| 1 | /* |
| 2 | * Copyright (C) 2006 Apple Computer, Inc. All rights reserved. |
| 3 | * Copyright (C) 2008 Google Inc. All rights reserved. |
| 4 | * Copyright (C) 2007-2009 Torch Mobile, Inc. |
| 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions are |
| 8 | * met: |
| 9 | * |
| 10 | * * Redistributions of source code must retain the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer. |
| 12 | * * Redistributions in binary form must reproduce the above |
| 13 | * copyright notice, this list of conditions and the following disclaimer |
| 14 | * in the documentation and/or other materials provided with the |
| 15 | * distribution. |
| 16 | * * Neither the name of Google Inc. nor the names of its |
| 17 | * contributors may be used to endorse or promote products derived from |
| 18 | * this software without specific prior written permission. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 21 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 22 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 23 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 24 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 25 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 26 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 27 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 28 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 29 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 30 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | |
| 33 | #include "config.h" |
| 34 | #include "CurrentTime.h" |
| 35 | |
| 36 | #if OS(WINDOWS) |
| 37 | |
| 38 | // Windows is first since we want to use hires timers, despite PLATFORM(CF) |
| 39 | // being defined. |
| 40 | // If defined, WIN32_LEAN_AND_MEAN disables timeBeginPeriod/timeEndPeriod. |
| 41 | #undef WIN32_LEAN_AND_MEAN |
| 42 | #include <windows.h> |
| 43 | #include <math.h> |
| 44 | #include <stdint.h> |
| 45 | #include <time.h> |
| 46 | |
| 47 | #if USE(QUERY_PERFORMANCE_COUNTER) |
| 48 | #if OS(WINCE) |
| 49 | extern "C" time_t mktime(struct tm *t); |
| 50 | #else |
| 51 | #include <sys/timeb.h> |
| 52 | #include <sys/types.h> |
| 53 | #endif |
| 54 | #endif |
| 55 | |
| 56 | #elif PLATFORM(CF) |
| 57 | #include <CoreFoundation/CFDate.h> |
| 58 | #elif PLATFORM(GTK) |
| 59 | #include <glib.h> |
| 60 | #elif PLATFORM(WX) |
| 61 | #include <wx/datetime.h> |
| 62 | #else // Posix systems relying on the gettimeofday() |
| 63 | #include <sys/time.h> |
| 64 | #endif |
| 65 | |
| 66 | #if PLATFORM(CHROMIUM) |
| 67 | #error Chromium uses a different timer implementation |
| 68 | #endif |
| 69 | |
| 70 | namespace WTF { |
| 71 | |
| 72 | const double msPerSecond = 1000.0; |
| 73 | |
| 74 | #if OS(WINDOWS) |
| 75 | |
| 76 | #if USE(QUERY_PERFORMANCE_COUNTER) |
| 77 | |
| 78 | static LARGE_INTEGER qpcFrequency; |
| 79 | static bool syncedTime; |
| 80 | |
| 81 | static double highResUpTime() |
| 82 | { |
| 83 | // We use QPC, but only after sanity checking its result, due to bugs: |
| 84 | // http://support.microsoft.com/kb/274323 |
| 85 | // http://support.microsoft.com/kb/895980 |
| 86 | // http://msdn.microsoft.com/en-us/library/ms644904.aspx ("...you can get different results on different processors due to bugs in the basic input/output system (BIOS) or the hardware abstraction layer (HAL)." |
| 87 | |
| 88 | static LARGE_INTEGER qpcLast; |
| 89 | static DWORD tickCountLast; |
| 90 | static bool inited; |
| 91 | |
| 92 | LARGE_INTEGER qpc; |
| 93 | QueryPerformanceCounter(&qpc); |
| 94 | DWORD tickCount = GetTickCount(); |
| 95 | |
| 96 | if (inited) { |
| 97 | __int64 qpcElapsed = ((qpc.QuadPart - qpcLast.QuadPart) * 1000) / qpcFrequency.QuadPart; |
| 98 | __int64 tickCountElapsed; |
| 99 | if (tickCount >= tickCountLast) |
| 100 | tickCountElapsed = (tickCount - tickCountLast); |
| 101 | else { |
| 102 | #if COMPILER(MINGW) |
| 103 | __int64 tickCountLarge = tickCount + 0x100000000ULL; |
| 104 | #else |
| 105 | __int64 tickCountLarge = tickCount + 0x100000000I64; |
| 106 | #endif |
| 107 | tickCountElapsed = tickCountLarge - tickCountLast; |
| 108 | } |
| 109 | |
| 110 | // force a re-sync if QueryPerformanceCounter differs from GetTickCount by more than 500ms. |
| 111 | // (500ms value is from http://support.microsoft.com/kb/274323) |
| 112 | __int64 diff = tickCountElapsed - qpcElapsed; |
| 113 | if (diff > 500 || diff < -500) |
| 114 | syncedTime = false; |
| 115 | } else |
| 116 | inited = true; |
| 117 | |
| 118 | qpcLast = qpc; |
| 119 | tickCountLast = tickCount; |
| 120 | |
| 121 | return (1000.0 * qpc.QuadPart) / static_cast<double>(qpcFrequency.QuadPart); |
| 122 | } |
| 123 | |
| 124 | static double lowResUTCTime() |
| 125 | { |
| 126 | #if OS(WINCE) |
| 127 | SYSTEMTIME systemTime; |
| 128 | GetSystemTime(&systemTime); |
| 129 | struct tm tmtime; |
| 130 | tmtime.tm_year = systemTime.wYear - 1900; |
| 131 | tmtime.tm_mon = systemTime.wMonth - 1; |
| 132 | tmtime.tm_mday = systemTime.wDay; |
| 133 | tmtime.tm_wday = systemTime.wDayOfWeek; |
| 134 | tmtime.tm_hour = systemTime.wHour; |
| 135 | tmtime.tm_min = systemTime.wMinute; |
| 136 | tmtime.tm_sec = systemTime.wSecond; |
| 137 | time_t timet = mktime(&tmtime); |
| 138 | return timet * msPerSecond + systemTime.wMilliseconds; |
| 139 | #else |
| 140 | struct _timeb timebuffer; |
| 141 | _ftime(&timebuffer); |
| 142 | return timebuffer.time * msPerSecond + timebuffer.millitm; |
| 143 | #endif |
| 144 | } |
| 145 | |
| 146 | static bool qpcAvailable() |
| 147 | { |
| 148 | static bool available; |
| 149 | static bool checked; |
| 150 | |
| 151 | if (checked) |
| 152 | return available; |
| 153 | |
| 154 | available = QueryPerformanceFrequency(&qpcFrequency); |
| 155 | checked = true; |
| 156 | return available; |
| 157 | } |
| 158 | |
| 159 | double currentTime() |
| 160 | { |
| 161 | // Use a combination of ftime and QueryPerformanceCounter. |
| 162 | // ftime returns the information we want, but doesn't have sufficient resolution. |
| 163 | // QueryPerformanceCounter has high resolution, but is only usable to measure time intervals. |
| 164 | // To combine them, we call ftime and QueryPerformanceCounter initially. Later calls will use QueryPerformanceCounter |
| 165 | // by itself, adding the delta to the saved ftime. We periodically re-sync to correct for drift. |
| 166 | static bool started; |
| 167 | static double syncLowResUTCTime; |
| 168 | static double syncHighResUpTime; |
| 169 | static double lastUTCTime; |
| 170 | |
| 171 | double lowResTime = lowResUTCTime(); |
| 172 | |
| 173 | if (!qpcAvailable()) |
| 174 | return lowResTime / 1000.0; |
| 175 | |
| 176 | double highResTime = highResUpTime(); |
| 177 | |
| 178 | if (!syncedTime) { |
| 179 | timeBeginPeriod(1); // increase time resolution around low-res time getter |
| 180 | syncLowResUTCTime = lowResTime = lowResUTCTime(); |
| 181 | timeEndPeriod(1); // restore time resolution |
| 182 | syncHighResUpTime = highResTime; |
| 183 | syncedTime = true; |
| 184 | } |
| 185 | |
| 186 | double highResElapsed = highResTime - syncHighResUpTime; |
| 187 | double utc = syncLowResUTCTime + highResElapsed; |
| 188 | |
| 189 | // force a clock re-sync if we've drifted |
| 190 | double lowResElapsed = lowResTime - syncLowResUTCTime; |
| 191 | const double maximumAllowedDriftMsec = 15.625 * 2.0; // 2x the typical low-res accuracy |
| 192 | if (fabs(highResElapsed - lowResElapsed) > maximumAllowedDriftMsec) |
| 193 | syncedTime = false; |
| 194 | |
| 195 | // make sure time doesn't run backwards (only correct if difference is < 2 seconds, since DST or clock changes could occur) |
| 196 | const double backwardTimeLimit = 2000.0; |
| 197 | if (utc < lastUTCTime && (lastUTCTime - utc) < backwardTimeLimit) |
| 198 | return lastUTCTime / 1000.0; |
| 199 | lastUTCTime = utc; |
| 200 | return utc / 1000.0; |
| 201 | } |
| 202 | |
| 203 | #else |
| 204 | |
| 205 | static double currentSystemTime() |
| 206 | { |
| 207 | FILETIME ft; |
| 208 | GetCurrentFT(&ft); |
| 209 | |
| 210 | // As per Windows documentation for FILETIME, copy the resulting FILETIME structure to a |
| 211 | // ULARGE_INTEGER structure using memcpy (using memcpy instead of direct assignment can |
| 212 | // prevent alignment faults on 64-bit Windows). |
| 213 | |
| 214 | ULARGE_INTEGER t; |
| 215 | memcpy(&t, &ft, sizeof(t)); |
| 216 | |
| 217 | // Windows file times are in 100s of nanoseconds. |
| 218 | // To convert to seconds, we have to divide by 10,000,000, which is more quickly |
| 219 | // done by multiplying by 0.0000001. |
| 220 | |
| 221 | // Between January 1, 1601 and January 1, 1970, there were 369 complete years, |
| 222 | // of which 89 were leap years (1700, 1800, and 1900 were not leap years). |
| 223 | // That is a total of 134774 days, which is 11644473600 seconds. |
| 224 | |
| 225 | return t.QuadPart * 0.0000001 - 11644473600.0; |
| 226 | } |
| 227 | |
| 228 | double currentTime() |
| 229 | { |
| 230 | static bool init = false; |
| 231 | static double lastTime; |
| 232 | static DWORD lastTickCount; |
| 233 | if (!init) { |
| 234 | lastTime = currentSystemTime(); |
| 235 | lastTickCount = GetTickCount(); |
| 236 | init = true; |
| 237 | return lastTime; |
| 238 | } |
| 239 | |
| 240 | DWORD tickCountNow = GetTickCount(); |
| 241 | DWORD elapsed = tickCountNow - lastTickCount; |
| 242 | double timeNow = lastTime + (double)elapsed / 1000.; |
| 243 | if (elapsed >= 0x7FFFFFFF) { |
| 244 | lastTime = timeNow; |
| 245 | lastTickCount = tickCountNow; |
| 246 | } |
| 247 | return timeNow; |
| 248 | } |
| 249 | |
| 250 | #endif // USE(QUERY_PERFORMANCE_COUNTER) |
| 251 | |
| 252 | #elif PLATFORM(CF) |
| 253 | |
| 254 | double currentTime() |
| 255 | { |
| 256 | return CFAbsoluteTimeGetCurrent() + kCFAbsoluteTimeIntervalSince1970; |
| 257 | } |
| 258 | |
| 259 | #elif PLATFORM(GTK) |
| 260 | |
| 261 | // Note: GTK on Windows will pick up the PLATFORM(WIN) implementation above which provides |
| 262 | // better accuracy compared with Windows implementation of g_get_current_time: |
| 263 | // (http://www.google.com/codesearch/p?hl=en#HHnNRjks1t0/glib-2.5.2/glib/gmain.c&q=g_get_current_time). |
| 264 | // Non-Windows GTK builds could use gettimeofday() directly but for the sake of consistency lets use GTK function. |
| 265 | double currentTime() |
| 266 | { |
| 267 | GTimeVal now; |
| 268 | g_get_current_time(&now); |
| 269 | return static_cast<double>(now.tv_sec) + static_cast<double>(now.tv_usec / 1000000.0); |
| 270 | } |
| 271 | |
| 272 | #elif PLATFORM(WX) |
| 273 | |
| 274 | double currentTime() |
| 275 | { |
| 276 | wxDateTime now = wxDateTime::UNow(); |
| 277 | return (double)now.GetTicks() + (double)(now.GetMillisecond() / 1000.0); |
| 278 | } |
| 279 | |
| 280 | #else // Other Posix systems rely on the gettimeofday(). |
| 281 | |
| 282 | double currentTime() |
| 283 | { |
| 284 | struct timeval now; |
| 285 | struct timezone zone; |
| 286 | |
| 287 | gettimeofday(tv: &now, tz: &zone); |
| 288 | return static_cast<double>(now.tv_sec) + (double)(now.tv_usec / 1000000.0); |
| 289 | } |
| 290 | |
| 291 | #endif |
| 292 | |
| 293 | } // namespace WTF |
| 294 | |