| 1 | /* |
| 2 | * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) |
| 3 | * Copyright (C) 2003, 2007, 2008, 2009 Apple Inc. All rights reserved. |
| 4 | * Copyright (C) 2003 Peter Kelly (pmk@post.com) |
| 5 | * Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com) |
| 6 | * |
| 7 | * This library is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU Lesser General Public |
| 9 | * License as published by the Free Software Foundation; either |
| 10 | * version 2 of the License, or (at your option) any later version. |
| 11 | * |
| 12 | * This library is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 15 | * Lesser General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU Lesser General Public |
| 18 | * License along with this library; if not, write to the Free Software |
| 19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 20 | * |
| 21 | */ |
| 22 | |
| 23 | #include "config.h" |
| 24 | #include "JSArray.h" |
| 25 | |
| 26 | #include "ArrayPrototype.h" |
| 27 | #include "CachedCall.h" |
| 28 | #include "Error.h" |
| 29 | #include "Executable.h" |
| 30 | #include "PropertyNameArray.h" |
| 31 | #include <wtf/AVLTree.h> |
| 32 | #include <wtf/Assertions.h> |
| 33 | #include <wtf/OwnPtr.h> |
| 34 | #include <Operations.h> |
| 35 | |
| 36 | #define CHECK_ARRAY_CONSISTENCY 0 |
| 37 | |
| 38 | using namespace std; |
| 39 | using namespace WTF; |
| 40 | |
| 41 | namespace JSC { |
| 42 | |
| 43 | ASSERT_CLASS_FITS_IN_CELL(JSArray); |
| 44 | |
| 45 | // Overview of JSArray |
| 46 | // |
| 47 | // Properties of JSArray objects may be stored in one of three locations: |
| 48 | // * The regular JSObject property map. |
| 49 | // * A storage vector. |
| 50 | // * A sparse map of array entries. |
| 51 | // |
| 52 | // Properties with non-numeric identifiers, with identifiers that are not representable |
| 53 | // as an unsigned integer, or where the value is greater than MAX_ARRAY_INDEX |
| 54 | // (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit |
| 55 | // integer) are not considered array indices and will be stored in the JSObject property map. |
| 56 | // |
| 57 | // All properties with a numeric identifer, representable as an unsigned integer i, |
| 58 | // where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the |
| 59 | // storage vector or the sparse map. An array index i will be handled in the following |
| 60 | // fashion: |
| 61 | // |
| 62 | // * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector. |
| 63 | // * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either |
| 64 | // be stored in the storage vector or in the sparse array, depending on the density of |
| 65 | // data that would be stored in the vector (a vector being used where at least |
| 66 | // (1 / minDensityMultiplier) of the entries would be populated). |
| 67 | // * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored |
| 68 | // in the sparse array. |
| 69 | |
| 70 | // The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize |
| 71 | // function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage |
| 72 | // size calculation cannot overflow. (sizeof(ArrayStorage) - sizeof(JSValue)) + |
| 73 | // (vectorLength * sizeof(JSValue)) must be <= 0xFFFFFFFFU (which is maximum value of size_t). |
| 74 | #define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue)) |
| 75 | |
| 76 | // These values have to be macros to be used in max() and min() without introducing |
| 77 | // a PIC branch in Mach-O binaries, see <rdar://problem/5971391>. |
| 78 | #define MIN_SPARSE_ARRAY_INDEX 10000U |
| 79 | #define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1) |
| 80 | // 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer. |
| 81 | #define MAX_ARRAY_INDEX 0xFFFFFFFEU |
| 82 | |
| 83 | // Our policy for when to use a vector and when to use a sparse map. |
| 84 | // For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector. |
| 85 | // When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector |
| 86 | // as long as it is 1/8 full. If more sparse than that, we use a map. |
| 87 | static const unsigned minDensityMultiplier = 8; |
| 88 | |
| 89 | const ClassInfo JSArray::info = {.className: "Array" , .parentClass: 0, .staticPropHashTable: 0, .classPropHashTableGetterFunction: 0}; |
| 90 | |
| 91 | static inline size_t storageSize(unsigned vectorLength) |
| 92 | { |
| 93 | ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH); |
| 94 | |
| 95 | // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH) |
| 96 | // - as asserted above - the following calculation cannot overflow. |
| 97 | size_t size = (sizeof(ArrayStorage) - sizeof(JSValue)) + (vectorLength * sizeof(JSValue)); |
| 98 | // Assertion to detect integer overflow in previous calculation (should not be possible, provided that |
| 99 | // MAX_STORAGE_VECTOR_LENGTH is correctly defined). |
| 100 | ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValue))) / sizeof(JSValue) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValue)))); |
| 101 | |
| 102 | return size; |
| 103 | } |
| 104 | |
| 105 | static inline unsigned increasedVectorLength(unsigned newLength) |
| 106 | { |
| 107 | ASSERT(newLength <= MAX_STORAGE_VECTOR_LENGTH); |
| 108 | |
| 109 | // Mathematically equivalent to: |
| 110 | // increasedLength = (newLength * 3 + 1) / 2; |
| 111 | // or: |
| 112 | // increasedLength = (unsigned)ceil(newLength * 1.5)); |
| 113 | // This form is not prone to internal overflow. |
| 114 | unsigned increasedLength = newLength + (newLength >> 1) + (newLength & 1); |
| 115 | ASSERT(increasedLength >= newLength); |
| 116 | |
| 117 | return min(a: increasedLength, MAX_STORAGE_VECTOR_LENGTH); |
| 118 | } |
| 119 | |
| 120 | static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues) |
| 121 | { |
| 122 | return length / minDensityMultiplier <= numValues; |
| 123 | } |
| 124 | |
| 125 | #if !CHECK_ARRAY_CONSISTENCY |
| 126 | |
| 127 | inline void JSArray::checkConsistency(ConsistencyCheckType) |
| 128 | { |
| 129 | } |
| 130 | |
| 131 | #endif |
| 132 | |
| 133 | JSArray::JSArray(NonNullPassRefPtr<Structure> structure) |
| 134 | : JSObject(structure) |
| 135 | { |
| 136 | unsigned initialCapacity = 0; |
| 137 | |
| 138 | m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(vectorLength: initialCapacity))); |
| 139 | m_vectorLength = initialCapacity; |
| 140 | |
| 141 | checkConsistency(); |
| 142 | } |
| 143 | |
| 144 | JSArray::JSArray(NonNullPassRefPtr<Structure> structure, unsigned initialLength) |
| 145 | : JSObject(structure) |
| 146 | { |
| 147 | unsigned initialCapacity = min(a: initialLength, MIN_SPARSE_ARRAY_INDEX); |
| 148 | |
| 149 | m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(vectorLength: initialCapacity))); |
| 150 | m_storage->m_length = initialLength; |
| 151 | m_vectorLength = initialCapacity; |
| 152 | m_storage->m_numValuesInVector = 0; |
| 153 | m_storage->m_sparseValueMap = 0; |
| 154 | m_storage->lazyCreationData = 0; |
| 155 | m_storage->reportedMapCapacity = 0; |
| 156 | |
| 157 | JSValue* vector = m_storage->m_vector; |
| 158 | for (size_t i = 0; i < initialCapacity; ++i) |
| 159 | vector[i] = JSValue(); |
| 160 | |
| 161 | checkConsistency(); |
| 162 | |
| 163 | Heap::heap(c: this)->reportExtraMemoryCost(cost: initialCapacity * sizeof(JSValue)); |
| 164 | } |
| 165 | |
| 166 | JSArray::JSArray(NonNullPassRefPtr<Structure> structure, const ArgList& list) |
| 167 | : JSObject(structure) |
| 168 | { |
| 169 | unsigned initialCapacity = list.size(); |
| 170 | |
| 171 | m_storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(vectorLength: initialCapacity))); |
| 172 | m_storage->m_length = initialCapacity; |
| 173 | m_vectorLength = initialCapacity; |
| 174 | m_storage->m_numValuesInVector = initialCapacity; |
| 175 | m_storage->m_sparseValueMap = 0; |
| 176 | m_storage->lazyCreationData = 0; |
| 177 | m_storage->reportedMapCapacity = 0; |
| 178 | |
| 179 | size_t i = 0; |
| 180 | ArgList::const_iterator end = list.end(); |
| 181 | for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i) |
| 182 | m_storage->m_vector[i] = *it; |
| 183 | |
| 184 | checkConsistency(); |
| 185 | |
| 186 | Heap::heap(c: this)->reportExtraMemoryCost(cost: storageSize(vectorLength: initialCapacity)); |
| 187 | } |
| 188 | |
| 189 | JSArray::~JSArray() |
| 190 | { |
| 191 | ASSERT(vptr() == JSGlobalData::jsArrayVPtr); |
| 192 | checkConsistency(DestructorConsistencyCheck); |
| 193 | |
| 194 | delete m_storage->m_sparseValueMap; |
| 195 | fastFree(m_storage); |
| 196 | } |
| 197 | |
| 198 | bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot) |
| 199 | { |
| 200 | ArrayStorage* storage = m_storage; |
| 201 | |
| 202 | if (i >= storage->m_length) { |
| 203 | if (i > MAX_ARRAY_INDEX) |
| 204 | return getOwnPropertySlot(exec, propertyName: Identifier::from(exec, y: i), slot); |
| 205 | return false; |
| 206 | } |
| 207 | |
| 208 | if (i < m_vectorLength) { |
| 209 | JSValue& valueSlot = storage->m_vector[i]; |
| 210 | if (valueSlot) { |
| 211 | slot.setValueSlot(&valueSlot); |
| 212 | return true; |
| 213 | } |
| 214 | } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) { |
| 215 | if (i >= MIN_SPARSE_ARRAY_INDEX) { |
| 216 | SparseArrayValueMap::iterator it = map->find(key: i); |
| 217 | if (it != map->end()) { |
| 218 | slot.setValueSlot(&it->second); |
| 219 | return true; |
| 220 | } |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | return JSObject::getOwnPropertySlot(exec, propertyName: Identifier::from(exec, y: i), slot); |
| 225 | } |
| 226 | |
| 227 | bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot) |
| 228 | { |
| 229 | if (propertyName == exec->propertyNames().length) { |
| 230 | slot.setValue(jsNumber(exec, i: length())); |
| 231 | return true; |
| 232 | } |
| 233 | |
| 234 | bool isArrayIndex; |
| 235 | unsigned i = propertyName.toArrayIndex(ok: &isArrayIndex); |
| 236 | if (isArrayIndex) |
| 237 | return JSArray::getOwnPropertySlot(exec, i, slot); |
| 238 | |
| 239 | return JSObject::getOwnPropertySlot(exec, propertyName, slot); |
| 240 | } |
| 241 | |
| 242 | bool JSArray::getOwnPropertyDescriptor(ExecState* exec, const Identifier& propertyName, PropertyDescriptor& descriptor) |
| 243 | { |
| 244 | if (propertyName == exec->propertyNames().length) { |
| 245 | descriptor.setDescriptor(value: jsNumber(exec, i: length()), attributes: DontDelete | DontEnum); |
| 246 | return true; |
| 247 | } |
| 248 | |
| 249 | bool isArrayIndex; |
| 250 | unsigned i = propertyName.toArrayIndex(ok: &isArrayIndex); |
| 251 | if (isArrayIndex) { |
| 252 | if (i >= m_storage->m_length) |
| 253 | return false; |
| 254 | if (i < m_vectorLength) { |
| 255 | JSValue& value = m_storage->m_vector[i]; |
| 256 | if (value) { |
| 257 | descriptor.setDescriptor(value, attributes: 0); |
| 258 | return true; |
| 259 | } |
| 260 | } else if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) { |
| 261 | if (i >= MIN_SPARSE_ARRAY_INDEX) { |
| 262 | SparseArrayValueMap::iterator it = map->find(key: i); |
| 263 | if (it != map->end()) { |
| 264 | descriptor.setDescriptor(value: it->second, attributes: 0); |
| 265 | return true; |
| 266 | } |
| 267 | } |
| 268 | } |
| 269 | } |
| 270 | return JSObject::getOwnPropertyDescriptor(exec, propertyName, descriptor); |
| 271 | } |
| 272 | |
| 273 | // ECMA 15.4.5.1 |
| 274 | void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue value, PutPropertySlot& slot) |
| 275 | { |
| 276 | bool isArrayIndex; |
| 277 | unsigned i = propertyName.toArrayIndex(ok: &isArrayIndex); |
| 278 | if (isArrayIndex) { |
| 279 | put(exec, propertyName: i, value); |
| 280 | return; |
| 281 | } |
| 282 | |
| 283 | if (propertyName == exec->propertyNames().length) { |
| 284 | unsigned newLength = value.toUInt32(exec); |
| 285 | if (value.toNumber(exec) != static_cast<double>(newLength)) { |
| 286 | throwError(exec, RangeError, message: "Invalid array length." ); |
| 287 | return; |
| 288 | } |
| 289 | setLength(newLength); |
| 290 | return; |
| 291 | } |
| 292 | |
| 293 | JSObject::put(exec, propertyName, value, slot); |
| 294 | } |
| 295 | |
| 296 | void JSArray::put(ExecState* exec, unsigned i, JSValue value) |
| 297 | { |
| 298 | checkConsistency(); |
| 299 | |
| 300 | unsigned length = m_storage->m_length; |
| 301 | if (i >= length && i <= MAX_ARRAY_INDEX) { |
| 302 | length = i + 1; |
| 303 | m_storage->m_length = length; |
| 304 | } |
| 305 | |
| 306 | if (i < m_vectorLength) { |
| 307 | JSValue& valueSlot = m_storage->m_vector[i]; |
| 308 | if (valueSlot) { |
| 309 | valueSlot = value; |
| 310 | checkConsistency(); |
| 311 | return; |
| 312 | } |
| 313 | valueSlot = value; |
| 314 | ++m_storage->m_numValuesInVector; |
| 315 | checkConsistency(); |
| 316 | return; |
| 317 | } |
| 318 | |
| 319 | putSlowCase(exec, propertyName: i, value); |
| 320 | } |
| 321 | |
| 322 | NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValue value) |
| 323 | { |
| 324 | ArrayStorage* storage = m_storage; |
| 325 | SparseArrayValueMap* map = storage->m_sparseValueMap; |
| 326 | |
| 327 | if (i >= MIN_SPARSE_ARRAY_INDEX) { |
| 328 | if (i > MAX_ARRAY_INDEX) { |
| 329 | PutPropertySlot slot; |
| 330 | put(exec, propertyName: Identifier::from(exec, y: i), value, slot); |
| 331 | return; |
| 332 | } |
| 333 | |
| 334 | // We miss some cases where we could compact the storage, such as a large array that is being filled from the end |
| 335 | // (which will only be compacted as we reach indices that are less than MIN_SPARSE_ARRAY_INDEX) - but this makes the check much faster. |
| 336 | if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(length: i + 1, numValues: storage->m_numValuesInVector + 1)) { |
| 337 | if (!map) { |
| 338 | map = new SparseArrayValueMap; |
| 339 | storage->m_sparseValueMap = map; |
| 340 | } |
| 341 | |
| 342 | pair<SparseArrayValueMap::iterator, bool> result = map->add(key: i, mapped: value); |
| 343 | if (!result.second) { // pre-existing entry |
| 344 | result.first->second = value; |
| 345 | return; |
| 346 | } |
| 347 | |
| 348 | size_t capacity = map->capacity(); |
| 349 | if (capacity != storage->reportedMapCapacity) { |
| 350 | Heap::heap(c: this)->reportExtraMemoryCost(cost: (capacity - storage->reportedMapCapacity) * (sizeof(unsigned) + sizeof(JSValue))); |
| 351 | storage->reportedMapCapacity = capacity; |
| 352 | } |
| 353 | return; |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | // We have decided that we'll put the new item into the vector. |
| 358 | // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it. |
| 359 | if (!map || map->isEmpty()) { |
| 360 | if (increaseVectorLength(newLength: i + 1)) { |
| 361 | storage = m_storage; |
| 362 | storage->m_vector[i] = value; |
| 363 | ++storage->m_numValuesInVector; |
| 364 | checkConsistency(); |
| 365 | } else |
| 366 | throwOutOfMemoryError(exec); |
| 367 | return; |
| 368 | } |
| 369 | |
| 370 | // Decide how many values it would be best to move from the map. |
| 371 | unsigned newNumValuesInVector = storage->m_numValuesInVector + 1; |
| 372 | unsigned newVectorLength = increasedVectorLength(newLength: i + 1); |
| 373 | for (unsigned j = max(a: m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j) |
| 374 | newNumValuesInVector += map->contains(key: j); |
| 375 | if (i >= MIN_SPARSE_ARRAY_INDEX) |
| 376 | newNumValuesInVector -= map->contains(key: i); |
| 377 | if (isDenseEnoughForVector(length: newVectorLength, numValues: newNumValuesInVector)) { |
| 378 | unsigned proposedNewNumValuesInVector = newNumValuesInVector; |
| 379 | // If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further. |
| 380 | while (newVectorLength < MAX_STORAGE_VECTOR_LENGTH) { |
| 381 | unsigned proposedNewVectorLength = increasedVectorLength(newLength: newVectorLength + 1); |
| 382 | for (unsigned j = max(a: newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j) |
| 383 | proposedNewNumValuesInVector += map->contains(key: j); |
| 384 | if (!isDenseEnoughForVector(length: proposedNewVectorLength, numValues: proposedNewNumValuesInVector)) |
| 385 | break; |
| 386 | newVectorLength = proposedNewVectorLength; |
| 387 | newNumValuesInVector = proposedNewNumValuesInVector; |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | if (!tryFastRealloc(p: storage, n: storageSize(vectorLength: newVectorLength)).getValue(data&: storage)) { |
| 392 | throwOutOfMemoryError(exec); |
| 393 | return; |
| 394 | } |
| 395 | |
| 396 | unsigned vectorLength = m_vectorLength; |
| 397 | |
| 398 | if (newNumValuesInVector == storage->m_numValuesInVector + 1) { |
| 399 | for (unsigned j = vectorLength; j < newVectorLength; ++j) |
| 400 | storage->m_vector[j] = JSValue(); |
| 401 | if (i > MIN_SPARSE_ARRAY_INDEX) |
| 402 | map->remove(key: i); |
| 403 | } else { |
| 404 | for (unsigned j = vectorLength; j < max(a: vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j) |
| 405 | storage->m_vector[j] = JSValue(); |
| 406 | for (unsigned j = max(a: vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j) |
| 407 | storage->m_vector[j] = map->take(key: j); |
| 408 | } |
| 409 | |
| 410 | storage->m_vector[i] = value; |
| 411 | |
| 412 | m_vectorLength = newVectorLength; |
| 413 | storage->m_numValuesInVector = newNumValuesInVector; |
| 414 | |
| 415 | m_storage = storage; |
| 416 | |
| 417 | checkConsistency(); |
| 418 | |
| 419 | Heap::heap(c: this)->reportExtraMemoryCost(cost: storageSize(vectorLength: newVectorLength) - storageSize(vectorLength)); |
| 420 | } |
| 421 | |
| 422 | bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName) |
| 423 | { |
| 424 | bool isArrayIndex; |
| 425 | unsigned i = propertyName.toArrayIndex(ok: &isArrayIndex); |
| 426 | if (isArrayIndex) |
| 427 | return deleteProperty(exec, propertyName: i); |
| 428 | |
| 429 | if (propertyName == exec->propertyNames().length) |
| 430 | return false; |
| 431 | |
| 432 | return JSObject::deleteProperty(exec, propertyName); |
| 433 | } |
| 434 | |
| 435 | bool JSArray::deleteProperty(ExecState* exec, unsigned i) |
| 436 | { |
| 437 | checkConsistency(); |
| 438 | |
| 439 | ArrayStorage* storage = m_storage; |
| 440 | |
| 441 | if (i < m_vectorLength) { |
| 442 | JSValue& valueSlot = storage->m_vector[i]; |
| 443 | if (!valueSlot) { |
| 444 | checkConsistency(); |
| 445 | return false; |
| 446 | } |
| 447 | valueSlot = JSValue(); |
| 448 | --storage->m_numValuesInVector; |
| 449 | checkConsistency(); |
| 450 | return true; |
| 451 | } |
| 452 | |
| 453 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) { |
| 454 | if (i >= MIN_SPARSE_ARRAY_INDEX) { |
| 455 | SparseArrayValueMap::iterator it = map->find(key: i); |
| 456 | if (it != map->end()) { |
| 457 | map->remove(it); |
| 458 | checkConsistency(); |
| 459 | return true; |
| 460 | } |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | checkConsistency(); |
| 465 | |
| 466 | if (i > MAX_ARRAY_INDEX) |
| 467 | return deleteProperty(exec, propertyName: Identifier::from(exec, y: i)); |
| 468 | |
| 469 | return false; |
| 470 | } |
| 471 | |
| 472 | void JSArray::getOwnPropertyNames(ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode) |
| 473 | { |
| 474 | // FIXME: Filling PropertyNameArray with an identifier for every integer |
| 475 | // is incredibly inefficient for large arrays. We need a different approach, |
| 476 | // which almost certainly means a different structure for PropertyNameArray. |
| 477 | |
| 478 | ArrayStorage* storage = m_storage; |
| 479 | |
| 480 | unsigned usedVectorLength = min(a: storage->m_length, b: m_vectorLength); |
| 481 | for (unsigned i = 0; i < usedVectorLength; ++i) { |
| 482 | if (storage->m_vector[i]) |
| 483 | propertyNames.add(identifier: Identifier::from(exec, y: i)); |
| 484 | } |
| 485 | |
| 486 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) { |
| 487 | SparseArrayValueMap::iterator end = map->end(); |
| 488 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) |
| 489 | propertyNames.add(identifier: Identifier::from(exec, y: it->first)); |
| 490 | } |
| 491 | |
| 492 | if (mode == IncludeDontEnumProperties) |
| 493 | propertyNames.add(identifier: exec->propertyNames().length); |
| 494 | |
| 495 | JSObject::getOwnPropertyNames(exec, propertyNames, mode); |
| 496 | } |
| 497 | |
| 498 | bool JSArray::increaseVectorLength(unsigned newLength) |
| 499 | { |
| 500 | // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map |
| 501 | // to the vector. Callers have to account for that, because they can do it more efficiently. |
| 502 | |
| 503 | ArrayStorage* storage = m_storage; |
| 504 | |
| 505 | unsigned vectorLength = m_vectorLength; |
| 506 | ASSERT(newLength > vectorLength); |
| 507 | ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX); |
| 508 | unsigned newVectorLength = increasedVectorLength(newLength); |
| 509 | |
| 510 | if (!tryFastRealloc(p: storage, n: storageSize(vectorLength: newVectorLength)).getValue(data&: storage)) |
| 511 | return false; |
| 512 | |
| 513 | m_vectorLength = newVectorLength; |
| 514 | |
| 515 | for (unsigned i = vectorLength; i < newVectorLength; ++i) |
| 516 | storage->m_vector[i] = JSValue(); |
| 517 | |
| 518 | m_storage = storage; |
| 519 | |
| 520 | Heap::heap(c: this)->reportExtraMemoryCost(cost: storageSize(vectorLength: newVectorLength) - storageSize(vectorLength)); |
| 521 | |
| 522 | return true; |
| 523 | } |
| 524 | |
| 525 | void JSArray::setLength(unsigned newLength) |
| 526 | { |
| 527 | checkConsistency(); |
| 528 | |
| 529 | ArrayStorage* storage = m_storage; |
| 530 | |
| 531 | unsigned length = m_storage->m_length; |
| 532 | |
| 533 | if (newLength < length) { |
| 534 | unsigned usedVectorLength = min(a: length, b: m_vectorLength); |
| 535 | for (unsigned i = newLength; i < usedVectorLength; ++i) { |
| 536 | JSValue& valueSlot = storage->m_vector[i]; |
| 537 | bool hadValue = valueSlot; |
| 538 | valueSlot = JSValue(); |
| 539 | storage->m_numValuesInVector -= hadValue; |
| 540 | } |
| 541 | |
| 542 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) { |
| 543 | SparseArrayValueMap copy = *map; |
| 544 | SparseArrayValueMap::iterator end = copy.end(); |
| 545 | for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) { |
| 546 | if (it->first >= newLength) |
| 547 | map->remove(key: it->first); |
| 548 | } |
| 549 | if (map->isEmpty()) { |
| 550 | delete map; |
| 551 | storage->m_sparseValueMap = 0; |
| 552 | } |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | m_storage->m_length = newLength; |
| 557 | |
| 558 | checkConsistency(); |
| 559 | } |
| 560 | |
| 561 | JSValue JSArray::pop() |
| 562 | { |
| 563 | checkConsistency(); |
| 564 | |
| 565 | unsigned length = m_storage->m_length; |
| 566 | if (!length) |
| 567 | return jsUndefined(); |
| 568 | |
| 569 | --length; |
| 570 | |
| 571 | JSValue result; |
| 572 | |
| 573 | if (length < m_vectorLength) { |
| 574 | JSValue& valueSlot = m_storage->m_vector[length]; |
| 575 | if (valueSlot) { |
| 576 | --m_storage->m_numValuesInVector; |
| 577 | result = valueSlot; |
| 578 | valueSlot = JSValue(); |
| 579 | } else |
| 580 | result = jsUndefined(); |
| 581 | } else { |
| 582 | result = jsUndefined(); |
| 583 | if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) { |
| 584 | SparseArrayValueMap::iterator it = map->find(key: length); |
| 585 | if (it != map->end()) { |
| 586 | result = it->second; |
| 587 | map->remove(it); |
| 588 | if (map->isEmpty()) { |
| 589 | delete map; |
| 590 | m_storage->m_sparseValueMap = 0; |
| 591 | } |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | m_storage->m_length = length; |
| 597 | |
| 598 | checkConsistency(); |
| 599 | |
| 600 | return result; |
| 601 | } |
| 602 | |
| 603 | void JSArray::push(ExecState* exec, JSValue value) |
| 604 | { |
| 605 | checkConsistency(); |
| 606 | |
| 607 | if (m_storage->m_length < m_vectorLength) { |
| 608 | m_storage->m_vector[m_storage->m_length] = value; |
| 609 | ++m_storage->m_numValuesInVector; |
| 610 | ++m_storage->m_length; |
| 611 | checkConsistency(); |
| 612 | return; |
| 613 | } |
| 614 | |
| 615 | if (m_storage->m_length < MIN_SPARSE_ARRAY_INDEX) { |
| 616 | SparseArrayValueMap* map = m_storage->m_sparseValueMap; |
| 617 | if (!map || map->isEmpty()) { |
| 618 | if (increaseVectorLength(newLength: m_storage->m_length + 1)) { |
| 619 | m_storage->m_vector[m_storage->m_length] = value; |
| 620 | ++m_storage->m_numValuesInVector; |
| 621 | ++m_storage->m_length; |
| 622 | checkConsistency(); |
| 623 | return; |
| 624 | } |
| 625 | checkConsistency(); |
| 626 | throwOutOfMemoryError(exec); |
| 627 | return; |
| 628 | } |
| 629 | } |
| 630 | |
| 631 | putSlowCase(exec, i: m_storage->m_length++, value); |
| 632 | } |
| 633 | |
| 634 | void JSArray::markChildren(MarkStack& markStack) |
| 635 | { |
| 636 | markChildrenDirect(markStack); |
| 637 | } |
| 638 | |
| 639 | static int compareNumbersForQSort(const void* a, const void* b) |
| 640 | { |
| 641 | double da = static_cast<const JSValue*>(a)->uncheckedGetNumber(); |
| 642 | double db = static_cast<const JSValue*>(b)->uncheckedGetNumber(); |
| 643 | return (da > db) - (da < db); |
| 644 | } |
| 645 | |
| 646 | typedef std::pair<JSValue, UString> ValueStringPair; |
| 647 | |
| 648 | static int compareByStringPairForQSort(const void* a, const void* b) |
| 649 | { |
| 650 | const ValueStringPair* va = static_cast<const ValueStringPair*>(a); |
| 651 | const ValueStringPair* vb = static_cast<const ValueStringPair*>(b); |
| 652 | return compare(va->second, vb->second); |
| 653 | } |
| 654 | |
| 655 | void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData) |
| 656 | { |
| 657 | unsigned lengthNotIncludingUndefined = compactForSorting(); |
| 658 | if (m_storage->m_sparseValueMap) { |
| 659 | throwOutOfMemoryError(exec); |
| 660 | return; |
| 661 | } |
| 662 | |
| 663 | if (!lengthNotIncludingUndefined) |
| 664 | return; |
| 665 | |
| 666 | bool allValuesAreNumbers = true; |
| 667 | size_t size = m_storage->m_numValuesInVector; |
| 668 | for (size_t i = 0; i < size; ++i) { |
| 669 | if (!m_storage->m_vector[i].isNumber()) { |
| 670 | allValuesAreNumbers = false; |
| 671 | break; |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | if (!allValuesAreNumbers) |
| 676 | return sort(exec, compareFunction, callType, callData); |
| 677 | |
| 678 | // For numeric comparison, which is fast, qsort is faster than mergesort. We |
| 679 | // also don't require mergesort's stability, since there's no user visible |
| 680 | // side-effect from swapping the order of equal primitive values. |
| 681 | qsort(base: m_storage->m_vector, nmemb: size, size: sizeof(JSValue), compar: compareNumbersForQSort); |
| 682 | |
| 683 | checkConsistency(SortConsistencyCheck); |
| 684 | } |
| 685 | |
| 686 | void JSArray::sort(ExecState* exec) |
| 687 | { |
| 688 | unsigned lengthNotIncludingUndefined = compactForSorting(); |
| 689 | if (m_storage->m_sparseValueMap) { |
| 690 | throwOutOfMemoryError(exec); |
| 691 | return; |
| 692 | } |
| 693 | |
| 694 | if (!lengthNotIncludingUndefined) |
| 695 | return; |
| 696 | |
| 697 | // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that. |
| 698 | // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary |
| 699 | // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return |
| 700 | // random or otherwise changing results, effectively making compare function inconsistent. |
| 701 | |
| 702 | Vector<ValueStringPair> values(lengthNotIncludingUndefined); |
| 703 | if (!values.begin()) { |
| 704 | throwOutOfMemoryError(exec); |
| 705 | return; |
| 706 | } |
| 707 | |
| 708 | for (size_t i = 0; i < lengthNotIncludingUndefined; i++) { |
| 709 | JSValue value = m_storage->m_vector[i]; |
| 710 | ASSERT(!value.isUndefined()); |
| 711 | values[i].first = value; |
| 712 | } |
| 713 | |
| 714 | // FIXME: While calling these toString functions, the array could be mutated. |
| 715 | // In that case, objects pointed to by values in this vector might get garbage-collected! |
| 716 | |
| 717 | // FIXME: The following loop continues to call toString on subsequent values even after |
| 718 | // a toString call raises an exception. |
| 719 | |
| 720 | for (size_t i = 0; i < lengthNotIncludingUndefined; i++) |
| 721 | values[i].second = values[i].first.toString(exec); |
| 722 | |
| 723 | if (exec->hadException()) |
| 724 | return; |
| 725 | |
| 726 | // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather |
| 727 | // than O(N log N). |
| 728 | |
| 729 | #if HAVE(MERGESORT) |
| 730 | mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort); |
| 731 | #else |
| 732 | // FIXME: The qsort library function is likely to not be a stable sort. |
| 733 | // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort. |
| 734 | qsort(base: values.begin(), nmemb: values.size(), size: sizeof(ValueStringPair), compar: compareByStringPairForQSort); |
| 735 | #endif |
| 736 | |
| 737 | // FIXME: If the toString function changed the length of the array, this might be |
| 738 | // modifying the vector incorrectly. |
| 739 | |
| 740 | for (size_t i = 0; i < lengthNotIncludingUndefined; i++) |
| 741 | m_storage->m_vector[i] = values[i].first; |
| 742 | |
| 743 | checkConsistency(SortConsistencyCheck); |
| 744 | } |
| 745 | |
| 746 | struct AVLTreeNodeForArrayCompare { |
| 747 | JSValue value; |
| 748 | |
| 749 | // Child pointers. The high bit of gt is robbed and used as the |
| 750 | // balance factor sign. The high bit of lt is robbed and used as |
| 751 | // the magnitude of the balance factor. |
| 752 | int32_t gt; |
| 753 | int32_t lt; |
| 754 | }; |
| 755 | |
| 756 | struct AVLTreeAbstractorForArrayCompare { |
| 757 | typedef int32_t handle; // Handle is an index into m_nodes vector. |
| 758 | typedef JSValue key; |
| 759 | typedef int32_t size; |
| 760 | |
| 761 | Vector<AVLTreeNodeForArrayCompare> m_nodes; |
| 762 | ExecState* m_exec; |
| 763 | JSValue m_compareFunction; |
| 764 | CallType m_compareCallType; |
| 765 | const CallData* m_compareCallData; |
| 766 | JSValue m_globalThisValue; |
| 767 | OwnPtr<CachedCall> m_cachedCall; |
| 768 | |
| 769 | handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; } |
| 770 | void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; } |
| 771 | handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; } |
| 772 | void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; } |
| 773 | |
| 774 | int get_balance_factor(handle h) |
| 775 | { |
| 776 | if (m_nodes[h].gt & 0x80000000) |
| 777 | return -1; |
| 778 | return static_cast<unsigned>(m_nodes[h].lt) >> 31; |
| 779 | } |
| 780 | |
| 781 | void set_balance_factor(handle h, int bf) |
| 782 | { |
| 783 | if (bf == 0) { |
| 784 | m_nodes[h].lt &= 0x7FFFFFFF; |
| 785 | m_nodes[h].gt &= 0x7FFFFFFF; |
| 786 | } else { |
| 787 | m_nodes[h].lt |= 0x80000000; |
| 788 | if (bf < 0) |
| 789 | m_nodes[h].gt |= 0x80000000; |
| 790 | else |
| 791 | m_nodes[h].gt &= 0x7FFFFFFF; |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | int compare_key_key(key va, key vb) |
| 796 | { |
| 797 | ASSERT(!va.isUndefined()); |
| 798 | ASSERT(!vb.isUndefined()); |
| 799 | |
| 800 | if (m_exec->hadException()) |
| 801 | return 1; |
| 802 | |
| 803 | double compareResult; |
| 804 | if (m_cachedCall) { |
| 805 | m_cachedCall->setThis(m_globalThisValue); |
| 806 | m_cachedCall->setArgument(n: 0, v: va); |
| 807 | m_cachedCall->setArgument(n: 1, v: vb); |
| 808 | compareResult = m_cachedCall->call().toNumber(exec: m_cachedCall->newCallFrame(exec: m_exec)); |
| 809 | } else { |
| 810 | MarkedArgumentBuffer arguments; |
| 811 | arguments.append(v: va); |
| 812 | arguments.append(v: vb); |
| 813 | compareResult = call(m_exec, functionObject: m_compareFunction, m_compareCallType, *m_compareCallData, thisValue: m_globalThisValue, arguments).toNumber(exec: m_exec); |
| 814 | } |
| 815 | return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent. |
| 816 | } |
| 817 | |
| 818 | int compare_key_node(key k, handle h) { return compare_key_key(va: k, vb: m_nodes[h].value); } |
| 819 | int compare_node_node(handle h1, handle h2) { return compare_key_key(va: m_nodes[h1].value, vb: m_nodes[h2].value); } |
| 820 | |
| 821 | static handle null() { return 0x7FFFFFFF; } |
| 822 | }; |
| 823 | |
| 824 | void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData) |
| 825 | { |
| 826 | checkConsistency(); |
| 827 | |
| 828 | // FIXME: This ignores exceptions raised in the compare function or in toNumber. |
| 829 | |
| 830 | // The maximum tree depth is compiled in - but the caller is clearly up to no good |
| 831 | // if a larger array is passed. |
| 832 | ASSERT(m_storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max())); |
| 833 | if (m_storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max())) |
| 834 | return; |
| 835 | |
| 836 | if (!m_storage->m_length) |
| 837 | return; |
| 838 | |
| 839 | unsigned usedVectorLength = min(a: m_storage->m_length, b: m_vectorLength); |
| 840 | |
| 841 | AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items |
| 842 | tree.abstractor().m_exec = exec; |
| 843 | tree.abstractor().m_compareFunction = compareFunction; |
| 844 | tree.abstractor().m_compareCallType = callType; |
| 845 | tree.abstractor().m_compareCallData = &callData; |
| 846 | tree.abstractor().m_globalThisValue = exec->globalThisValue(); |
| 847 | tree.abstractor().m_nodes.resize(size: usedVectorLength + (m_storage->m_sparseValueMap ? m_storage->m_sparseValueMap->size() : 0)); |
| 848 | |
| 849 | if (callType == CallTypeJS) |
| 850 | tree.abstractor().m_cachedCall.set(new CachedCall(exec, asFunction(value: compareFunction), 2, exec->exceptionSlot())); |
| 851 | |
| 852 | if (!tree.abstractor().m_nodes.begin()) { |
| 853 | throwOutOfMemoryError(exec); |
| 854 | return; |
| 855 | } |
| 856 | |
| 857 | // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified |
| 858 | // right out from under us while we're building the tree here. |
| 859 | |
| 860 | unsigned numDefined = 0; |
| 861 | unsigned numUndefined = 0; |
| 862 | |
| 863 | // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree. |
| 864 | for (; numDefined < usedVectorLength; ++numDefined) { |
| 865 | JSValue v = m_storage->m_vector[numDefined]; |
| 866 | if (!v || v.isUndefined()) |
| 867 | break; |
| 868 | tree.abstractor().m_nodes[numDefined].value = v; |
| 869 | tree.insert(h: numDefined); |
| 870 | } |
| 871 | for (unsigned i = numDefined; i < usedVectorLength; ++i) { |
| 872 | JSValue v = m_storage->m_vector[i]; |
| 873 | if (v) { |
| 874 | if (v.isUndefined()) |
| 875 | ++numUndefined; |
| 876 | else { |
| 877 | tree.abstractor().m_nodes[numDefined].value = v; |
| 878 | tree.insert(h: numDefined); |
| 879 | ++numDefined; |
| 880 | } |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | unsigned newUsedVectorLength = numDefined + numUndefined; |
| 885 | |
| 886 | if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) { |
| 887 | newUsedVectorLength += map->size(); |
| 888 | if (newUsedVectorLength > m_vectorLength) { |
| 889 | // Check that it is possible to allocate an array large enough to hold all the entries. |
| 890 | if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newLength: newUsedVectorLength)) { |
| 891 | throwOutOfMemoryError(exec); |
| 892 | return; |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | SparseArrayValueMap::iterator end = map->end(); |
| 897 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) { |
| 898 | tree.abstractor().m_nodes[numDefined].value = it->second; |
| 899 | tree.insert(h: numDefined); |
| 900 | ++numDefined; |
| 901 | } |
| 902 | |
| 903 | delete map; |
| 904 | m_storage->m_sparseValueMap = 0; |
| 905 | } |
| 906 | |
| 907 | ASSERT(tree.abstractor().m_nodes.size() >= numDefined); |
| 908 | |
| 909 | // FIXME: If the compare function changed the length of the array, the following might be |
| 910 | // modifying the vector incorrectly. |
| 911 | |
| 912 | // Copy the values back into m_storage. |
| 913 | AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter; |
| 914 | iter.start_iter_least(tree); |
| 915 | for (unsigned i = 0; i < numDefined; ++i) { |
| 916 | m_storage->m_vector[i] = tree.abstractor().m_nodes[*iter].value; |
| 917 | ++iter; |
| 918 | } |
| 919 | |
| 920 | // Put undefined values back in. |
| 921 | for (unsigned i = numDefined; i < newUsedVectorLength; ++i) |
| 922 | m_storage->m_vector[i] = jsUndefined(); |
| 923 | |
| 924 | // Ensure that unused values in the vector are zeroed out. |
| 925 | for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i) |
| 926 | m_storage->m_vector[i] = JSValue(); |
| 927 | |
| 928 | m_storage->m_numValuesInVector = newUsedVectorLength; |
| 929 | |
| 930 | checkConsistency(SortConsistencyCheck); |
| 931 | } |
| 932 | |
| 933 | void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args) |
| 934 | { |
| 935 | JSValue* vector = m_storage->m_vector; |
| 936 | unsigned vectorEnd = min(a: m_storage->m_length, b: m_vectorLength); |
| 937 | unsigned i = 0; |
| 938 | for (; i < vectorEnd; ++i) { |
| 939 | JSValue& v = vector[i]; |
| 940 | if (!v) |
| 941 | break; |
| 942 | args.append(v); |
| 943 | } |
| 944 | |
| 945 | for (; i < m_storage->m_length; ++i) |
| 946 | args.append(v: get(exec, propertyName: i)); |
| 947 | } |
| 948 | |
| 949 | void JSArray::copyToRegisters(ExecState* exec, Register* buffer, uint32_t maxSize) |
| 950 | { |
| 951 | ASSERT(m_storage->m_length == maxSize); |
| 952 | UNUSED_PARAM(maxSize); |
| 953 | JSValue* vector = m_storage->m_vector; |
| 954 | unsigned vectorEnd = min(a: m_storage->m_length, b: m_vectorLength); |
| 955 | unsigned i = 0; |
| 956 | for (; i < vectorEnd; ++i) { |
| 957 | JSValue& v = vector[i]; |
| 958 | if (!v) |
| 959 | break; |
| 960 | buffer[i] = v; |
| 961 | } |
| 962 | |
| 963 | for (; i < m_storage->m_length; ++i) |
| 964 | buffer[i] = get(exec, propertyName: i); |
| 965 | } |
| 966 | |
| 967 | unsigned JSArray::compactForSorting() |
| 968 | { |
| 969 | checkConsistency(); |
| 970 | |
| 971 | ArrayStorage* storage = m_storage; |
| 972 | |
| 973 | unsigned usedVectorLength = min(a: m_storage->m_length, b: m_vectorLength); |
| 974 | |
| 975 | unsigned numDefined = 0; |
| 976 | unsigned numUndefined = 0; |
| 977 | |
| 978 | for (; numDefined < usedVectorLength; ++numDefined) { |
| 979 | JSValue v = storage->m_vector[numDefined]; |
| 980 | if (!v || v.isUndefined()) |
| 981 | break; |
| 982 | } |
| 983 | for (unsigned i = numDefined; i < usedVectorLength; ++i) { |
| 984 | JSValue v = storage->m_vector[i]; |
| 985 | if (v) { |
| 986 | if (v.isUndefined()) |
| 987 | ++numUndefined; |
| 988 | else |
| 989 | storage->m_vector[numDefined++] = v; |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | unsigned newUsedVectorLength = numDefined + numUndefined; |
| 994 | |
| 995 | if (SparseArrayValueMap* map = storage->m_sparseValueMap) { |
| 996 | newUsedVectorLength += map->size(); |
| 997 | if (newUsedVectorLength > m_vectorLength) { |
| 998 | // Check that it is possible to allocate an array large enough to hold all the entries - if not, |
| 999 | // exception is thrown by caller. |
| 1000 | if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newLength: newUsedVectorLength)) |
| 1001 | return 0; |
| 1002 | storage = m_storage; |
| 1003 | } |
| 1004 | |
| 1005 | SparseArrayValueMap::iterator end = map->end(); |
| 1006 | for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) |
| 1007 | storage->m_vector[numDefined++] = it->second; |
| 1008 | |
| 1009 | delete map; |
| 1010 | storage->m_sparseValueMap = 0; |
| 1011 | } |
| 1012 | |
| 1013 | for (unsigned i = numDefined; i < newUsedVectorLength; ++i) |
| 1014 | storage->m_vector[i] = jsUndefined(); |
| 1015 | for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i) |
| 1016 | storage->m_vector[i] = JSValue(); |
| 1017 | |
| 1018 | storage->m_numValuesInVector = newUsedVectorLength; |
| 1019 | |
| 1020 | checkConsistency(SortConsistencyCheck); |
| 1021 | |
| 1022 | return numDefined; |
| 1023 | } |
| 1024 | |
| 1025 | void* JSArray::lazyCreationData() |
| 1026 | { |
| 1027 | return m_storage->lazyCreationData; |
| 1028 | } |
| 1029 | |
| 1030 | void JSArray::setLazyCreationData(void* d) |
| 1031 | { |
| 1032 | m_storage->lazyCreationData = d; |
| 1033 | } |
| 1034 | |
| 1035 | #if CHECK_ARRAY_CONSISTENCY |
| 1036 | |
| 1037 | void JSArray::checkConsistency(ConsistencyCheckType type) |
| 1038 | { |
| 1039 | ASSERT(m_storage); |
| 1040 | if (type == SortConsistencyCheck) |
| 1041 | ASSERT(!m_storage->m_sparseValueMap); |
| 1042 | |
| 1043 | unsigned numValuesInVector = 0; |
| 1044 | for (unsigned i = 0; i < m_vectorLength; ++i) { |
| 1045 | if (JSValue value = m_storage->m_vector[i]) { |
| 1046 | ASSERT(i < m_storage->m_length); |
| 1047 | if (type != DestructorConsistencyCheck) |
| 1048 | value->type(); // Likely to crash if the object was deallocated. |
| 1049 | ++numValuesInVector; |
| 1050 | } else { |
| 1051 | if (type == SortConsistencyCheck) |
| 1052 | ASSERT(i >= m_storage->m_numValuesInVector); |
| 1053 | } |
| 1054 | } |
| 1055 | ASSERT(numValuesInVector == m_storage->m_numValuesInVector); |
| 1056 | ASSERT(numValuesInVector <= m_storage->m_length); |
| 1057 | |
| 1058 | if (m_storage->m_sparseValueMap) { |
| 1059 | SparseArrayValueMap::iterator end = m_storage->m_sparseValueMap->end(); |
| 1060 | for (SparseArrayValueMap::iterator it = m_storage->m_sparseValueMap->begin(); it != end; ++it) { |
| 1061 | unsigned index = it->first; |
| 1062 | ASSERT(index < m_storage->m_length); |
| 1063 | ASSERT(index >= m_vectorLength); |
| 1064 | ASSERT(index <= MAX_ARRAY_INDEX); |
| 1065 | ASSERT(it->second); |
| 1066 | if (type != DestructorConsistencyCheck) |
| 1067 | it->second->type(); // Likely to crash if the object was deallocated. |
| 1068 | } |
| 1069 | } |
| 1070 | } |
| 1071 | |
| 1072 | #endif |
| 1073 | |
| 1074 | } // namespace JSC |
| 1075 | |