = OP_STAR + repeatType; |
| 1211 | } |
| 1212 | |
| 1213 | /* Else insert an UPTO if the max is greater than the min, again |
| 1214 | preceded by the character, for the previously inserted code. */ |
| 1215 | |
| 1216 | else if (repeat_max != repeatMin) { |
| 1217 | if (c >= 128) { |
| 1218 | memcpy(dest: code, src: utf8_char, n: c & 7); |
| 1219 | code += c & 7; |
| 1220 | } else |
| 1221 | *code++ = c; |
| 1222 | if (prop_type >= 0) { |
| 1223 | *code++ = prop_type; |
| 1224 | *code++ = prop_value; |
| 1225 | } |
| 1226 | repeat_max -= repeatMin; |
| 1227 | *code++ = OP_UPTO + repeatType; |
| 1228 | put2ByteValueAndAdvance(opcodePtr&: code, value: repeat_max); |
| 1229 | } |
| 1230 | } |
| 1231 | |
| 1232 | /* The character or character type itself comes last in all cases. */ |
| 1233 | |
| 1234 | if (c >= 128) { |
| 1235 | memcpy(dest: code, src: utf8_char, n: c & 7); |
| 1236 | code += c & 7; |
| 1237 | } else |
| 1238 | *code++ = c; |
| 1239 | |
| 1240 | /* For a repeated Unicode property match, there are two extra bytes that |
| 1241 | define the required property. */ |
| 1242 | |
| 1243 | if (prop_type >= 0) { |
| 1244 | *code++ = prop_type; |
| 1245 | *code++ = prop_value; |
| 1246 | } |
| 1247 | } |
| 1248 | |
| 1249 | /* If previous was a character class or a back reference, we put the repeat |
| 1250 | stuff after it, but just skip the item if the repeat was {0,0}. */ |
| 1251 | |
| 1252 | else if (*previous == OP_CLASS || |
| 1253 | *previous == OP_NCLASS || |
| 1254 | *previous == OP_XCLASS || |
| 1255 | *previous == OP_REF) |
| 1256 | { |
| 1257 | if (repeat_max == 0) { |
| 1258 | code = previous; |
| 1259 | goto END_REPEAT; |
| 1260 | } |
| 1261 | |
| 1262 | if (repeatMin == 0 && repeat_max == -1) |
| 1263 | *code++ = OP_CRSTAR + repeatType; |
| 1264 | else if (repeatMin == 1 && repeat_max == -1) |
| 1265 | *code++ = OP_CRPLUS + repeatType; |
| 1266 | else if (repeatMin == 0 && repeat_max == 1) |
| 1267 | *code++ = OP_CRQUERY + repeatType; |
| 1268 | else { |
| 1269 | *code++ = OP_CRRANGE + repeatType; |
| 1270 | put2ByteValueAndAdvance(opcodePtr&: code, value: repeatMin); |
| 1271 | if (repeat_max == -1) |
| 1272 | repeat_max = 0; /* 2-byte encoding for max */ |
| 1273 | put2ByteValueAndAdvance(opcodePtr&: code, value: repeat_max); |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | /* If previous was a bracket group, we may have to replicate it in certain |
| 1278 | cases. */ |
| 1279 | |
| 1280 | else if (*previous >= OP_BRA) { |
| 1281 | int ketoffset = 0; |
| 1282 | int len = code - previous; |
| 1283 | unsigned char* bralink = NULL; |
| 1284 | |
| 1285 | /* If the maximum repeat count is unlimited, find the end of the bracket |
| 1286 | by scanning through from the start, and compute the offset back to it |
| 1287 | from the current code pointer. There may be an OP_OPT setting following |
| 1288 | the final KET, so we can't find the end just by going back from the code |
| 1289 | pointer. */ |
| 1290 | |
| 1291 | if (repeat_max == -1) { |
| 1292 | const unsigned char* ket = previous; |
| 1293 | advanceToEndOfBracket(opcodePtr&: ket); |
| 1294 | ketoffset = code - ket; |
| 1295 | } |
| 1296 | |
| 1297 | /* The case of a zero minimum is special because of the need to stick |
| 1298 | OP_BRAZERO in front of it, and because the group appears once in the |
| 1299 | data, whereas in other cases it appears the minimum number of times. For |
| 1300 | this reason, it is simplest to treat this case separately, as otherwise |
| 1301 | the code gets far too messy. There are several special subcases when the |
| 1302 | minimum is zero. */ |
| 1303 | |
| 1304 | if (repeatMin == 0) { |
| 1305 | /* If the maximum is also zero, we just omit the group from the output |
| 1306 | altogether. */ |
| 1307 | |
| 1308 | if (repeat_max == 0) { |
| 1309 | code = previous; |
| 1310 | goto END_REPEAT; |
| 1311 | } |
| 1312 | |
| 1313 | /* If the maximum is 1 or unlimited, we just have to stick in the |
| 1314 | BRAZERO and do no more at this point. However, we do need to adjust |
| 1315 | any OP_RECURSE calls inside the group that refer to the group itself or |
| 1316 | any internal group, because the offset is from the start of the whole |
| 1317 | regex. Temporarily terminate the pattern while doing this. */ |
| 1318 | |
| 1319 | if (repeat_max <= 1) { |
| 1320 | *code = OP_END; |
| 1321 | memmove(dest: previous+1, src: previous, n: len); |
| 1322 | code++; |
| 1323 | *previous++ = OP_BRAZERO + repeatType; |
| 1324 | } |
| 1325 | |
| 1326 | /* If the maximum is greater than 1 and limited, we have to replicate |
| 1327 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
| 1328 | The first one has to be handled carefully because it's the original |
| 1329 | copy, which has to be moved up. The remainder can be handled by code |
| 1330 | that is common with the non-zero minimum case below. We have to |
| 1331 | adjust the value of repeat_max, since one less copy is required. */ |
| 1332 | |
| 1333 | else { |
| 1334 | *code = OP_END; |
| 1335 | memmove(dest: previous + 2 + LINK_SIZE, src: previous, n: len); |
| 1336 | code += 2 + LINK_SIZE; |
| 1337 | *previous++ = OP_BRAZERO + repeatType; |
| 1338 | *previous++ = OP_BRA; |
| 1339 | |
| 1340 | /* We chain together the bracket offset fields that have to be |
| 1341 | filled in later when the ends of the brackets are reached. */ |
| 1342 | |
| 1343 | int offset = (!bralink) ? 0 : previous - bralink; |
| 1344 | bralink = previous; |
| 1345 | putLinkValueAllowZeroAndAdvance(opcodePtr&: previous, value: offset); |
| 1346 | } |
| 1347 | |
| 1348 | repeat_max--; |
| 1349 | } |
| 1350 | |
| 1351 | /* If the minimum is greater than zero, replicate the group as many |
| 1352 | times as necessary, and adjust the maximum to the number of subsequent |
| 1353 | copies that we need. If we set a first char from the group, and didn't |
| 1354 | set a required char, copy the latter from the former. */ |
| 1355 | |
| 1356 | else { |
| 1357 | if (repeatMin > 1) { |
| 1358 | if (didGroupSetFirstByte && reqByte < 0) |
| 1359 | reqByte = firstByte; |
| 1360 | for (int i = 1; i < repeatMin; i++) { |
| 1361 | memcpy(dest: code, src: previous, n: len); |
| 1362 | code += len; |
| 1363 | } |
| 1364 | } |
| 1365 | if (repeat_max > 0) |
| 1366 | repeat_max -= repeatMin; |
| 1367 | } |
| 1368 | |
| 1369 | /* This code is common to both the zero and non-zero minimum cases. If |
| 1370 | the maximum is limited, it replicates the group in a nested fashion, |
| 1371 | remembering the bracket starts on a stack. In the case of a zero minimum, |
| 1372 | the first one was set up above. In all cases the repeat_max now specifies |
| 1373 | the number of additional copies needed. */ |
| 1374 | |
| 1375 | if (repeat_max >= 0) { |
| 1376 | for (int i = repeat_max - 1; i >= 0; i--) { |
| 1377 | *code++ = OP_BRAZERO + repeatType; |
| 1378 | |
| 1379 | /* All but the final copy start a new nesting, maintaining the |
| 1380 | chain of brackets outstanding. */ |
| 1381 | |
| 1382 | if (i != 0) { |
| 1383 | *code++ = OP_BRA; |
| 1384 | int offset = (!bralink) ? 0 : code - bralink; |
| 1385 | bralink = code; |
| 1386 | putLinkValueAllowZeroAndAdvance(opcodePtr&: code, value: offset); |
| 1387 | } |
| 1388 | |
| 1389 | memcpy(dest: code, src: previous, n: len); |
| 1390 | code += len; |
| 1391 | } |
| 1392 | |
| 1393 | /* Now chain through the pending brackets, and fill in their length |
| 1394 | fields (which are holding the chain links pro tem). */ |
| 1395 | |
| 1396 | while (bralink) { |
| 1397 | int offset = code - bralink + 1; |
| 1398 | unsigned char* bra = code - offset; |
| 1399 | int oldlinkoffset = getLinkValueAllowZero(opcodePtr: bra + 1); |
| 1400 | bralink = (!oldlinkoffset) ? 0 : bralink - oldlinkoffset; |
| 1401 | *code++ = OP_KET; |
| 1402 | putLinkValueAndAdvance(opcodePtr&: code, value: offset); |
| 1403 | putLinkValue(opcodePtr: bra + 1, value: offset); |
| 1404 | } |
| 1405 | } |
| 1406 | |
| 1407 | /* If the maximum is unlimited, set a repeater in the final copy. We |
| 1408 | can't just offset backwards from the current code point, because we |
| 1409 | don't know if there's been an options resetting after the ket. The |
| 1410 | correct offset was computed above. */ |
| 1411 | |
| 1412 | else |
| 1413 | code[-ketoffset] = OP_KETRMAX + repeatType; |
| 1414 | } |
| 1415 | |
| 1416 | // A quantifier after an assertion is mostly meaningless, but it |
| 1417 | // can nullify the assertion if it has a 0 minimum. |
| 1418 | else if (*previous == OP_ASSERT || *previous == OP_ASSERT_NOT) { |
| 1419 | if (repeatMin == 0) { |
| 1420 | code = previous; |
| 1421 | goto END_REPEAT; |
| 1422 | } |
| 1423 | } |
| 1424 | |
| 1425 | /* Else there's some kind of shambles */ |
| 1426 | |
| 1427 | else { |
| 1428 | *errorCodePtr = ERR11; |
| 1429 | goto FAILED; |
| 1430 | } |
| 1431 | |
| 1432 | /* In all case we no longer have a previous item. We also set the |
| 1433 | "follows varying string" flag for subsequently encountered reqbytes if |
| 1434 | it isn't already set and we have just passed a varying length item. */ |
| 1435 | |
| 1436 | END_REPEAT: |
| 1437 | previous = NULL; |
| 1438 | cd.reqVaryOpt |= reqvary; |
| 1439 | break; |
| 1440 | |
| 1441 | /* Start of nested bracket sub-expression, or comment or lookahead or |
| 1442 | lookbehind or option setting or condition. First deal with special things |
| 1443 | that can come after a bracket; all are introduced by ?, and the appearance |
| 1444 | of any of them means that this is not a referencing group. They were |
| 1445 | checked for validity in the first pass over the string, so we don't have to |
| 1446 | check for syntax errors here. */ |
| 1447 | |
| 1448 | case '(': |
| 1449 | skipBytes = 0; |
| 1450 | |
| 1451 | if (*(++ptr) == '?') { |
| 1452 | switch (*(++ptr)) { |
| 1453 | case ':': /* Non-extracting bracket */ |
| 1454 | bravalue = OP_BRA; |
| 1455 | ptr++; |
| 1456 | break; |
| 1457 | |
| 1458 | case '=': /* Positive lookahead */ |
| 1459 | bravalue = OP_ASSERT; |
| 1460 | ptr++; |
| 1461 | break; |
| 1462 | |
| 1463 | case '!': /* Negative lookahead */ |
| 1464 | bravalue = OP_ASSERT_NOT; |
| 1465 | ptr++; |
| 1466 | break; |
| 1467 | |
| 1468 | /* Character after (? not specially recognized */ |
| 1469 | |
| 1470 | default: |
| 1471 | *errorCodePtr = ERR12; |
| 1472 | goto FAILED; |
| 1473 | } |
| 1474 | } |
| 1475 | |
| 1476 | /* Else we have a referencing group; adjust the opcode. If the bracket |
| 1477 | number is greater than EXTRACT_BASIC_MAX, we set the opcode one higher, and |
| 1478 | arrange for the true number to follow later, in an OP_BRANUMBER item. */ |
| 1479 | |
| 1480 | else { |
| 1481 | if (++(*brackets) > EXTRACT_BASIC_MAX) { |
| 1482 | bravalue = OP_BRA + EXTRACT_BASIC_MAX + 1; |
| 1483 | code[1 + LINK_SIZE] = OP_BRANUMBER; |
| 1484 | put2ByteValue(opcodePtr: code + 2 + LINK_SIZE, value: *brackets); |
| 1485 | skipBytes = 3; |
| 1486 | } |
| 1487 | else |
| 1488 | bravalue = OP_BRA + *brackets; |
| 1489 | } |
| 1490 | |
| 1491 | /* Process nested bracketed re. We copy code into a non-variable |
| 1492 | in order to be able to pass its address because some compilers |
| 1493 | complain otherwise. Pass in a new setting for the ims options |
| 1494 | if they have changed. */ |
| 1495 | |
| 1496 | previous = code; |
| 1497 | *code = bravalue; |
| 1498 | tempcode = code; |
| 1499 | tempreqvary = cd.reqVaryOpt; /* Save value before bracket */ |
| 1500 | |
| 1501 | if (!compileBracket( |
| 1502 | options, |
| 1503 | brackets, /* Extracting bracket count */ |
| 1504 | &tempcode, /* Where to put code (updated) */ |
| 1505 | &ptr, /* Input pointer (updated) */ |
| 1506 | patternEnd, |
| 1507 | errorCodePtr, /* Where to put an error message */ |
| 1508 | skipBytes, /* Skip over OP_BRANUMBER */ |
| 1509 | &subFirstByte, /* For possible first char */ |
| 1510 | &subReqByte, /* For possible last char */ |
| 1511 | cd)) /* Tables block */ |
| 1512 | goto FAILED; |
| 1513 | |
| 1514 | /* At the end of compiling, code is still pointing to the start of the |
| 1515 | group, while tempcode has been updated to point past the end of the group |
| 1516 | and any option resetting that may follow it. The pattern pointer (ptr) |
| 1517 | is on the bracket. */ |
| 1518 | |
| 1519 | /* Handle updating of the required and first characters. Update for normal |
| 1520 | brackets of all kinds, and conditions with two branches (see code above). |
| 1521 | If the bracket is followed by a quantifier with zero repeat, we have to |
| 1522 | back off. Hence the definition of zeroReqByte and zeroFirstByte outside the |
| 1523 | main loop so that they can be accessed for the back off. */ |
| 1524 | |
| 1525 | zeroReqByte = reqByte; |
| 1526 | zeroFirstByte = firstByte; |
| 1527 | didGroupSetFirstByte = false; |
| 1528 | |
| 1529 | if (bravalue >= OP_BRA) { |
| 1530 | /* If we have not yet set a firstByte in this branch, take it from the |
| 1531 | subpattern, remembering that it was set here so that a repeat of more |
| 1532 | than one can replicate it as reqByte if necessary. If the subpattern has |
| 1533 | no firstByte, set "none" for the whole branch. In both cases, a zero |
| 1534 | repeat forces firstByte to "none". */ |
| 1535 | |
| 1536 | if (firstByte == REQ_UNSET) { |
| 1537 | if (subFirstByte >= 0) { |
| 1538 | firstByte = subFirstByte; |
| 1539 | didGroupSetFirstByte = true; |
| 1540 | } |
| 1541 | else |
| 1542 | firstByte = REQ_NONE; |
| 1543 | zeroFirstByte = REQ_NONE; |
| 1544 | } |
| 1545 | |
| 1546 | /* If firstByte was previously set, convert the subpattern's firstByte |
| 1547 | into reqByte if there wasn't one, using the vary flag that was in |
| 1548 | existence beforehand. */ |
| 1549 | |
| 1550 | else if (subFirstByte >= 0 && subReqByte < 0) |
| 1551 | subReqByte = subFirstByte | tempreqvary; |
| 1552 | |
| 1553 | /* If the subpattern set a required byte (or set a first byte that isn't |
| 1554 | really the first byte - see above), set it. */ |
| 1555 | |
| 1556 | if (subReqByte >= 0) |
| 1557 | reqByte = subReqByte; |
| 1558 | } |
| 1559 | |
| 1560 | /* For a forward assertion, we take the reqByte, if set. This can be |
| 1561 | helpful if the pattern that follows the assertion doesn't set a different |
| 1562 | char. For example, it's useful for /(?=abcde).+/. We can't set firstByte |
| 1563 | for an assertion, however because it leads to incorrect effect for patterns |
| 1564 | such as /(?=a)a.+/ when the "real" "a" would then become a reqByte instead |
| 1565 | of a firstByte. This is overcome by a scan at the end if there's no |
| 1566 | firstByte, looking for an asserted first char. */ |
| 1567 | |
| 1568 | else if (bravalue == OP_ASSERT && subReqByte >= 0) |
| 1569 | reqByte = subReqByte; |
| 1570 | |
| 1571 | /* Now update the main code pointer to the end of the group. */ |
| 1572 | |
| 1573 | code = tempcode; |
| 1574 | |
| 1575 | /* Error if hit end of pattern */ |
| 1576 | |
| 1577 | if (ptr >= patternEnd || *ptr != ')') { |
| 1578 | *errorCodePtr = ERR14; |
| 1579 | goto FAILED; |
| 1580 | } |
| 1581 | break; |
| 1582 | |
| 1583 | /* Check \ for being a real metacharacter; if not, fall through and handle |
| 1584 | it as a data character at the start of a string. Escape items are checked |
| 1585 | for validity in the pre-compiling pass. */ |
| 1586 | |
| 1587 | case '\\': |
| 1588 | c = checkEscape(ptrPtr: &ptr, patternEnd, errorCodePtr, bracount: cd.numCapturingBrackets, isClass: false); |
| 1589 | |
| 1590 | /* Handle metacharacters introduced by \. For ones like \d, the ESC_ values |
| 1591 | are arranged to be the negation of the corresponding OP_values. For the |
| 1592 | back references, the values are ESC_REF plus the reference number. Only |
| 1593 | back references and those types that consume a character may be repeated. |
| 1594 | We can test for values between ESC_b and ESC_w for the latter; this may |
| 1595 | have to change if any new ones are ever created. */ |
| 1596 | |
| 1597 | if (c < 0) { |
| 1598 | /* For metasequences that actually match a character, we disable the |
| 1599 | setting of a first character if it hasn't already been set. */ |
| 1600 | |
| 1601 | if (firstByte == REQ_UNSET && -c > ESC_b && -c <= ESC_w) |
| 1602 | firstByte = REQ_NONE; |
| 1603 | |
| 1604 | /* Set values to reset to if this is followed by a zero repeat. */ |
| 1605 | |
| 1606 | zeroFirstByte = firstByte; |
| 1607 | zeroReqByte = reqByte; |
| 1608 | |
| 1609 | /* Back references are handled specially */ |
| 1610 | |
| 1611 | if (-c >= ESC_REF) { |
| 1612 | int number = -c - ESC_REF; |
| 1613 | previous = code; |
| 1614 | *code++ = OP_REF; |
| 1615 | put2ByteValueAndAdvance(opcodePtr&: code, value: number); |
| 1616 | } |
| 1617 | |
| 1618 | /* For the rest, we can obtain the OP value by negating the escape |
| 1619 | value */ |
| 1620 | |
| 1621 | else { |
| 1622 | previous = (-c > ESC_b && -c <= ESC_w) ? code : NULL; |
| 1623 | *code++ = -c; |
| 1624 | } |
| 1625 | continue; |
| 1626 | } |
| 1627 | |
| 1628 | /* Fall through. */ |
| 1629 | |
| 1630 | /* Handle a literal character. It is guaranteed not to be whitespace or # |
| 1631 | when the extended flag is set. If we are in UTF-8 mode, it may be a |
| 1632 | multi-byte literal character. */ |
| 1633 | |
| 1634 | default: |
| 1635 | NORMAL_CHAR: |
| 1636 | |
| 1637 | previous = code; |
| 1638 | |
| 1639 | if (c < 128) { |
| 1640 | mcLength = 1; |
| 1641 | mcbuffer[0] = c; |
| 1642 | |
| 1643 | if ((options & IgnoreCaseOption) && (c | 0x20) >= 'a' && (c | 0x20) <= 'z') { |
| 1644 | *code++ = OP_ASCII_LETTER_IGNORING_CASE; |
| 1645 | *code++ = c | 0x20; |
| 1646 | } else { |
| 1647 | *code++ = OP_ASCII_CHAR; |
| 1648 | *code++ = c; |
| 1649 | } |
| 1650 | } else { |
| 1651 | mcLength = encodeUTF8(cvalue: c, buffer: mcbuffer); |
| 1652 | |
| 1653 | *code++ = (options & IgnoreCaseOption) ? OP_CHAR_IGNORING_CASE : OP_CHAR; |
| 1654 | for (c = 0; c < mcLength; c++) |
| 1655 | *code++ = mcbuffer[c]; |
| 1656 | } |
| 1657 | |
| 1658 | /* Set the first and required bytes appropriately. If no previous first |
| 1659 | byte, set it from this character, but revert to none on a zero repeat. |
| 1660 | Otherwise, leave the firstByte value alone, and don't change it on a zero |
| 1661 | repeat. */ |
| 1662 | |
| 1663 | if (firstByte == REQ_UNSET) { |
| 1664 | zeroFirstByte = REQ_NONE; |
| 1665 | zeroReqByte = reqByte; |
| 1666 | |
| 1667 | /* If the character is more than one byte long, we can set firstByte |
| 1668 | only if it is not to be matched caselessly. */ |
| 1669 | |
| 1670 | if (mcLength == 1 || reqCaseOpt == 0) { |
| 1671 | firstByte = mcbuffer[0] | reqCaseOpt; |
| 1672 | if (mcLength != 1) |
| 1673 | reqByte = code[-1] | cd.reqVaryOpt; |
| 1674 | } |
| 1675 | else |
| 1676 | firstByte = reqByte = REQ_NONE; |
| 1677 | } |
| 1678 | |
| 1679 | /* firstByte was previously set; we can set reqByte only the length is |
| 1680 | 1 or the matching is caseful. */ |
| 1681 | |
| 1682 | else { |
| 1683 | zeroFirstByte = firstByte; |
| 1684 | zeroReqByte = reqByte; |
| 1685 | if (mcLength == 1 || reqCaseOpt == 0) |
| 1686 | reqByte = code[-1] | reqCaseOpt | cd.reqVaryOpt; |
| 1687 | } |
| 1688 | |
| 1689 | break; /* End of literal character handling */ |
| 1690 | } |
| 1691 | } /* end of big loop */ |
| 1692 | |
| 1693 | /* Control never reaches here by falling through, only by a goto for all the |
| 1694 | error states. Pass back the position in the pattern so that it can be displayed |
| 1695 | to the user for diagnosing the error. */ |
| 1696 | |
| 1697 | FAILED: |
| 1698 | *ptrPtr = ptr; |
| 1699 | return false; |
| 1700 | } |
| 1701 | |
| 1702 | /************************************************* |
| 1703 | * Compile sequence of alternatives * |
| 1704 | *************************************************/ |
| 1705 | |
| 1706 | /* On entry, ptr is pointing past the bracket character, but on return |
| 1707 | it points to the closing bracket, or vertical bar, or end of string. |
| 1708 | The code variable is pointing at the byte into which the BRA operator has been |
| 1709 | stored. If the ims options are changed at the start (for a (?ims: group) or |
| 1710 | during any branch, we need to insert an OP_OPT item at the start of every |
| 1711 | following branch to ensure they get set correctly at run time, and also pass |
| 1712 | the new options into every subsequent branch compile. |
| 1713 | |
| 1714 | Argument: |
| 1715 | options option bits, including any changes for this subpattern |
| 1716 | brackets -> int containing the number of extracting brackets used |
| 1717 | codePtr -> the address of the current code pointer |
| 1718 | ptrPtr -> the address of the current pattern pointer |
| 1719 | errorCodePtr -> pointer to error code variable |
| 1720 | skipBytes skip this many bytes at start (for OP_BRANUMBER) |
| 1721 | firstbyteptr place to put the first required character, or a negative number |
| 1722 | reqbyteptr place to put the last required character, or a negative number |
| 1723 | cd points to the data block with tables pointers etc. |
| 1724 | |
| 1725 | Returns: true on success |
| 1726 | */ |
| 1727 | |
| 1728 | static bool |
| 1729 | compileBracket(int options, int* brackets, unsigned char** codePtr, |
| 1730 | const UChar** ptrPtr, const UChar* patternEnd, ErrorCode* errorCodePtr, int skipBytes, |
| 1731 | int* firstbyteptr, int* reqbyteptr, CompileData& cd) |
| 1732 | { |
| 1733 | const UChar* ptr = *ptrPtr; |
| 1734 | unsigned char* code = *codePtr; |
| 1735 | unsigned char* lastBranch = code; |
| 1736 | unsigned char* start_bracket = code; |
| 1737 | int firstByte = REQ_UNSET; |
| 1738 | int reqByte = REQ_UNSET; |
| 1739 | |
| 1740 | /* Offset is set zero to mark that this bracket is still open */ |
| 1741 | |
| 1742 | putLinkValueAllowZero(opcodePtr: code + 1, value: 0); |
| 1743 | code += 1 + LINK_SIZE + skipBytes; |
| 1744 | |
| 1745 | /* Loop for each alternative branch */ |
| 1746 | |
| 1747 | while (true) { |
| 1748 | /* Now compile the branch */ |
| 1749 | |
| 1750 | int branchFirstByte; |
| 1751 | int branchReqByte; |
| 1752 | if (!compileBranch(options, brackets, codePtr: &code, ptrPtr: &ptr, patternEnd, errorCodePtr, |
| 1753 | firstbyteptr: &branchFirstByte, reqbyteptr: &branchReqByte, cd)) { |
| 1754 | *ptrPtr = ptr; |
| 1755 | return false; |
| 1756 | } |
| 1757 | |
| 1758 | /* If this is the first branch, the firstByte and reqByte values for the |
| 1759 | branch become the values for the regex. */ |
| 1760 | |
| 1761 | if (*lastBranch != OP_ALT) { |
| 1762 | firstByte = branchFirstByte; |
| 1763 | reqByte = branchReqByte; |
| 1764 | } |
| 1765 | |
| 1766 | /* If this is not the first branch, the first char and reqByte have to |
| 1767 | match the values from all the previous branches, except that if the previous |
| 1768 | value for reqByte didn't have REQ_VARY set, it can still match, and we set |
| 1769 | REQ_VARY for the regex. */ |
| 1770 | |
| 1771 | else { |
| 1772 | /* If we previously had a firstByte, but it doesn't match the new branch, |
| 1773 | we have to abandon the firstByte for the regex, but if there was previously |
| 1774 | no reqByte, it takes on the value of the old firstByte. */ |
| 1775 | |
| 1776 | if (firstByte >= 0 && firstByte != branchFirstByte) { |
| 1777 | if (reqByte < 0) |
| 1778 | reqByte = firstByte; |
| 1779 | firstByte = REQ_NONE; |
| 1780 | } |
| 1781 | |
| 1782 | /* If we (now or from before) have no firstByte, a firstByte from the |
| 1783 | branch becomes a reqByte if there isn't a branch reqByte. */ |
| 1784 | |
| 1785 | if (firstByte < 0 && branchFirstByte >= 0 && branchReqByte < 0) |
| 1786 | branchReqByte = branchFirstByte; |
| 1787 | |
| 1788 | /* Now ensure that the reqbytes match */ |
| 1789 | |
| 1790 | if ((reqByte & ~REQ_VARY) != (branchReqByte & ~REQ_VARY)) |
| 1791 | reqByte = REQ_NONE; |
| 1792 | else |
| 1793 | reqByte |= branchReqByte; /* To "or" REQ_VARY */ |
| 1794 | } |
| 1795 | |
| 1796 | /* Reached end of expression, either ')' or end of pattern. Go back through |
| 1797 | the alternative branches and reverse the chain of offsets, with the field in |
| 1798 | the BRA item now becoming an offset to the first alternative. If there are |
| 1799 | no alternatives, it points to the end of the group. The length in the |
| 1800 | terminating ket is always the length of the whole bracketed item. If any of |
| 1801 | the ims options were changed inside the group, compile a resetting op-code |
| 1802 | following, except at the very end of the pattern. Return leaving the pointer |
| 1803 | at the terminating char. */ |
| 1804 | |
| 1805 | if (ptr >= patternEnd || *ptr != '|') { |
| 1806 | int length = code - lastBranch; |
| 1807 | do { |
| 1808 | int prevLength = getLinkValueAllowZero(opcodePtr: lastBranch + 1); |
| 1809 | putLinkValue(opcodePtr: lastBranch + 1, value: length); |
| 1810 | length = prevLength; |
| 1811 | lastBranch -= length; |
| 1812 | } while (length > 0); |
| 1813 | |
| 1814 | /* Fill in the ket */ |
| 1815 | |
| 1816 | *code = OP_KET; |
| 1817 | putLinkValue(opcodePtr: code + 1, value: code - start_bracket); |
| 1818 | code += 1 + LINK_SIZE; |
| 1819 | |
| 1820 | /* Set values to pass back */ |
| 1821 | |
| 1822 | *codePtr = code; |
| 1823 | *ptrPtr = ptr; |
| 1824 | *firstbyteptr = firstByte; |
| 1825 | *reqbyteptr = reqByte; |
| 1826 | return true; |
| 1827 | } |
| 1828 | |
| 1829 | /* Another branch follows; insert an "or" node. Its length field points back |
| 1830 | to the previous branch while the bracket remains open. At the end the chain |
| 1831 | is reversed. It's done like this so that the start of the bracket has a |
| 1832 | zero offset until it is closed, making it possible to detect recursion. */ |
| 1833 | |
| 1834 | *code = OP_ALT; |
| 1835 | putLinkValue(opcodePtr: code + 1, value: code - lastBranch); |
| 1836 | lastBranch = code; |
| 1837 | code += 1 + LINK_SIZE; |
| 1838 | ptr++; |
| 1839 | } |
| 1840 | ASSERT_NOT_REACHED(); |
| 1841 | } |
| 1842 | |
| 1843 | /************************************************* |
| 1844 | * Check for anchored expression * |
| 1845 | *************************************************/ |
| 1846 | |
| 1847 | /* Try to find out if this is an anchored regular expression. Consider each |
| 1848 | alternative branch. If they all start OP_CIRC, or with a bracket |
| 1849 | all of whose alternatives start OP_CIRC (recurse ad lib), then |
| 1850 | it's anchored. |
| 1851 | |
| 1852 | Arguments: |
| 1853 | code points to start of expression (the bracket) |
| 1854 | captureMap a bitmap of which brackets we are inside while testing; this |
| 1855 | handles up to substring 31; all brackets after that share |
| 1856 | the zero bit |
| 1857 | backrefMap the back reference bitmap |
| 1858 | */ |
| 1859 | |
| 1860 | static bool branchIsAnchored(const unsigned char* code) |
| 1861 | { |
| 1862 | const unsigned char* scode = firstSignificantOpcode(code); |
| 1863 | int op = *scode; |
| 1864 | |
| 1865 | /* Brackets */ |
| 1866 | if (op >= OP_BRA || op == OP_ASSERT) |
| 1867 | return bracketIsAnchored(code: scode); |
| 1868 | |
| 1869 | /* Check for explicit anchoring */ |
| 1870 | return op == OP_CIRC; |
| 1871 | } |
| 1872 | |
| 1873 | static bool bracketIsAnchored(const unsigned char* code) |
| 1874 | { |
| 1875 | do { |
| 1876 | if (!branchIsAnchored(code: code + 1 + LINK_SIZE)) |
| 1877 | return false; |
| 1878 | code += getLinkValue(opcodePtr: code + 1); |
| 1879 | } while (*code == OP_ALT); /* Loop for each alternative */ |
| 1880 | return true; |
| 1881 | } |
| 1882 | |
| 1883 | /************************************************* |
| 1884 | * Check for starting with ^ or .* * |
| 1885 | *************************************************/ |
| 1886 | |
| 1887 | /* This is called to find out if every branch starts with ^ or .* so that |
| 1888 | "first char" processing can be done to speed things up in multiline |
| 1889 | matching and for non-DOTALL patterns that start with .* (which must start at |
| 1890 | the beginning or after \n) |
| 1891 | |
| 1892 | Except when the .* appears inside capturing parentheses, and there is a |
| 1893 | subsequent back reference to those parentheses. By keeping a bitmap of the |
| 1894 | first 31 back references, we can catch some of the more common cases more |
| 1895 | precisely; all the greater back references share a single bit. |
| 1896 | |
| 1897 | Arguments: |
| 1898 | code points to start of expression (the bracket) |
| 1899 | captureMap a bitmap of which brackets we are inside while testing; this |
| 1900 | handles up to substring 31; all brackets after that share |
| 1901 | the zero bit |
| 1902 | backrefMap the back reference bitmap |
| 1903 | */ |
| 1904 | |
| 1905 | static bool branchNeedsLineStart(const unsigned char* code, unsigned captureMap, unsigned backrefMap) |
| 1906 | { |
| 1907 | const unsigned char* scode = firstSignificantOpcode(code); |
| 1908 | int op = *scode; |
| 1909 | |
| 1910 | /* Capturing brackets */ |
| 1911 | if (op > OP_BRA) { |
| 1912 | int captureNum = op - OP_BRA; |
| 1913 | if (captureNum > EXTRACT_BASIC_MAX) |
| 1914 | captureNum = get2ByteValue(opcodePtr: scode + 2 + LINK_SIZE); |
| 1915 | int bracketMask = (captureNum < 32) ? (1 << captureNum) : 1; |
| 1916 | return bracketNeedsLineStart(code: scode, captureMap: captureMap | bracketMask, backrefMap); |
| 1917 | } |
| 1918 | |
| 1919 | /* Other brackets */ |
| 1920 | if (op == OP_BRA || op == OP_ASSERT) |
| 1921 | return bracketNeedsLineStart(code: scode, captureMap, backrefMap); |
| 1922 | |
| 1923 | /* .* means "start at start or after \n" if it isn't in brackets that |
| 1924 | may be referenced. */ |
| 1925 | |
| 1926 | if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR) |
| 1927 | return scode[1] == OP_NOT_NEWLINE && !(captureMap & backrefMap); |
| 1928 | |
| 1929 | /* Explicit ^ */ |
| 1930 | return op == OP_CIRC || op == OP_BOL; |
| 1931 | } |
| 1932 | |
| 1933 | static bool bracketNeedsLineStart(const unsigned char* code, unsigned captureMap, unsigned backrefMap) |
| 1934 | { |
| 1935 | do { |
| 1936 | if (!branchNeedsLineStart(code: code + 1 + LINK_SIZE, captureMap, backrefMap)) |
| 1937 | return false; |
| 1938 | code += getLinkValue(opcodePtr: code + 1); |
| 1939 | } while (*code == OP_ALT); /* Loop for each alternative */ |
| 1940 | return true; |
| 1941 | } |
| 1942 | |
| 1943 | /************************************************* |
| 1944 | * Check for asserted fixed first char * |
| 1945 | *************************************************/ |
| 1946 | |
| 1947 | /* During compilation, the "first char" settings from forward assertions are |
| 1948 | discarded, because they can cause conflicts with actual literals that follow. |
| 1949 | However, if we end up without a first char setting for an unanchored pattern, |
| 1950 | it is worth scanning the regex to see if there is an initial asserted first |
| 1951 | char. If all branches start with the same asserted char, or with a bracket all |
| 1952 | of whose alternatives start with the same asserted char (recurse ad lib), then |
| 1953 | we return that char, otherwise -1. |
| 1954 | |
| 1955 | Arguments: |
| 1956 | code points to start of expression (the bracket) |
| 1957 | options pointer to the options (used to check casing changes) |
| 1958 | inassert true if in an assertion |
| 1959 | |
| 1960 | Returns: -1 or the fixed first char |
| 1961 | */ |
| 1962 | |
| 1963 | static int branchFindFirstAssertedCharacter(const unsigned char* code, bool inassert) |
| 1964 | { |
| 1965 | const unsigned char* scode = firstSignificantOpcodeSkippingAssertions(code); |
| 1966 | int op = *scode; |
| 1967 | |
| 1968 | if (op >= OP_BRA) |
| 1969 | op = OP_BRA; |
| 1970 | |
| 1971 | switch (op) { |
| 1972 | default: |
| 1973 | return -1; |
| 1974 | |
| 1975 | case OP_BRA: |
| 1976 | case OP_ASSERT: |
| 1977 | return bracketFindFirstAssertedCharacter(code: scode, inassert: op == OP_ASSERT); |
| 1978 | |
| 1979 | case OP_EXACT: |
| 1980 | scode += 2; |
| 1981 | /* Fall through */ |
| 1982 | |
| 1983 | case OP_CHAR: |
| 1984 | case OP_CHAR_IGNORING_CASE: |
| 1985 | case OP_ASCII_CHAR: |
| 1986 | case OP_ASCII_LETTER_IGNORING_CASE: |
| 1987 | case OP_PLUS: |
| 1988 | case OP_MINPLUS: |
| 1989 | if (!inassert) |
| 1990 | return -1; |
| 1991 | return scode[1]; |
| 1992 | } |
| 1993 | } |
| 1994 | |
| 1995 | static int bracketFindFirstAssertedCharacter(const unsigned char* code, bool inassert) |
| 1996 | { |
| 1997 | int c = -1; |
| 1998 | do { |
| 1999 | int d = branchFindFirstAssertedCharacter(code: code + 1 + LINK_SIZE, inassert); |
| 2000 | if (d < 0) |
| 2001 | return -1; |
| 2002 | if (c < 0) |
| 2003 | c = d; |
| 2004 | else if (c != d) |
| 2005 | return -1; |
| 2006 | code += getLinkValue(opcodePtr: code + 1); |
| 2007 | } while (*code == OP_ALT); |
| 2008 | return c; |
| 2009 | } |
| 2010 | |
| 2011 | static inline int multiplyWithOverflowCheck(int a, int b) |
| 2012 | { |
| 2013 | if (!a || !b) |
| 2014 | return 0; |
| 2015 | if (a > MAX_PATTERN_SIZE / b) |
| 2016 | return -1; |
| 2017 | return a * b; |
| 2018 | } |
| 2019 | |
| 2020 | static int calculateCompiledPatternLength(const UChar* pattern, int patternLength, JSRegExpIgnoreCaseOption ignoreCase, |
| 2021 | CompileData& cd, ErrorCode& errorcode) |
| 2022 | { |
| 2023 | /* Make a pass over the pattern to compute the |
| 2024 | amount of store required to hold the compiled code. This does not have to be |
| 2025 | perfect as long as errors are overestimates. */ |
| 2026 | |
| 2027 | if (patternLength > MAX_PATTERN_SIZE) { |
| 2028 | errorcode = ERR16; |
| 2029 | return -1; |
| 2030 | } |
| 2031 | |
| 2032 | int length = 1 + LINK_SIZE; /* For initial BRA plus length */ |
| 2033 | int = 0; |
| 2034 | int lastitemlength = 0; |
| 2035 | unsigned brastackptr = 0; |
| 2036 | int brastack[BRASTACK_SIZE]; |
| 2037 | unsigned char bralenstack[BRASTACK_SIZE]; |
| 2038 | int bracount = 0; |
| 2039 | |
| 2040 | const UChar* ptr = (const UChar*)(pattern - 1); |
| 2041 | const UChar* patternEnd = (const UChar*)(pattern + patternLength); |
| 2042 | |
| 2043 | while (++ptr < patternEnd) { |
| 2044 | int minRepeats = 0, maxRepeats = 0; |
| 2045 | int c = *ptr; |
| 2046 | |
| 2047 | switch (c) { |
| 2048 | /* A backslashed item may be an escaped data character or it may be a |
| 2049 | character type. */ |
| 2050 | |
| 2051 | case '\\': |
| 2052 | c = checkEscape(ptrPtr: &ptr, patternEnd, errorCodePtr: &errorcode, bracount: cd.numCapturingBrackets, isClass: false); |
| 2053 | if (errorcode != 0) |
| 2054 | return -1; |
| 2055 | |
| 2056 | lastitemlength = 1; /* Default length of last item for repeats */ |
| 2057 | |
| 2058 | if (c >= 0) { /* Data character */ |
| 2059 | length += 2; /* For a one-byte character */ |
| 2060 | |
| 2061 | if (c > 127) { |
| 2062 | int i; |
| 2063 | for (i = 0; i < jsc_pcre_utf8_table1_size; i++) |
| 2064 | if (c <= jsc_pcre_utf8_table1[i]) break; |
| 2065 | length += i; |
| 2066 | lastitemlength += i; |
| 2067 | } |
| 2068 | |
| 2069 | continue; |
| 2070 | } |
| 2071 | |
| 2072 | /* Other escapes need one byte */ |
| 2073 | |
| 2074 | length++; |
| 2075 | |
| 2076 | /* A back reference needs an additional 2 bytes, plus either one or 5 |
| 2077 | bytes for a repeat. We also need to keep the value of the highest |
| 2078 | back reference. */ |
| 2079 | |
| 2080 | if (c <= -ESC_REF) { |
| 2081 | int refnum = -c - ESC_REF; |
| 2082 | cd.backrefMap |= (refnum < 32) ? (1 << refnum) : 1; |
| 2083 | if (refnum > cd.topBackref) |
| 2084 | cd.topBackref = refnum; |
| 2085 | length += 2; /* For single back reference */ |
| 2086 | if (safelyCheckNextChar(ptr, patternEnd, expected: '{') && isCountedRepeat(p: ptr + 2, patternEnd)) { |
| 2087 | ptr = readRepeatCounts(p: ptr + 2, minp: &minRepeats, maxp: &maxRepeats, errorCodePtr: &errorcode); |
| 2088 | if (errorcode) |
| 2089 | return -1; |
| 2090 | if ((minRepeats == 0 && (maxRepeats == 1 || maxRepeats == -1)) || |
| 2091 | (minRepeats == 1 && maxRepeats == -1)) |
| 2092 | length++; |
| 2093 | else |
| 2094 | length += 5; |
| 2095 | if (safelyCheckNextChar(ptr, patternEnd, expected: '?')) |
| 2096 | ptr++; |
| 2097 | } |
| 2098 | } |
| 2099 | continue; |
| 2100 | |
| 2101 | case '^': /* Single-byte metacharacters */ |
| 2102 | case '.': |
| 2103 | case '$': |
| 2104 | length++; |
| 2105 | lastitemlength = 1; |
| 2106 | continue; |
| 2107 | |
| 2108 | case '*': /* These repeats won't be after brackets; */ |
| 2109 | case '+': /* those are handled separately */ |
| 2110 | case '?': |
| 2111 | length++; |
| 2112 | goto POSSESSIVE; |
| 2113 | |
| 2114 | /* This covers the cases of braced repeats after a single char, metachar, |
| 2115 | class, or back reference. */ |
| 2116 | |
| 2117 | case '{': |
| 2118 | if (!isCountedRepeat(p: ptr + 1, patternEnd)) |
| 2119 | goto NORMAL_CHAR; |
| 2120 | ptr = readRepeatCounts(p: ptr + 1, minp: &minRepeats, maxp: &maxRepeats, errorCodePtr: &errorcode); |
| 2121 | if (errorcode != 0) |
| 2122 | return -1; |
| 2123 | |
| 2124 | /* These special cases just insert one extra opcode */ |
| 2125 | |
| 2126 | if ((minRepeats == 0 && (maxRepeats == 1 || maxRepeats == -1)) || |
| 2127 | (minRepeats == 1 && maxRepeats == -1)) |
| 2128 | length++; |
| 2129 | |
| 2130 | /* These cases might insert additional copies of a preceding character. */ |
| 2131 | |
| 2132 | else { |
| 2133 | if (minRepeats != 1) { |
| 2134 | length -= lastitemlength; /* Uncount the original char or metachar */ |
| 2135 | if (minRepeats > 0) |
| 2136 | length += 3 + lastitemlength; |
| 2137 | } |
| 2138 | length += lastitemlength + ((maxRepeats > 0) ? 3 : 1); |
| 2139 | } |
| 2140 | |
| 2141 | if (safelyCheckNextChar(ptr, patternEnd, expected: '?')) |
| 2142 | ptr++; /* Needs no extra length */ |
| 2143 | |
| 2144 | POSSESSIVE: /* Test for possessive quantifier */ |
| 2145 | if (safelyCheckNextChar(ptr, patternEnd, expected: '+')) { |
| 2146 | ptr++; |
| 2147 | length += 2 + 2 * LINK_SIZE; /* Allow for atomic brackets */ |
| 2148 | } |
| 2149 | continue; |
| 2150 | |
| 2151 | /* An alternation contains an offset to the next branch or ket. If any ims |
| 2152 | options changed in the previous branch(es), and/or if we are in a |
| 2153 | lookbehind assertion, extra space will be needed at the start of the |
| 2154 | branch. This is handled by branch_extra. */ |
| 2155 | |
| 2156 | case '|': |
| 2157 | if (brastackptr == 0) |
| 2158 | cd.needOuterBracket = true; |
| 2159 | length += 1 + LINK_SIZE + branch_extra; |
| 2160 | continue; |
| 2161 | |
| 2162 | /* A character class uses 33 characters provided that all the character |
| 2163 | values are less than 256. Otherwise, it uses a bit map for low valued |
| 2164 | characters, and individual items for others. Don't worry about character |
| 2165 | types that aren't allowed in classes - they'll get picked up during the |
| 2166 | compile. A character class that contains only one single-byte character |
| 2167 | uses 2 or 3 bytes, depending on whether it is negated or not. Notice this |
| 2168 | where we can. (In UTF-8 mode we can do this only for chars < 128.) */ |
| 2169 | |
| 2170 | case '[': { |
| 2171 | int class_optcount; |
| 2172 | if (*(++ptr) == '^') { |
| 2173 | class_optcount = 10; /* Greater than one */ |
| 2174 | ptr++; |
| 2175 | } |
| 2176 | else |
| 2177 | class_optcount = 0; |
| 2178 | |
| 2179 | bool class_utf8 = false; |
| 2180 | |
| 2181 | for (; ptr < patternEnd && *ptr != ']'; ++ptr) { |
| 2182 | /* Check for escapes */ |
| 2183 | |
| 2184 | if (*ptr == '\\') { |
| 2185 | c = checkEscape(ptrPtr: &ptr, patternEnd, errorCodePtr: &errorcode, bracount: cd.numCapturingBrackets, isClass: true); |
| 2186 | if (errorcode != 0) |
| 2187 | return -1; |
| 2188 | |
| 2189 | /* Handle escapes that turn into characters */ |
| 2190 | |
| 2191 | if (c >= 0) |
| 2192 | goto NON_SPECIAL_CHARACTER; |
| 2193 | |
| 2194 | /* Escapes that are meta-things. The normal ones just affect the |
| 2195 | bit map, but Unicode properties require an XCLASS extended item. */ |
| 2196 | |
| 2197 | else |
| 2198 | class_optcount = 10; /* \d, \s etc; make sure > 1 */ |
| 2199 | } |
| 2200 | |
| 2201 | /* Anything else increments the possible optimization count. We have to |
| 2202 | detect ranges here so that we can compute the number of extra ranges for |
| 2203 | caseless wide characters when UCP support is available. If there are wide |
| 2204 | characters, we are going to have to use an XCLASS, even for single |
| 2205 | characters. */ |
| 2206 | |
| 2207 | else { |
| 2208 | c = *ptr; |
| 2209 | |
| 2210 | /* Come here from handling \ above when it escapes to a char value */ |
| 2211 | |
| 2212 | NON_SPECIAL_CHARACTER: |
| 2213 | class_optcount++; |
| 2214 | |
| 2215 | int d = -1; |
| 2216 | if (safelyCheckNextChar(ptr, patternEnd, expected: '-')) { |
| 2217 | const UChar* hyptr = ptr++; |
| 2218 | if (safelyCheckNextChar(ptr, patternEnd, expected: '\\')) { |
| 2219 | ptr++; |
| 2220 | d = checkEscape(ptrPtr: &ptr, patternEnd, errorCodePtr: &errorcode, bracount: cd.numCapturingBrackets, isClass: true); |
| 2221 | if (errorcode != 0) |
| 2222 | return -1; |
| 2223 | } |
| 2224 | else if ((ptr + 1 < patternEnd) && ptr[1] != ']') |
| 2225 | d = *++ptr; |
| 2226 | if (d < 0) |
| 2227 | ptr = hyptr; /* go back to hyphen as data */ |
| 2228 | } |
| 2229 | |
| 2230 | /* If d >= 0 we have a range. In UTF-8 mode, if the end is > 255, or > |
| 2231 | 127 for caseless matching, we will need to use an XCLASS. */ |
| 2232 | |
| 2233 | if (d >= 0) { |
| 2234 | class_optcount = 10; /* Ensure > 1 */ |
| 2235 | if (d < c) { |
| 2236 | errorcode = ERR8; |
| 2237 | return -1; |
| 2238 | } |
| 2239 | |
| 2240 | if ((d > 255 || (ignoreCase && d > 127))) { |
| 2241 | unsigned char buffer[6]; |
| 2242 | if (!class_utf8) /* Allow for XCLASS overhead */ |
| 2243 | { |
| 2244 | class_utf8 = true; |
| 2245 | length += LINK_SIZE + 2; |
| 2246 | } |
| 2247 | |
| 2248 | /* If we have UCP support, find out how many extra ranges are |
| 2249 | needed to map the other case of characters within this range. We |
| 2250 | have to mimic the range optimization here, because extending the |
| 2251 | range upwards might push d over a boundary that makes it use |
| 2252 | another byte in the UTF-8 representation. */ |
| 2253 | |
| 2254 | if (ignoreCase) { |
| 2255 | int occ, ocd; |
| 2256 | int cc = c; |
| 2257 | int origd = d; |
| 2258 | while (getOthercaseRange(cptr: &cc, d: origd, ocptr: &occ, odptr: &ocd)) { |
| 2259 | if (occ >= c && ocd <= d) |
| 2260 | continue; /* Skip embedded */ |
| 2261 | |
| 2262 | if (occ < c && ocd >= c - 1) /* Extend the basic range */ |
| 2263 | { /* if there is overlap, */ |
| 2264 | c = occ; /* noting that if occ < c */ |
| 2265 | continue; /* we can't have ocd > d */ |
| 2266 | } /* because a subrange is */ |
| 2267 | if (ocd > d && occ <= d + 1) /* always shorter than */ |
| 2268 | { /* the basic range. */ |
| 2269 | d = ocd; |
| 2270 | continue; |
| 2271 | } |
| 2272 | |
| 2273 | /* An extra item is needed */ |
| 2274 | |
| 2275 | length += 1 + encodeUTF8(cvalue: occ, buffer) + |
| 2276 | ((occ == ocd) ? 0 : encodeUTF8(cvalue: ocd, buffer)); |
| 2277 | } |
| 2278 | } |
| 2279 | |
| 2280 | /* The length of the (possibly extended) range */ |
| 2281 | |
| 2282 | length += 1 + encodeUTF8(cvalue: c, buffer) + encodeUTF8(cvalue: d, buffer); |
| 2283 | } |
| 2284 | |
| 2285 | } |
| 2286 | |
| 2287 | /* We have a single character. There is nothing to be done unless we |
| 2288 | are in UTF-8 mode. If the char is > 255, or 127 when caseless, we must |
| 2289 | allow for an XCL_SINGLE item, doubled for caselessness if there is UCP |
| 2290 | support. */ |
| 2291 | |
| 2292 | else { |
| 2293 | if ((c > 255 || (ignoreCase && c > 127))) { |
| 2294 | unsigned char buffer[6]; |
| 2295 | class_optcount = 10; /* Ensure > 1 */ |
| 2296 | if (!class_utf8) /* Allow for XCLASS overhead */ |
| 2297 | { |
| 2298 | class_utf8 = true; |
| 2299 | length += LINK_SIZE + 2; |
| 2300 | } |
| 2301 | length += (ignoreCase ? 2 : 1) * (1 + encodeUTF8(cvalue: c, buffer)); |
| 2302 | } |
| 2303 | } |
| 2304 | } |
| 2305 | } |
| 2306 | |
| 2307 | if (ptr >= patternEnd) { /* Missing terminating ']' */ |
| 2308 | errorcode = ERR6; |
| 2309 | return -1; |
| 2310 | } |
| 2311 | |
| 2312 | /* We can optimize when there was only one optimizable character. |
| 2313 | Note that this does not detect the case of a negated single character. |
| 2314 | In that case we do an incorrect length computation, but it's not a serious |
| 2315 | problem because the computed length is too large rather than too small. */ |
| 2316 | |
| 2317 | if (class_optcount == 1) |
| 2318 | goto NORMAL_CHAR; |
| 2319 | |
| 2320 | /* Here, we handle repeats for the class opcodes. */ |
| 2321 | { |
| 2322 | length += 33; |
| 2323 | |
| 2324 | /* A repeat needs either 1 or 5 bytes. If it is a possessive quantifier, |
| 2325 | we also need extra for wrapping the whole thing in a sub-pattern. */ |
| 2326 | |
| 2327 | if (safelyCheckNextChar(ptr, patternEnd, expected: '{') && isCountedRepeat(p: ptr + 2, patternEnd)) { |
| 2328 | ptr = readRepeatCounts(p: ptr + 2, minp: &minRepeats, maxp: &maxRepeats, errorCodePtr: &errorcode); |
| 2329 | if (errorcode != 0) |
| 2330 | return -1; |
| 2331 | if ((minRepeats == 0 && (maxRepeats == 1 || maxRepeats == -1)) || |
| 2332 | (minRepeats == 1 && maxRepeats == -1)) |
| 2333 | length++; |
| 2334 | else |
| 2335 | length += 5; |
| 2336 | if (safelyCheckNextChar(ptr, patternEnd, expected: '+')) { |
| 2337 | ptr++; |
| 2338 | length += 2 + 2 * LINK_SIZE; |
| 2339 | } else if (safelyCheckNextChar(ptr, patternEnd, expected: '?')) |
| 2340 | ptr++; |
| 2341 | } |
| 2342 | } |
| 2343 | continue; |
| 2344 | } |
| 2345 | |
| 2346 | /* Brackets may be genuine groups or special things */ |
| 2347 | |
| 2348 | case '(': { |
| 2349 | int = 0; |
| 2350 | int bracket_length = 1 + LINK_SIZE; |
| 2351 | bool capturing = false; |
| 2352 | |
| 2353 | /* Handle special forms of bracket, which all start (? */ |
| 2354 | |
| 2355 | if (safelyCheckNextChar(ptr, patternEnd, expected: '?')) { |
| 2356 | switch (c = (ptr + 2 < patternEnd ? ptr[2] : 0)) { |
| 2357 | /* Non-referencing groups and lookaheads just move the pointer on, and |
| 2358 | then behave like a non-special bracket, except that they don't increment |
| 2359 | the count of extracting brackets. Ditto for the "once only" bracket, |
| 2360 | which is in Perl from version 5.005. */ |
| 2361 | |
| 2362 | case ':': |
| 2363 | case '=': |
| 2364 | case '!': |
| 2365 | ptr += 2; |
| 2366 | break; |
| 2367 | |
| 2368 | /* Else loop checking valid options until ) is met. Anything else is an |
| 2369 | error. If we are without any brackets, i.e. at top level, the settings |
| 2370 | act as if specified in the options, so massage the options immediately. |
| 2371 | This is for backward compatibility with Perl 5.004. */ |
| 2372 | |
| 2373 | default: |
| 2374 | errorcode = ERR12; |
| 2375 | return -1; |
| 2376 | } |
| 2377 | } else |
| 2378 | capturing = 1; |
| 2379 | |
| 2380 | /* Capturing brackets must be counted so we can process escapes in a |
| 2381 | Perlish way. If the number exceeds EXTRACT_BASIC_MAX we are going to need |
| 2382 | an additional 3 bytes of memory per capturing bracket. */ |
| 2383 | |
| 2384 | if (capturing) { |
| 2385 | bracount++; |
| 2386 | if (bracount > EXTRACT_BASIC_MAX) |
| 2387 | bracket_length += 3; |
| 2388 | } |
| 2389 | |
| 2390 | /* Save length for computing whole length at end if there's a repeat that |
| 2391 | requires duplication of the group. Also save the current value of |
| 2392 | branch_extra, and start the new group with the new value. If non-zero, this |
| 2393 | will either be 2 for a (?imsx: group, or 3 for a lookbehind assertion. */ |
| 2394 | |
| 2395 | if (brastackptr >= sizeof(brastack)/sizeof(int)) { |
| 2396 | errorcode = ERR17; |
| 2397 | return -1; |
| 2398 | } |
| 2399 | |
| 2400 | bralenstack[brastackptr] = branch_extra; |
| 2401 | branch_extra = branch_newextra; |
| 2402 | |
| 2403 | brastack[brastackptr++] = length; |
| 2404 | length += bracket_length; |
| 2405 | continue; |
| 2406 | } |
| 2407 | |
| 2408 | /* Handle ket. Look for subsequent maxRepeats/minRepeats; for certain sets of values we |
| 2409 | have to replicate this bracket up to that many times. If brastackptr is |
| 2410 | 0 this is an unmatched bracket which will generate an error, but take care |
| 2411 | not to try to access brastack[-1] when computing the length and restoring |
| 2412 | the branch_extra value. */ |
| 2413 | |
| 2414 | case ')': { |
| 2415 | int duplength; |
| 2416 | length += 1 + LINK_SIZE; |
| 2417 | if (brastackptr > 0) { |
| 2418 | duplength = length - brastack[--brastackptr]; |
| 2419 | branch_extra = bralenstack[brastackptr]; |
| 2420 | } |
| 2421 | else |
| 2422 | duplength = 0; |
| 2423 | |
| 2424 | /* Leave ptr at the final char; for readRepeatCounts this happens |
| 2425 | automatically; for the others we need an increment. */ |
| 2426 | |
| 2427 | if ((ptr + 1 < patternEnd) && (c = ptr[1]) == '{' && isCountedRepeat(p: ptr + 2, patternEnd)) { |
| 2428 | ptr = readRepeatCounts(p: ptr + 2, minp: &minRepeats, maxp: &maxRepeats, errorCodePtr: &errorcode); |
| 2429 | if (errorcode) |
| 2430 | return -1; |
| 2431 | } else if (c == '*') { |
| 2432 | minRepeats = 0; |
| 2433 | maxRepeats = -1; |
| 2434 | ptr++; |
| 2435 | } else if (c == '+') { |
| 2436 | minRepeats = 1; |
| 2437 | maxRepeats = -1; |
| 2438 | ptr++; |
| 2439 | } else if (c == '?') { |
| 2440 | minRepeats = 0; |
| 2441 | maxRepeats = 1; |
| 2442 | ptr++; |
| 2443 | } else { |
| 2444 | minRepeats = 1; |
| 2445 | maxRepeats = 1; |
| 2446 | } |
| 2447 | |
| 2448 | /* If the minimum is zero, we have to allow for an OP_BRAZERO before the |
| 2449 | group, and if the maximum is greater than zero, we have to replicate |
| 2450 | maxval-1 times; each replication acquires an OP_BRAZERO plus a nesting |
| 2451 | bracket set. */ |
| 2452 | |
| 2453 | int repeatsLength; |
| 2454 | if (minRepeats == 0) { |
| 2455 | length++; |
| 2456 | if (maxRepeats > 0) { |
| 2457 | repeatsLength = multiplyWithOverflowCheck(a: maxRepeats - 1, b: duplength + 3 + 2 * LINK_SIZE); |
| 2458 | if (repeatsLength < 0) { |
| 2459 | errorcode = ERR16; |
| 2460 | return -1; |
| 2461 | } |
| 2462 | length += repeatsLength; |
| 2463 | if (length > MAX_PATTERN_SIZE) { |
| 2464 | errorcode = ERR16; |
| 2465 | return -1; |
| 2466 | } |
| 2467 | } |
| 2468 | } |
| 2469 | |
| 2470 | /* When the minimum is greater than zero, we have to replicate up to |
| 2471 | minval-1 times, with no additions required in the copies. Then, if there |
| 2472 | is a limited maximum we have to replicate up to maxval-1 times allowing |
| 2473 | for a BRAZERO item before each optional copy and nesting brackets for all |
| 2474 | but one of the optional copies. */ |
| 2475 | |
| 2476 | else { |
| 2477 | repeatsLength = multiplyWithOverflowCheck(a: minRepeats - 1, b: duplength); |
| 2478 | if (repeatsLength < 0) { |
| 2479 | errorcode = ERR16; |
| 2480 | return -1; |
| 2481 | } |
| 2482 | length += repeatsLength; |
| 2483 | if (maxRepeats > minRepeats) { /* Need this test as maxRepeats=-1 means no limit */ |
| 2484 | repeatsLength = multiplyWithOverflowCheck(a: maxRepeats - minRepeats, b: duplength + 3 + 2 * LINK_SIZE); |
| 2485 | if (repeatsLength < 0) { |
| 2486 | errorcode = ERR16; |
| 2487 | return -1; |
| 2488 | } |
| 2489 | length += repeatsLength - (2 + 2 * LINK_SIZE); |
| 2490 | } |
| 2491 | if (length > MAX_PATTERN_SIZE) { |
| 2492 | errorcode = ERR16; |
| 2493 | return -1; |
| 2494 | } |
| 2495 | } |
| 2496 | |
| 2497 | /* Allow space for once brackets for "possessive quantifier" */ |
| 2498 | |
| 2499 | if (safelyCheckNextChar(ptr, patternEnd, expected: '+')) { |
| 2500 | ptr++; |
| 2501 | length += 2 + 2 * LINK_SIZE; |
| 2502 | } |
| 2503 | continue; |
| 2504 | } |
| 2505 | |
| 2506 | /* Non-special character. It won't be space or # in extended mode, so it is |
| 2507 | always a genuine character. If we are in a \Q...\E sequence, check for the |
| 2508 | end; if not, we have a literal. */ |
| 2509 | |
| 2510 | default: |
| 2511 | NORMAL_CHAR: |
| 2512 | length += 2; /* For a one-byte character */ |
| 2513 | lastitemlength = 1; /* Default length of last item for repeats */ |
| 2514 | |
| 2515 | if (c > 127) { |
| 2516 | int i; |
| 2517 | for (i = 0; i < jsc_pcre_utf8_table1_size; i++) |
| 2518 | if (c <= jsc_pcre_utf8_table1[i]) |
| 2519 | break; |
| 2520 | length += i; |
| 2521 | lastitemlength += i; |
| 2522 | } |
| 2523 | |
| 2524 | continue; |
| 2525 | } |
| 2526 | } |
| 2527 | |
| 2528 | length += 2 + LINK_SIZE; /* For final KET and END */ |
| 2529 | |
| 2530 | cd.numCapturingBrackets = bracount; |
| 2531 | return length; |
| 2532 | } |
| 2533 | |
| 2534 | /************************************************* |
| 2535 | * Compile a Regular Expression * |
| 2536 | *************************************************/ |
| 2537 | |
| 2538 | /* This function takes a string and returns a pointer to a block of store |
| 2539 | holding a compiled version of the expression. The original API for this |
| 2540 | function had no error code return variable; it is retained for backwards |
| 2541 | compatibility. The new function is given a new name. |
| 2542 | |
| 2543 | Arguments: |
| 2544 | pattern the regular expression |
| 2545 | options various option bits |
| 2546 | errorCodePtr pointer to error code variable (pcre_compile2() only) |
| 2547 | can be NULL if you don't want a code value |
| 2548 | errorPtr pointer to pointer to error text |
| 2549 | erroroffset ptr offset in pattern where error was detected |
| 2550 | tables pointer to character tables or NULL |
| 2551 | |
| 2552 | Returns: pointer to compiled data block, or NULL on error, |
| 2553 | with errorPtr and erroroffset set |
| 2554 | */ |
| 2555 | |
| 2556 | static inline JSRegExp* returnError(ErrorCode errorcode, const char** errorPtr) |
| 2557 | { |
| 2558 | *errorPtr = errorText(code: errorcode); |
| 2559 | return 0; |
| 2560 | } |
| 2561 | |
| 2562 | JSRegExp* jsRegExpCompile(const UChar* pattern, int patternLength, |
| 2563 | JSRegExpIgnoreCaseOption ignoreCase, JSRegExpMultilineOption multiline, |
| 2564 | unsigned* numSubpatterns, const char** errorPtr) |
| 2565 | { |
| 2566 | /* We can't pass back an error message if errorPtr is NULL; I guess the best we |
| 2567 | can do is just return NULL, but we can set a code value if there is a code pointer. */ |
| 2568 | if (!errorPtr) |
| 2569 | return 0; |
| 2570 | *errorPtr = NULL; |
| 2571 | |
| 2572 | CompileData cd; |
| 2573 | |
| 2574 | ErrorCode errorcode = ERR0; |
| 2575 | /* Call this once just to count the brackets. */ |
| 2576 | calculateCompiledPatternLength(pattern, patternLength, ignoreCase, cd, errorcode); |
| 2577 | /* Call it again to compute the length. */ |
| 2578 | int length = calculateCompiledPatternLength(pattern, patternLength, ignoreCase, cd, errorcode); |
| 2579 | if (errorcode) |
| 2580 | return returnError(errorcode, errorPtr); |
| 2581 | |
| 2582 | if (length > MAX_PATTERN_SIZE) |
| 2583 | return returnError(errorcode: ERR16, errorPtr); |
| 2584 | |
| 2585 | size_t size = length + sizeof(JSRegExp); |
| 2586 | #if REGEXP_HISTOGRAM |
| 2587 | size_t stringOffset = (size + sizeof(UChar) - 1) / sizeof(UChar) * sizeof(UChar); |
| 2588 | size = stringOffset + patternLength * sizeof(UChar); |
| 2589 | #endif |
| 2590 | JSRegExp* re = reinterpret_cast<JSRegExp*>(new char[size]); |
| 2591 | |
| 2592 | if (!re) |
| 2593 | return returnError(errorcode: ERR13, errorPtr); |
| 2594 | |
| 2595 | re->options = (ignoreCase ? IgnoreCaseOption : 0) | (multiline ? MatchAcrossMultipleLinesOption : 0); |
| 2596 | |
| 2597 | /* The starting points of the name/number translation table and of the code are |
| 2598 | passed around in the compile data block. */ |
| 2599 | |
| 2600 | const unsigned char* codeStart = (const unsigned char*)(re + 1); |
| 2601 | |
| 2602 | /* Set up a starting, non-extracting bracket, then compile the expression. On |
| 2603 | error, errorcode will be set non-zero, so we don't need to look at the result |
| 2604 | of the function here. */ |
| 2605 | |
| 2606 | const UChar* ptr = (const UChar*)pattern; |
| 2607 | const UChar* patternEnd = pattern + patternLength; |
| 2608 | unsigned char* code = const_cast<unsigned char*>(codeStart); |
| 2609 | int firstByte, reqByte; |
| 2610 | int bracketCount = 0; |
| 2611 | if (!cd.needOuterBracket) |
| 2612 | compileBranch(options: re->options, brackets: &bracketCount, codePtr: &code, ptrPtr: &ptr, patternEnd, errorCodePtr: &errorcode, firstbyteptr: &firstByte, reqbyteptr: &reqByte, cd); |
| 2613 | else { |
| 2614 | *code = OP_BRA; |
| 2615 | compileBracket(options: re->options, brackets: &bracketCount, codePtr: &code, ptrPtr: &ptr, patternEnd, errorCodePtr: &errorcode, skipBytes: 0, firstbyteptr: &firstByte, reqbyteptr: &reqByte, cd); |
| 2616 | } |
| 2617 | re->topBracket = bracketCount; |
| 2618 | re->topBackref = cd.topBackref; |
| 2619 | |
| 2620 | /* If not reached end of pattern on success, there's an excess bracket. */ |
| 2621 | |
| 2622 | if (errorcode == 0 && ptr < patternEnd) |
| 2623 | errorcode = ERR10; |
| 2624 | |
| 2625 | /* Fill in the terminating state and check for disastrous overflow, but |
| 2626 | if debugging, leave the test till after things are printed out. */ |
| 2627 | |
| 2628 | *code++ = OP_END; |
| 2629 | |
| 2630 | ASSERT(code - codeStart <= length); |
| 2631 | if (code - codeStart > length) |
| 2632 | errorcode = ERR7; |
| 2633 | |
| 2634 | /* Give an error if there's back reference to a non-existent capturing |
| 2635 | subpattern. */ |
| 2636 | |
| 2637 | if (re->topBackref > re->topBracket) |
| 2638 | errorcode = ERR15; |
| 2639 | |
| 2640 | /* Failed to compile, or error while post-processing */ |
| 2641 | |
| 2642 | if (errorcode != ERR0) { |
| 2643 | delete [] reinterpret_cast<char*>(re); |
| 2644 | return returnError(errorcode, errorPtr); |
| 2645 | } |
| 2646 | |
| 2647 | /* If the anchored option was not passed, set the flag if we can determine that |
| 2648 | the pattern is anchored by virtue of ^ characters or \A or anything else (such |
| 2649 | as starting with .* when DOTALL is set). |
| 2650 | |
| 2651 | Otherwise, if we know what the first character has to be, save it, because that |
| 2652 | speeds up unanchored matches no end. If not, see if we can set the |
| 2653 | UseMultiLineFirstByteOptimizationOption flag. This is helpful for multiline matches when all branches |
| 2654 | start with ^. and also when all branches start with .* for non-DOTALL matches. |
| 2655 | */ |
| 2656 | |
| 2657 | if (cd.needOuterBracket ? bracketIsAnchored(code: codeStart) : branchIsAnchored(code: codeStart)) |
| 2658 | re->options |= IsAnchoredOption; |
| 2659 | else { |
| 2660 | if (firstByte < 0) { |
| 2661 | firstByte = (cd.needOuterBracket |
| 2662 | ? bracketFindFirstAssertedCharacter(code: codeStart, inassert: false) |
| 2663 | : branchFindFirstAssertedCharacter(code: codeStart, inassert: false)) |
| 2664 | | ((re->options & IgnoreCaseOption) ? REQ_IGNORE_CASE : 0); |
| 2665 | } |
| 2666 | if (firstByte >= 0) { |
| 2667 | int ch = firstByte & 255; |
| 2668 | if (ch < 127) { |
| 2669 | re->firstByte = ((firstByte & REQ_IGNORE_CASE) && flipCase(c: ch) == ch) ? ch : firstByte; |
| 2670 | re->options |= UseFirstByteOptimizationOption; |
| 2671 | } |
| 2672 | } else { |
| 2673 | if (cd.needOuterBracket ? bracketNeedsLineStart(code: codeStart, captureMap: 0, backrefMap: cd.backrefMap) : branchNeedsLineStart(code: codeStart, captureMap: 0, backrefMap: cd.backrefMap)) |
| 2674 | re->options |= UseMultiLineFirstByteOptimizationOption; |
| 2675 | } |
| 2676 | } |
| 2677 | |
| 2678 | /* For an anchored pattern, we use the "required byte" only if it follows a |
| 2679 | variable length item in the regex. Remove the caseless flag for non-caseable |
| 2680 | bytes. */ |
| 2681 | |
| 2682 | if (reqByte >= 0 && (!(re->options & IsAnchoredOption) || (reqByte & REQ_VARY))) { |
| 2683 | int ch = reqByte & 255; |
| 2684 | if (ch < 127) { |
| 2685 | re->reqByte = ((reqByte & REQ_IGNORE_CASE) && flipCase(c: ch) == ch) ? (reqByte & ~REQ_IGNORE_CASE) : reqByte; |
| 2686 | re->options |= UseRequiredByteOptimizationOption; |
| 2687 | } |
| 2688 | } |
| 2689 | |
| 2690 | #if REGEXP_HISTOGRAM |
| 2691 | re->stringOffset = stringOffset; |
| 2692 | re->stringLength = patternLength; |
| 2693 | memcpy(reinterpret_cast<char*>(re) + stringOffset, pattern, patternLength * 2); |
| 2694 | #endif |
| 2695 | |
| 2696 | if (numSubpatterns) |
| 2697 | *numSubpatterns = re->topBracket; |
| 2698 | return re; |
| 2699 | } |
| 2700 | |
| 2701 | void jsRegExpFree(JSRegExp* re) |
| 2702 | { |
| 2703 | delete [] reinterpret_cast<char*>(re); |
| 2704 | } |
| 2705 | |