| 1 | /* |
| 2 | * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) |
| 3 | * Copyright (C) 2006, 2007 Apple Inc. All rights reserved. |
| 4 | * Copyright (C) 2009 Google Inc. All rights reserved. |
| 5 | * Copyright (C) 2007-2009 Torch Mobile, Inc. |
| 6 | * |
| 7 | * The Original Code is Mozilla Communicator client code, released |
| 8 | * March 31, 1998. |
| 9 | * |
| 10 | * The Initial Developer of the Original Code is |
| 11 | * Netscape Communications Corporation. |
| 12 | * Portions created by the Initial Developer are Copyright (C) 1998 |
| 13 | * the Initial Developer. All Rights Reserved. |
| 14 | * |
| 15 | * This library is free software; you can redistribute it and/or |
| 16 | * modify it under the terms of the GNU Lesser General Public |
| 17 | * License as published by the Free Software Foundation; either |
| 18 | * version 2.1 of the License, or (at your option) any later version. |
| 19 | * |
| 20 | * This library is distributed in the hope that it will be useful, |
| 21 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 22 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 23 | * Lesser General Public License for more details. |
| 24 | * |
| 25 | * You should have received a copy of the GNU Lesser General Public |
| 26 | * License along with this library; if not, write to the Free Software |
| 27 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 28 | * |
| 29 | * Alternatively, the contents of this file may be used under the terms |
| 30 | * of either the Mozilla Public License Version 1.1, found at |
| 31 | * http://www.mozilla.org/MPL/ (the "MPL") or the GNU General Public |
| 32 | * License Version 2.0, found at http://www.fsf.org/copyleft/gpl.html |
| 33 | * (the "GPL"), in which case the provisions of the MPL or the GPL are |
| 34 | * applicable instead of those above. If you wish to allow use of your |
| 35 | * version of this file only under the terms of one of those two |
| 36 | * licenses (the MPL or the GPL) and not to allow others to use your |
| 37 | * version of this file under the LGPL, indicate your decision by |
| 38 | * deletingthe provisions above and replace them with the notice and |
| 39 | * other provisions required by the MPL or the GPL, as the case may be. |
| 40 | * If you do not delete the provisions above, a recipient may use your |
| 41 | * version of this file under any of the LGPL, the MPL or the GPL. |
| 42 | |
| 43 | * Copyright 2006-2008 the V8 project authors. All rights reserved. |
| 44 | * Redistribution and use in source and binary forms, with or without |
| 45 | * modification, are permitted provided that the following conditions are |
| 46 | * met: |
| 47 | * |
| 48 | * * Redistributions of source code must retain the above copyright |
| 49 | * notice, this list of conditions and the following disclaimer. |
| 50 | * * Redistributions in binary form must reproduce the above |
| 51 | * copyright notice, this list of conditions and the following |
| 52 | * disclaimer in the documentation and/or other materials provided |
| 53 | * with the distribution. |
| 54 | * * Neither the name of Google Inc. nor the names of its |
| 55 | * contributors may be used to endorse or promote products derived |
| 56 | * from this software without specific prior written permission. |
| 57 | * |
| 58 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 59 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 60 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 61 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 62 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 63 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 64 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 65 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 66 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 67 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 68 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 69 | */ |
| 70 | |
| 71 | #include "config.h" |
| 72 | #include "DateMath.h" |
| 73 | |
| 74 | #include "Assertions.h" |
| 75 | #include "ASCIICType.h" |
| 76 | #include "CurrentTime.h" |
| 77 | #include "StringExtras.h" |
| 78 | |
| 79 | #include <algorithm> |
| 80 | #include <limits.h> |
| 81 | #include <limits> |
| 82 | #include <stdint.h> |
| 83 | #include <time.h> |
| 84 | |
| 85 | |
| 86 | #if HAVE(ERRNO_H) |
| 87 | #include <errno.h> |
| 88 | #endif |
| 89 | |
| 90 | #if OS(WINCE) |
| 91 | extern "C" size_t strftime(char * const s, const size_t maxsize, const char * const format, const struct tm * const t); |
| 92 | extern "C" struct tm * localtime(const time_t *timer); |
| 93 | #endif |
| 94 | |
| 95 | #if HAVE(SYS_TIME_H) |
| 96 | #include <sys/time.h> |
| 97 | #endif |
| 98 | |
| 99 | #if HAVE(SYS_TIMEB_H) |
| 100 | #include <sys/timeb.h> |
| 101 | #endif |
| 102 | |
| 103 | #if USE(JSC) |
| 104 | #include "CallFrame.h" |
| 105 | #endif |
| 106 | |
| 107 | #include "MathExtras.h" |
| 108 | |
| 109 | #define NaN std::numeric_limits<double>::quiet_NaN() |
| 110 | |
| 111 | using namespace WTF; |
| 112 | |
| 113 | namespace WTF { |
| 114 | |
| 115 | /* Constants */ |
| 116 | |
| 117 | static const double minutesPerDay = 24.0 * 60.0; |
| 118 | static const double secondsPerDay = 24.0 * 60.0 * 60.0; |
| 119 | static const double secondsPerYear = 24.0 * 60.0 * 60.0 * 365.0; |
| 120 | |
| 121 | static const double usecPerSec = 1000000.0; |
| 122 | |
| 123 | static const double maxUnixTime = 2145859200.0; // 12/31/2037 |
| 124 | // ECMAScript asks not to support for a date of which total |
| 125 | // millisecond value is larger than the following value. |
| 126 | // See 15.9.1.14 of ECMA-262 5th edition. |
| 127 | static const double maxECMAScriptTime = 8.64E15; |
| 128 | |
| 129 | // Day of year for the first day of each month, where index 0 is January, and day 0 is January 1. |
| 130 | // First for non-leap years, then for leap years. |
| 131 | static const int firstDayOfMonth[2][12] = { |
| 132 | {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, |
| 133 | {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335} |
| 134 | }; |
| 135 | |
| 136 | static inline bool isLeapYear(int year) |
| 137 | { |
| 138 | if (year % 4 != 0) |
| 139 | return false; |
| 140 | if (year % 400 == 0) |
| 141 | return true; |
| 142 | if (year % 100 == 0) |
| 143 | return false; |
| 144 | return true; |
| 145 | } |
| 146 | |
| 147 | static inline int daysInYear(int year) |
| 148 | { |
| 149 | return 365 + isLeapYear(year); |
| 150 | } |
| 151 | |
| 152 | static inline double daysFrom1970ToYear(int year) |
| 153 | { |
| 154 | // The Gregorian Calendar rules for leap years: |
| 155 | // Every fourth year is a leap year. 2004, 2008, and 2012 are leap years. |
| 156 | // However, every hundredth year is not a leap year. 1900 and 2100 are not leap years. |
| 157 | // Every four hundred years, there's a leap year after all. 2000 and 2400 are leap years. |
| 158 | |
| 159 | static const int leapDaysBefore1971By4Rule = 1970 / 4; |
| 160 | static const int excludedLeapDaysBefore1971By100Rule = 1970 / 100; |
| 161 | static const int leapDaysBefore1971By400Rule = 1970 / 400; |
| 162 | |
| 163 | const double yearMinusOne = year - 1; |
| 164 | const double yearsToAddBy4Rule = floor(x: yearMinusOne / 4.0) - leapDaysBefore1971By4Rule; |
| 165 | const double yearsToExcludeBy100Rule = floor(x: yearMinusOne / 100.0) - excludedLeapDaysBefore1971By100Rule; |
| 166 | const double yearsToAddBy400Rule = floor(x: yearMinusOne / 400.0) - leapDaysBefore1971By400Rule; |
| 167 | |
| 168 | return 365.0 * (year - 1970) + yearsToAddBy4Rule - yearsToExcludeBy100Rule + yearsToAddBy400Rule; |
| 169 | } |
| 170 | |
| 171 | static inline double msToDays(double ms) |
| 172 | { |
| 173 | return floor(x: ms / msPerDay); |
| 174 | } |
| 175 | |
| 176 | int msToYear(double ms) |
| 177 | { |
| 178 | int approxYear = static_cast<int>(floor(x: ms / (msPerDay * 365.2425)) + 1970); |
| 179 | double msFromApproxYearTo1970 = msPerDay * daysFrom1970ToYear(year: approxYear); |
| 180 | if (msFromApproxYearTo1970 > ms) |
| 181 | return approxYear - 1; |
| 182 | if (msFromApproxYearTo1970 + msPerDay * daysInYear(year: approxYear) <= ms) |
| 183 | return approxYear + 1; |
| 184 | return approxYear; |
| 185 | } |
| 186 | |
| 187 | int dayInYear(double ms, int year) |
| 188 | { |
| 189 | return static_cast<int>(msToDays(ms) - daysFrom1970ToYear(year)); |
| 190 | } |
| 191 | |
| 192 | static inline double msToMilliseconds(double ms) |
| 193 | { |
| 194 | double result = fmod(x: ms, y: msPerDay); |
| 195 | if (result < 0) |
| 196 | result += msPerDay; |
| 197 | return result; |
| 198 | } |
| 199 | |
| 200 | // 0: Sunday, 1: Monday, etc. |
| 201 | static inline int msToWeekDay(double ms) |
| 202 | { |
| 203 | int wd = (static_cast<int>(msToDays(ms)) + 4) % 7; |
| 204 | if (wd < 0) |
| 205 | wd += 7; |
| 206 | return wd; |
| 207 | } |
| 208 | |
| 209 | static inline int msToSeconds(double ms) |
| 210 | { |
| 211 | double result = fmod(x: floor(x: ms / msPerSecond), y: secondsPerMinute); |
| 212 | if (result < 0) |
| 213 | result += secondsPerMinute; |
| 214 | return static_cast<int>(result); |
| 215 | } |
| 216 | |
| 217 | static inline int msToMinutes(double ms) |
| 218 | { |
| 219 | double result = fmod(x: floor(x: ms / msPerMinute), y: minutesPerHour); |
| 220 | if (result < 0) |
| 221 | result += minutesPerHour; |
| 222 | return static_cast<int>(result); |
| 223 | } |
| 224 | |
| 225 | static inline int msToHours(double ms) |
| 226 | { |
| 227 | double result = fmod(x: floor(x: ms/msPerHour), y: hoursPerDay); |
| 228 | if (result < 0) |
| 229 | result += hoursPerDay; |
| 230 | return static_cast<int>(result); |
| 231 | } |
| 232 | |
| 233 | int monthFromDayInYear(int dayInYear, bool leapYear) |
| 234 | { |
| 235 | const int d = dayInYear; |
| 236 | int step; |
| 237 | |
| 238 | if (d < (step = 31)) |
| 239 | return 0; |
| 240 | step += (leapYear ? 29 : 28); |
| 241 | if (d < step) |
| 242 | return 1; |
| 243 | if (d < (step += 31)) |
| 244 | return 2; |
| 245 | if (d < (step += 30)) |
| 246 | return 3; |
| 247 | if (d < (step += 31)) |
| 248 | return 4; |
| 249 | if (d < (step += 30)) |
| 250 | return 5; |
| 251 | if (d < (step += 31)) |
| 252 | return 6; |
| 253 | if (d < (step += 31)) |
| 254 | return 7; |
| 255 | if (d < (step += 30)) |
| 256 | return 8; |
| 257 | if (d < (step += 31)) |
| 258 | return 9; |
| 259 | if (d < (step += 30)) |
| 260 | return 10; |
| 261 | return 11; |
| 262 | } |
| 263 | |
| 264 | static inline bool checkMonth(int dayInYear, int& startDayOfThisMonth, int& startDayOfNextMonth, int daysInThisMonth) |
| 265 | { |
| 266 | startDayOfThisMonth = startDayOfNextMonth; |
| 267 | startDayOfNextMonth += daysInThisMonth; |
| 268 | return (dayInYear <= startDayOfNextMonth); |
| 269 | } |
| 270 | |
| 271 | int dayInMonthFromDayInYear(int dayInYear, bool leapYear) |
| 272 | { |
| 273 | const int d = dayInYear; |
| 274 | int step; |
| 275 | int next = 30; |
| 276 | |
| 277 | if (d <= next) |
| 278 | return d + 1; |
| 279 | const int daysInFeb = (leapYear ? 29 : 28); |
| 280 | if (checkMonth(dayInYear: d, startDayOfThisMonth&: step, startDayOfNextMonth&: next, daysInThisMonth: daysInFeb)) |
| 281 | return d - step; |
| 282 | if (checkMonth(dayInYear: d, startDayOfThisMonth&: step, startDayOfNextMonth&: next, daysInThisMonth: 31)) |
| 283 | return d - step; |
| 284 | if (checkMonth(dayInYear: d, startDayOfThisMonth&: step, startDayOfNextMonth&: next, daysInThisMonth: 30)) |
| 285 | return d - step; |
| 286 | if (checkMonth(dayInYear: d, startDayOfThisMonth&: step, startDayOfNextMonth&: next, daysInThisMonth: 31)) |
| 287 | return d - step; |
| 288 | if (checkMonth(dayInYear: d, startDayOfThisMonth&: step, startDayOfNextMonth&: next, daysInThisMonth: 30)) |
| 289 | return d - step; |
| 290 | if (checkMonth(dayInYear: d, startDayOfThisMonth&: step, startDayOfNextMonth&: next, daysInThisMonth: 31)) |
| 291 | return d - step; |
| 292 | if (checkMonth(dayInYear: d, startDayOfThisMonth&: step, startDayOfNextMonth&: next, daysInThisMonth: 31)) |
| 293 | return d - step; |
| 294 | if (checkMonth(dayInYear: d, startDayOfThisMonth&: step, startDayOfNextMonth&: next, daysInThisMonth: 30)) |
| 295 | return d - step; |
| 296 | if (checkMonth(dayInYear: d, startDayOfThisMonth&: step, startDayOfNextMonth&: next, daysInThisMonth: 31)) |
| 297 | return d - step; |
| 298 | if (checkMonth(dayInYear: d, startDayOfThisMonth&: step, startDayOfNextMonth&: next, daysInThisMonth: 30)) |
| 299 | return d - step; |
| 300 | step = next; |
| 301 | return d - step; |
| 302 | } |
| 303 | |
| 304 | static inline int monthToDayInYear(int month, bool isLeapYear) |
| 305 | { |
| 306 | return firstDayOfMonth[isLeapYear][month]; |
| 307 | } |
| 308 | |
| 309 | static inline double timeToMS(double hour, double min, double sec, double ms) |
| 310 | { |
| 311 | return (((hour * minutesPerHour + min) * secondsPerMinute + sec) * msPerSecond + ms); |
| 312 | } |
| 313 | |
| 314 | double dateToDaysFrom1970(int year, int month, int day) |
| 315 | { |
| 316 | year += month / 12; |
| 317 | |
| 318 | month %= 12; |
| 319 | if (month < 0) { |
| 320 | month += 12; |
| 321 | --year; |
| 322 | } |
| 323 | |
| 324 | double yearday = floor(x: daysFrom1970ToYear(year)); |
| 325 | ASSERT((year >= 1970 && yearday >= 0) || (year < 1970 && yearday < 0)); |
| 326 | int monthday = monthToDayInYear(month, isLeapYear: isLeapYear(year)); |
| 327 | |
| 328 | return yearday + monthday + day - 1; |
| 329 | } |
| 330 | |
| 331 | // There is a hard limit at 2038 that we currently do not have a workaround |
| 332 | // for (rdar://problem/5052975). |
| 333 | static inline int maximumYearForDST() |
| 334 | { |
| 335 | return 2037; |
| 336 | } |
| 337 | |
| 338 | static inline int minimumYearForDST() |
| 339 | { |
| 340 | // Because of the 2038 issue (see maximumYearForDST) if the current year is |
| 341 | // greater than the max year minus 27 (2010), we want to use the max year |
| 342 | // minus 27 instead, to ensure there is a range of 28 years that all years |
| 343 | // can map to. |
| 344 | return std::min(a: msToYear(ms: jsCurrentTime()), b: maximumYearForDST() - 27) ; |
| 345 | } |
| 346 | |
| 347 | /* |
| 348 | * Find an equivalent year for the one given, where equivalence is deterined by |
| 349 | * the two years having the same leapness and the first day of the year, falling |
| 350 | * on the same day of the week. |
| 351 | * |
| 352 | * This function returns a year between this current year and 2037, however this |
| 353 | * function will potentially return incorrect results if the current year is after |
| 354 | * 2010, (rdar://problem/5052975), if the year passed in is before 1900 or after |
| 355 | * 2100, (rdar://problem/5055038). |
| 356 | */ |
| 357 | int equivalentYearForDST(int year) |
| 358 | { |
| 359 | // It is ok if the cached year is not the current year as long as the rules |
| 360 | // for DST did not change between the two years; if they did the app would need |
| 361 | // to be restarted. |
| 362 | static int minYear = minimumYearForDST(); |
| 363 | int maxYear = maximumYearForDST(); |
| 364 | |
| 365 | int difference; |
| 366 | if (year > maxYear) |
| 367 | difference = minYear - year; |
| 368 | else if (year < minYear) |
| 369 | difference = maxYear - year; |
| 370 | else |
| 371 | return year; |
| 372 | |
| 373 | int quotient = difference / 28; |
| 374 | int product = (quotient) * 28; |
| 375 | |
| 376 | year += product; |
| 377 | ASSERT((year >= minYear && year <= maxYear) || (product - year == static_cast<int>(NaN))); |
| 378 | return year; |
| 379 | } |
| 380 | |
| 381 | #if !HAVE(TM_GMTOFF) |
| 382 | |
| 383 | static int32_t calculateUTCOffset() |
| 384 | { |
| 385 | #if PLATFORM(BREWMP) |
| 386 | time_t localTime = static_cast<time_t>(currentTime()); |
| 387 | #else |
| 388 | time_t localTime = time(0); |
| 389 | #endif |
| 390 | tm localt; |
| 391 | getLocalTime(&localTime, &localt); |
| 392 | |
| 393 | // Get the difference between this time zone and UTC on the 1st of January of this year. |
| 394 | localt.tm_sec = 0; |
| 395 | localt.tm_min = 0; |
| 396 | localt.tm_hour = 0; |
| 397 | localt.tm_mday = 1; |
| 398 | localt.tm_mon = 0; |
| 399 | // Not setting localt.tm_year! |
| 400 | localt.tm_wday = 0; |
| 401 | localt.tm_yday = 0; |
| 402 | localt.tm_isdst = 0; |
| 403 | #if HAVE(TM_GMTOFF) |
| 404 | localt.tm_gmtoff = 0; |
| 405 | #endif |
| 406 | #if HAVE(TM_ZONE) |
| 407 | localt.tm_zone = 0; |
| 408 | #endif |
| 409 | |
| 410 | #if HAVE(TIMEGM) |
| 411 | time_t utcOffset = timegm(&localt) - mktime(&localt); |
| 412 | #else |
| 413 | // Using a canned date of 01/01/2009 on platforms with weaker date-handling foo. |
| 414 | localt.tm_year = 109; |
| 415 | time_t utcOffset = 1230768000 - mktime(&localt); |
| 416 | #endif |
| 417 | |
| 418 | return static_cast<int32_t>(utcOffset * 1000); |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * Get the DST offset for the time passed in. |
| 423 | */ |
| 424 | static double calculateDSTOffset(time_t localTime, double utcOffset) |
| 425 | { |
| 426 | //input is UTC so we have to shift back to local time to determine DST thus the + getUTCOffset() |
| 427 | double offsetTime = (localTime * msPerSecond) + utcOffset; |
| 428 | |
| 429 | // Offset from UTC but doesn't include DST obviously |
| 430 | int offsetHour = msToHours(offsetTime); |
| 431 | int offsetMinute = msToMinutes(offsetTime); |
| 432 | |
| 433 | tm localTM; |
| 434 | getLocalTime(&localTime, &localTM); |
| 435 | |
| 436 | double diff = ((localTM.tm_hour - offsetHour) * secondsPerHour) + ((localTM.tm_min - offsetMinute) * 60); |
| 437 | |
| 438 | if (diff < 0) |
| 439 | diff += secondsPerDay; |
| 440 | |
| 441 | return (diff * msPerSecond); |
| 442 | } |
| 443 | |
| 444 | #endif |
| 445 | |
| 446 | // Returns combined offset in millisecond (UTC + DST). |
| 447 | LocalTimeOffset calculateLocalTimeOffset(double ms) |
| 448 | { |
| 449 | // On Mac OS X, the call to localtime (see calculateDSTOffset) will return historically accurate |
| 450 | // DST information (e.g. New Zealand did not have DST from 1946 to 1974) however the JavaScript |
| 451 | // standard explicitly dictates that historical information should not be considered when |
| 452 | // determining DST. For this reason we shift away from years that localtime can handle but would |
| 453 | // return historically accurate information. |
| 454 | int year = msToYear(ms); |
| 455 | int equivalentYear = equivalentYearForDST(year); |
| 456 | if (year != equivalentYear) { |
| 457 | bool leapYear = isLeapYear(year); |
| 458 | int dayInYearLocal = dayInYear(ms, year); |
| 459 | int dayInMonth = dayInMonthFromDayInYear(dayInYear: dayInYearLocal, leapYear); |
| 460 | int month = monthFromDayInYear(dayInYear: dayInYearLocal, leapYear); |
| 461 | double day = dateToDaysFrom1970(year: equivalentYear, month, day: dayInMonth); |
| 462 | ms = (day * msPerDay) + msToMilliseconds(ms); |
| 463 | } |
| 464 | |
| 465 | double localTimeSeconds = ms / msPerSecond; |
| 466 | if (localTimeSeconds > maxUnixTime) |
| 467 | localTimeSeconds = maxUnixTime; |
| 468 | else if (localTimeSeconds < 0) // Go ahead a day to make localtime work (does not work with 0). |
| 469 | localTimeSeconds += secondsPerDay; |
| 470 | // FIXME: time_t has a potential problem in 2038. |
| 471 | time_t localTime = static_cast<time_t>(localTimeSeconds); |
| 472 | |
| 473 | #if HAVE(TM_GMTOFF) |
| 474 | tm localTM; |
| 475 | getLocalTime(localTime: &localTime, localTM: &localTM); |
| 476 | return LocalTimeOffset(localTM.tm_isdst, localTM.tm_gmtoff * msPerSecond); |
| 477 | #else |
| 478 | double utcOffset = calculateUTCOffset(); |
| 479 | double dstOffset = calculateDSTOffset(localTime, utcOffset); |
| 480 | return LocalTimeOffset(dstOffset, utcOffset + dstOffset); |
| 481 | #endif |
| 482 | } |
| 483 | |
| 484 | void initializeDates() |
| 485 | { |
| 486 | #ifndef NDEBUG |
| 487 | static bool alreadyInitialized; |
| 488 | ASSERT(!alreadyInitialized); |
| 489 | alreadyInitialized = true; |
| 490 | #endif |
| 491 | |
| 492 | equivalentYearForDST(year: 2000); // Need to call once to initialize a static used in this function. |
| 493 | } |
| 494 | |
| 495 | static inline double ymdhmsToSeconds(long year, int mon, int day, int hour, int minute, int second) |
| 496 | { |
| 497 | double days = (day - 32075) |
| 498 | + floor(x: 1461 * (year + 4800.0 + (mon - 14) / 12) / 4) |
| 499 | + 367 * (mon - 2 - (mon - 14) / 12 * 12) / 12 |
| 500 | - floor(x: 3 * ((year + 4900.0 + (mon - 14) / 12) / 100) / 4) |
| 501 | - 2440588; |
| 502 | return ((days * hoursPerDay + hour) * minutesPerHour + minute) * secondsPerMinute + second; |
| 503 | } |
| 504 | |
| 505 | // We follow the recommendation of RFC 2822 to consider all |
| 506 | // obsolete time zones not listed here equivalent to "-0000". |
| 507 | static const struct KnownZone { |
| 508 | #if !OS(WINDOWS) |
| 509 | const |
| 510 | #endif |
| 511 | char tzName[4]; |
| 512 | int tzOffset; |
| 513 | } known_zones[] = { |
| 514 | { .tzName: "UT" , .tzOffset: 0 }, |
| 515 | { .tzName: "GMT" , .tzOffset: 0 }, |
| 516 | { .tzName: "EST" , .tzOffset: -300 }, |
| 517 | { .tzName: "EDT" , .tzOffset: -240 }, |
| 518 | { .tzName: "CST" , .tzOffset: -360 }, |
| 519 | { .tzName: "CDT" , .tzOffset: -300 }, |
| 520 | { .tzName: "MST" , .tzOffset: -420 }, |
| 521 | { .tzName: "MDT" , .tzOffset: -360 }, |
| 522 | { .tzName: "PST" , .tzOffset: -480 }, |
| 523 | { .tzName: "PDT" , .tzOffset: -420 } |
| 524 | }; |
| 525 | |
| 526 | inline static void skipSpacesAndComments(const char*& s) |
| 527 | { |
| 528 | int nesting = 0; |
| 529 | char ch; |
| 530 | while ((ch = *s)) { |
| 531 | if (!isASCIISpace(c: ch)) { |
| 532 | if (ch == '(') |
| 533 | nesting++; |
| 534 | else if (ch == ')' && nesting > 0) |
| 535 | nesting--; |
| 536 | else if (nesting == 0) |
| 537 | break; |
| 538 | } |
| 539 | s++; |
| 540 | } |
| 541 | } |
| 542 | |
| 543 | // returns 0-11 (Jan-Dec); -1 on failure |
| 544 | static int findMonth(const char* monthStr) |
| 545 | { |
| 546 | ASSERT(monthStr); |
| 547 | char needle[4]; |
| 548 | for (int i = 0; i < 3; ++i) { |
| 549 | if (!*monthStr) |
| 550 | return -1; |
| 551 | needle[i] = static_cast<char>(toASCIILower(c: *monthStr++)); |
| 552 | } |
| 553 | needle[3] = '\0'; |
| 554 | const char *haystack = "janfebmaraprmayjunjulaugsepoctnovdec" ; |
| 555 | const char *str = strstr(haystack: haystack, needle: needle); |
| 556 | if (str) { |
| 557 | int position = static_cast<int>(str - haystack); |
| 558 | if (position % 3 == 0) |
| 559 | return position / 3; |
| 560 | } |
| 561 | return -1; |
| 562 | } |
| 563 | |
| 564 | static bool parseLong(const char* string, char** stopPosition, int base, long* result) |
| 565 | { |
| 566 | *result = strtol(nptr: string, endptr: stopPosition, base: base); |
| 567 | // Avoid the use of errno as it is not available on Windows CE |
| 568 | if (string == *stopPosition || *result == LONG_MIN || *result == LONG_MAX) |
| 569 | return false; |
| 570 | return true; |
| 571 | } |
| 572 | |
| 573 | // Odd case where 'exec' is allowed to be 0, to accomodate a caller in WebCore. |
| 574 | static double parseDateFromNullTerminatedCharacters(const char* dateString, bool& haveTZ, int& offset) |
| 575 | { |
| 576 | haveTZ = false; |
| 577 | offset = 0; |
| 578 | |
| 579 | // This parses a date in the form: |
| 580 | // Tuesday, 09-Nov-99 23:12:40 GMT |
| 581 | // or |
| 582 | // Sat, 01-Jan-2000 08:00:00 GMT |
| 583 | // or |
| 584 | // Sat, 01 Jan 2000 08:00:00 GMT |
| 585 | // or |
| 586 | // 01 Jan 99 22:00 +0100 (exceptions in rfc822/rfc2822) |
| 587 | // ### non RFC formats, added for Javascript: |
| 588 | // [Wednesday] January 09 1999 23:12:40 GMT |
| 589 | // [Wednesday] January 09 23:12:40 GMT 1999 |
| 590 | // |
| 591 | // We ignore the weekday. |
| 592 | |
| 593 | // Skip leading space |
| 594 | skipSpacesAndComments(s&: dateString); |
| 595 | |
| 596 | long month = -1; |
| 597 | const char *wordStart = dateString; |
| 598 | // Check contents of first words if not number |
| 599 | while (*dateString && !isASCIIDigit(c: *dateString)) { |
| 600 | if (isASCIISpace(c: *dateString) || *dateString == '(') { |
| 601 | if (dateString - wordStart >= 3) |
| 602 | month = findMonth(monthStr: wordStart); |
| 603 | skipSpacesAndComments(s&: dateString); |
| 604 | wordStart = dateString; |
| 605 | } else |
| 606 | dateString++; |
| 607 | } |
| 608 | |
| 609 | // Missing delimiter between month and day (like "January29")? |
| 610 | if (month == -1 && wordStart != dateString) |
| 611 | month = findMonth(monthStr: wordStart); |
| 612 | |
| 613 | skipSpacesAndComments(s&: dateString); |
| 614 | |
| 615 | if (!*dateString) |
| 616 | return NaN; |
| 617 | |
| 618 | // ' 09-Nov-99 23:12:40 GMT' |
| 619 | char* newPosStr; |
| 620 | long day; |
| 621 | if (!parseLong(string: dateString, stopPosition: &newPosStr, base: 10, result: &day)) |
| 622 | return NaN; |
| 623 | dateString = newPosStr; |
| 624 | |
| 625 | if (!*dateString) |
| 626 | return NaN; |
| 627 | |
| 628 | if (day < 0) |
| 629 | return NaN; |
| 630 | |
| 631 | long year = 0; |
| 632 | if (day > 31) { |
| 633 | // ### where is the boundary and what happens below? |
| 634 | if (*dateString != '/') |
| 635 | return NaN; |
| 636 | // looks like a YYYY/MM/DD date |
| 637 | if (!*++dateString) |
| 638 | return NaN; |
| 639 | year = day; |
| 640 | if (!parseLong(string: dateString, stopPosition: &newPosStr, base: 10, result: &month)) |
| 641 | return NaN; |
| 642 | month -= 1; |
| 643 | dateString = newPosStr; |
| 644 | if (*dateString++ != '/' || !*dateString) |
| 645 | return NaN; |
| 646 | if (!parseLong(string: dateString, stopPosition: &newPosStr, base: 10, result: &day)) |
| 647 | return NaN; |
| 648 | dateString = newPosStr; |
| 649 | } else if (*dateString == '/' && month == -1) { |
| 650 | dateString++; |
| 651 | // This looks like a MM/DD/YYYY date, not an RFC date. |
| 652 | month = day - 1; // 0-based |
| 653 | if (!parseLong(string: dateString, stopPosition: &newPosStr, base: 10, result: &day)) |
| 654 | return NaN; |
| 655 | if (day < 1 || day > 31) |
| 656 | return NaN; |
| 657 | dateString = newPosStr; |
| 658 | if (*dateString == '/') |
| 659 | dateString++; |
| 660 | if (!*dateString) |
| 661 | return NaN; |
| 662 | } else { |
| 663 | if (*dateString == '-') |
| 664 | dateString++; |
| 665 | |
| 666 | skipSpacesAndComments(s&: dateString); |
| 667 | |
| 668 | if (*dateString == ',') |
| 669 | dateString++; |
| 670 | |
| 671 | if (month == -1) { // not found yet |
| 672 | month = findMonth(monthStr: dateString); |
| 673 | if (month == -1) |
| 674 | return NaN; |
| 675 | |
| 676 | while (*dateString && *dateString != '-' && *dateString != ',' && !isASCIISpace(c: *dateString)) |
| 677 | dateString++; |
| 678 | |
| 679 | if (!*dateString) |
| 680 | return NaN; |
| 681 | |
| 682 | // '-99 23:12:40 GMT' |
| 683 | if (*dateString != '-' && *dateString != '/' && *dateString != ',' && !isASCIISpace(c: *dateString)) |
| 684 | return NaN; |
| 685 | dateString++; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | if (month < 0 || month > 11) |
| 690 | return NaN; |
| 691 | |
| 692 | // '99 23:12:40 GMT' |
| 693 | if (year <= 0 && *dateString) { |
| 694 | if (!parseLong(string: dateString, stopPosition: &newPosStr, base: 10, result: &year)) |
| 695 | return NaN; |
| 696 | } |
| 697 | |
| 698 | // Don't fail if the time is missing. |
| 699 | long hour = 0; |
| 700 | long minute = 0; |
| 701 | long second = 0; |
| 702 | if (!*newPosStr) |
| 703 | dateString = newPosStr; |
| 704 | else { |
| 705 | // ' 23:12:40 GMT' |
| 706 | if (!(isASCIISpace(c: *newPosStr) || *newPosStr == ',')) { |
| 707 | if (*newPosStr != ':') |
| 708 | return NaN; |
| 709 | // There was no year; the number was the hour. |
| 710 | year = -1; |
| 711 | } else { |
| 712 | // in the normal case (we parsed the year), advance to the next number |
| 713 | dateString = ++newPosStr; |
| 714 | skipSpacesAndComments(s&: dateString); |
| 715 | } |
| 716 | |
| 717 | parseLong(string: dateString, stopPosition: &newPosStr, base: 10, result: &hour); |
| 718 | // Do not check for errno here since we want to continue |
| 719 | // even if errno was set becasue we are still looking |
| 720 | // for the timezone! |
| 721 | |
| 722 | // Read a number? If not, this might be a timezone name. |
| 723 | if (newPosStr != dateString) { |
| 724 | dateString = newPosStr; |
| 725 | |
| 726 | if (hour < 0 || hour > 23) |
| 727 | return NaN; |
| 728 | |
| 729 | if (!*dateString) |
| 730 | return NaN; |
| 731 | |
| 732 | // ':12:40 GMT' |
| 733 | if (*dateString++ != ':') |
| 734 | return NaN; |
| 735 | |
| 736 | if (!parseLong(string: dateString, stopPosition: &newPosStr, base: 10, result: &minute)) |
| 737 | return NaN; |
| 738 | dateString = newPosStr; |
| 739 | |
| 740 | if (minute < 0 || minute > 59) |
| 741 | return NaN; |
| 742 | |
| 743 | // ':40 GMT' |
| 744 | if (*dateString && *dateString != ':' && !isASCIISpace(c: *dateString)) |
| 745 | return NaN; |
| 746 | |
| 747 | // seconds are optional in rfc822 + rfc2822 |
| 748 | if (*dateString ==':') { |
| 749 | dateString++; |
| 750 | |
| 751 | if (!parseLong(string: dateString, stopPosition: &newPosStr, base: 10, result: &second)) |
| 752 | return NaN; |
| 753 | dateString = newPosStr; |
| 754 | |
| 755 | if (second < 0 || second > 59) |
| 756 | return NaN; |
| 757 | } |
| 758 | |
| 759 | skipSpacesAndComments(s&: dateString); |
| 760 | |
| 761 | if (strncasecmp(s1: dateString, s2: "AM" , n: 2) == 0) { |
| 762 | if (hour > 12) |
| 763 | return NaN; |
| 764 | if (hour == 12) |
| 765 | hour = 0; |
| 766 | dateString += 2; |
| 767 | skipSpacesAndComments(s&: dateString); |
| 768 | } else if (strncasecmp(s1: dateString, s2: "PM" , n: 2) == 0) { |
| 769 | if (hour > 12) |
| 770 | return NaN; |
| 771 | if (hour != 12) |
| 772 | hour += 12; |
| 773 | dateString += 2; |
| 774 | skipSpacesAndComments(s&: dateString); |
| 775 | } |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | // Don't fail if the time zone is missing. |
| 780 | // Some websites omit the time zone (4275206). |
| 781 | if (*dateString) { |
| 782 | if (strncasecmp(s1: dateString, s2: "GMT" , n: 3) == 0 || strncasecmp(s1: dateString, s2: "UTC" , n: 3) == 0) { |
| 783 | dateString += 3; |
| 784 | haveTZ = true; |
| 785 | } |
| 786 | |
| 787 | if (*dateString == '+' || *dateString == '-') { |
| 788 | long o; |
| 789 | if (!parseLong(string: dateString, stopPosition: &newPosStr, base: 10, result: &o)) |
| 790 | return NaN; |
| 791 | dateString = newPosStr; |
| 792 | |
| 793 | if (o < -9959 || o > 9959) |
| 794 | return NaN; |
| 795 | |
| 796 | int sgn = (o < 0) ? -1 : 1; |
| 797 | o = labs(x: o); |
| 798 | if (*dateString != ':') { |
| 799 | offset = ((o / 100) * 60 + (o % 100)) * sgn; |
| 800 | } else { // GMT+05:00 |
| 801 | long o2; |
| 802 | if (!parseLong(string: dateString, stopPosition: &newPosStr, base: 10, result: &o2)) |
| 803 | return NaN; |
| 804 | dateString = newPosStr; |
| 805 | offset = (o * 60 + o2) * sgn; |
| 806 | } |
| 807 | haveTZ = true; |
| 808 | } else { |
| 809 | for (int i = 0; i < int(sizeof(known_zones) / sizeof(KnownZone)); i++) { |
| 810 | if (0 == strncasecmp(s1: dateString, s2: known_zones[i].tzName, n: strlen(s: known_zones[i].tzName))) { |
| 811 | offset = known_zones[i].tzOffset; |
| 812 | dateString += strlen(s: known_zones[i].tzName); |
| 813 | haveTZ = true; |
| 814 | break; |
| 815 | } |
| 816 | } |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | skipSpacesAndComments(s&: dateString); |
| 821 | |
| 822 | if (*dateString && year == -1) { |
| 823 | if (!parseLong(string: dateString, stopPosition: &newPosStr, base: 10, result: &year)) |
| 824 | return NaN; |
| 825 | dateString = newPosStr; |
| 826 | } |
| 827 | |
| 828 | skipSpacesAndComments(s&: dateString); |
| 829 | |
| 830 | // Trailing garbage |
| 831 | if (*dateString) |
| 832 | return NaN; |
| 833 | |
| 834 | // Y2K: Handle 2 digit years. |
| 835 | if (year >= 0 && year < 100) { |
| 836 | if (year < 50) |
| 837 | year += 2000; |
| 838 | else |
| 839 | year += 1900; |
| 840 | } |
| 841 | |
| 842 | return ymdhmsToSeconds(year, mon: month + 1, day, hour, minute, second) * msPerSecond; |
| 843 | } |
| 844 | |
| 845 | double parseDateFromNullTerminatedCharacters(const char* dateString) |
| 846 | { |
| 847 | bool haveTZ; |
| 848 | int offset; |
| 849 | double ms = parseDateFromNullTerminatedCharacters(dateString, haveTZ, offset); |
| 850 | if (std::isnan(x: ms)) |
| 851 | return NaN; |
| 852 | |
| 853 | // fall back to local timezone |
| 854 | if (!haveTZ) |
| 855 | offset = calculateLocalTimeOffset(ms).offset / msPerMinute; |
| 856 | |
| 857 | return ms - (offset * msPerMinute); |
| 858 | } |
| 859 | |
| 860 | double timeClip(double t) |
| 861 | { |
| 862 | if (!std::isfinite(x: t)) |
| 863 | return NaN; |
| 864 | if (fabs(x: t) > maxECMAScriptTime) |
| 865 | return NaN; |
| 866 | return trunc(x: t); |
| 867 | } |
| 868 | } // namespace WTF |
| 869 | |
| 870 | #if USE(JSC) |
| 871 | namespace JSC { |
| 872 | |
| 873 | // Get the combined UTC + DST offset for the time passed in. |
| 874 | // |
| 875 | // NOTE: The implementation relies on the fact that no time zones have |
| 876 | // more than one daylight savings offset change per month. |
| 877 | // If this function is called with NaN it returns NaN. |
| 878 | static LocalTimeOffset localTimeOffset(ExecState* exec, double ms) |
| 879 | { |
| 880 | LocalTimeOffsetCache& cache = exec->globalData().localTimeOffsetCache; |
| 881 | double start = cache.start; |
| 882 | double end = cache.end; |
| 883 | |
| 884 | if (start <= ms) { |
| 885 | // If the time fits in the cached interval, return the cached offset. |
| 886 | if (ms <= end) return cache.offset; |
| 887 | |
| 888 | // Compute a possible new interval end. |
| 889 | double newEnd = end + cache.increment; |
| 890 | |
| 891 | if (ms <= newEnd) { |
| 892 | LocalTimeOffset endOffset = calculateLocalTimeOffset(ms: newEnd); |
| 893 | if (cache.offset == endOffset) { |
| 894 | // If the offset at the end of the new interval still matches |
| 895 | // the offset in the cache, we grow the cached time interval |
| 896 | // and return the offset. |
| 897 | cache.end = newEnd; |
| 898 | cache.increment = msPerMonth; |
| 899 | return endOffset; |
| 900 | } |
| 901 | LocalTimeOffset offset = calculateLocalTimeOffset(ms); |
| 902 | if (offset == endOffset) { |
| 903 | // The offset at the given time is equal to the offset at the |
| 904 | // new end of the interval, so that means that we've just skipped |
| 905 | // the point in time where the DST offset change occurred. Updated |
| 906 | // the interval to reflect this and reset the increment. |
| 907 | cache.start = ms; |
| 908 | cache.end = newEnd; |
| 909 | cache.increment = msPerMonth; |
| 910 | } else { |
| 911 | // The interval contains a DST offset change and the given time is |
| 912 | // before it. Adjust the increment to avoid a linear search for |
| 913 | // the offset change point and change the end of the interval. |
| 914 | cache.increment /= 3; |
| 915 | cache.end = ms; |
| 916 | } |
| 917 | // Update the offset in the cache and return it. |
| 918 | cache.offset = offset; |
| 919 | return offset; |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | // Compute the DST offset for the time and shrink the cache interval |
| 924 | // to only contain the time. This allows fast repeated DST offset |
| 925 | // computations for the same time. |
| 926 | LocalTimeOffset offset = calculateLocalTimeOffset(ms); |
| 927 | cache.offset = offset; |
| 928 | cache.start = ms; |
| 929 | cache.end = ms; |
| 930 | cache.increment = msPerMonth; |
| 931 | return offset; |
| 932 | } |
| 933 | |
| 934 | double gregorianDateTimeToMS(ExecState* exec, const GregorianDateTime& t, double milliSeconds, bool inputIsUTC) |
| 935 | { |
| 936 | double day = dateToDaysFrom1970(year: t.year + 1900, month: t.month, day: t.monthDay); |
| 937 | double ms = timeToMS(hour: t.hour, min: t.minute, sec: t.second, ms: milliSeconds); |
| 938 | double result = (day * WTF::msPerDay) + ms; |
| 939 | |
| 940 | if (!inputIsUTC) |
| 941 | result -= localTimeOffset(exec, ms: result).offset; |
| 942 | |
| 943 | return result; |
| 944 | } |
| 945 | |
| 946 | // input is UTC |
| 947 | void msToGregorianDateTime(ExecState* exec, double ms, bool outputIsUTC, GregorianDateTime& tm) |
| 948 | { |
| 949 | LocalTimeOffset localTime(false, 0); |
| 950 | if (!outputIsUTC) { |
| 951 | localTime = localTimeOffset(exec, ms); |
| 952 | ms += localTime.offset; |
| 953 | } |
| 954 | |
| 955 | const int year = msToYear(ms); |
| 956 | tm.second = msToSeconds(ms); |
| 957 | tm.minute = msToMinutes(ms); |
| 958 | tm.hour = msToHours(ms); |
| 959 | tm.weekDay = msToWeekDay(ms); |
| 960 | tm.yearDay = dayInYear(ms, year); |
| 961 | tm.monthDay = dayInMonthFromDayInYear(dayInYear: tm.yearDay, leapYear: isLeapYear(year)); |
| 962 | tm.month = monthFromDayInYear(dayInYear: tm.yearDay, leapYear: isLeapYear(year)); |
| 963 | tm.year = year - 1900; |
| 964 | tm.isDST = localTime.isDST; |
| 965 | tm.utcOffset = localTime.offset / WTF::msPerSecond; |
| 966 | tm.timeZone = NULL; |
| 967 | } |
| 968 | |
| 969 | double parseDateFromNullTerminatedCharacters(ExecState* exec, const char* dateString) |
| 970 | { |
| 971 | ASSERT(exec); |
| 972 | bool haveTZ; |
| 973 | int offset; |
| 974 | double ms = WTF::parseDateFromNullTerminatedCharacters(dateString, haveTZ, offset); |
| 975 | if (std::isnan(x: ms)) |
| 976 | return NaN; |
| 977 | |
| 978 | // fall back to local timezone |
| 979 | if (!haveTZ) |
| 980 | offset = calculateLocalTimeOffset(ms).offset / msPerMinute; |
| 981 | |
| 982 | return ms - (offset * WTF::msPerMinute); |
| 983 | } |
| 984 | |
| 985 | } // namespace JSC |
| 986 | #endif // USE(JSC) |
| 987 | |