1 | // Copyright (c) 2005, 2007, Google Inc. |
2 | // All rights reserved. |
3 | // Copyright (C) 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved. |
4 | // |
5 | // Redistribution and use in source and binary forms, with or without |
6 | // modification, are permitted provided that the following conditions are |
7 | // met: |
8 | // |
9 | // * Redistributions of source code must retain the above copyright |
10 | // notice, this list of conditions and the following disclaimer. |
11 | // * Redistributions in binary form must reproduce the above |
12 | // copyright notice, this list of conditions and the following disclaimer |
13 | // in the documentation and/or other materials provided with the |
14 | // distribution. |
15 | // * Neither the name of Google Inc. nor the names of its |
16 | // contributors may be used to endorse or promote products derived from |
17 | // this software without specific prior written permission. |
18 | // |
19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
30 | |
31 | // --- |
32 | // Author: Sanjay Ghemawat <opensource@google.com> |
33 | // |
34 | // A malloc that uses a per-thread cache to satisfy small malloc requests. |
35 | // (The time for malloc/free of a small object drops from 300 ns to 50 ns.) |
36 | // |
37 | // See doc/tcmalloc.html for a high-level |
38 | // description of how this malloc works. |
39 | // |
40 | // SYNCHRONIZATION |
41 | // 1. The thread-specific lists are accessed without acquiring any locks. |
42 | // This is safe because each such list is only accessed by one thread. |
43 | // 2. We have a lock per central free-list, and hold it while manipulating |
44 | // the central free list for a particular size. |
45 | // 3. The central page allocator is protected by "pageheap_lock". |
46 | // 4. The pagemap (which maps from page-number to descriptor), |
47 | // can be read without holding any locks, and written while holding |
48 | // the "pageheap_lock". |
49 | // 5. To improve performance, a subset of the information one can get |
50 | // from the pagemap is cached in a data structure, pagemap_cache_, |
51 | // that atomically reads and writes its entries. This cache can be |
52 | // read and written without locking. |
53 | // |
54 | // This multi-threaded access to the pagemap is safe for fairly |
55 | // subtle reasons. We basically assume that when an object X is |
56 | // allocated by thread A and deallocated by thread B, there must |
57 | // have been appropriate synchronization in the handoff of object |
58 | // X from thread A to thread B. The same logic applies to pagemap_cache_. |
59 | // |
60 | // THE PAGEID-TO-SIZECLASS CACHE |
61 | // Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache |
62 | // returns 0 for a particular PageID then that means "no information," not that |
63 | // the sizeclass is 0. The cache may have stale information for pages that do |
64 | // not hold the beginning of any free()'able object. Staleness is eliminated |
65 | // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and |
66 | // do_memalign() for all other relevant pages. |
67 | // |
68 | // TODO: Bias reclamation to larger addresses |
69 | // TODO: implement mallinfo/mallopt |
70 | // TODO: Better testing |
71 | // |
72 | // 9/28/2003 (new page-level allocator replaces ptmalloc2): |
73 | // * malloc/free of small objects goes from ~300 ns to ~50 ns. |
74 | // * allocation of a reasonably complicated struct |
75 | // goes from about 1100 ns to about 300 ns. |
76 | |
77 | #include "config.h" |
78 | #include "FastMalloc.h" |
79 | |
80 | #include "Assertions.h" |
81 | #include <limits> |
82 | #if ENABLE(JSC_MULTIPLE_THREADS) |
83 | #include <pthread.h> |
84 | #endif |
85 | |
86 | #ifndef NO_TCMALLOC_SAMPLES |
87 | #ifdef WTF_CHANGES |
88 | #define NO_TCMALLOC_SAMPLES |
89 | #endif |
90 | #endif |
91 | |
92 | #if !(defined(USE_SYSTEM_MALLOC) && USE_SYSTEM_MALLOC) && defined(NDEBUG) |
93 | #define FORCE_SYSTEM_MALLOC 0 |
94 | #else |
95 | #define FORCE_SYSTEM_MALLOC 1 |
96 | #endif |
97 | |
98 | // Use a background thread to periodically scavenge memory to release back to the system |
99 | // https://bugs.webkit.org/show_bug.cgi?id=27900: don't turn this on for Tiger until we have figured out why it caused a crash. |
100 | #if defined(BUILDING_ON_TIGER) |
101 | #define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 0 |
102 | #else |
103 | #define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 1 |
104 | #endif |
105 | |
106 | #if defined(__HP_aCC) |
107 | // HP'a aCC compiler has broken for scoping |
108 | # define for if(0){}else for |
109 | #endif |
110 | |
111 | #ifndef NDEBUG |
112 | namespace WTF { |
113 | |
114 | #if ENABLE(JSC_MULTIPLE_THREADS) |
115 | static pthread_key_t isForbiddenKey; |
116 | static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT; |
117 | static void initializeIsForbiddenKey() |
118 | { |
119 | pthread_key_create(&isForbiddenKey, 0); |
120 | } |
121 | |
122 | #if !ASSERT_DISABLED |
123 | static bool isForbidden() |
124 | { |
125 | pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey); |
126 | return !!pthread_getspecific(isForbiddenKey); |
127 | } |
128 | #endif |
129 | |
130 | void fastMallocForbid() |
131 | { |
132 | pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey); |
133 | pthread_setspecific(isForbiddenKey, &isForbiddenKey); |
134 | } |
135 | |
136 | void fastMallocAllow() |
137 | { |
138 | pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey); |
139 | pthread_setspecific(isForbiddenKey, 0); |
140 | } |
141 | |
142 | #else |
143 | |
144 | static bool staticIsForbidden; |
145 | static bool isForbidden() |
146 | { |
147 | return staticIsForbidden; |
148 | } |
149 | |
150 | void fastMallocForbid() |
151 | { |
152 | staticIsForbidden = true; |
153 | } |
154 | |
155 | void fastMallocAllow() |
156 | { |
157 | staticIsForbidden = false; |
158 | } |
159 | #endif // ENABLE(JSC_MULTIPLE_THREADS) |
160 | |
161 | } // namespace WTF |
162 | #endif // NDEBUG |
163 | |
164 | #include <string.h> |
165 | |
166 | namespace WTF { |
167 | |
168 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
169 | |
170 | namespace Internal { |
171 | |
172 | void fastMallocMatchFailed(void*) |
173 | { |
174 | CRASH(); |
175 | } |
176 | |
177 | } // namespace Internal |
178 | |
179 | #endif |
180 | |
181 | void* fastZeroedMalloc(size_t n) |
182 | { |
183 | void* result = fastMalloc(n); |
184 | memset(s: result, c: 0, n: n); |
185 | return result; |
186 | } |
187 | |
188 | char* fastStrDup(const char* src) |
189 | { |
190 | int len = strlen(s: src) + 1; |
191 | char* dup = static_cast<char*>(fastMalloc(len)); |
192 | |
193 | if (dup) |
194 | memcpy(dest: dup, src: src, n: len); |
195 | |
196 | return dup; |
197 | } |
198 | |
199 | TryMallocReturnValue tryFastZeroedMalloc(size_t n) |
200 | { |
201 | void* result; |
202 | if (!tryFastMalloc(n).getValue(data&: result)) |
203 | return 0; |
204 | memset(s: result, c: 0, n: n); |
205 | return result; |
206 | } |
207 | |
208 | } // namespace WTF |
209 | |
210 | #if FORCE_SYSTEM_MALLOC |
211 | |
212 | namespace WTF { |
213 | |
214 | TryMallocReturnValue tryFastMalloc(size_t n) |
215 | { |
216 | ASSERT(!isForbidden()); |
217 | |
218 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
219 | if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n) // If overflow would occur... |
220 | return 0; |
221 | |
222 | void* result = malloc(n + sizeof(AllocAlignmentInteger)); |
223 | if (!result) |
224 | return 0; |
225 | |
226 | *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc; |
227 | result = static_cast<AllocAlignmentInteger*>(result) + 1; |
228 | |
229 | return result; |
230 | #else |
231 | return malloc(size: n); |
232 | #endif |
233 | } |
234 | |
235 | void* fastMalloc(size_t n) |
236 | { |
237 | ASSERT(!isForbidden()); |
238 | |
239 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
240 | TryMallocReturnValue returnValue = tryFastMalloc(n); |
241 | void* result; |
242 | returnValue.getValue(result); |
243 | #else |
244 | void* result = malloc(size: n); |
245 | #endif |
246 | |
247 | if (!result) |
248 | CRASH(); |
249 | return result; |
250 | } |
251 | |
252 | TryMallocReturnValue tryFastCalloc(size_t n_elements, size_t element_size) |
253 | { |
254 | ASSERT(!isForbidden()); |
255 | |
256 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
257 | size_t totalBytes = n_elements * element_size; |
258 | if (n_elements > 1 && element_size && (totalBytes / element_size) != n_elements || (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes)) |
259 | return 0; |
260 | |
261 | totalBytes += sizeof(AllocAlignmentInteger); |
262 | void* result = malloc(totalBytes); |
263 | if (!result) |
264 | return 0; |
265 | |
266 | memset(result, 0, totalBytes); |
267 | *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc; |
268 | result = static_cast<AllocAlignmentInteger*>(result) + 1; |
269 | return result; |
270 | #else |
271 | return calloc(nmemb: n_elements, size: element_size); |
272 | #endif |
273 | } |
274 | |
275 | void* fastCalloc(size_t n_elements, size_t element_size) |
276 | { |
277 | ASSERT(!isForbidden()); |
278 | |
279 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
280 | TryMallocReturnValue returnValue = tryFastCalloc(n_elements, element_size); |
281 | void* result; |
282 | returnValue.getValue(result); |
283 | #else |
284 | void* result = calloc(nmemb: n_elements, size: element_size); |
285 | #endif |
286 | |
287 | if (!result) |
288 | CRASH(); |
289 | return result; |
290 | } |
291 | |
292 | void fastFree(void* p) |
293 | { |
294 | ASSERT(!isForbidden()); |
295 | |
296 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
297 | if (!p) |
298 | return; |
299 | |
300 | AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p); |
301 | if (*header != Internal::AllocTypeMalloc) |
302 | Internal::fastMallocMatchFailed(p); |
303 | free(header); |
304 | #else |
305 | free(ptr: p); |
306 | #endif |
307 | } |
308 | |
309 | TryMallocReturnValue tryFastRealloc(void* p, size_t n) |
310 | { |
311 | ASSERT(!isForbidden()); |
312 | |
313 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
314 | if (p) { |
315 | if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n) // If overflow would occur... |
316 | return 0; |
317 | AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p); |
318 | if (*header != Internal::AllocTypeMalloc) |
319 | Internal::fastMallocMatchFailed(p); |
320 | void* result = realloc(header, n + sizeof(AllocAlignmentInteger)); |
321 | if (!result) |
322 | return 0; |
323 | |
324 | // This should not be needed because the value is already there: |
325 | // *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc; |
326 | result = static_cast<AllocAlignmentInteger*>(result) + 1; |
327 | return result; |
328 | } else { |
329 | return fastMalloc(n); |
330 | } |
331 | #else |
332 | return realloc(ptr: p, size: n); |
333 | #endif |
334 | } |
335 | |
336 | void* fastRealloc(void* p, size_t n) |
337 | { |
338 | ASSERT(!isForbidden()); |
339 | |
340 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
341 | TryMallocReturnValue returnValue = tryFastRealloc(p, n); |
342 | void* result; |
343 | returnValue.getValue(result); |
344 | #else |
345 | void* result = realloc(ptr: p, size: n); |
346 | #endif |
347 | |
348 | if (!result) |
349 | CRASH(); |
350 | return result; |
351 | } |
352 | |
353 | void releaseFastMallocFreeMemory() { } |
354 | |
355 | FastMallocStatistics fastMallocStatistics() |
356 | { |
357 | FastMallocStatistics statistics = { .heapSize: 0, .freeSizeInHeap: 0, .freeSizeInCaches: 0, .returnedSize: 0 }; |
358 | return statistics; |
359 | } |
360 | |
361 | } // namespace WTF |
362 | |
363 | #if OS(DARWIN) |
364 | // This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled. |
365 | // It will never be used in this case, so it's type and value are less interesting than its presence. |
366 | extern "C" const int jscore_fastmalloc_introspection = 0; |
367 | #endif |
368 | |
369 | #else // FORCE_SYSTEM_MALLOC |
370 | |
371 | #if HAVE(STDINT_H) |
372 | #include <stdint.h> |
373 | #elif HAVE(INTTYPES_H) |
374 | #include <inttypes.h> |
375 | #else |
376 | #include <sys/types.h> |
377 | #endif |
378 | |
379 | #include "AlwaysInline.h" |
380 | #include "Assertions.h" |
381 | #include "TCPackedCache.h" |
382 | #include "TCPageMap.h" |
383 | #include "TCSpinLock.h" |
384 | #include "TCSystemAlloc.h" |
385 | #include <algorithm> |
386 | #include <errno.h> |
387 | #include <limits> |
388 | #include <new> |
389 | #include <pthread.h> |
390 | #include <stdarg.h> |
391 | #include <stddef.h> |
392 | #include <stdio.h> |
393 | #if OS(UNIX) |
394 | #include <unistd.h> |
395 | #endif |
396 | #if COMPILER(MSVC) |
397 | #ifndef WIN32_LEAN_AND_MEAN |
398 | #define WIN32_LEAN_AND_MEAN |
399 | #endif |
400 | #include <windows.h> |
401 | #endif |
402 | |
403 | #if WTF_CHANGES |
404 | |
405 | #if OS(DARWIN) |
406 | #include "MallocZoneSupport.h" |
407 | #include <wtf/HashSet.h> |
408 | #include <wtf/Vector.h> |
409 | #endif |
410 | #if HAVE(DISPATCH_H) |
411 | #include <dispatch/dispatch.h> |
412 | #endif |
413 | |
414 | |
415 | #ifndef PRIuS |
416 | #define PRIuS "zu" |
417 | #endif |
418 | |
419 | // Calling pthread_getspecific through a global function pointer is faster than a normal |
420 | // call to the function on Mac OS X, and it's used in performance-critical code. So we |
421 | // use a function pointer. But that's not necessarily faster on other platforms, and we had |
422 | // problems with this technique on Windows, so we'll do this only on Mac OS X. |
423 | #if OS(DARWIN) |
424 | static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific; |
425 | #define pthread_getspecific(key) pthread_getspecific_function_pointer(key) |
426 | #endif |
427 | |
428 | #define DEFINE_VARIABLE(type, name, value, meaning) \ |
429 | namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead { \ |
430 | type FLAGS_##name(value); \ |
431 | char FLAGS_no##name; \ |
432 | } \ |
433 | using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name |
434 | |
435 | #define DEFINE_int64(name, value, meaning) \ |
436 | DEFINE_VARIABLE(int64_t, name, value, meaning) |
437 | |
438 | #define DEFINE_double(name, value, meaning) \ |
439 | DEFINE_VARIABLE(double, name, value, meaning) |
440 | |
441 | namespace WTF { |
442 | |
443 | #define malloc fastMalloc |
444 | #define calloc fastCalloc |
445 | #define free fastFree |
446 | #define realloc fastRealloc |
447 | |
448 | #define MESSAGE LOG_ERROR |
449 | #define CHECK_CONDITION ASSERT |
450 | |
451 | #if OS(DARWIN) |
452 | class Span; |
453 | class TCMalloc_Central_FreeListPadded; |
454 | class TCMalloc_PageHeap; |
455 | class TCMalloc_ThreadCache; |
456 | template <typename T> class PageHeapAllocator; |
457 | |
458 | class FastMallocZone { |
459 | public: |
460 | static void init(); |
461 | |
462 | static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t); |
463 | static size_t goodSize(malloc_zone_t*, size_t size) { return size; } |
464 | static boolean_t check(malloc_zone_t*) { return true; } |
465 | static void print(malloc_zone_t*, boolean_t) { } |
466 | static void log(malloc_zone_t*, void*) { } |
467 | static void forceLock(malloc_zone_t*) { } |
468 | static void forceUnlock(malloc_zone_t*) { } |
469 | static void statistics(malloc_zone_t*, malloc_statistics_t* stats) { memset(stats, 0, sizeof(malloc_statistics_t)); } |
470 | |
471 | private: |
472 | FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*, PageHeapAllocator<Span>*, PageHeapAllocator<TCMalloc_ThreadCache>*); |
473 | static size_t size(malloc_zone_t*, const void*); |
474 | static void* zoneMalloc(malloc_zone_t*, size_t); |
475 | static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size); |
476 | static void zoneFree(malloc_zone_t*, void*); |
477 | static void* zoneRealloc(malloc_zone_t*, void*, size_t); |
478 | static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported" ); return 0; } |
479 | static void zoneDestroy(malloc_zone_t*) { } |
480 | |
481 | malloc_zone_t m_zone; |
482 | TCMalloc_PageHeap* m_pageHeap; |
483 | TCMalloc_ThreadCache** m_threadHeaps; |
484 | TCMalloc_Central_FreeListPadded* m_centralCaches; |
485 | PageHeapAllocator<Span>* m_spanAllocator; |
486 | PageHeapAllocator<TCMalloc_ThreadCache>* m_pageHeapAllocator; |
487 | }; |
488 | |
489 | #endif |
490 | |
491 | #endif |
492 | |
493 | #ifndef WTF_CHANGES |
494 | // This #ifdef should almost never be set. Set NO_TCMALLOC_SAMPLES if |
495 | // you're porting to a system where you really can't get a stacktrace. |
496 | #ifdef NO_TCMALLOC_SAMPLES |
497 | // We use #define so code compiles even if you #include stacktrace.h somehow. |
498 | # define GetStackTrace(stack, depth, skip) (0) |
499 | #else |
500 | # include <google/stacktrace.h> |
501 | #endif |
502 | #endif |
503 | |
504 | // Even if we have support for thread-local storage in the compiler |
505 | // and linker, the OS may not support it. We need to check that at |
506 | // runtime. Right now, we have to keep a manual set of "bad" OSes. |
507 | #if defined(HAVE_TLS) |
508 | static bool kernel_supports_tls = false; // be conservative |
509 | static inline bool KernelSupportsTLS() { |
510 | return kernel_supports_tls; |
511 | } |
512 | # if !HAVE_DECL_UNAME // if too old for uname, probably too old for TLS |
513 | static void CheckIfKernelSupportsTLS() { |
514 | kernel_supports_tls = false; |
515 | } |
516 | # else |
517 | # include <sys/utsname.h> // DECL_UNAME checked for <sys/utsname.h> too |
518 | static void CheckIfKernelSupportsTLS() { |
519 | struct utsname buf; |
520 | if (uname(&buf) != 0) { // should be impossible |
521 | MESSAGE("uname failed assuming no TLS support (errno=%d)\n" , errno); |
522 | kernel_supports_tls = false; |
523 | } else if (strcasecmp(buf.sysname, "linux" ) == 0) { |
524 | // The linux case: the first kernel to support TLS was 2.6.0 |
525 | if (buf.release[0] < '2' && buf.release[1] == '.') // 0.x or 1.x |
526 | kernel_supports_tls = false; |
527 | else if (buf.release[0] == '2' && buf.release[1] == '.' && |
528 | buf.release[2] >= '0' && buf.release[2] < '6' && |
529 | buf.release[3] == '.') // 2.0 - 2.5 |
530 | kernel_supports_tls = false; |
531 | else |
532 | kernel_supports_tls = true; |
533 | } else { // some other kernel, we'll be optimisitic |
534 | kernel_supports_tls = true; |
535 | } |
536 | // TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG |
537 | } |
538 | # endif // HAVE_DECL_UNAME |
539 | #endif // HAVE_TLS |
540 | |
541 | // __THROW is defined in glibc systems. It means, counter-intuitively, |
542 | // "This function will never throw an exception." It's an optional |
543 | // optimization tool, but we may need to use it to match glibc prototypes. |
544 | #ifndef __THROW // I guess we're not on a glibc system |
545 | # define __THROW // __THROW is just an optimization, so ok to make it "" |
546 | #endif |
547 | |
548 | //------------------------------------------------------------------- |
549 | // Configuration |
550 | //------------------------------------------------------------------- |
551 | |
552 | // Not all possible combinations of the following parameters make |
553 | // sense. In particular, if kMaxSize increases, you may have to |
554 | // increase kNumClasses as well. |
555 | static const size_t kPageShift = 12; |
556 | static const size_t kPageSize = 1 << kPageShift; |
557 | static const size_t kMaxSize = 8u * kPageSize; |
558 | static const size_t kAlignShift = 3; |
559 | static const size_t kAlignment = 1 << kAlignShift; |
560 | static const size_t kNumClasses = 68; |
561 | |
562 | // Allocates a big block of memory for the pagemap once we reach more than |
563 | // 128MB |
564 | static const size_t kPageMapBigAllocationThreshold = 128 << 20; |
565 | |
566 | // Minimum number of pages to fetch from system at a time. Must be |
567 | // significantly bigger than kPageSize to amortize system-call |
568 | // overhead, and also to reduce external fragementation. Also, we |
569 | // should keep this value big because various incarnations of Linux |
570 | // have small limits on the number of mmap() regions per |
571 | // address-space. |
572 | static const size_t kMinSystemAlloc = 1 << (20 - kPageShift); |
573 | |
574 | // Number of objects to move between a per-thread list and a central |
575 | // list in one shot. We want this to be not too small so we can |
576 | // amortize the lock overhead for accessing the central list. Making |
577 | // it too big may temporarily cause unnecessary memory wastage in the |
578 | // per-thread free list until the scavenger cleans up the list. |
579 | static int num_objects_to_move[kNumClasses]; |
580 | |
581 | // Maximum length we allow a per-thread free-list to have before we |
582 | // move objects from it into the corresponding central free-list. We |
583 | // want this big to avoid locking the central free-list too often. It |
584 | // should not hurt to make this list somewhat big because the |
585 | // scavenging code will shrink it down when its contents are not in use. |
586 | static const int kMaxFreeListLength = 256; |
587 | |
588 | // Lower and upper bounds on the per-thread cache sizes |
589 | static const size_t kMinThreadCacheSize = kMaxSize * 2; |
590 | static const size_t kMaxThreadCacheSize = 2 << 20; |
591 | |
592 | // Default bound on the total amount of thread caches |
593 | static const size_t kDefaultOverallThreadCacheSize = 16 << 20; |
594 | |
595 | // For all span-lengths < kMaxPages we keep an exact-size list. |
596 | // REQUIRED: kMaxPages >= kMinSystemAlloc; |
597 | static const size_t kMaxPages = kMinSystemAlloc; |
598 | |
599 | /* The smallest prime > 2^n */ |
600 | static int primes_list[] = { |
601 | // Small values might cause high rates of sampling |
602 | // and hence commented out. |
603 | // 2, 5, 11, 17, 37, 67, 131, 257, |
604 | // 521, 1031, 2053, 4099, 8209, 16411, |
605 | 32771, 65537, 131101, 262147, 524309, 1048583, |
606 | 2097169, 4194319, 8388617, 16777259, 33554467 }; |
607 | |
608 | // Twice the approximate gap between sampling actions. |
609 | // I.e., we take one sample approximately once every |
610 | // tcmalloc_sample_parameter/2 |
611 | // bytes of allocation, i.e., ~ once every 128KB. |
612 | // Must be a prime number. |
613 | #ifdef NO_TCMALLOC_SAMPLES |
614 | DEFINE_int64(tcmalloc_sample_parameter, 0, |
615 | "Unused: code is compiled with NO_TCMALLOC_SAMPLES" ); |
616 | static size_t sample_period = 0; |
617 | #else |
618 | DEFINE_int64(tcmalloc_sample_parameter, 262147, |
619 | "Twice the approximate gap between sampling actions." |
620 | " Must be a prime number. Otherwise will be rounded up to a " |
621 | " larger prime number" ); |
622 | static size_t sample_period = 262147; |
623 | #endif |
624 | |
625 | // Protects sample_period above |
626 | static SpinLock sample_period_lock = SPINLOCK_INITIALIZER; |
627 | |
628 | // Parameters for controlling how fast memory is returned to the OS. |
629 | |
630 | DEFINE_double(tcmalloc_release_rate, 1, |
631 | "Rate at which we release unused memory to the system. " |
632 | "Zero means we never release memory back to the system. " |
633 | "Increase this flag to return memory faster; decrease it " |
634 | "to return memory slower. Reasonable rates are in the " |
635 | "range [0,10]" ); |
636 | |
637 | //------------------------------------------------------------------- |
638 | // Mapping from size to size_class and vice versa |
639 | //------------------------------------------------------------------- |
640 | |
641 | // Sizes <= 1024 have an alignment >= 8. So for such sizes we have an |
642 | // array indexed by ceil(size/8). Sizes > 1024 have an alignment >= 128. |
643 | // So for these larger sizes we have an array indexed by ceil(size/128). |
644 | // |
645 | // We flatten both logical arrays into one physical array and use |
646 | // arithmetic to compute an appropriate index. The constants used by |
647 | // ClassIndex() were selected to make the flattening work. |
648 | // |
649 | // Examples: |
650 | // Size Expression Index |
651 | // ------------------------------------------------------- |
652 | // 0 (0 + 7) / 8 0 |
653 | // 1 (1 + 7) / 8 1 |
654 | // ... |
655 | // 1024 (1024 + 7) / 8 128 |
656 | // 1025 (1025 + 127 + (120<<7)) / 128 129 |
657 | // ... |
658 | // 32768 (32768 + 127 + (120<<7)) / 128 376 |
659 | static const size_t kMaxSmallSize = 1024; |
660 | static const int shift_amount[2] = { 3, 7 }; // For divides by 8 or 128 |
661 | static const int add_amount[2] = { 7, 127 + (120 << 7) }; |
662 | static unsigned char class_array[377]; |
663 | |
664 | // Compute index of the class_array[] entry for a given size |
665 | static inline int ClassIndex(size_t s) { |
666 | const int i = (s > kMaxSmallSize); |
667 | return static_cast<int>((s + add_amount[i]) >> shift_amount[i]); |
668 | } |
669 | |
670 | // Mapping from size class to max size storable in that class |
671 | static size_t class_to_size[kNumClasses]; |
672 | |
673 | // Mapping from size class to number of pages to allocate at a time |
674 | static size_t class_to_pages[kNumClasses]; |
675 | |
676 | // TransferCache is used to cache transfers of num_objects_to_move[size_class] |
677 | // back and forth between thread caches and the central cache for a given size |
678 | // class. |
679 | struct TCEntry { |
680 | void *head; // Head of chain of objects. |
681 | void *tail; // Tail of chain of objects. |
682 | }; |
683 | // A central cache freelist can have anywhere from 0 to kNumTransferEntries |
684 | // slots to put link list chains into. To keep memory usage bounded the total |
685 | // number of TCEntries across size classes is fixed. Currently each size |
686 | // class is initially given one TCEntry which also means that the maximum any |
687 | // one class can have is kNumClasses. |
688 | static const int kNumTransferEntries = kNumClasses; |
689 | |
690 | // Note: the following only works for "n"s that fit in 32-bits, but |
691 | // that is fine since we only use it for small sizes. |
692 | static inline int LgFloor(size_t n) { |
693 | int log = 0; |
694 | for (int i = 4; i >= 0; --i) { |
695 | int shift = (1 << i); |
696 | size_t x = n >> shift; |
697 | if (x != 0) { |
698 | n = x; |
699 | log += shift; |
700 | } |
701 | } |
702 | ASSERT(n == 1); |
703 | return log; |
704 | } |
705 | |
706 | // Some very basic linked list functions for dealing with using void * as |
707 | // storage. |
708 | |
709 | static inline void *SLL_Next(void *t) { |
710 | return *(reinterpret_cast<void**>(t)); |
711 | } |
712 | |
713 | static inline void SLL_SetNext(void *t, void *n) { |
714 | *(reinterpret_cast<void**>(t)) = n; |
715 | } |
716 | |
717 | static inline void SLL_Push(void **list, void *element) { |
718 | SLL_SetNext(element, *list); |
719 | *list = element; |
720 | } |
721 | |
722 | static inline void *SLL_Pop(void **list) { |
723 | void *result = *list; |
724 | *list = SLL_Next(*list); |
725 | return result; |
726 | } |
727 | |
728 | |
729 | // Remove N elements from a linked list to which head points. head will be |
730 | // modified to point to the new head. start and end will point to the first |
731 | // and last nodes of the range. Note that end will point to NULL after this |
732 | // function is called. |
733 | static inline void SLL_PopRange(void **head, int N, void **start, void **end) { |
734 | if (N == 0) { |
735 | *start = NULL; |
736 | *end = NULL; |
737 | return; |
738 | } |
739 | |
740 | void *tmp = *head; |
741 | for (int i = 1; i < N; ++i) { |
742 | tmp = SLL_Next(tmp); |
743 | } |
744 | |
745 | *start = *head; |
746 | *end = tmp; |
747 | *head = SLL_Next(tmp); |
748 | // Unlink range from list. |
749 | SLL_SetNext(tmp, NULL); |
750 | } |
751 | |
752 | static inline void SLL_PushRange(void **head, void *start, void *end) { |
753 | if (!start) return; |
754 | SLL_SetNext(end, *head); |
755 | *head = start; |
756 | } |
757 | |
758 | static inline size_t SLL_Size(void *head) { |
759 | int count = 0; |
760 | while (head) { |
761 | count++; |
762 | head = SLL_Next(head); |
763 | } |
764 | return count; |
765 | } |
766 | |
767 | // Setup helper functions. |
768 | |
769 | static ALWAYS_INLINE size_t SizeClass(size_t size) { |
770 | return class_array[ClassIndex(size)]; |
771 | } |
772 | |
773 | // Get the byte-size for a specified class |
774 | static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) { |
775 | return class_to_size[cl]; |
776 | } |
777 | static int NumMoveSize(size_t size) { |
778 | if (size == 0) return 0; |
779 | // Use approx 64k transfers between thread and central caches. |
780 | int num = static_cast<int>(64.0 * 1024.0 / size); |
781 | if (num < 2) num = 2; |
782 | // Clamp well below kMaxFreeListLength to avoid ping pong between central |
783 | // and thread caches. |
784 | if (num > static_cast<int>(0.8 * kMaxFreeListLength)) |
785 | num = static_cast<int>(0.8 * kMaxFreeListLength); |
786 | |
787 | // Also, avoid bringing in too many objects into small object free |
788 | // lists. There are lots of such lists, and if we allow each one to |
789 | // fetch too many at a time, we end up having to scavenge too often |
790 | // (especially when there are lots of threads and each thread gets a |
791 | // small allowance for its thread cache). |
792 | // |
793 | // TODO: Make thread cache free list sizes dynamic so that we do not |
794 | // have to equally divide a fixed resource amongst lots of threads. |
795 | if (num > 32) num = 32; |
796 | |
797 | return num; |
798 | } |
799 | |
800 | // Initialize the mapping arrays |
801 | static void InitSizeClasses() { |
802 | // Do some sanity checking on add_amount[]/shift_amount[]/class_array[] |
803 | if (ClassIndex(0) < 0) { |
804 | MESSAGE("Invalid class index %d for size 0\n" , ClassIndex(0)); |
805 | CRASH(); |
806 | } |
807 | if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) { |
808 | MESSAGE("Invalid class index %d for kMaxSize\n" , ClassIndex(kMaxSize)); |
809 | CRASH(); |
810 | } |
811 | |
812 | // Compute the size classes we want to use |
813 | size_t sc = 1; // Next size class to assign |
814 | unsigned char alignshift = kAlignShift; |
815 | int last_lg = -1; |
816 | for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) { |
817 | int lg = LgFloor(size); |
818 | if (lg > last_lg) { |
819 | // Increase alignment every so often. |
820 | // |
821 | // Since we double the alignment every time size doubles and |
822 | // size >= 128, this means that space wasted due to alignment is |
823 | // at most 16/128 i.e., 12.5%. Plus we cap the alignment at 256 |
824 | // bytes, so the space wasted as a percentage starts falling for |
825 | // sizes > 2K. |
826 | if ((lg >= 7) && (alignshift < 8)) { |
827 | alignshift++; |
828 | } |
829 | last_lg = lg; |
830 | } |
831 | |
832 | // Allocate enough pages so leftover is less than 1/8 of total. |
833 | // This bounds wasted space to at most 12.5%. |
834 | size_t psize = kPageSize; |
835 | while ((psize % size) > (psize >> 3)) { |
836 | psize += kPageSize; |
837 | } |
838 | const size_t my_pages = psize >> kPageShift; |
839 | |
840 | if (sc > 1 && my_pages == class_to_pages[sc-1]) { |
841 | // See if we can merge this into the previous class without |
842 | // increasing the fragmentation of the previous class. |
843 | const size_t my_objects = (my_pages << kPageShift) / size; |
844 | const size_t prev_objects = (class_to_pages[sc-1] << kPageShift) |
845 | / class_to_size[sc-1]; |
846 | if (my_objects == prev_objects) { |
847 | // Adjust last class to include this size |
848 | class_to_size[sc-1] = size; |
849 | continue; |
850 | } |
851 | } |
852 | |
853 | // Add new class |
854 | class_to_pages[sc] = my_pages; |
855 | class_to_size[sc] = size; |
856 | sc++; |
857 | } |
858 | if (sc != kNumClasses) { |
859 | MESSAGE("wrong number of size classes: found %" PRIuS " instead of %d\n" , |
860 | sc, int(kNumClasses)); |
861 | CRASH(); |
862 | } |
863 | |
864 | // Initialize the mapping arrays |
865 | int next_size = 0; |
866 | for (unsigned char c = 1; c < kNumClasses; c++) { |
867 | const size_t max_size_in_class = class_to_size[c]; |
868 | for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) { |
869 | class_array[ClassIndex(s)] = c; |
870 | } |
871 | next_size = static_cast<int>(max_size_in_class + kAlignment); |
872 | } |
873 | |
874 | // Double-check sizes just to be safe |
875 | for (size_t size = 0; size <= kMaxSize; size++) { |
876 | const size_t sc = SizeClass(size); |
877 | if (sc == 0) { |
878 | MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n" , sc, size); |
879 | CRASH(); |
880 | } |
881 | if (sc > 1 && size <= class_to_size[sc-1]) { |
882 | MESSAGE("Allocating unnecessarily large class %" PRIuS " for %" PRIuS |
883 | "\n" , sc, size); |
884 | CRASH(); |
885 | } |
886 | if (sc >= kNumClasses) { |
887 | MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n" , sc, size); |
888 | CRASH(); |
889 | } |
890 | const size_t s = class_to_size[sc]; |
891 | if (size > s) { |
892 | MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n" , s, size, sc); |
893 | CRASH(); |
894 | } |
895 | if (s == 0) { |
896 | MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n" , s, size, sc); |
897 | CRASH(); |
898 | } |
899 | } |
900 | |
901 | // Initialize the num_objects_to_move array. |
902 | for (size_t cl = 1; cl < kNumClasses; ++cl) { |
903 | num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl)); |
904 | } |
905 | |
906 | #ifndef WTF_CHANGES |
907 | if (false) { |
908 | // Dump class sizes and maximum external wastage per size class |
909 | for (size_t cl = 1; cl < kNumClasses; ++cl) { |
910 | const int alloc_size = class_to_pages[cl] << kPageShift; |
911 | const int alloc_objs = alloc_size / class_to_size[cl]; |
912 | const int min_used = (class_to_size[cl-1] + 1) * alloc_objs; |
913 | const int max_waste = alloc_size - min_used; |
914 | MESSAGE("SC %3d [ %8d .. %8d ] from %8d ; %2.0f%% maxwaste\n" , |
915 | int(cl), |
916 | int(class_to_size[cl-1] + 1), |
917 | int(class_to_size[cl]), |
918 | int(class_to_pages[cl] << kPageShift), |
919 | max_waste * 100.0 / alloc_size |
920 | ); |
921 | } |
922 | } |
923 | #endif |
924 | } |
925 | |
926 | // ------------------------------------------------------------------------- |
927 | // Simple allocator for objects of a specified type. External locking |
928 | // is required before accessing one of these objects. |
929 | // ------------------------------------------------------------------------- |
930 | |
931 | // Metadata allocator -- keeps stats about how many bytes allocated |
932 | static uint64_t metadata_system_bytes = 0; |
933 | static void* MetaDataAlloc(size_t bytes) { |
934 | void* result = TCMalloc_SystemAlloc(bytes, 0); |
935 | if (result != NULL) { |
936 | metadata_system_bytes += bytes; |
937 | } |
938 | return result; |
939 | } |
940 | |
941 | template <class T> |
942 | class PageHeapAllocator { |
943 | private: |
944 | // How much to allocate from system at a time |
945 | static const size_t kAllocIncrement = 32 << 10; |
946 | |
947 | // Aligned size of T |
948 | static const size_t kAlignedSize |
949 | = (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment); |
950 | |
951 | // Free area from which to carve new objects |
952 | char* free_area_; |
953 | size_t free_avail_; |
954 | |
955 | // Linked list of all regions allocated by this allocator |
956 | void* allocated_regions_; |
957 | |
958 | // Free list of already carved objects |
959 | void* free_list_; |
960 | |
961 | // Number of allocated but unfreed objects |
962 | int inuse_; |
963 | |
964 | public: |
965 | void Init() { |
966 | ASSERT(kAlignedSize <= kAllocIncrement); |
967 | inuse_ = 0; |
968 | allocated_regions_ = 0; |
969 | free_area_ = NULL; |
970 | free_avail_ = 0; |
971 | free_list_ = NULL; |
972 | } |
973 | |
974 | T* New() { |
975 | // Consult free list |
976 | void* result; |
977 | if (free_list_ != NULL) { |
978 | result = free_list_; |
979 | free_list_ = *(reinterpret_cast<void**>(result)); |
980 | } else { |
981 | if (free_avail_ < kAlignedSize) { |
982 | // Need more room |
983 | char* new_allocation = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement)); |
984 | if (!new_allocation) |
985 | CRASH(); |
986 | |
987 | *(void**)new_allocation = allocated_regions_; |
988 | allocated_regions_ = new_allocation; |
989 | free_area_ = new_allocation + kAlignedSize; |
990 | free_avail_ = kAllocIncrement - kAlignedSize; |
991 | } |
992 | result = free_area_; |
993 | free_area_ += kAlignedSize; |
994 | free_avail_ -= kAlignedSize; |
995 | } |
996 | inuse_++; |
997 | return reinterpret_cast<T*>(result); |
998 | } |
999 | |
1000 | void Delete(T* p) { |
1001 | *(reinterpret_cast<void**>(p)) = free_list_; |
1002 | free_list_ = p; |
1003 | inuse_--; |
1004 | } |
1005 | |
1006 | int inuse() const { return inuse_; } |
1007 | |
1008 | #if defined(WTF_CHANGES) && OS(DARWIN) |
1009 | template <class Recorder> |
1010 | void recordAdministrativeRegions(Recorder& recorder, const RemoteMemoryReader& reader) |
1011 | { |
1012 | vm_address_t adminAllocation = reinterpret_cast<vm_address_t>(allocated_regions_); |
1013 | while (adminAllocation) { |
1014 | recorder.recordRegion(adminAllocation, kAllocIncrement); |
1015 | adminAllocation = *reader(reinterpret_cast<vm_address_t*>(adminAllocation)); |
1016 | } |
1017 | } |
1018 | #endif |
1019 | }; |
1020 | |
1021 | // ------------------------------------------------------------------------- |
1022 | // Span - a contiguous run of pages |
1023 | // ------------------------------------------------------------------------- |
1024 | |
1025 | // Type that can hold a page number |
1026 | typedef uintptr_t PageID; |
1027 | |
1028 | // Type that can hold the length of a run of pages |
1029 | typedef uintptr_t Length; |
1030 | |
1031 | static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift; |
1032 | |
1033 | // Convert byte size into pages. This won't overflow, but may return |
1034 | // an unreasonably large value if bytes is huge enough. |
1035 | static inline Length pages(size_t bytes) { |
1036 | return (bytes >> kPageShift) + |
1037 | ((bytes & (kPageSize - 1)) > 0 ? 1 : 0); |
1038 | } |
1039 | |
1040 | // Convert a user size into the number of bytes that will actually be |
1041 | // allocated |
1042 | static size_t AllocationSize(size_t bytes) { |
1043 | if (bytes > kMaxSize) { |
1044 | // Large object: we allocate an integral number of pages |
1045 | ASSERT(bytes <= (kMaxValidPages << kPageShift)); |
1046 | return pages(bytes) << kPageShift; |
1047 | } else { |
1048 | // Small object: find the size class to which it belongs |
1049 | return ByteSizeForClass(SizeClass(bytes)); |
1050 | } |
1051 | } |
1052 | |
1053 | // Information kept for a span (a contiguous run of pages). |
1054 | struct Span { |
1055 | PageID start; // Starting page number |
1056 | Length length; // Number of pages in span |
1057 | Span* next; // Used when in link list |
1058 | Span* prev; // Used when in link list |
1059 | void* objects; // Linked list of free objects |
1060 | unsigned int free : 1; // Is the span free |
1061 | #ifndef NO_TCMALLOC_SAMPLES |
1062 | unsigned int sample : 1; // Sampled object? |
1063 | #endif |
1064 | unsigned int sizeclass : 8; // Size-class for small objects (or 0) |
1065 | unsigned int refcount : 11; // Number of non-free objects |
1066 | bool decommitted : 1; |
1067 | |
1068 | #undef SPAN_HISTORY |
1069 | #ifdef SPAN_HISTORY |
1070 | // For debugging, we can keep a log events per span |
1071 | int nexthistory; |
1072 | char history[64]; |
1073 | int value[64]; |
1074 | #endif |
1075 | }; |
1076 | |
1077 | #define ASSERT_SPAN_COMMITTED(span) ASSERT(!span->decommitted) |
1078 | |
1079 | #ifdef SPAN_HISTORY |
1080 | void Event(Span* span, char op, int v = 0) { |
1081 | span->history[span->nexthistory] = op; |
1082 | span->value[span->nexthistory] = v; |
1083 | span->nexthistory++; |
1084 | if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0; |
1085 | } |
1086 | #else |
1087 | #define Event(s,o,v) ((void) 0) |
1088 | #endif |
1089 | |
1090 | // Allocator/deallocator for spans |
1091 | static PageHeapAllocator<Span> span_allocator; |
1092 | static Span* NewSpan(PageID p, Length len) { |
1093 | Span* result = span_allocator.New(); |
1094 | memset(result, 0, sizeof(*result)); |
1095 | result->start = p; |
1096 | result->length = len; |
1097 | #ifdef SPAN_HISTORY |
1098 | result->nexthistory = 0; |
1099 | #endif |
1100 | return result; |
1101 | } |
1102 | |
1103 | static inline void DeleteSpan(Span* span) { |
1104 | #ifndef NDEBUG |
1105 | // In debug mode, trash the contents of deleted Spans |
1106 | memset(span, 0x3f, sizeof(*span)); |
1107 | #endif |
1108 | span_allocator.Delete(span); |
1109 | } |
1110 | |
1111 | // ------------------------------------------------------------------------- |
1112 | // Doubly linked list of spans. |
1113 | // ------------------------------------------------------------------------- |
1114 | |
1115 | static inline void DLL_Init(Span* list) { |
1116 | list->next = list; |
1117 | list->prev = list; |
1118 | } |
1119 | |
1120 | static inline void DLL_Remove(Span* span) { |
1121 | span->prev->next = span->next; |
1122 | span->next->prev = span->prev; |
1123 | span->prev = NULL; |
1124 | span->next = NULL; |
1125 | } |
1126 | |
1127 | static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) { |
1128 | return list->next == list; |
1129 | } |
1130 | |
1131 | static int DLL_Length(const Span* list) { |
1132 | int result = 0; |
1133 | for (Span* s = list->next; s != list; s = s->next) { |
1134 | result++; |
1135 | } |
1136 | return result; |
1137 | } |
1138 | |
1139 | #if 0 /* Not needed at the moment -- causes compiler warnings if not used */ |
1140 | static void DLL_Print(const char* label, const Span* list) { |
1141 | MESSAGE("%-10s %p:" , label, list); |
1142 | for (const Span* s = list->next; s != list; s = s->next) { |
1143 | MESSAGE(" <%p,%u,%u>" , s, s->start, s->length); |
1144 | } |
1145 | MESSAGE("\n" ); |
1146 | } |
1147 | #endif |
1148 | |
1149 | static inline void DLL_Prepend(Span* list, Span* span) { |
1150 | ASSERT(span->next == NULL); |
1151 | ASSERT(span->prev == NULL); |
1152 | span->next = list->next; |
1153 | span->prev = list; |
1154 | list->next->prev = span; |
1155 | list->next = span; |
1156 | } |
1157 | |
1158 | // ------------------------------------------------------------------------- |
1159 | // Stack traces kept for sampled allocations |
1160 | // The following state is protected by pageheap_lock_. |
1161 | // ------------------------------------------------------------------------- |
1162 | |
1163 | // size/depth are made the same size as a pointer so that some generic |
1164 | // code below can conveniently cast them back and forth to void*. |
1165 | static const int kMaxStackDepth = 31; |
1166 | struct StackTrace { |
1167 | uintptr_t size; // Size of object |
1168 | uintptr_t depth; // Number of PC values stored in array below |
1169 | void* stack[kMaxStackDepth]; |
1170 | }; |
1171 | static PageHeapAllocator<StackTrace> stacktrace_allocator; |
1172 | static Span sampled_objects; |
1173 | |
1174 | // ------------------------------------------------------------------------- |
1175 | // Map from page-id to per-page data |
1176 | // ------------------------------------------------------------------------- |
1177 | |
1178 | // We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines. |
1179 | // We also use a simple one-level cache for hot PageID-to-sizeclass mappings, |
1180 | // because sometimes the sizeclass is all the information we need. |
1181 | |
1182 | // Selector class -- general selector uses 3-level map |
1183 | template <int BITS> class MapSelector { |
1184 | public: |
1185 | typedef TCMalloc_PageMap3<BITS-kPageShift> Type; |
1186 | typedef PackedCache<BITS, uint64_t> CacheType; |
1187 | }; |
1188 | |
1189 | #if defined(WTF_CHANGES) |
1190 | #if CPU(X86_64) |
1191 | // On all known X86-64 platforms, the upper 16 bits are always unused and therefore |
1192 | // can be excluded from the PageMap key. |
1193 | // See http://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details |
1194 | |
1195 | static const size_t kBitsUnusedOn64Bit = 16; |
1196 | #else |
1197 | static const size_t kBitsUnusedOn64Bit = 0; |
1198 | #endif |
1199 | |
1200 | // A three-level map for 64-bit machines |
1201 | template <> class MapSelector<64> { |
1202 | public: |
1203 | typedef TCMalloc_PageMap3<64 - kPageShift - kBitsUnusedOn64Bit> Type; |
1204 | typedef PackedCache<64, uint64_t> CacheType; |
1205 | }; |
1206 | #endif |
1207 | |
1208 | // A two-level map for 32-bit machines |
1209 | template <> class MapSelector<32> { |
1210 | public: |
1211 | typedef TCMalloc_PageMap2<32 - kPageShift> Type; |
1212 | typedef PackedCache<32 - kPageShift, uint16_t> CacheType; |
1213 | }; |
1214 | |
1215 | // ------------------------------------------------------------------------- |
1216 | // Page-level allocator |
1217 | // * Eager coalescing |
1218 | // |
1219 | // Heap for page-level allocation. We allow allocating and freeing a |
1220 | // contiguous runs of pages (called a "span"). |
1221 | // ------------------------------------------------------------------------- |
1222 | |
1223 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1224 | // The central page heap collects spans of memory that have been deleted but are still committed until they are released |
1225 | // back to the system. We use a background thread to periodically scan the list of free spans and release some back to the |
1226 | // system. Every 5 seconds, the background thread wakes up and does the following: |
1227 | // - Check if we needed to commit memory in the last 5 seconds. If so, skip this scavenge because it's a sign that we are short |
1228 | // of free committed pages and so we should not release them back to the system yet. |
1229 | // - Otherwise, go through the list of free spans (from largest to smallest) and release up to a fraction of the free committed pages |
1230 | // back to the system. |
1231 | // - If the number of free committed pages reaches kMinimumFreeCommittedPageCount, we can stop the scavenging and block the |
1232 | // scavenging thread until the number of free committed pages goes above kMinimumFreeCommittedPageCount. |
1233 | |
1234 | // Background thread wakes up every 5 seconds to scavenge as long as there is memory available to return to the system. |
1235 | static const int kScavengeTimerDelayInSeconds = 5; |
1236 | |
1237 | // Number of free committed pages that we want to keep around. |
1238 | static const size_t kMinimumFreeCommittedPageCount = 512; |
1239 | |
1240 | // During a scavenge, we'll release up to a fraction of the free committed pages. |
1241 | #if OS(WINDOWS) |
1242 | // We are slightly less aggressive in releasing memory on Windows due to performance reasons. |
1243 | static const int kMaxScavengeAmountFactor = 3; |
1244 | #else |
1245 | static const int kMaxScavengeAmountFactor = 2; |
1246 | #endif |
1247 | #endif |
1248 | |
1249 | class TCMalloc_PageHeap { |
1250 | public: |
1251 | void init(); |
1252 | |
1253 | // Allocate a run of "n" pages. Returns zero if out of memory. |
1254 | Span* New(Length n); |
1255 | |
1256 | // Delete the span "[p, p+n-1]". |
1257 | // REQUIRES: span was returned by earlier call to New() and |
1258 | // has not yet been deleted. |
1259 | void Delete(Span* span); |
1260 | |
1261 | // Mark an allocated span as being used for small objects of the |
1262 | // specified size-class. |
1263 | // REQUIRES: span was returned by an earlier call to New() |
1264 | // and has not yet been deleted. |
1265 | void RegisterSizeClass(Span* span, size_t sc); |
1266 | |
1267 | // Split an allocated span into two spans: one of length "n" pages |
1268 | // followed by another span of length "span->length - n" pages. |
1269 | // Modifies "*span" to point to the first span of length "n" pages. |
1270 | // Returns a pointer to the second span. |
1271 | // |
1272 | // REQUIRES: "0 < n < span->length" |
1273 | // REQUIRES: !span->free |
1274 | // REQUIRES: span->sizeclass == 0 |
1275 | Span* Split(Span* span, Length n); |
1276 | |
1277 | // Return the descriptor for the specified page. |
1278 | inline Span* GetDescriptor(PageID p) const { |
1279 | return reinterpret_cast<Span*>(pagemap_.get(p)); |
1280 | } |
1281 | |
1282 | #ifdef WTF_CHANGES |
1283 | inline Span* GetDescriptorEnsureSafe(PageID p) |
1284 | { |
1285 | pagemap_.Ensure(p, 1); |
1286 | return GetDescriptor(p); |
1287 | } |
1288 | |
1289 | size_t ReturnedBytes() const; |
1290 | #endif |
1291 | |
1292 | // Dump state to stderr |
1293 | #ifndef WTF_CHANGES |
1294 | void Dump(TCMalloc_Printer* out); |
1295 | #endif |
1296 | |
1297 | // Return number of bytes allocated from system |
1298 | inline uint64_t SystemBytes() const { return system_bytes_; } |
1299 | |
1300 | // Return number of free bytes in heap |
1301 | uint64_t FreeBytes() const { |
1302 | return (static_cast<uint64_t>(free_pages_) << kPageShift); |
1303 | } |
1304 | |
1305 | bool Check(); |
1306 | bool CheckList(Span* list, Length min_pages, Length max_pages); |
1307 | |
1308 | // Release all pages on the free list for reuse by the OS: |
1309 | void ReleaseFreePages(); |
1310 | |
1311 | // Return 0 if we have no information, or else the correct sizeclass for p. |
1312 | // Reads and writes to pagemap_cache_ do not require locking. |
1313 | // The entries are 64 bits on 64-bit hardware and 16 bits on |
1314 | // 32-bit hardware, and we don't mind raciness as long as each read of |
1315 | // an entry yields a valid entry, not a partially updated entry. |
1316 | size_t GetSizeClassIfCached(PageID p) const { |
1317 | return pagemap_cache_.GetOrDefault(p, 0); |
1318 | } |
1319 | void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); } |
1320 | |
1321 | private: |
1322 | // Pick the appropriate map and cache types based on pointer size |
1323 | typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap; |
1324 | typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache; |
1325 | PageMap pagemap_; |
1326 | mutable PageMapCache pagemap_cache_; |
1327 | |
1328 | // We segregate spans of a given size into two circular linked |
1329 | // lists: one for normal spans, and one for spans whose memory |
1330 | // has been returned to the system. |
1331 | struct SpanList { |
1332 | Span normal; |
1333 | Span returned; |
1334 | }; |
1335 | |
1336 | // List of free spans of length >= kMaxPages |
1337 | SpanList large_; |
1338 | |
1339 | // Array mapping from span length to a doubly linked list of free spans |
1340 | SpanList free_[kMaxPages]; |
1341 | |
1342 | // Number of pages kept in free lists |
1343 | uintptr_t free_pages_; |
1344 | |
1345 | // Bytes allocated from system |
1346 | uint64_t system_bytes_; |
1347 | |
1348 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1349 | // Number of pages kept in free lists that are still committed. |
1350 | Length free_committed_pages_; |
1351 | |
1352 | // Number of pages that we committed in the last scavenge wait interval. |
1353 | Length pages_committed_since_last_scavenge_; |
1354 | #endif |
1355 | |
1356 | bool GrowHeap(Length n); |
1357 | |
1358 | // REQUIRES span->length >= n |
1359 | // Remove span from its free list, and move any leftover part of |
1360 | // span into appropriate free lists. Also update "span" to have |
1361 | // length exactly "n" and mark it as non-free so it can be returned |
1362 | // to the client. |
1363 | // |
1364 | // "released" is true iff "span" was found on a "returned" list. |
1365 | void Carve(Span* span, Length n, bool released); |
1366 | |
1367 | void RecordSpan(Span* span) { |
1368 | pagemap_.set(span->start, span); |
1369 | if (span->length > 1) { |
1370 | pagemap_.set(span->start + span->length - 1, span); |
1371 | } |
1372 | } |
1373 | |
1374 | // Allocate a large span of length == n. If successful, returns a |
1375 | // span of exactly the specified length. Else, returns NULL. |
1376 | Span* AllocLarge(Length n); |
1377 | |
1378 | #if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1379 | // Incrementally release some memory to the system. |
1380 | // IncrementalScavenge(n) is called whenever n pages are freed. |
1381 | void IncrementalScavenge(Length n); |
1382 | #endif |
1383 | |
1384 | // Number of pages to deallocate before doing more scavenging |
1385 | int64_t scavenge_counter_; |
1386 | |
1387 | // Index of last free list we scavenged |
1388 | size_t scavenge_index_; |
1389 | |
1390 | #if defined(WTF_CHANGES) && OS(DARWIN) |
1391 | friend class FastMallocZone; |
1392 | #endif |
1393 | |
1394 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1395 | void initializeScavenger(); |
1396 | ALWAYS_INLINE void signalScavenger(); |
1397 | void scavenge(); |
1398 | ALWAYS_INLINE bool shouldContinueScavenging() const; |
1399 | |
1400 | #if !HAVE(DISPATCH_H) |
1401 | static NO_RETURN void* runScavengerThread(void*); |
1402 | NO_RETURN void scavengerThread(); |
1403 | |
1404 | // Keeps track of whether the background thread is actively scavenging memory every kScavengeTimerDelayInSeconds, or |
1405 | // it's blocked waiting for more pages to be deleted. |
1406 | bool m_scavengeThreadActive; |
1407 | |
1408 | pthread_mutex_t m_scavengeMutex; |
1409 | pthread_cond_t m_scavengeCondition; |
1410 | #else // !HAVE(DISPATCH_H) |
1411 | void periodicScavenge(); |
1412 | |
1413 | dispatch_queue_t m_scavengeQueue; |
1414 | dispatch_source_t m_scavengeTimer; |
1415 | bool m_scavengingScheduled; |
1416 | #endif |
1417 | |
1418 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1419 | }; |
1420 | |
1421 | void TCMalloc_PageHeap::init() |
1422 | { |
1423 | pagemap_.init(MetaDataAlloc); |
1424 | pagemap_cache_ = PageMapCache(0); |
1425 | free_pages_ = 0; |
1426 | system_bytes_ = 0; |
1427 | |
1428 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1429 | free_committed_pages_ = 0; |
1430 | pages_committed_since_last_scavenge_ = 0; |
1431 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1432 | |
1433 | scavenge_counter_ = 0; |
1434 | // Start scavenging at kMaxPages list |
1435 | scavenge_index_ = kMaxPages-1; |
1436 | COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits); |
1437 | DLL_Init(&large_.normal); |
1438 | DLL_Init(&large_.returned); |
1439 | for (size_t i = 0; i < kMaxPages; i++) { |
1440 | DLL_Init(&free_[i].normal); |
1441 | DLL_Init(&free_[i].returned); |
1442 | } |
1443 | |
1444 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1445 | initializeScavenger(); |
1446 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1447 | } |
1448 | |
1449 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1450 | |
1451 | #if !HAVE(DISPATCH_H) |
1452 | |
1453 | void TCMalloc_PageHeap::initializeScavenger() |
1454 | { |
1455 | pthread_mutex_init(&m_scavengeMutex, 0); |
1456 | pthread_cond_init(&m_scavengeCondition, 0); |
1457 | m_scavengeThreadActive = true; |
1458 | pthread_t thread; |
1459 | pthread_create(&thread, 0, runScavengerThread, this); |
1460 | } |
1461 | |
1462 | void* TCMalloc_PageHeap::runScavengerThread(void* context) |
1463 | { |
1464 | static_cast<TCMalloc_PageHeap*>(context)->scavengerThread(); |
1465 | #if COMPILER(MSVC) || OS(SOLARIS) |
1466 | // Without this, Visual Studio will complain that this method does not return a value. |
1467 | return 0; |
1468 | #endif |
1469 | } |
1470 | |
1471 | ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger() |
1472 | { |
1473 | if (!m_scavengeThreadActive && shouldContinueScavenging()) |
1474 | pthread_cond_signal(&m_scavengeCondition); |
1475 | } |
1476 | |
1477 | #else // !HAVE(DISPATCH_H) |
1478 | |
1479 | void TCMalloc_PageHeap::initializeScavenger() |
1480 | { |
1481 | m_scavengeQueue = dispatch_queue_create("com.apple.JavaScriptCore.FastMallocSavenger" , NULL); |
1482 | m_scavengeTimer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, m_scavengeQueue); |
1483 | dispatch_time_t startTime = dispatch_time(DISPATCH_TIME_NOW, kScavengeTimerDelayInSeconds * NSEC_PER_SEC); |
1484 | dispatch_source_set_timer(m_scavengeTimer, startTime, kScavengeTimerDelayInSeconds * NSEC_PER_SEC, 1000 * NSEC_PER_USEC); |
1485 | dispatch_source_set_event_handler(m_scavengeTimer, ^{ periodicScavenge(); }); |
1486 | m_scavengingScheduled = false; |
1487 | } |
1488 | |
1489 | ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger() |
1490 | { |
1491 | if (!m_scavengingScheduled && shouldContinueScavenging()) { |
1492 | m_scavengingScheduled = true; |
1493 | dispatch_resume(m_scavengeTimer); |
1494 | } |
1495 | } |
1496 | |
1497 | #endif |
1498 | |
1499 | void TCMalloc_PageHeap::scavenge() |
1500 | { |
1501 | // If we have to commit memory in the last 5 seconds, it means we don't have enough free committed pages |
1502 | // for the amount of allocations that we do. So hold off on releasing memory back to the system. |
1503 | if (pages_committed_since_last_scavenge_ > 0) { |
1504 | pages_committed_since_last_scavenge_ = 0; |
1505 | return; |
1506 | } |
1507 | Length pagesDecommitted = 0; |
1508 | for (int i = kMaxPages; i >= 0; i--) { |
1509 | SpanList* slist = (static_cast<size_t>(i) == kMaxPages) ? &large_ : &free_[i]; |
1510 | if (!DLL_IsEmpty(&slist->normal)) { |
1511 | // Release the last span on the normal portion of this list |
1512 | Span* s = slist->normal.prev; |
1513 | // Only decommit up to a fraction of the free committed pages if pages_allocated_since_last_scavenge_ > 0. |
1514 | if ((pagesDecommitted + s->length) * kMaxScavengeAmountFactor > free_committed_pages_) |
1515 | continue; |
1516 | DLL_Remove(s); |
1517 | TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift), |
1518 | static_cast<size_t>(s->length << kPageShift)); |
1519 | if (!s->decommitted) { |
1520 | pagesDecommitted += s->length; |
1521 | s->decommitted = true; |
1522 | } |
1523 | DLL_Prepend(&slist->returned, s); |
1524 | // We can stop scavenging if the number of free committed pages left is less than or equal to the minimum number we want to keep around. |
1525 | if (free_committed_pages_ <= kMinimumFreeCommittedPageCount + pagesDecommitted) |
1526 | break; |
1527 | } |
1528 | } |
1529 | pages_committed_since_last_scavenge_ = 0; |
1530 | ASSERT(free_committed_pages_ >= pagesDecommitted); |
1531 | free_committed_pages_ -= pagesDecommitted; |
1532 | } |
1533 | |
1534 | ALWAYS_INLINE bool TCMalloc_PageHeap::shouldContinueScavenging() const |
1535 | { |
1536 | return free_committed_pages_ > kMinimumFreeCommittedPageCount; |
1537 | } |
1538 | |
1539 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1540 | |
1541 | inline Span* TCMalloc_PageHeap::New(Length n) { |
1542 | ASSERT(Check()); |
1543 | ASSERT(n > 0); |
1544 | |
1545 | // Find first size >= n that has a non-empty list |
1546 | for (Length s = n; s < kMaxPages; s++) { |
1547 | Span* ll = NULL; |
1548 | bool released = false; |
1549 | if (!DLL_IsEmpty(&free_[s].normal)) { |
1550 | // Found normal span |
1551 | ll = &free_[s].normal; |
1552 | } else if (!DLL_IsEmpty(&free_[s].returned)) { |
1553 | // Found returned span; reallocate it |
1554 | ll = &free_[s].returned; |
1555 | released = true; |
1556 | } else { |
1557 | // Keep looking in larger classes |
1558 | continue; |
1559 | } |
1560 | |
1561 | Span* result = ll->next; |
1562 | Carve(result, n, released); |
1563 | if (result->decommitted) { |
1564 | TCMalloc_SystemCommit(reinterpret_cast<void*>(result->start << kPageShift), static_cast<size_t>(n << kPageShift)); |
1565 | result->decommitted = false; |
1566 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1567 | pages_committed_since_last_scavenge_ += n; |
1568 | #endif |
1569 | } |
1570 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1571 | else { |
1572 | // The newly allocated memory is from a span that's in the normal span list (already committed). Update the |
1573 | // free committed pages count. |
1574 | ASSERT(free_committed_pages_ >= n); |
1575 | free_committed_pages_ -= n; |
1576 | } |
1577 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1578 | ASSERT(Check()); |
1579 | free_pages_ -= n; |
1580 | return result; |
1581 | } |
1582 | |
1583 | Span* result = AllocLarge(n); |
1584 | if (result != NULL) { |
1585 | ASSERT_SPAN_COMMITTED(result); |
1586 | return result; |
1587 | } |
1588 | |
1589 | // Grow the heap and try again |
1590 | if (!GrowHeap(n)) { |
1591 | ASSERT(Check()); |
1592 | return NULL; |
1593 | } |
1594 | |
1595 | return AllocLarge(n); |
1596 | } |
1597 | |
1598 | Span* TCMalloc_PageHeap::AllocLarge(Length n) { |
1599 | // find the best span (closest to n in size). |
1600 | // The following loops implements address-ordered best-fit. |
1601 | bool from_released = false; |
1602 | Span *best = NULL; |
1603 | |
1604 | // Search through normal list |
1605 | for (Span* span = large_.normal.next; |
1606 | span != &large_.normal; |
1607 | span = span->next) { |
1608 | if (span->length >= n) { |
1609 | if ((best == NULL) |
1610 | || (span->length < best->length) |
1611 | || ((span->length == best->length) && (span->start < best->start))) { |
1612 | best = span; |
1613 | from_released = false; |
1614 | } |
1615 | } |
1616 | } |
1617 | |
1618 | // Search through released list in case it has a better fit |
1619 | for (Span* span = large_.returned.next; |
1620 | span != &large_.returned; |
1621 | span = span->next) { |
1622 | if (span->length >= n) { |
1623 | if ((best == NULL) |
1624 | || (span->length < best->length) |
1625 | || ((span->length == best->length) && (span->start < best->start))) { |
1626 | best = span; |
1627 | from_released = true; |
1628 | } |
1629 | } |
1630 | } |
1631 | |
1632 | if (best != NULL) { |
1633 | Carve(best, n, from_released); |
1634 | if (best->decommitted) { |
1635 | TCMalloc_SystemCommit(reinterpret_cast<void*>(best->start << kPageShift), static_cast<size_t>(n << kPageShift)); |
1636 | best->decommitted = false; |
1637 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1638 | pages_committed_since_last_scavenge_ += n; |
1639 | #endif |
1640 | } |
1641 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1642 | else { |
1643 | // The newly allocated memory is from a span that's in the normal span list (already committed). Update the |
1644 | // free committed pages count. |
1645 | ASSERT(free_committed_pages_ >= n); |
1646 | free_committed_pages_ -= n; |
1647 | } |
1648 | #endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1649 | ASSERT(Check()); |
1650 | free_pages_ -= n; |
1651 | return best; |
1652 | } |
1653 | return NULL; |
1654 | } |
1655 | |
1656 | Span* TCMalloc_PageHeap::Split(Span* span, Length n) { |
1657 | ASSERT(0 < n); |
1658 | ASSERT(n < span->length); |
1659 | ASSERT(!span->free); |
1660 | ASSERT(span->sizeclass == 0); |
1661 | Event(span, 'T', n); |
1662 | |
1663 | const Length extra = span->length - n; |
1664 | Span* leftover = NewSpan(span->start + n, extra); |
1665 | Event(leftover, 'U', extra); |
1666 | RecordSpan(leftover); |
1667 | pagemap_.set(span->start + n - 1, span); // Update map from pageid to span |
1668 | span->length = n; |
1669 | |
1670 | return leftover; |
1671 | } |
1672 | |
1673 | static ALWAYS_INLINE void propagateDecommittedState(Span* destination, Span* source) |
1674 | { |
1675 | destination->decommitted = source->decommitted; |
1676 | } |
1677 | |
1678 | inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) { |
1679 | ASSERT(n > 0); |
1680 | DLL_Remove(span); |
1681 | span->free = 0; |
1682 | Event(span, 'A', n); |
1683 | |
1684 | const int extra = static_cast<int>(span->length - n); |
1685 | ASSERT(extra >= 0); |
1686 | if (extra > 0) { |
1687 | Span* leftover = NewSpan(span->start + n, extra); |
1688 | leftover->free = 1; |
1689 | propagateDecommittedState(leftover, span); |
1690 | Event(leftover, 'S', extra); |
1691 | RecordSpan(leftover); |
1692 | |
1693 | // Place leftover span on appropriate free list |
1694 | SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_; |
1695 | Span* dst = released ? &listpair->returned : &listpair->normal; |
1696 | DLL_Prepend(dst, leftover); |
1697 | |
1698 | span->length = n; |
1699 | pagemap_.set(span->start + n - 1, span); |
1700 | } |
1701 | } |
1702 | |
1703 | static ALWAYS_INLINE void mergeDecommittedStates(Span* destination, Span* other) |
1704 | { |
1705 | if (destination->decommitted && !other->decommitted) { |
1706 | TCMalloc_SystemRelease(reinterpret_cast<void*>(other->start << kPageShift), |
1707 | static_cast<size_t>(other->length << kPageShift)); |
1708 | } else if (other->decommitted && !destination->decommitted) { |
1709 | TCMalloc_SystemRelease(reinterpret_cast<void*>(destination->start << kPageShift), |
1710 | static_cast<size_t>(destination->length << kPageShift)); |
1711 | destination->decommitted = true; |
1712 | } |
1713 | } |
1714 | |
1715 | inline void TCMalloc_PageHeap::Delete(Span* span) { |
1716 | ASSERT(Check()); |
1717 | ASSERT(!span->free); |
1718 | ASSERT(span->length > 0); |
1719 | ASSERT(GetDescriptor(span->start) == span); |
1720 | ASSERT(GetDescriptor(span->start + span->length - 1) == span); |
1721 | span->sizeclass = 0; |
1722 | #ifndef NO_TCMALLOC_SAMPLES |
1723 | span->sample = 0; |
1724 | #endif |
1725 | |
1726 | // Coalesce -- we guarantee that "p" != 0, so no bounds checking |
1727 | // necessary. We do not bother resetting the stale pagemap |
1728 | // entries for the pieces we are merging together because we only |
1729 | // care about the pagemap entries for the boundaries. |
1730 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1731 | // Track the total size of the neighboring free spans that are committed. |
1732 | Length neighboringCommittedSpansLength = 0; |
1733 | #endif |
1734 | const PageID p = span->start; |
1735 | const Length n = span->length; |
1736 | Span* prev = GetDescriptor(p-1); |
1737 | if (prev != NULL && prev->free) { |
1738 | // Merge preceding span into this span |
1739 | ASSERT(prev->start + prev->length == p); |
1740 | const Length len = prev->length; |
1741 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1742 | if (!prev->decommitted) |
1743 | neighboringCommittedSpansLength += len; |
1744 | #endif |
1745 | mergeDecommittedStates(span, prev); |
1746 | DLL_Remove(prev); |
1747 | DeleteSpan(prev); |
1748 | span->start -= len; |
1749 | span->length += len; |
1750 | pagemap_.set(span->start, span); |
1751 | Event(span, 'L', len); |
1752 | } |
1753 | Span* next = GetDescriptor(p+n); |
1754 | if (next != NULL && next->free) { |
1755 | // Merge next span into this span |
1756 | ASSERT(next->start == p+n); |
1757 | const Length len = next->length; |
1758 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1759 | if (!next->decommitted) |
1760 | neighboringCommittedSpansLength += len; |
1761 | #endif |
1762 | mergeDecommittedStates(span, next); |
1763 | DLL_Remove(next); |
1764 | DeleteSpan(next); |
1765 | span->length += len; |
1766 | pagemap_.set(span->start + span->length - 1, span); |
1767 | Event(span, 'R', len); |
1768 | } |
1769 | |
1770 | Event(span, 'D', span->length); |
1771 | span->free = 1; |
1772 | if (span->decommitted) { |
1773 | if (span->length < kMaxPages) |
1774 | DLL_Prepend(&free_[span->length].returned, span); |
1775 | else |
1776 | DLL_Prepend(&large_.returned, span); |
1777 | } else { |
1778 | if (span->length < kMaxPages) |
1779 | DLL_Prepend(&free_[span->length].normal, span); |
1780 | else |
1781 | DLL_Prepend(&large_.normal, span); |
1782 | } |
1783 | free_pages_ += n; |
1784 | |
1785 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1786 | if (span->decommitted) { |
1787 | // If the merged span is decommitted, that means we decommitted any neighboring spans that were |
1788 | // committed. Update the free committed pages count. |
1789 | free_committed_pages_ -= neighboringCommittedSpansLength; |
1790 | } else { |
1791 | // If the merged span remains committed, add the deleted span's size to the free committed pages count. |
1792 | free_committed_pages_ += n; |
1793 | } |
1794 | |
1795 | // Make sure the scavenge thread becomes active if we have enough freed pages to release some back to the system. |
1796 | signalScavenger(); |
1797 | #else |
1798 | IncrementalScavenge(n); |
1799 | #endif |
1800 | |
1801 | ASSERT(Check()); |
1802 | } |
1803 | |
1804 | #if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1805 | void TCMalloc_PageHeap::IncrementalScavenge(Length n) { |
1806 | // Fast path; not yet time to release memory |
1807 | scavenge_counter_ -= n; |
1808 | if (scavenge_counter_ >= 0) return; // Not yet time to scavenge |
1809 | |
1810 | // If there is nothing to release, wait for so many pages before |
1811 | // scavenging again. With 4K pages, this comes to 16MB of memory. |
1812 | static const size_t kDefaultReleaseDelay = 1 << 8; |
1813 | |
1814 | // Find index of free list to scavenge |
1815 | size_t index = scavenge_index_ + 1; |
1816 | for (size_t i = 0; i < kMaxPages+1; i++) { |
1817 | if (index > kMaxPages) index = 0; |
1818 | SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index]; |
1819 | if (!DLL_IsEmpty(&slist->normal)) { |
1820 | // Release the last span on the normal portion of this list |
1821 | Span* s = slist->normal.prev; |
1822 | DLL_Remove(s); |
1823 | TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift), |
1824 | static_cast<size_t>(s->length << kPageShift)); |
1825 | s->decommitted = true; |
1826 | DLL_Prepend(&slist->returned, s); |
1827 | |
1828 | scavenge_counter_ = std::max<size_t>(64UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay))); |
1829 | |
1830 | if (index == kMaxPages && !DLL_IsEmpty(&slist->normal)) |
1831 | scavenge_index_ = index - 1; |
1832 | else |
1833 | scavenge_index_ = index; |
1834 | return; |
1835 | } |
1836 | index++; |
1837 | } |
1838 | |
1839 | // Nothing to scavenge, delay for a while |
1840 | scavenge_counter_ = kDefaultReleaseDelay; |
1841 | } |
1842 | #endif |
1843 | |
1844 | void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) { |
1845 | // Associate span object with all interior pages as well |
1846 | ASSERT(!span->free); |
1847 | ASSERT(GetDescriptor(span->start) == span); |
1848 | ASSERT(GetDescriptor(span->start+span->length-1) == span); |
1849 | Event(span, 'C', sc); |
1850 | span->sizeclass = static_cast<unsigned int>(sc); |
1851 | for (Length i = 1; i < span->length-1; i++) { |
1852 | pagemap_.set(span->start+i, span); |
1853 | } |
1854 | } |
1855 | |
1856 | #ifdef WTF_CHANGES |
1857 | size_t TCMalloc_PageHeap::ReturnedBytes() const { |
1858 | size_t result = 0; |
1859 | for (unsigned s = 0; s < kMaxPages; s++) { |
1860 | const int r_length = DLL_Length(&free_[s].returned); |
1861 | unsigned r_pages = s * r_length; |
1862 | result += r_pages << kPageShift; |
1863 | } |
1864 | |
1865 | for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) |
1866 | result += s->length << kPageShift; |
1867 | return result; |
1868 | } |
1869 | #endif |
1870 | |
1871 | #ifndef WTF_CHANGES |
1872 | static double PagesToMB(uint64_t pages) { |
1873 | return (pages << kPageShift) / 1048576.0; |
1874 | } |
1875 | |
1876 | void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) { |
1877 | int nonempty_sizes = 0; |
1878 | for (int s = 0; s < kMaxPages; s++) { |
1879 | if (!DLL_IsEmpty(&free_[s].normal) || !DLL_IsEmpty(&free_[s].returned)) { |
1880 | nonempty_sizes++; |
1881 | } |
1882 | } |
1883 | out->printf("------------------------------------------------\n" ); |
1884 | out->printf("PageHeap: %d sizes; %6.1f MB free\n" , |
1885 | nonempty_sizes, PagesToMB(free_pages_)); |
1886 | out->printf("------------------------------------------------\n" ); |
1887 | uint64_t total_normal = 0; |
1888 | uint64_t total_returned = 0; |
1889 | for (int s = 0; s < kMaxPages; s++) { |
1890 | const int n_length = DLL_Length(&free_[s].normal); |
1891 | const int r_length = DLL_Length(&free_[s].returned); |
1892 | if (n_length + r_length > 0) { |
1893 | uint64_t n_pages = s * n_length; |
1894 | uint64_t r_pages = s * r_length; |
1895 | total_normal += n_pages; |
1896 | total_returned += r_pages; |
1897 | out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum" |
1898 | "; unmapped: %6.1f MB; %6.1f MB cum\n" , |
1899 | s, |
1900 | (n_length + r_length), |
1901 | PagesToMB(n_pages + r_pages), |
1902 | PagesToMB(total_normal + total_returned), |
1903 | PagesToMB(r_pages), |
1904 | PagesToMB(total_returned)); |
1905 | } |
1906 | } |
1907 | |
1908 | uint64_t n_pages = 0; |
1909 | uint64_t r_pages = 0; |
1910 | int n_spans = 0; |
1911 | int r_spans = 0; |
1912 | out->printf("Normal large spans:\n" ); |
1913 | for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) { |
1914 | out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n" , |
1915 | s->length, PagesToMB(s->length)); |
1916 | n_pages += s->length; |
1917 | n_spans++; |
1918 | } |
1919 | out->printf("Unmapped large spans:\n" ); |
1920 | for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) { |
1921 | out->printf(" [ %6" PRIuS " pages ] %6.1f MB\n" , |
1922 | s->length, PagesToMB(s->length)); |
1923 | r_pages += s->length; |
1924 | r_spans++; |
1925 | } |
1926 | total_normal += n_pages; |
1927 | total_returned += r_pages; |
1928 | out->printf(">255 large * %6u spans ~ %6.1f MB; %6.1f MB cum" |
1929 | "; unmapped: %6.1f MB; %6.1f MB cum\n" , |
1930 | (n_spans + r_spans), |
1931 | PagesToMB(n_pages + r_pages), |
1932 | PagesToMB(total_normal + total_returned), |
1933 | PagesToMB(r_pages), |
1934 | PagesToMB(total_returned)); |
1935 | } |
1936 | #endif |
1937 | |
1938 | bool TCMalloc_PageHeap::GrowHeap(Length n) { |
1939 | ASSERT(kMaxPages >= kMinSystemAlloc); |
1940 | if (n > kMaxValidPages) return false; |
1941 | Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc); |
1942 | size_t actual_size; |
1943 | void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize); |
1944 | if (ptr == NULL) { |
1945 | if (n < ask) { |
1946 | // Try growing just "n" pages |
1947 | ask = n; |
1948 | ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize); |
1949 | } |
1950 | if (ptr == NULL) return false; |
1951 | } |
1952 | ask = actual_size >> kPageShift; |
1953 | |
1954 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
1955 | pages_committed_since_last_scavenge_ += ask; |
1956 | #endif |
1957 | |
1958 | uint64_t old_system_bytes = system_bytes_; |
1959 | system_bytes_ += (ask << kPageShift); |
1960 | const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; |
1961 | ASSERT(p > 0); |
1962 | |
1963 | // If we have already a lot of pages allocated, just pre allocate a bunch of |
1964 | // memory for the page map. This prevents fragmentation by pagemap metadata |
1965 | // when a program keeps allocating and freeing large blocks. |
1966 | |
1967 | if (old_system_bytes < kPageMapBigAllocationThreshold |
1968 | && system_bytes_ >= kPageMapBigAllocationThreshold) { |
1969 | pagemap_.PreallocateMoreMemory(); |
1970 | } |
1971 | |
1972 | // Make sure pagemap_ has entries for all of the new pages. |
1973 | // Plus ensure one before and one after so coalescing code |
1974 | // does not need bounds-checking. |
1975 | if (pagemap_.Ensure(p-1, ask+2)) { |
1976 | // Pretend the new area is allocated and then Delete() it to |
1977 | // cause any necessary coalescing to occur. |
1978 | // |
1979 | // We do not adjust free_pages_ here since Delete() will do it for us. |
1980 | Span* span = NewSpan(p, ask); |
1981 | RecordSpan(span); |
1982 | Delete(span); |
1983 | ASSERT(Check()); |
1984 | return true; |
1985 | } else { |
1986 | // We could not allocate memory within "pagemap_" |
1987 | // TODO: Once we can return memory to the system, return the new span |
1988 | return false; |
1989 | } |
1990 | } |
1991 | |
1992 | bool TCMalloc_PageHeap::Check() { |
1993 | ASSERT(free_[0].normal.next == &free_[0].normal); |
1994 | ASSERT(free_[0].returned.next == &free_[0].returned); |
1995 | CheckList(&large_.normal, kMaxPages, 1000000000); |
1996 | CheckList(&large_.returned, kMaxPages, 1000000000); |
1997 | for (Length s = 1; s < kMaxPages; s++) { |
1998 | CheckList(&free_[s].normal, s, s); |
1999 | CheckList(&free_[s].returned, s, s); |
2000 | } |
2001 | return true; |
2002 | } |
2003 | |
2004 | #if ASSERT_DISABLED |
2005 | bool TCMalloc_PageHeap::CheckList(Span*, Length, Length) { |
2006 | return true; |
2007 | } |
2008 | #else |
2009 | bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages) { |
2010 | for (Span* s = list->next; s != list; s = s->next) { |
2011 | CHECK_CONDITION(s->free); |
2012 | CHECK_CONDITION(s->length >= min_pages); |
2013 | CHECK_CONDITION(s->length <= max_pages); |
2014 | CHECK_CONDITION(GetDescriptor(s->start) == s); |
2015 | CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s); |
2016 | } |
2017 | return true; |
2018 | } |
2019 | #endif |
2020 | |
2021 | static void ReleaseFreeList(Span* list, Span* returned) { |
2022 | // Walk backwards through list so that when we push these |
2023 | // spans on the "returned" list, we preserve the order. |
2024 | while (!DLL_IsEmpty(list)) { |
2025 | Span* s = list->prev; |
2026 | DLL_Remove(s); |
2027 | DLL_Prepend(returned, s); |
2028 | TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift), |
2029 | static_cast<size_t>(s->length << kPageShift)); |
2030 | } |
2031 | } |
2032 | |
2033 | void TCMalloc_PageHeap::ReleaseFreePages() { |
2034 | for (Length s = 0; s < kMaxPages; s++) { |
2035 | ReleaseFreeList(&free_[s].normal, &free_[s].returned); |
2036 | } |
2037 | ReleaseFreeList(&large_.normal, &large_.returned); |
2038 | ASSERT(Check()); |
2039 | } |
2040 | |
2041 | //------------------------------------------------------------------- |
2042 | // Free list |
2043 | //------------------------------------------------------------------- |
2044 | |
2045 | class TCMalloc_ThreadCache_FreeList { |
2046 | private: |
2047 | void* list_; // Linked list of nodes |
2048 | uint16_t length_; // Current length |
2049 | uint16_t lowater_; // Low water mark for list length |
2050 | |
2051 | public: |
2052 | void Init() { |
2053 | list_ = NULL; |
2054 | length_ = 0; |
2055 | lowater_ = 0; |
2056 | } |
2057 | |
2058 | // Return current length of list |
2059 | int length() const { |
2060 | return length_; |
2061 | } |
2062 | |
2063 | // Is list empty? |
2064 | bool empty() const { |
2065 | return list_ == NULL; |
2066 | } |
2067 | |
2068 | // Low-water mark management |
2069 | int lowwatermark() const { return lowater_; } |
2070 | void clear_lowwatermark() { lowater_ = length_; } |
2071 | |
2072 | ALWAYS_INLINE void Push(void* ptr) { |
2073 | SLL_Push(&list_, ptr); |
2074 | length_++; |
2075 | } |
2076 | |
2077 | void PushRange(int N, void *start, void *end) { |
2078 | SLL_PushRange(&list_, start, end); |
2079 | length_ = length_ + static_cast<uint16_t>(N); |
2080 | } |
2081 | |
2082 | void PopRange(int N, void **start, void **end) { |
2083 | SLL_PopRange(&list_, N, start, end); |
2084 | ASSERT(length_ >= N); |
2085 | length_ = length_ - static_cast<uint16_t>(N); |
2086 | if (length_ < lowater_) lowater_ = length_; |
2087 | } |
2088 | |
2089 | ALWAYS_INLINE void* Pop() { |
2090 | ASSERT(list_ != NULL); |
2091 | length_--; |
2092 | if (length_ < lowater_) lowater_ = length_; |
2093 | return SLL_Pop(&list_); |
2094 | } |
2095 | |
2096 | #ifdef WTF_CHANGES |
2097 | template <class Finder, class Reader> |
2098 | void enumerateFreeObjects(Finder& finder, const Reader& reader) |
2099 | { |
2100 | for (void* nextObject = list_; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject))) |
2101 | finder.visit(nextObject); |
2102 | } |
2103 | #endif |
2104 | }; |
2105 | |
2106 | //------------------------------------------------------------------- |
2107 | // Data kept per thread |
2108 | //------------------------------------------------------------------- |
2109 | |
2110 | class TCMalloc_ThreadCache { |
2111 | private: |
2112 | typedef TCMalloc_ThreadCache_FreeList FreeList; |
2113 | #if COMPILER(MSVC) |
2114 | typedef DWORD ThreadIdentifier; |
2115 | #else |
2116 | typedef pthread_t ThreadIdentifier; |
2117 | #endif |
2118 | |
2119 | size_t size_; // Combined size of data |
2120 | ThreadIdentifier tid_; // Which thread owns it |
2121 | bool in_setspecific_; // Called pthread_setspecific? |
2122 | FreeList list_[kNumClasses]; // Array indexed by size-class |
2123 | |
2124 | // We sample allocations, biased by the size of the allocation |
2125 | uint32_t rnd_; // Cheap random number generator |
2126 | size_t bytes_until_sample_; // Bytes until we sample next |
2127 | |
2128 | // Allocate a new heap. REQUIRES: pageheap_lock is held. |
2129 | static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid); |
2130 | |
2131 | // Use only as pthread thread-specific destructor function. |
2132 | static void DestroyThreadCache(void* ptr); |
2133 | public: |
2134 | // All ThreadCache objects are kept in a linked list (for stats collection) |
2135 | TCMalloc_ThreadCache* next_; |
2136 | TCMalloc_ThreadCache* prev_; |
2137 | |
2138 | void Init(ThreadIdentifier tid); |
2139 | void Cleanup(); |
2140 | |
2141 | // Accessors (mostly just for printing stats) |
2142 | int freelist_length(size_t cl) const { return list_[cl].length(); } |
2143 | |
2144 | // Total byte size in cache |
2145 | size_t Size() const { return size_; } |
2146 | |
2147 | void* Allocate(size_t size); |
2148 | void Deallocate(void* ptr, size_t size_class); |
2149 | |
2150 | void FetchFromCentralCache(size_t cl, size_t allocationSize); |
2151 | void ReleaseToCentralCache(size_t cl, int N); |
2152 | void Scavenge(); |
2153 | void Print() const; |
2154 | |
2155 | // Record allocation of "k" bytes. Return true iff allocation |
2156 | // should be sampled |
2157 | bool SampleAllocation(size_t k); |
2158 | |
2159 | // Pick next sampling point |
2160 | void PickNextSample(size_t k); |
2161 | |
2162 | static void InitModule(); |
2163 | static void InitTSD(); |
2164 | static TCMalloc_ThreadCache* GetThreadHeap(); |
2165 | static TCMalloc_ThreadCache* GetCache(); |
2166 | static TCMalloc_ThreadCache* GetCacheIfPresent(); |
2167 | static TCMalloc_ThreadCache* CreateCacheIfNecessary(); |
2168 | static void DeleteCache(TCMalloc_ThreadCache* heap); |
2169 | static void BecomeIdle(); |
2170 | static void RecomputeThreadCacheSize(); |
2171 | |
2172 | #ifdef WTF_CHANGES |
2173 | template <class Finder, class Reader> |
2174 | void enumerateFreeObjects(Finder& finder, const Reader& reader) |
2175 | { |
2176 | for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++) |
2177 | list_[sizeClass].enumerateFreeObjects(finder, reader); |
2178 | } |
2179 | #endif |
2180 | }; |
2181 | |
2182 | //------------------------------------------------------------------- |
2183 | // Data kept per size-class in central cache |
2184 | //------------------------------------------------------------------- |
2185 | |
2186 | class TCMalloc_Central_FreeList { |
2187 | public: |
2188 | void Init(size_t cl); |
2189 | |
2190 | // These methods all do internal locking. |
2191 | |
2192 | // Insert the specified range into the central freelist. N is the number of |
2193 | // elements in the range. |
2194 | void InsertRange(void *start, void *end, int N); |
2195 | |
2196 | // Returns the actual number of fetched elements into N. |
2197 | void RemoveRange(void **start, void **end, int *N); |
2198 | |
2199 | // Returns the number of free objects in cache. |
2200 | size_t length() { |
2201 | SpinLockHolder h(&lock_); |
2202 | return counter_; |
2203 | } |
2204 | |
2205 | // Returns the number of free objects in the transfer cache. |
2206 | int tc_length() { |
2207 | SpinLockHolder h(&lock_); |
2208 | return used_slots_ * num_objects_to_move[size_class_]; |
2209 | } |
2210 | |
2211 | #ifdef WTF_CHANGES |
2212 | template <class Finder, class Reader> |
2213 | void enumerateFreeObjects(Finder& finder, const Reader& reader, TCMalloc_Central_FreeList* remoteCentralFreeList) |
2214 | { |
2215 | for (Span* span = &empty_; span && span != &empty_; span = (span->next ? reader(span->next) : 0)) |
2216 | ASSERT(!span->objects); |
2217 | |
2218 | ASSERT(!nonempty_.objects); |
2219 | static const ptrdiff_t nonemptyOffset = reinterpret_cast<const char*>(&nonempty_) - reinterpret_cast<const char*>(this); |
2220 | |
2221 | Span* remoteNonempty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + nonemptyOffset); |
2222 | Span* remoteSpan = nonempty_.next; |
2223 | |
2224 | for (Span* span = reader(remoteSpan); span && remoteSpan != remoteNonempty; remoteSpan = span->next, span = (span->next ? reader(span->next) : 0)) { |
2225 | for (void* nextObject = span->objects; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject))) |
2226 | finder.visit(nextObject); |
2227 | } |
2228 | } |
2229 | #endif |
2230 | |
2231 | private: |
2232 | // REQUIRES: lock_ is held |
2233 | // Remove object from cache and return. |
2234 | // Return NULL if no free entries in cache. |
2235 | void* FetchFromSpans(); |
2236 | |
2237 | // REQUIRES: lock_ is held |
2238 | // Remove object from cache and return. Fetches |
2239 | // from pageheap if cache is empty. Only returns |
2240 | // NULL on allocation failure. |
2241 | void* FetchFromSpansSafe(); |
2242 | |
2243 | // REQUIRES: lock_ is held |
2244 | // Release a linked list of objects to spans. |
2245 | // May temporarily release lock_. |
2246 | void ReleaseListToSpans(void *start); |
2247 | |
2248 | // REQUIRES: lock_ is held |
2249 | // Release an object to spans. |
2250 | // May temporarily release lock_. |
2251 | void ReleaseToSpans(void* object); |
2252 | |
2253 | // REQUIRES: lock_ is held |
2254 | // Populate cache by fetching from the page heap. |
2255 | // May temporarily release lock_. |
2256 | void Populate(); |
2257 | |
2258 | // REQUIRES: lock is held. |
2259 | // Tries to make room for a TCEntry. If the cache is full it will try to |
2260 | // expand it at the cost of some other cache size. Return false if there is |
2261 | // no space. |
2262 | bool MakeCacheSpace(); |
2263 | |
2264 | // REQUIRES: lock_ for locked_size_class is held. |
2265 | // Picks a "random" size class to steal TCEntry slot from. In reality it |
2266 | // just iterates over the sizeclasses but does so without taking a lock. |
2267 | // Returns true on success. |
2268 | // May temporarily lock a "random" size class. |
2269 | static bool EvictRandomSizeClass(size_t locked_size_class, bool force); |
2270 | |
2271 | // REQUIRES: lock_ is *not* held. |
2272 | // Tries to shrink the Cache. If force is true it will relase objects to |
2273 | // spans if it allows it to shrink the cache. Return false if it failed to |
2274 | // shrink the cache. Decrements cache_size_ on succeess. |
2275 | // May temporarily take lock_. If it takes lock_, the locked_size_class |
2276 | // lock is released to the thread from holding two size class locks |
2277 | // concurrently which could lead to a deadlock. |
2278 | bool ShrinkCache(int locked_size_class, bool force); |
2279 | |
2280 | // This lock protects all the data members. cached_entries and cache_size_ |
2281 | // may be looked at without holding the lock. |
2282 | SpinLock lock_; |
2283 | |
2284 | // We keep linked lists of empty and non-empty spans. |
2285 | size_t size_class_; // My size class |
2286 | Span empty_; // Dummy header for list of empty spans |
2287 | Span nonempty_; // Dummy header for list of non-empty spans |
2288 | size_t counter_; // Number of free objects in cache entry |
2289 | |
2290 | // Here we reserve space for TCEntry cache slots. Since one size class can |
2291 | // end up getting all the TCEntries quota in the system we just preallocate |
2292 | // sufficient number of entries here. |
2293 | TCEntry tc_slots_[kNumTransferEntries]; |
2294 | |
2295 | // Number of currently used cached entries in tc_slots_. This variable is |
2296 | // updated under a lock but can be read without one. |
2297 | int32_t used_slots_; |
2298 | // The current number of slots for this size class. This is an |
2299 | // adaptive value that is increased if there is lots of traffic |
2300 | // on a given size class. |
2301 | int32_t cache_size_; |
2302 | }; |
2303 | |
2304 | // Pad each CentralCache object to multiple of 64 bytes |
2305 | class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList { |
2306 | private: |
2307 | char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64]; |
2308 | }; |
2309 | |
2310 | //------------------------------------------------------------------- |
2311 | // Global variables |
2312 | //------------------------------------------------------------------- |
2313 | |
2314 | // Central cache -- a collection of free-lists, one per size-class. |
2315 | // We have a separate lock per free-list to reduce contention. |
2316 | static TCMalloc_Central_FreeListPadded central_cache[kNumClasses]; |
2317 | |
2318 | // Page-level allocator |
2319 | static SpinLock pageheap_lock = SPINLOCK_INITIALIZER; |
2320 | static void* pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(void*) - 1) / sizeof(void*)]; |
2321 | static bool phinited = false; |
2322 | |
2323 | // Avoid extra level of indirection by making "pageheap" be just an alias |
2324 | // of pageheap_memory. |
2325 | typedef union { |
2326 | void* m_memory; |
2327 | TCMalloc_PageHeap* m_pageHeap; |
2328 | } PageHeapUnion; |
2329 | |
2330 | static inline TCMalloc_PageHeap* getPageHeap() |
2331 | { |
2332 | PageHeapUnion u = { &pageheap_memory[0] }; |
2333 | return u.m_pageHeap; |
2334 | } |
2335 | |
2336 | #define pageheap getPageHeap() |
2337 | |
2338 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY |
2339 | |
2340 | #if !HAVE(DISPATCH_H) |
2341 | #if OS(WINDOWS) |
2342 | static void sleep(unsigned seconds) |
2343 | { |
2344 | ::Sleep(seconds * 1000); |
2345 | } |
2346 | #endif |
2347 | |
2348 | void TCMalloc_PageHeap::scavengerThread() |
2349 | { |
2350 | #if HAVE(PTHREAD_SETNAME_NP) |
2351 | pthread_setname_np("JavaScriptCore: FastMalloc scavenger" ); |
2352 | #endif |
2353 | |
2354 | while (1) { |
2355 | if (!shouldContinueScavenging()) { |
2356 | pthread_mutex_lock(&m_scavengeMutex); |
2357 | m_scavengeThreadActive = false; |
2358 | // Block until there are enough freed pages to release back to the system. |
2359 | pthread_cond_wait(&m_scavengeCondition, &m_scavengeMutex); |
2360 | m_scavengeThreadActive = true; |
2361 | pthread_mutex_unlock(&m_scavengeMutex); |
2362 | } |
2363 | sleep(kScavengeTimerDelayInSeconds); |
2364 | { |
2365 | SpinLockHolder h(&pageheap_lock); |
2366 | pageheap->scavenge(); |
2367 | } |
2368 | } |
2369 | } |
2370 | |
2371 | #else |
2372 | |
2373 | void TCMalloc_PageHeap::periodicScavenge() |
2374 | { |
2375 | { |
2376 | SpinLockHolder h(&pageheap_lock); |
2377 | pageheap->scavenge(); |
2378 | } |
2379 | |
2380 | if (!shouldContinueScavenging()) { |
2381 | m_scavengingScheduled = false; |
2382 | dispatch_suspend(m_scavengeTimer); |
2383 | } |
2384 | } |
2385 | #endif // HAVE(DISPATCH_H) |
2386 | |
2387 | #endif |
2388 | |
2389 | // If TLS is available, we also store a copy |
2390 | // of the per-thread object in a __thread variable |
2391 | // since __thread variables are faster to read |
2392 | // than pthread_getspecific(). We still need |
2393 | // pthread_setspecific() because __thread |
2394 | // variables provide no way to run cleanup |
2395 | // code when a thread is destroyed. |
2396 | #ifdef HAVE_TLS |
2397 | static __thread TCMalloc_ThreadCache *threadlocal_heap; |
2398 | #endif |
2399 | // Thread-specific key. Initialization here is somewhat tricky |
2400 | // because some Linux startup code invokes malloc() before it |
2401 | // is in a good enough state to handle pthread_keycreate(). |
2402 | // Therefore, we use TSD keys only after tsd_inited is set to true. |
2403 | // Until then, we use a slow path to get the heap object. |
2404 | static bool tsd_inited = false; |
2405 | static pthread_key_t heap_key; |
2406 | #if COMPILER(MSVC) |
2407 | DWORD tlsIndex = TLS_OUT_OF_INDEXES; |
2408 | #endif |
2409 | |
2410 | static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap) |
2411 | { |
2412 | // still do pthread_setspecific when using MSVC fast TLS to |
2413 | // benefit from the delete callback. |
2414 | pthread_setspecific(heap_key, heap); |
2415 | #if COMPILER(MSVC) |
2416 | TlsSetValue(tlsIndex, heap); |
2417 | #endif |
2418 | } |
2419 | |
2420 | // Allocator for thread heaps |
2421 | static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator; |
2422 | |
2423 | // Linked list of heap objects. Protected by pageheap_lock. |
2424 | static TCMalloc_ThreadCache* thread_heaps = NULL; |
2425 | static int thread_heap_count = 0; |
2426 | |
2427 | // Overall thread cache size. Protected by pageheap_lock. |
2428 | static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize; |
2429 | |
2430 | // Global per-thread cache size. Writes are protected by |
2431 | // pageheap_lock. Reads are done without any locking, which should be |
2432 | // fine as long as size_t can be written atomically and we don't place |
2433 | // invariants between this variable and other pieces of state. |
2434 | static volatile size_t per_thread_cache_size = kMaxThreadCacheSize; |
2435 | |
2436 | //------------------------------------------------------------------- |
2437 | // Central cache implementation |
2438 | //------------------------------------------------------------------- |
2439 | |
2440 | void TCMalloc_Central_FreeList::Init(size_t cl) { |
2441 | lock_.Init(); |
2442 | size_class_ = cl; |
2443 | DLL_Init(&empty_); |
2444 | DLL_Init(&nonempty_); |
2445 | counter_ = 0; |
2446 | |
2447 | cache_size_ = 1; |
2448 | used_slots_ = 0; |
2449 | ASSERT(cache_size_ <= kNumTransferEntries); |
2450 | } |
2451 | |
2452 | void TCMalloc_Central_FreeList::ReleaseListToSpans(void* start) { |
2453 | while (start) { |
2454 | void *next = SLL_Next(start); |
2455 | ReleaseToSpans(start); |
2456 | start = next; |
2457 | } |
2458 | } |
2459 | |
2460 | ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(void* object) { |
2461 | const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift; |
2462 | Span* span = pageheap->GetDescriptor(p); |
2463 | ASSERT(span != NULL); |
2464 | ASSERT(span->refcount > 0); |
2465 | |
2466 | // If span is empty, move it to non-empty list |
2467 | if (span->objects == NULL) { |
2468 | DLL_Remove(span); |
2469 | DLL_Prepend(&nonempty_, span); |
2470 | Event(span, 'N', 0); |
2471 | } |
2472 | |
2473 | // The following check is expensive, so it is disabled by default |
2474 | if (false) { |
2475 | // Check that object does not occur in list |
2476 | unsigned got = 0; |
2477 | for (void* p = span->objects; p != NULL; p = *((void**) p)) { |
2478 | ASSERT(p != object); |
2479 | got++; |
2480 | } |
2481 | ASSERT(got + span->refcount == |
2482 | (span->length<<kPageShift)/ByteSizeForClass(span->sizeclass)); |
2483 | } |
2484 | |
2485 | counter_++; |
2486 | span->refcount--; |
2487 | if (span->refcount == 0) { |
2488 | Event(span, '#', 0); |
2489 | counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass); |
2490 | DLL_Remove(span); |
2491 | |
2492 | // Release central list lock while operating on pageheap |
2493 | lock_.Unlock(); |
2494 | { |
2495 | SpinLockHolder h(&pageheap_lock); |
2496 | pageheap->Delete(span); |
2497 | } |
2498 | lock_.Lock(); |
2499 | } else { |
2500 | *(reinterpret_cast<void**>(object)) = span->objects; |
2501 | span->objects = object; |
2502 | } |
2503 | } |
2504 | |
2505 | ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass( |
2506 | size_t locked_size_class, bool force) { |
2507 | static int race_counter = 0; |
2508 | int t = race_counter++; // Updated without a lock, but who cares. |
2509 | if (t >= static_cast<int>(kNumClasses)) { |
2510 | while (t >= static_cast<int>(kNumClasses)) { |
2511 | t -= kNumClasses; |
2512 | } |
2513 | race_counter = t; |
2514 | } |
2515 | ASSERT(t >= 0); |
2516 | ASSERT(t < static_cast<int>(kNumClasses)); |
2517 | if (t == static_cast<int>(locked_size_class)) return false; |
2518 | return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force); |
2519 | } |
2520 | |
2521 | bool TCMalloc_Central_FreeList::MakeCacheSpace() { |
2522 | // Is there room in the cache? |
2523 | if (used_slots_ < cache_size_) return true; |
2524 | // Check if we can expand this cache? |
2525 | if (cache_size_ == kNumTransferEntries) return false; |
2526 | // Ok, we'll try to grab an entry from some other size class. |
2527 | if (EvictRandomSizeClass(size_class_, false) || |
2528 | EvictRandomSizeClass(size_class_, true)) { |
2529 | // Succeeded in evicting, we're going to make our cache larger. |
2530 | cache_size_++; |
2531 | return true; |
2532 | } |
2533 | return false; |
2534 | } |
2535 | |
2536 | |
2537 | namespace { |
2538 | class LockInverter { |
2539 | private: |
2540 | SpinLock *held_, *temp_; |
2541 | public: |
2542 | inline explicit LockInverter(SpinLock* held, SpinLock *temp) |
2543 | : held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); } |
2544 | inline ~LockInverter() { temp_->Unlock(); held_->Lock(); } |
2545 | }; |
2546 | } |
2547 | |
2548 | bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) { |
2549 | // Start with a quick check without taking a lock. |
2550 | if (cache_size_ == 0) return false; |
2551 | // We don't evict from a full cache unless we are 'forcing'. |
2552 | if (force == false && used_slots_ == cache_size_) return false; |
2553 | |
2554 | // Grab lock, but first release the other lock held by this thread. We use |
2555 | // the lock inverter to ensure that we never hold two size class locks |
2556 | // concurrently. That can create a deadlock because there is no well |
2557 | // defined nesting order. |
2558 | LockInverter li(¢ral_cache[locked_size_class].lock_, &lock_); |
2559 | ASSERT(used_slots_ <= cache_size_); |
2560 | ASSERT(0 <= cache_size_); |
2561 | if (cache_size_ == 0) return false; |
2562 | if (used_slots_ == cache_size_) { |
2563 | if (force == false) return false; |
2564 | // ReleaseListToSpans releases the lock, so we have to make all the |
2565 | // updates to the central list before calling it. |
2566 | cache_size_--; |
2567 | used_slots_--; |
2568 | ReleaseListToSpans(tc_slots_[used_slots_].head); |
2569 | return true; |
2570 | } |
2571 | cache_size_--; |
2572 | return true; |
2573 | } |
2574 | |
2575 | void TCMalloc_Central_FreeList::InsertRange(void *start, void *end, int N) { |
2576 | SpinLockHolder h(&lock_); |
2577 | if (N == num_objects_to_move[size_class_] && |
2578 | MakeCacheSpace()) { |
2579 | int slot = used_slots_++; |
2580 | ASSERT(slot >=0); |
2581 | ASSERT(slot < kNumTransferEntries); |
2582 | TCEntry *entry = &tc_slots_[slot]; |
2583 | entry->head = start; |
2584 | entry->tail = end; |
2585 | return; |
2586 | } |
2587 | ReleaseListToSpans(start); |
2588 | } |
2589 | |
2590 | void TCMalloc_Central_FreeList::RemoveRange(void **start, void **end, int *N) { |
2591 | int num = *N; |
2592 | ASSERT(num > 0); |
2593 | |
2594 | SpinLockHolder h(&lock_); |
2595 | if (num == num_objects_to_move[size_class_] && used_slots_ > 0) { |
2596 | int slot = --used_slots_; |
2597 | ASSERT(slot >= 0); |
2598 | TCEntry *entry = &tc_slots_[slot]; |
2599 | *start = entry->head; |
2600 | *end = entry->tail; |
2601 | return; |
2602 | } |
2603 | |
2604 | // TODO: Prefetch multiple TCEntries? |
2605 | void *tail = FetchFromSpansSafe(); |
2606 | if (!tail) { |
2607 | // We are completely out of memory. |
2608 | *start = *end = NULL; |
2609 | *N = 0; |
2610 | return; |
2611 | } |
2612 | |
2613 | SLL_SetNext(tail, NULL); |
2614 | void *head = tail; |
2615 | int count = 1; |
2616 | while (count < num) { |
2617 | void *t = FetchFromSpans(); |
2618 | if (!t) break; |
2619 | SLL_Push(&head, t); |
2620 | count++; |
2621 | } |
2622 | *start = head; |
2623 | *end = tail; |
2624 | *N = count; |
2625 | } |
2626 | |
2627 | |
2628 | void* TCMalloc_Central_FreeList::FetchFromSpansSafe() { |
2629 | void *t = FetchFromSpans(); |
2630 | if (!t) { |
2631 | Populate(); |
2632 | t = FetchFromSpans(); |
2633 | } |
2634 | return t; |
2635 | } |
2636 | |
2637 | void* TCMalloc_Central_FreeList::FetchFromSpans() { |
2638 | // Intel compiler bug; issue id 6000056746 |
2639 | // if (DLL_IsEmpty(&nonempty_)) return NULL; |
2640 | Span* span = nonempty_.next; |
2641 | if (span == &nonempty_) |
2642 | return NULL; |
2643 | |
2644 | ASSERT(span->objects != NULL); |
2645 | ASSERT_SPAN_COMMITTED(span); |
2646 | span->refcount++; |
2647 | void* result = span->objects; |
2648 | span->objects = *(reinterpret_cast<void**>(result)); |
2649 | if (span->objects == NULL) { |
2650 | // Move to empty list |
2651 | DLL_Remove(span); |
2652 | DLL_Prepend(&empty_, span); |
2653 | Event(span, 'E', 0); |
2654 | } |
2655 | counter_--; |
2656 | return result; |
2657 | } |
2658 | |
2659 | // Fetch memory from the system and add to the central cache freelist. |
2660 | ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() { |
2661 | // Release central list lock while operating on pageheap |
2662 | lock_.Unlock(); |
2663 | const size_t npages = class_to_pages[size_class_]; |
2664 | |
2665 | Span* span; |
2666 | { |
2667 | SpinLockHolder h(&pageheap_lock); |
2668 | span = pageheap->New(npages); |
2669 | if (span) pageheap->RegisterSizeClass(span, size_class_); |
2670 | } |
2671 | if (span == NULL) { |
2672 | MESSAGE("allocation failed: %d\n" , errno); |
2673 | lock_.Lock(); |
2674 | return; |
2675 | } |
2676 | ASSERT_SPAN_COMMITTED(span); |
2677 | ASSERT(span->length == npages); |
2678 | // Cache sizeclass info eagerly. Locking is not necessary. |
2679 | // (Instead of being eager, we could just replace any stale info |
2680 | // about this span, but that seems to be no better in practice.) |
2681 | for (size_t i = 0; i < npages; i++) { |
2682 | pageheap->CacheSizeClass(span->start + i, size_class_); |
2683 | } |
2684 | |
2685 | // Split the block into pieces and add to the free-list |
2686 | // TODO: coloring of objects to avoid cache conflicts? |
2687 | void** tail = &span->objects; |
2688 | char* ptr = reinterpret_cast<char*>(span->start << kPageShift); |
2689 | char* limit = ptr + (npages << kPageShift); |
2690 | const size_t size = ByteSizeForClass(size_class_); |
2691 | int num = 0; |
2692 | char* nptr; |
2693 | while ((nptr = ptr + size) <= limit) { |
2694 | *tail = ptr; |
2695 | tail = reinterpret_cast<void**>(ptr); |
2696 | ptr = nptr; |
2697 | num++; |
2698 | } |
2699 | ASSERT(ptr <= limit); |
2700 | *tail = NULL; |
2701 | span->refcount = 0; // No sub-object in use yet |
2702 | |
2703 | // Add span to list of non-empty spans |
2704 | lock_.Lock(); |
2705 | DLL_Prepend(&nonempty_, span); |
2706 | counter_ += num; |
2707 | } |
2708 | |
2709 | //------------------------------------------------------------------- |
2710 | // TCMalloc_ThreadCache implementation |
2711 | //------------------------------------------------------------------- |
2712 | |
2713 | inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) { |
2714 | if (bytes_until_sample_ < k) { |
2715 | PickNextSample(k); |
2716 | return true; |
2717 | } else { |
2718 | bytes_until_sample_ -= k; |
2719 | return false; |
2720 | } |
2721 | } |
2722 | |
2723 | void TCMalloc_ThreadCache::Init(ThreadIdentifier tid) { |
2724 | size_ = 0; |
2725 | next_ = NULL; |
2726 | prev_ = NULL; |
2727 | tid_ = tid; |
2728 | in_setspecific_ = false; |
2729 | for (size_t cl = 0; cl < kNumClasses; ++cl) { |
2730 | list_[cl].Init(); |
2731 | } |
2732 | |
2733 | // Initialize RNG -- run it for a bit to get to good values |
2734 | bytes_until_sample_ = 0; |
2735 | rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this)); |
2736 | for (int i = 0; i < 100; i++) { |
2737 | PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2)); |
2738 | } |
2739 | } |
2740 | |
2741 | void TCMalloc_ThreadCache::Cleanup() { |
2742 | // Put unused memory back into central cache |
2743 | for (size_t cl = 0; cl < kNumClasses; ++cl) { |
2744 | if (list_[cl].length() > 0) { |
2745 | ReleaseToCentralCache(cl, list_[cl].length()); |
2746 | } |
2747 | } |
2748 | } |
2749 | |
2750 | ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) { |
2751 | ASSERT(size <= kMaxSize); |
2752 | const size_t cl = SizeClass(size); |
2753 | FreeList* list = &list_[cl]; |
2754 | size_t allocationSize = ByteSizeForClass(cl); |
2755 | if (list->empty()) { |
2756 | FetchFromCentralCache(cl, allocationSize); |
2757 | if (list->empty()) return NULL; |
2758 | } |
2759 | size_ -= allocationSize; |
2760 | return list->Pop(); |
2761 | } |
2762 | |
2763 | inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) { |
2764 | size_ += ByteSizeForClass(cl); |
2765 | FreeList* list = &list_[cl]; |
2766 | list->Push(ptr); |
2767 | // If enough data is free, put back into central cache |
2768 | if (list->length() > kMaxFreeListLength) { |
2769 | ReleaseToCentralCache(cl, num_objects_to_move[cl]); |
2770 | } |
2771 | if (size_ >= per_thread_cache_size) Scavenge(); |
2772 | } |
2773 | |
2774 | // Remove some objects of class "cl" from central cache and add to thread heap |
2775 | ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) { |
2776 | int fetch_count = num_objects_to_move[cl]; |
2777 | void *start, *end; |
2778 | central_cache[cl].RemoveRange(&start, &end, &fetch_count); |
2779 | list_[cl].PushRange(fetch_count, start, end); |
2780 | size_ += allocationSize * fetch_count; |
2781 | } |
2782 | |
2783 | // Remove some objects of class "cl" from thread heap and add to central cache |
2784 | inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) { |
2785 | ASSERT(N > 0); |
2786 | FreeList* src = &list_[cl]; |
2787 | if (N > src->length()) N = src->length(); |
2788 | size_ -= N*ByteSizeForClass(cl); |
2789 | |
2790 | // We return prepackaged chains of the correct size to the central cache. |
2791 | // TODO: Use the same format internally in the thread caches? |
2792 | int batch_size = num_objects_to_move[cl]; |
2793 | while (N > batch_size) { |
2794 | void *tail, *head; |
2795 | src->PopRange(batch_size, &head, &tail); |
2796 | central_cache[cl].InsertRange(head, tail, batch_size); |
2797 | N -= batch_size; |
2798 | } |
2799 | void *tail, *head; |
2800 | src->PopRange(N, &head, &tail); |
2801 | central_cache[cl].InsertRange(head, tail, N); |
2802 | } |
2803 | |
2804 | // Release idle memory to the central cache |
2805 | inline void TCMalloc_ThreadCache::Scavenge() { |
2806 | // If the low-water mark for the free list is L, it means we would |
2807 | // not have had to allocate anything from the central cache even if |
2808 | // we had reduced the free list size by L. We aim to get closer to |
2809 | // that situation by dropping L/2 nodes from the free list. This |
2810 | // may not release much memory, but if so we will call scavenge again |
2811 | // pretty soon and the low-water marks will be high on that call. |
2812 | //int64 start = CycleClock::Now(); |
2813 | |
2814 | for (size_t cl = 0; cl < kNumClasses; cl++) { |
2815 | FreeList* list = &list_[cl]; |
2816 | const int lowmark = list->lowwatermark(); |
2817 | if (lowmark > 0) { |
2818 | const int drop = (lowmark > 1) ? lowmark/2 : 1; |
2819 | ReleaseToCentralCache(cl, drop); |
2820 | } |
2821 | list->clear_lowwatermark(); |
2822 | } |
2823 | |
2824 | //int64 finish = CycleClock::Now(); |
2825 | //CycleTimer ct; |
2826 | //MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0); |
2827 | } |
2828 | |
2829 | void TCMalloc_ThreadCache::PickNextSample(size_t k) { |
2830 | // Make next "random" number |
2831 | // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers |
2832 | static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0); |
2833 | uint32_t r = rnd_; |
2834 | rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly); |
2835 | |
2836 | // Next point is "rnd_ % (sample_period)". I.e., average |
2837 | // increment is "sample_period/2". |
2838 | const int flag_value = static_cast<int>(FLAGS_tcmalloc_sample_parameter); |
2839 | static int last_flag_value = -1; |
2840 | |
2841 | if (flag_value != last_flag_value) { |
2842 | SpinLockHolder h(&sample_period_lock); |
2843 | int i; |
2844 | for (i = 0; i < (static_cast<int>(sizeof(primes_list)/sizeof(primes_list[0])) - 1); i++) { |
2845 | if (primes_list[i] >= flag_value) { |
2846 | break; |
2847 | } |
2848 | } |
2849 | sample_period = primes_list[i]; |
2850 | last_flag_value = flag_value; |
2851 | } |
2852 | |
2853 | bytes_until_sample_ += rnd_ % sample_period; |
2854 | |
2855 | if (k > (static_cast<size_t>(-1) >> 2)) { |
2856 | // If the user has asked for a huge allocation then it is possible |
2857 | // for the code below to loop infinitely. Just return (note that |
2858 | // this throws off the sampling accuracy somewhat, but a user who |
2859 | // is allocating more than 1G of memory at a time can live with a |
2860 | // minor inaccuracy in profiling of small allocations, and also |
2861 | // would rather not wait for the loop below to terminate). |
2862 | return; |
2863 | } |
2864 | |
2865 | while (bytes_until_sample_ < k) { |
2866 | // Increase bytes_until_sample_ by enough average sampling periods |
2867 | // (sample_period >> 1) to allow us to sample past the current |
2868 | // allocation. |
2869 | bytes_until_sample_ += (sample_period >> 1); |
2870 | } |
2871 | |
2872 | bytes_until_sample_ -= k; |
2873 | } |
2874 | |
2875 | void TCMalloc_ThreadCache::InitModule() { |
2876 | // There is a slight potential race here because of double-checked |
2877 | // locking idiom. However, as long as the program does a small |
2878 | // allocation before switching to multi-threaded mode, we will be |
2879 | // fine. We increase the chances of doing such a small allocation |
2880 | // by doing one in the constructor of the module_enter_exit_hook |
2881 | // object declared below. |
2882 | SpinLockHolder h(&pageheap_lock); |
2883 | if (!phinited) { |
2884 | #ifdef WTF_CHANGES |
2885 | InitTSD(); |
2886 | #endif |
2887 | InitSizeClasses(); |
2888 | threadheap_allocator.Init(); |
2889 | span_allocator.Init(); |
2890 | span_allocator.New(); // Reduce cache conflicts |
2891 | span_allocator.New(); // Reduce cache conflicts |
2892 | stacktrace_allocator.Init(); |
2893 | DLL_Init(&sampled_objects); |
2894 | for (size_t i = 0; i < kNumClasses; ++i) { |
2895 | central_cache[i].Init(i); |
2896 | } |
2897 | pageheap->init(); |
2898 | phinited = 1; |
2899 | #if defined(WTF_CHANGES) && OS(DARWIN) |
2900 | FastMallocZone::init(); |
2901 | #endif |
2902 | } |
2903 | } |
2904 | |
2905 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::NewHeap(ThreadIdentifier tid) { |
2906 | // Create the heap and add it to the linked list |
2907 | TCMalloc_ThreadCache *heap = threadheap_allocator.New(); |
2908 | heap->Init(tid); |
2909 | heap->next_ = thread_heaps; |
2910 | heap->prev_ = NULL; |
2911 | if (thread_heaps != NULL) thread_heaps->prev_ = heap; |
2912 | thread_heaps = heap; |
2913 | thread_heap_count++; |
2914 | RecomputeThreadCacheSize(); |
2915 | return heap; |
2916 | } |
2917 | |
2918 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetThreadHeap() { |
2919 | #ifdef HAVE_TLS |
2920 | // __thread is faster, but only when the kernel supports it |
2921 | if (KernelSupportsTLS()) |
2922 | return threadlocal_heap; |
2923 | #elif COMPILER(MSVC) |
2924 | return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex)); |
2925 | #else |
2926 | return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key)); |
2927 | #endif |
2928 | } |
2929 | |
2930 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() { |
2931 | TCMalloc_ThreadCache* ptr = NULL; |
2932 | if (!tsd_inited) { |
2933 | InitModule(); |
2934 | } else { |
2935 | ptr = GetThreadHeap(); |
2936 | } |
2937 | if (ptr == NULL) ptr = CreateCacheIfNecessary(); |
2938 | return ptr; |
2939 | } |
2940 | |
2941 | // In deletion paths, we do not try to create a thread-cache. This is |
2942 | // because we may be in the thread destruction code and may have |
2943 | // already cleaned up the cache for this thread. |
2944 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() { |
2945 | if (!tsd_inited) return NULL; |
2946 | void* const p = GetThreadHeap(); |
2947 | return reinterpret_cast<TCMalloc_ThreadCache*>(p); |
2948 | } |
2949 | |
2950 | void TCMalloc_ThreadCache::InitTSD() { |
2951 | ASSERT(!tsd_inited); |
2952 | pthread_key_create(&heap_key, DestroyThreadCache); |
2953 | #if COMPILER(MSVC) |
2954 | tlsIndex = TlsAlloc(); |
2955 | #endif |
2956 | tsd_inited = true; |
2957 | |
2958 | #if !COMPILER(MSVC) |
2959 | // We may have used a fake pthread_t for the main thread. Fix it. |
2960 | pthread_t zero; |
2961 | memset(&zero, 0, sizeof(zero)); |
2962 | #endif |
2963 | #ifndef WTF_CHANGES |
2964 | SpinLockHolder h(&pageheap_lock); |
2965 | #else |
2966 | ASSERT(pageheap_lock.IsHeld()); |
2967 | #endif |
2968 | for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) { |
2969 | #if COMPILER(MSVC) |
2970 | if (h->tid_ == 0) { |
2971 | h->tid_ = GetCurrentThreadId(); |
2972 | } |
2973 | #else |
2974 | if (pthread_equal(h->tid_, zero)) { |
2975 | h->tid_ = pthread_self(); |
2976 | } |
2977 | #endif |
2978 | } |
2979 | } |
2980 | |
2981 | TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() { |
2982 | // Initialize per-thread data if necessary |
2983 | TCMalloc_ThreadCache* heap = NULL; |
2984 | { |
2985 | SpinLockHolder lockholder(&pageheap_lock); |
2986 | |
2987 | #if COMPILER(MSVC) |
2988 | DWORD me; |
2989 | if (!tsd_inited) { |
2990 | me = 0; |
2991 | } else { |
2992 | me = GetCurrentThreadId(); |
2993 | } |
2994 | #else |
2995 | // Early on in glibc's life, we cannot even call pthread_self() |
2996 | pthread_t me; |
2997 | if (!tsd_inited) { |
2998 | memset(&me, 0, sizeof(me)); |
2999 | } else { |
3000 | me = pthread_self(); |
3001 | } |
3002 | #endif |
3003 | |
3004 | // This may be a recursive malloc call from pthread_setspecific() |
3005 | // In that case, the heap for this thread has already been created |
3006 | // and added to the linked list. So we search for that first. |
3007 | for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) { |
3008 | #if COMPILER(MSVC) |
3009 | if (h->tid_ == me) { |
3010 | #else |
3011 | if (pthread_equal(h->tid_, me)) { |
3012 | #endif |
3013 | heap = h; |
3014 | break; |
3015 | } |
3016 | } |
3017 | |
3018 | if (heap == NULL) heap = NewHeap(me); |
3019 | } |
3020 | |
3021 | // We call pthread_setspecific() outside the lock because it may |
3022 | // call malloc() recursively. The recursive call will never get |
3023 | // here again because it will find the already allocated heap in the |
3024 | // linked list of heaps. |
3025 | if (!heap->in_setspecific_ && tsd_inited) { |
3026 | heap->in_setspecific_ = true; |
3027 | setThreadHeap(heap); |
3028 | } |
3029 | return heap; |
3030 | } |
3031 | |
3032 | void TCMalloc_ThreadCache::BecomeIdle() { |
3033 | if (!tsd_inited) return; // No caches yet |
3034 | TCMalloc_ThreadCache* heap = GetThreadHeap(); |
3035 | if (heap == NULL) return; // No thread cache to remove |
3036 | if (heap->in_setspecific_) return; // Do not disturb the active caller |
3037 | |
3038 | heap->in_setspecific_ = true; |
3039 | pthread_setspecific(heap_key, NULL); |
3040 | #ifdef HAVE_TLS |
3041 | // Also update the copy in __thread |
3042 | threadlocal_heap = NULL; |
3043 | #endif |
3044 | heap->in_setspecific_ = false; |
3045 | if (GetThreadHeap() == heap) { |
3046 | // Somehow heap got reinstated by a recursive call to malloc |
3047 | // from pthread_setspecific. We give up in this case. |
3048 | return; |
3049 | } |
3050 | |
3051 | // We can now get rid of the heap |
3052 | DeleteCache(heap); |
3053 | } |
3054 | |
3055 | void TCMalloc_ThreadCache::DestroyThreadCache(void* ptr) { |
3056 | // Note that "ptr" cannot be NULL since pthread promises not |
3057 | // to invoke the destructor on NULL values, but for safety, |
3058 | // we check anyway. |
3059 | if (ptr == NULL) return; |
3060 | #ifdef HAVE_TLS |
3061 | // Prevent fast path of GetThreadHeap() from returning heap. |
3062 | threadlocal_heap = NULL; |
3063 | #endif |
3064 | DeleteCache(reinterpret_cast<TCMalloc_ThreadCache*>(ptr)); |
3065 | } |
3066 | |
3067 | void TCMalloc_ThreadCache::DeleteCache(TCMalloc_ThreadCache* heap) { |
3068 | // Remove all memory from heap |
3069 | heap->Cleanup(); |
3070 | |
3071 | // Remove from linked list |
3072 | SpinLockHolder h(&pageheap_lock); |
3073 | if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_; |
3074 | if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_; |
3075 | if (thread_heaps == heap) thread_heaps = heap->next_; |
3076 | thread_heap_count--; |
3077 | RecomputeThreadCacheSize(); |
3078 | |
3079 | threadheap_allocator.Delete(heap); |
3080 | } |
3081 | |
3082 | void TCMalloc_ThreadCache::RecomputeThreadCacheSize() { |
3083 | // Divide available space across threads |
3084 | int n = thread_heap_count > 0 ? thread_heap_count : 1; |
3085 | size_t space = overall_thread_cache_size / n; |
3086 | |
3087 | // Limit to allowed range |
3088 | if (space < kMinThreadCacheSize) space = kMinThreadCacheSize; |
3089 | if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize; |
3090 | |
3091 | per_thread_cache_size = space; |
3092 | } |
3093 | |
3094 | void TCMalloc_ThreadCache::Print() const { |
3095 | for (size_t cl = 0; cl < kNumClasses; ++cl) { |
3096 | MESSAGE(" %5" PRIuS " : %4d len; %4d lo\n" , |
3097 | ByteSizeForClass(cl), |
3098 | list_[cl].length(), |
3099 | list_[cl].lowwatermark()); |
3100 | } |
3101 | } |
3102 | |
3103 | // Extract interesting stats |
3104 | struct TCMallocStats { |
3105 | uint64_t system_bytes; // Bytes alloced from system |
3106 | uint64_t thread_bytes; // Bytes in thread caches |
3107 | uint64_t central_bytes; // Bytes in central cache |
3108 | uint64_t transfer_bytes; // Bytes in central transfer cache |
3109 | uint64_t pageheap_bytes; // Bytes in page heap |
3110 | uint64_t metadata_bytes; // Bytes alloced for metadata |
3111 | }; |
3112 | |
3113 | #ifndef WTF_CHANGES |
3114 | // Get stats into "r". Also get per-size-class counts if class_count != NULL |
3115 | static void ExtractStats(TCMallocStats* r, uint64_t* class_count) { |
3116 | r->central_bytes = 0; |
3117 | r->transfer_bytes = 0; |
3118 | for (int cl = 0; cl < kNumClasses; ++cl) { |
3119 | const int length = central_cache[cl].length(); |
3120 | const int tc_length = central_cache[cl].tc_length(); |
3121 | r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length; |
3122 | r->transfer_bytes += |
3123 | static_cast<uint64_t>(ByteSizeForClass(cl)) * tc_length; |
3124 | if (class_count) class_count[cl] = length + tc_length; |
3125 | } |
3126 | |
3127 | // Add stats from per-thread heaps |
3128 | r->thread_bytes = 0; |
3129 | { // scope |
3130 | SpinLockHolder h(&pageheap_lock); |
3131 | for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) { |
3132 | r->thread_bytes += h->Size(); |
3133 | if (class_count) { |
3134 | for (size_t cl = 0; cl < kNumClasses; ++cl) { |
3135 | class_count[cl] += h->freelist_length(cl); |
3136 | } |
3137 | } |
3138 | } |
3139 | } |
3140 | |
3141 | { //scope |
3142 | SpinLockHolder h(&pageheap_lock); |
3143 | r->system_bytes = pageheap->SystemBytes(); |
3144 | r->metadata_bytes = metadata_system_bytes; |
3145 | r->pageheap_bytes = pageheap->FreeBytes(); |
3146 | } |
3147 | } |
3148 | #endif |
3149 | |
3150 | #ifndef WTF_CHANGES |
3151 | // WRITE stats to "out" |
3152 | static void DumpStats(TCMalloc_Printer* out, int level) { |
3153 | TCMallocStats stats; |
3154 | uint64_t class_count[kNumClasses]; |
3155 | ExtractStats(&stats, (level >= 2 ? class_count : NULL)); |
3156 | |
3157 | if (level >= 2) { |
3158 | out->printf("------------------------------------------------\n" ); |
3159 | uint64_t cumulative = 0; |
3160 | for (int cl = 0; cl < kNumClasses; ++cl) { |
3161 | if (class_count[cl] > 0) { |
3162 | uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl); |
3163 | cumulative += class_bytes; |
3164 | out->printf("class %3d [ %8" PRIuS " bytes ] : " |
3165 | "%8" PRIu64 " objs; %5.1f MB; %5.1f cum MB\n" , |
3166 | cl, ByteSizeForClass(cl), |
3167 | class_count[cl], |
3168 | class_bytes / 1048576.0, |
3169 | cumulative / 1048576.0); |
3170 | } |
3171 | } |
3172 | |
3173 | SpinLockHolder h(&pageheap_lock); |
3174 | pageheap->Dump(out); |
3175 | } |
3176 | |
3177 | const uint64_t bytes_in_use = stats.system_bytes |
3178 | - stats.pageheap_bytes |
3179 | - stats.central_bytes |
3180 | - stats.transfer_bytes |
3181 | - stats.thread_bytes; |
3182 | |
3183 | out->printf("------------------------------------------------\n" |
3184 | "MALLOC: %12" PRIu64 " Heap size\n" |
3185 | "MALLOC: %12" PRIu64 " Bytes in use by application\n" |
3186 | "MALLOC: %12" PRIu64 " Bytes free in page heap\n" |
3187 | "MALLOC: %12" PRIu64 " Bytes free in central cache\n" |
3188 | "MALLOC: %12" PRIu64 " Bytes free in transfer cache\n" |
3189 | "MALLOC: %12" PRIu64 " Bytes free in thread caches\n" |
3190 | "MALLOC: %12" PRIu64 " Spans in use\n" |
3191 | "MALLOC: %12" PRIu64 " Thread heaps in use\n" |
3192 | "MALLOC: %12" PRIu64 " Metadata allocated\n" |
3193 | "------------------------------------------------\n" , |
3194 | stats.system_bytes, |
3195 | bytes_in_use, |
3196 | stats.pageheap_bytes, |
3197 | stats.central_bytes, |
3198 | stats.transfer_bytes, |
3199 | stats.thread_bytes, |
3200 | uint64_t(span_allocator.inuse()), |
3201 | uint64_t(threadheap_allocator.inuse()), |
3202 | stats.metadata_bytes); |
3203 | } |
3204 | |
3205 | static void PrintStats(int level) { |
3206 | const int kBufferSize = 16 << 10; |
3207 | char* buffer = new char[kBufferSize]; |
3208 | TCMalloc_Printer printer(buffer, kBufferSize); |
3209 | DumpStats(&printer, level); |
3210 | write(STDERR_FILENO, buffer, strlen(buffer)); |
3211 | delete[] buffer; |
3212 | } |
3213 | |
3214 | static void** DumpStackTraces() { |
3215 | // Count how much space we need |
3216 | int needed_slots = 0; |
3217 | { |
3218 | SpinLockHolder h(&pageheap_lock); |
3219 | for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) { |
3220 | StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects); |
3221 | needed_slots += 3 + stack->depth; |
3222 | } |
3223 | needed_slots += 100; // Slop in case sample grows |
3224 | needed_slots += needed_slots/8; // An extra 12.5% slop |
3225 | } |
3226 | |
3227 | void** result = new void*[needed_slots]; |
3228 | if (result == NULL) { |
3229 | MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n" , |
3230 | needed_slots); |
3231 | return NULL; |
3232 | } |
3233 | |
3234 | SpinLockHolder h(&pageheap_lock); |
3235 | int used_slots = 0; |
3236 | for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) { |
3237 | ASSERT(used_slots < needed_slots); // Need to leave room for terminator |
3238 | StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects); |
3239 | if (used_slots + 3 + stack->depth >= needed_slots) { |
3240 | // No more room |
3241 | break; |
3242 | } |
3243 | |
3244 | result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1)); |
3245 | result[used_slots+1] = reinterpret_cast<void*>(stack->size); |
3246 | result[used_slots+2] = reinterpret_cast<void*>(stack->depth); |
3247 | for (int d = 0; d < stack->depth; d++) { |
3248 | result[used_slots+3+d] = stack->stack[d]; |
3249 | } |
3250 | used_slots += 3 + stack->depth; |
3251 | } |
3252 | result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0)); |
3253 | return result; |
3254 | } |
3255 | #endif |
3256 | |
3257 | #ifndef WTF_CHANGES |
3258 | |
3259 | // TCMalloc's support for extra malloc interfaces |
3260 | class TCMallocImplementation : public MallocExtension { |
3261 | public: |
3262 | virtual void GetStats(char* buffer, int buffer_length) { |
3263 | ASSERT(buffer_length > 0); |
3264 | TCMalloc_Printer printer(buffer, buffer_length); |
3265 | |
3266 | // Print level one stats unless lots of space is available |
3267 | if (buffer_length < 10000) { |
3268 | DumpStats(&printer, 1); |
3269 | } else { |
3270 | DumpStats(&printer, 2); |
3271 | } |
3272 | } |
3273 | |
3274 | virtual void** ReadStackTraces() { |
3275 | return DumpStackTraces(); |
3276 | } |
3277 | |
3278 | virtual bool GetNumericProperty(const char* name, size_t* value) { |
3279 | ASSERT(name != NULL); |
3280 | |
3281 | if (strcmp(name, "generic.current_allocated_bytes" ) == 0) { |
3282 | TCMallocStats stats; |
3283 | ExtractStats(&stats, NULL); |
3284 | *value = stats.system_bytes |
3285 | - stats.thread_bytes |
3286 | - stats.central_bytes |
3287 | - stats.pageheap_bytes; |
3288 | return true; |
3289 | } |
3290 | |
3291 | if (strcmp(name, "generic.heap_size" ) == 0) { |
3292 | TCMallocStats stats; |
3293 | ExtractStats(&stats, NULL); |
3294 | *value = stats.system_bytes; |
3295 | return true; |
3296 | } |
3297 | |
3298 | if (strcmp(name, "tcmalloc.slack_bytes" ) == 0) { |
3299 | // We assume that bytes in the page heap are not fragmented too |
3300 | // badly, and are therefore available for allocation. |
3301 | SpinLockHolder l(&pageheap_lock); |
3302 | *value = pageheap->FreeBytes(); |
3303 | return true; |
3304 | } |
3305 | |
3306 | if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes" ) == 0) { |
3307 | SpinLockHolder l(&pageheap_lock); |
3308 | *value = overall_thread_cache_size; |
3309 | return true; |
3310 | } |
3311 | |
3312 | if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes" ) == 0) { |
3313 | TCMallocStats stats; |
3314 | ExtractStats(&stats, NULL); |
3315 | *value = stats.thread_bytes; |
3316 | return true; |
3317 | } |
3318 | |
3319 | return false; |
3320 | } |
3321 | |
3322 | virtual bool SetNumericProperty(const char* name, size_t value) { |
3323 | ASSERT(name != NULL); |
3324 | |
3325 | if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes" ) == 0) { |
3326 | // Clip the value to a reasonable range |
3327 | if (value < kMinThreadCacheSize) value = kMinThreadCacheSize; |
3328 | if (value > (1<<30)) value = (1<<30); // Limit to 1GB |
3329 | |
3330 | SpinLockHolder l(&pageheap_lock); |
3331 | overall_thread_cache_size = static_cast<size_t>(value); |
3332 | TCMalloc_ThreadCache::RecomputeThreadCacheSize(); |
3333 | return true; |
3334 | } |
3335 | |
3336 | return false; |
3337 | } |
3338 | |
3339 | virtual void MarkThreadIdle() { |
3340 | TCMalloc_ThreadCache::BecomeIdle(); |
3341 | } |
3342 | |
3343 | virtual void ReleaseFreeMemory() { |
3344 | SpinLockHolder h(&pageheap_lock); |
3345 | pageheap->ReleaseFreePages(); |
3346 | } |
3347 | }; |
3348 | #endif |
3349 | |
3350 | // The constructor allocates an object to ensure that initialization |
3351 | // runs before main(), and therefore we do not have a chance to become |
3352 | // multi-threaded before initialization. We also create the TSD key |
3353 | // here. Presumably by the time this constructor runs, glibc is in |
3354 | // good enough shape to handle pthread_key_create(). |
3355 | // |
3356 | // The constructor also takes the opportunity to tell STL to use |
3357 | // tcmalloc. We want to do this early, before construct time, so |
3358 | // all user STL allocations go through tcmalloc (which works really |
3359 | // well for STL). |
3360 | // |
3361 | // The destructor prints stats when the program exits. |
3362 | class TCMallocGuard { |
3363 | public: |
3364 | |
3365 | TCMallocGuard() { |
3366 | #ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS |
3367 | // Check whether the kernel also supports TLS (needs to happen at runtime) |
3368 | CheckIfKernelSupportsTLS(); |
3369 | #endif |
3370 | #ifndef WTF_CHANGES |
3371 | #ifdef WIN32 // patch the windows VirtualAlloc, etc. |
3372 | PatchWindowsFunctions(); // defined in windows/patch_functions.cc |
3373 | #endif |
3374 | #endif |
3375 | free(malloc(1)); |
3376 | TCMalloc_ThreadCache::InitTSD(); |
3377 | free(malloc(1)); |
3378 | #ifndef WTF_CHANGES |
3379 | MallocExtension::Register(new TCMallocImplementation); |
3380 | #endif |
3381 | } |
3382 | |
3383 | #ifndef WTF_CHANGES |
3384 | ~TCMallocGuard() { |
3385 | const char* env = getenv("MALLOCSTATS" ); |
3386 | if (env != NULL) { |
3387 | int level = atoi(env); |
3388 | if (level < 1) level = 1; |
3389 | PrintStats(level); |
3390 | } |
3391 | #ifdef WIN32 |
3392 | UnpatchWindowsFunctions(); |
3393 | #endif |
3394 | } |
3395 | #endif |
3396 | }; |
3397 | |
3398 | #ifndef WTF_CHANGES |
3399 | static TCMallocGuard module_enter_exit_hook; |
3400 | #endif |
3401 | |
3402 | |
3403 | //------------------------------------------------------------------- |
3404 | // Helpers for the exported routines below |
3405 | //------------------------------------------------------------------- |
3406 | |
3407 | #ifndef WTF_CHANGES |
3408 | |
3409 | static Span* DoSampledAllocation(size_t size) { |
3410 | |
3411 | // Grab the stack trace outside the heap lock |
3412 | StackTrace tmp; |
3413 | tmp.depth = GetStackTrace(tmp.stack, kMaxStackDepth, 1); |
3414 | tmp.size = size; |
3415 | |
3416 | SpinLockHolder h(&pageheap_lock); |
3417 | // Allocate span |
3418 | Span *span = pageheap->New(pages(size == 0 ? 1 : size)); |
3419 | if (span == NULL) { |
3420 | return NULL; |
3421 | } |
3422 | |
3423 | // Allocate stack trace |
3424 | StackTrace *stack = stacktrace_allocator.New(); |
3425 | if (stack == NULL) { |
3426 | // Sampling failed because of lack of memory |
3427 | return span; |
3428 | } |
3429 | |
3430 | *stack = tmp; |
3431 | span->sample = 1; |
3432 | span->objects = stack; |
3433 | DLL_Prepend(&sampled_objects, span); |
3434 | |
3435 | return span; |
3436 | } |
3437 | #endif |
3438 | |
3439 | static inline bool CheckCachedSizeClass(void *ptr) { |
3440 | PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; |
3441 | size_t cached_value = pageheap->GetSizeClassIfCached(p); |
3442 | return cached_value == 0 || |
3443 | cached_value == pageheap->GetDescriptor(p)->sizeclass; |
3444 | } |
3445 | |
3446 | static inline void* CheckedMallocResult(void *result) |
3447 | { |
3448 | ASSERT(result == 0 || CheckCachedSizeClass(result)); |
3449 | return result; |
3450 | } |
3451 | |
3452 | static inline void* SpanToMallocResult(Span *span) { |
3453 | ASSERT_SPAN_COMMITTED(span); |
3454 | pageheap->CacheSizeClass(span->start, 0); |
3455 | return |
3456 | CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift)); |
3457 | } |
3458 | |
3459 | #ifdef WTF_CHANGES |
3460 | template <bool crashOnFailure> |
3461 | #endif |
3462 | static ALWAYS_INLINE void* do_malloc(size_t size) { |
3463 | void* ret = NULL; |
3464 | |
3465 | #ifdef WTF_CHANGES |
3466 | ASSERT(!isForbidden()); |
3467 | #endif |
3468 | |
3469 | // The following call forces module initialization |
3470 | TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache(); |
3471 | #ifndef WTF_CHANGES |
3472 | if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) { |
3473 | Span* span = DoSampledAllocation(size); |
3474 | if (span != NULL) { |
3475 | ret = SpanToMallocResult(span); |
3476 | } |
3477 | } else |
3478 | #endif |
3479 | if (size > kMaxSize) { |
3480 | // Use page-level allocator |
3481 | SpinLockHolder h(&pageheap_lock); |
3482 | Span* span = pageheap->New(pages(size)); |
3483 | if (span != NULL) { |
3484 | ret = SpanToMallocResult(span); |
3485 | } |
3486 | } else { |
3487 | // The common case, and also the simplest. This just pops the |
3488 | // size-appropriate freelist, afer replenishing it if it's empty. |
3489 | ret = CheckedMallocResult(heap->Allocate(size)); |
3490 | } |
3491 | if (!ret) { |
3492 | #ifdef WTF_CHANGES |
3493 | if (crashOnFailure) // This branch should be optimized out by the compiler. |
3494 | CRASH(); |
3495 | #else |
3496 | errno = ENOMEM; |
3497 | #endif |
3498 | } |
3499 | return ret; |
3500 | } |
3501 | |
3502 | static ALWAYS_INLINE void do_free(void* ptr) { |
3503 | if (ptr == NULL) return; |
3504 | ASSERT(pageheap != NULL); // Should not call free() before malloc() |
3505 | const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; |
3506 | Span* span = NULL; |
3507 | size_t cl = pageheap->GetSizeClassIfCached(p); |
3508 | |
3509 | if (cl == 0) { |
3510 | span = pageheap->GetDescriptor(p); |
3511 | cl = span->sizeclass; |
3512 | pageheap->CacheSizeClass(p, cl); |
3513 | } |
3514 | if (cl != 0) { |
3515 | #ifndef NO_TCMALLOC_SAMPLES |
3516 | ASSERT(!pageheap->GetDescriptor(p)->sample); |
3517 | #endif |
3518 | TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent(); |
3519 | if (heap != NULL) { |
3520 | heap->Deallocate(ptr, cl); |
3521 | } else { |
3522 | // Delete directly into central cache |
3523 | SLL_SetNext(ptr, NULL); |
3524 | central_cache[cl].InsertRange(ptr, ptr, 1); |
3525 | } |
3526 | } else { |
3527 | SpinLockHolder h(&pageheap_lock); |
3528 | ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0); |
3529 | ASSERT(span != NULL && span->start == p); |
3530 | #ifndef NO_TCMALLOC_SAMPLES |
3531 | if (span->sample) { |
3532 | DLL_Remove(span); |
3533 | stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects)); |
3534 | span->objects = NULL; |
3535 | } |
3536 | #endif |
3537 | pageheap->Delete(span); |
3538 | } |
3539 | } |
3540 | |
3541 | #ifndef WTF_CHANGES |
3542 | // For use by exported routines below that want specific alignments |
3543 | // |
3544 | // Note: this code can be slow, and can significantly fragment memory. |
3545 | // The expectation is that memalign/posix_memalign/valloc/pvalloc will |
3546 | // not be invoked very often. This requirement simplifies our |
3547 | // implementation and allows us to tune for expected allocation |
3548 | // patterns. |
3549 | static void* do_memalign(size_t align, size_t size) { |
3550 | ASSERT((align & (align - 1)) == 0); |
3551 | ASSERT(align > 0); |
3552 | if (pageheap == NULL) TCMalloc_ThreadCache::InitModule(); |
3553 | |
3554 | // Allocate at least one byte to avoid boundary conditions below |
3555 | if (size == 0) size = 1; |
3556 | |
3557 | if (size <= kMaxSize && align < kPageSize) { |
3558 | // Search through acceptable size classes looking for one with |
3559 | // enough alignment. This depends on the fact that |
3560 | // InitSizeClasses() currently produces several size classes that |
3561 | // are aligned at powers of two. We will waste time and space if |
3562 | // we miss in the size class array, but that is deemed acceptable |
3563 | // since memalign() should be used rarely. |
3564 | size_t cl = SizeClass(size); |
3565 | while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) { |
3566 | cl++; |
3567 | } |
3568 | if (cl < kNumClasses) { |
3569 | TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache(); |
3570 | return CheckedMallocResult(heap->Allocate(class_to_size[cl])); |
3571 | } |
3572 | } |
3573 | |
3574 | // We will allocate directly from the page heap |
3575 | SpinLockHolder h(&pageheap_lock); |
3576 | |
3577 | if (align <= kPageSize) { |
3578 | // Any page-level allocation will be fine |
3579 | // TODO: We could put the rest of this page in the appropriate |
3580 | // TODO: cache but it does not seem worth it. |
3581 | Span* span = pageheap->New(pages(size)); |
3582 | return span == NULL ? NULL : SpanToMallocResult(span); |
3583 | } |
3584 | |
3585 | // Allocate extra pages and carve off an aligned portion |
3586 | const Length alloc = pages(size + align); |
3587 | Span* span = pageheap->New(alloc); |
3588 | if (span == NULL) return NULL; |
3589 | |
3590 | // Skip starting portion so that we end up aligned |
3591 | Length skip = 0; |
3592 | while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) { |
3593 | skip++; |
3594 | } |
3595 | ASSERT(skip < alloc); |
3596 | if (skip > 0) { |
3597 | Span* rest = pageheap->Split(span, skip); |
3598 | pageheap->Delete(span); |
3599 | span = rest; |
3600 | } |
3601 | |
3602 | // Skip trailing portion that we do not need to return |
3603 | const Length needed = pages(size); |
3604 | ASSERT(span->length >= needed); |
3605 | if (span->length > needed) { |
3606 | Span* trailer = pageheap->Split(span, needed); |
3607 | pageheap->Delete(trailer); |
3608 | } |
3609 | return SpanToMallocResult(span); |
3610 | } |
3611 | #endif |
3612 | |
3613 | // Helpers for use by exported routines below: |
3614 | |
3615 | #ifndef WTF_CHANGES |
3616 | static inline void do_malloc_stats() { |
3617 | PrintStats(1); |
3618 | } |
3619 | #endif |
3620 | |
3621 | static inline int do_mallopt(int, int) { |
3622 | return 1; // Indicates error |
3623 | } |
3624 | |
3625 | #ifdef HAVE_STRUCT_MALLINFO // mallinfo isn't defined on freebsd, for instance |
3626 | static inline struct mallinfo do_mallinfo() { |
3627 | TCMallocStats stats; |
3628 | ExtractStats(&stats, NULL); |
3629 | |
3630 | // Just some of the fields are filled in. |
3631 | struct mallinfo info; |
3632 | memset(&info, 0, sizeof(info)); |
3633 | |
3634 | // Unfortunately, the struct contains "int" field, so some of the |
3635 | // size values will be truncated. |
3636 | info.arena = static_cast<int>(stats.system_bytes); |
3637 | info.fsmblks = static_cast<int>(stats.thread_bytes |
3638 | + stats.central_bytes |
3639 | + stats.transfer_bytes); |
3640 | info.fordblks = static_cast<int>(stats.pageheap_bytes); |
3641 | info.uordblks = static_cast<int>(stats.system_bytes |
3642 | - stats.thread_bytes |
3643 | - stats.central_bytes |
3644 | - stats.transfer_bytes |
3645 | - stats.pageheap_bytes); |
3646 | |
3647 | return info; |
3648 | } |
3649 | #endif |
3650 | |
3651 | //------------------------------------------------------------------- |
3652 | // Exported routines |
3653 | //------------------------------------------------------------------- |
3654 | |
3655 | // CAVEAT: The code structure below ensures that MallocHook methods are always |
3656 | // called from the stack frame of the invoked allocation function. |
3657 | // heap-checker.cc depends on this to start a stack trace from |
3658 | // the call to the (de)allocation function. |
3659 | |
3660 | #ifndef WTF_CHANGES |
3661 | extern "C" |
3662 | #else |
3663 | #define do_malloc do_malloc<crashOnFailure> |
3664 | |
3665 | template <bool crashOnFailure> |
3666 | void* malloc(size_t); |
3667 | |
3668 | void* fastMalloc(size_t size) |
3669 | { |
3670 | return malloc<true>(size); |
3671 | } |
3672 | |
3673 | TryMallocReturnValue tryFastMalloc(size_t size) |
3674 | { |
3675 | return malloc<false>(size); |
3676 | } |
3677 | |
3678 | template <bool crashOnFailure> |
3679 | ALWAYS_INLINE |
3680 | #endif |
3681 | void* malloc(size_t size) { |
3682 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
3683 | if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= size) // If overflow would occur... |
3684 | return 0; |
3685 | size += sizeof(AllocAlignmentInteger); |
3686 | void* result = do_malloc(size); |
3687 | if (!result) |
3688 | return 0; |
3689 | |
3690 | *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc; |
3691 | result = static_cast<AllocAlignmentInteger*>(result) + 1; |
3692 | #else |
3693 | void* result = do_malloc(size); |
3694 | #endif |
3695 | |
3696 | #ifndef WTF_CHANGES |
3697 | MallocHook::InvokeNewHook(result, size); |
3698 | #endif |
3699 | return result; |
3700 | } |
3701 | |
3702 | #ifndef WTF_CHANGES |
3703 | extern "C" |
3704 | #endif |
3705 | void free(void* ptr) { |
3706 | #ifndef WTF_CHANGES |
3707 | MallocHook::InvokeDeleteHook(ptr); |
3708 | #endif |
3709 | |
3710 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
3711 | if (!ptr) |
3712 | return; |
3713 | |
3714 | AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(ptr); |
3715 | if (*header != Internal::AllocTypeMalloc) |
3716 | Internal::fastMallocMatchFailed(ptr); |
3717 | do_free(header); |
3718 | #else |
3719 | do_free(ptr); |
3720 | #endif |
3721 | } |
3722 | |
3723 | #ifndef WTF_CHANGES |
3724 | extern "C" |
3725 | #else |
3726 | template <bool crashOnFailure> |
3727 | void* calloc(size_t, size_t); |
3728 | |
3729 | void* fastCalloc(size_t n, size_t elem_size) |
3730 | { |
3731 | return calloc<true>(n, elem_size); |
3732 | } |
3733 | |
3734 | TryMallocReturnValue tryFastCalloc(size_t n, size_t elem_size) |
3735 | { |
3736 | return calloc<false>(n, elem_size); |
3737 | } |
3738 | |
3739 | template <bool crashOnFailure> |
3740 | ALWAYS_INLINE |
3741 | #endif |
3742 | void* calloc(size_t n, size_t elem_size) { |
3743 | size_t totalBytes = n * elem_size; |
3744 | |
3745 | // Protect against overflow |
3746 | if (n > 1 && elem_size && (totalBytes / elem_size) != n) |
3747 | return 0; |
3748 | |
3749 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
3750 | if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes) // If overflow would occur... |
3751 | return 0; |
3752 | |
3753 | totalBytes += sizeof(AllocAlignmentInteger); |
3754 | void* result = do_malloc(totalBytes); |
3755 | if (!result) |
3756 | return 0; |
3757 | |
3758 | memset(result, 0, totalBytes); |
3759 | *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc; |
3760 | result = static_cast<AllocAlignmentInteger*>(result) + 1; |
3761 | #else |
3762 | void* result = do_malloc(totalBytes); |
3763 | if (result != NULL) { |
3764 | memset(result, 0, totalBytes); |
3765 | } |
3766 | #endif |
3767 | |
3768 | #ifndef WTF_CHANGES |
3769 | MallocHook::InvokeNewHook(result, totalBytes); |
3770 | #endif |
3771 | return result; |
3772 | } |
3773 | |
3774 | // Since cfree isn't used anywhere, we don't compile it in. |
3775 | #ifndef WTF_CHANGES |
3776 | #ifndef WTF_CHANGES |
3777 | extern "C" |
3778 | #endif |
3779 | void cfree(void* ptr) { |
3780 | #ifndef WTF_CHANGES |
3781 | MallocHook::InvokeDeleteHook(ptr); |
3782 | #endif |
3783 | do_free(ptr); |
3784 | } |
3785 | #endif |
3786 | |
3787 | #ifndef WTF_CHANGES |
3788 | extern "C" |
3789 | #else |
3790 | template <bool crashOnFailure> |
3791 | void* realloc(void*, size_t); |
3792 | |
3793 | void* fastRealloc(void* old_ptr, size_t new_size) |
3794 | { |
3795 | return realloc<true>(old_ptr, new_size); |
3796 | } |
3797 | |
3798 | TryMallocReturnValue tryFastRealloc(void* old_ptr, size_t new_size) |
3799 | { |
3800 | return realloc<false>(old_ptr, new_size); |
3801 | } |
3802 | |
3803 | template <bool crashOnFailure> |
3804 | ALWAYS_INLINE |
3805 | #endif |
3806 | void* realloc(void* old_ptr, size_t new_size) { |
3807 | if (old_ptr == NULL) { |
3808 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
3809 | void* result = malloc(new_size); |
3810 | #else |
3811 | void* result = do_malloc(new_size); |
3812 | #ifndef WTF_CHANGES |
3813 | MallocHook::InvokeNewHook(result, new_size); |
3814 | #endif |
3815 | #endif |
3816 | return result; |
3817 | } |
3818 | if (new_size == 0) { |
3819 | #ifndef WTF_CHANGES |
3820 | MallocHook::InvokeDeleteHook(old_ptr); |
3821 | #endif |
3822 | free(old_ptr); |
3823 | return NULL; |
3824 | } |
3825 | |
3826 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
3827 | if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= new_size) // If overflow would occur... |
3828 | return 0; |
3829 | new_size += sizeof(AllocAlignmentInteger); |
3830 | AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(old_ptr); |
3831 | if (*header != Internal::AllocTypeMalloc) |
3832 | Internal::fastMallocMatchFailed(old_ptr); |
3833 | old_ptr = header; |
3834 | #endif |
3835 | |
3836 | // Get the size of the old entry |
3837 | const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift; |
3838 | size_t cl = pageheap->GetSizeClassIfCached(p); |
3839 | Span *span = NULL; |
3840 | size_t old_size; |
3841 | if (cl == 0) { |
3842 | span = pageheap->GetDescriptor(p); |
3843 | cl = span->sizeclass; |
3844 | pageheap->CacheSizeClass(p, cl); |
3845 | } |
3846 | if (cl != 0) { |
3847 | old_size = ByteSizeForClass(cl); |
3848 | } else { |
3849 | ASSERT(span != NULL); |
3850 | old_size = span->length << kPageShift; |
3851 | } |
3852 | |
3853 | // Reallocate if the new size is larger than the old size, |
3854 | // or if the new size is significantly smaller than the old size. |
3855 | if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) { |
3856 | // Need to reallocate |
3857 | void* new_ptr = do_malloc(new_size); |
3858 | if (new_ptr == NULL) { |
3859 | return NULL; |
3860 | } |
3861 | #ifndef WTF_CHANGES |
3862 | MallocHook::InvokeNewHook(new_ptr, new_size); |
3863 | #endif |
3864 | memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size)); |
3865 | #ifndef WTF_CHANGES |
3866 | MallocHook::InvokeDeleteHook(old_ptr); |
3867 | #endif |
3868 | // We could use a variant of do_free() that leverages the fact |
3869 | // that we already know the sizeclass of old_ptr. The benefit |
3870 | // would be small, so don't bother. |
3871 | do_free(old_ptr); |
3872 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
3873 | new_ptr = static_cast<AllocAlignmentInteger*>(new_ptr) + 1; |
3874 | #endif |
3875 | return new_ptr; |
3876 | } else { |
3877 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) |
3878 | old_ptr = static_cast<AllocAlignmentInteger*>(old_ptr) + 1; // Set old_ptr back to the user pointer. |
3879 | #endif |
3880 | return old_ptr; |
3881 | } |
3882 | } |
3883 | |
3884 | #ifdef WTF_CHANGES |
3885 | #undef do_malloc |
3886 | #else |
3887 | |
3888 | static SpinLock set_new_handler_lock = SPINLOCK_INITIALIZER; |
3889 | |
3890 | static inline void* cpp_alloc(size_t size, bool nothrow) { |
3891 | for (;;) { |
3892 | void* p = do_malloc(size); |
3893 | #ifdef PREANSINEW |
3894 | return p; |
3895 | #else |
3896 | if (p == NULL) { // allocation failed |
3897 | // Get the current new handler. NB: this function is not |
3898 | // thread-safe. We make a feeble stab at making it so here, but |
3899 | // this lock only protects against tcmalloc interfering with |
3900 | // itself, not with other libraries calling set_new_handler. |
3901 | std::new_handler nh; |
3902 | { |
3903 | SpinLockHolder h(&set_new_handler_lock); |
3904 | nh = std::set_new_handler(0); |
3905 | (void) std::set_new_handler(nh); |
3906 | } |
3907 | // If no new_handler is established, the allocation failed. |
3908 | if (!nh) { |
3909 | if (nothrow) return 0; |
3910 | throw std::bad_alloc(); |
3911 | } |
3912 | // Otherwise, try the new_handler. If it returns, retry the |
3913 | // allocation. If it throws std::bad_alloc, fail the allocation. |
3914 | // if it throws something else, don't interfere. |
3915 | try { |
3916 | (*nh)(); |
3917 | } catch (const std::bad_alloc&) { |
3918 | if (!nothrow) throw; |
3919 | return p; |
3920 | } |
3921 | } else { // allocation success |
3922 | return p; |
3923 | } |
3924 | #endif |
3925 | } |
3926 | } |
3927 | |
3928 | void* operator new(size_t size) { |
3929 | void* p = cpp_alloc(size, false); |
3930 | // We keep this next instruction out of cpp_alloc for a reason: when |
3931 | // it's in, and new just calls cpp_alloc, the optimizer may fold the |
3932 | // new call into cpp_alloc, which messes up our whole section-based |
3933 | // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc |
3934 | // isn't the last thing this fn calls, and prevents the folding. |
3935 | MallocHook::InvokeNewHook(p, size); |
3936 | return p; |
3937 | } |
3938 | |
3939 | void* operator new(size_t size, const std::nothrow_t&) __THROW { |
3940 | void* p = cpp_alloc(size, true); |
3941 | MallocHook::InvokeNewHook(p, size); |
3942 | return p; |
3943 | } |
3944 | |
3945 | void operator delete(void* p) __THROW { |
3946 | MallocHook::InvokeDeleteHook(p); |
3947 | do_free(p); |
3948 | } |
3949 | |
3950 | void operator delete(void* p, const std::nothrow_t&) __THROW { |
3951 | MallocHook::InvokeDeleteHook(p); |
3952 | do_free(p); |
3953 | } |
3954 | |
3955 | void* operator new[](size_t size) { |
3956 | void* p = cpp_alloc(size, false); |
3957 | // We keep this next instruction out of cpp_alloc for a reason: when |
3958 | // it's in, and new just calls cpp_alloc, the optimizer may fold the |
3959 | // new call into cpp_alloc, which messes up our whole section-based |
3960 | // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc |
3961 | // isn't the last thing this fn calls, and prevents the folding. |
3962 | MallocHook::InvokeNewHook(p, size); |
3963 | return p; |
3964 | } |
3965 | |
3966 | void* operator new[](size_t size, const std::nothrow_t&) __THROW { |
3967 | void* p = cpp_alloc(size, true); |
3968 | MallocHook::InvokeNewHook(p, size); |
3969 | return p; |
3970 | } |
3971 | |
3972 | void operator delete[](void* p) __THROW { |
3973 | MallocHook::InvokeDeleteHook(p); |
3974 | do_free(p); |
3975 | } |
3976 | |
3977 | void operator delete[](void* p, const std::nothrow_t&) __THROW { |
3978 | MallocHook::InvokeDeleteHook(p); |
3979 | do_free(p); |
3980 | } |
3981 | |
3982 | extern "C" void* memalign(size_t align, size_t size) __THROW { |
3983 | void* result = do_memalign(align, size); |
3984 | MallocHook::InvokeNewHook(result, size); |
3985 | return result; |
3986 | } |
3987 | |
3988 | extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size) |
3989 | __THROW { |
3990 | if (((align % sizeof(void*)) != 0) || |
3991 | ((align & (align - 1)) != 0) || |
3992 | (align == 0)) { |
3993 | return EINVAL; |
3994 | } |
3995 | |
3996 | void* result = do_memalign(align, size); |
3997 | MallocHook::InvokeNewHook(result, size); |
3998 | if (result == NULL) { |
3999 | return ENOMEM; |
4000 | } else { |
4001 | *result_ptr = result; |
4002 | return 0; |
4003 | } |
4004 | } |
4005 | |
4006 | static size_t pagesize = 0; |
4007 | |
4008 | extern "C" void* valloc(size_t size) __THROW { |
4009 | // Allocate page-aligned object of length >= size bytes |
4010 | if (pagesize == 0) pagesize = getpagesize(); |
4011 | void* result = do_memalign(pagesize, size); |
4012 | MallocHook::InvokeNewHook(result, size); |
4013 | return result; |
4014 | } |
4015 | |
4016 | extern "C" void* pvalloc(size_t size) __THROW { |
4017 | // Round up size to a multiple of pagesize |
4018 | if (pagesize == 0) pagesize = getpagesize(); |
4019 | size = (size + pagesize - 1) & ~(pagesize - 1); |
4020 | void* result = do_memalign(pagesize, size); |
4021 | MallocHook::InvokeNewHook(result, size); |
4022 | return result; |
4023 | } |
4024 | |
4025 | extern "C" void malloc_stats(void) { |
4026 | do_malloc_stats(); |
4027 | } |
4028 | |
4029 | extern "C" int mallopt(int cmd, int value) { |
4030 | return do_mallopt(cmd, value); |
4031 | } |
4032 | |
4033 | #ifdef HAVE_STRUCT_MALLINFO |
4034 | extern "C" struct mallinfo mallinfo(void) { |
4035 | return do_mallinfo(); |
4036 | } |
4037 | #endif |
4038 | |
4039 | //------------------------------------------------------------------- |
4040 | // Some library routines on RedHat 9 allocate memory using malloc() |
4041 | // and free it using __libc_free() (or vice-versa). Since we provide |
4042 | // our own implementations of malloc/free, we need to make sure that |
4043 | // the __libc_XXX variants (defined as part of glibc) also point to |
4044 | // the same implementations. |
4045 | //------------------------------------------------------------------- |
4046 | |
4047 | #if defined(__GLIBC__) |
4048 | extern "C" { |
4049 | #if COMPILER(GCC) && !defined(__MACH__) && defined(HAVE___ATTRIBUTE__) |
4050 | // Potentially faster variants that use the gcc alias extension. |
4051 | // Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check. |
4052 | # define ALIAS(x) __attribute__ ((weak, alias (x))) |
4053 | void* __libc_malloc(size_t size) ALIAS("malloc" ); |
4054 | void __libc_free(void* ptr) ALIAS("free" ); |
4055 | void* __libc_realloc(void* ptr, size_t size) ALIAS("realloc" ); |
4056 | void* __libc_calloc(size_t n, size_t size) ALIAS("calloc" ); |
4057 | void __libc_cfree(void* ptr) ALIAS("cfree" ); |
4058 | void* __libc_memalign(size_t align, size_t s) ALIAS("memalign" ); |
4059 | void* __libc_valloc(size_t size) ALIAS("valloc" ); |
4060 | void* __libc_pvalloc(size_t size) ALIAS("pvalloc" ); |
4061 | int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign" ); |
4062 | # undef ALIAS |
4063 | # else /* not __GNUC__ */ |
4064 | // Portable wrappers |
4065 | void* __libc_malloc(size_t size) { return malloc(size); } |
4066 | void __libc_free(void* ptr) { free(ptr); } |
4067 | void* __libc_realloc(void* ptr, size_t size) { return realloc(ptr, size); } |
4068 | void* __libc_calloc(size_t n, size_t size) { return calloc(n, size); } |
4069 | void __libc_cfree(void* ptr) { cfree(ptr); } |
4070 | void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); } |
4071 | void* __libc_valloc(size_t size) { return valloc(size); } |
4072 | void* __libc_pvalloc(size_t size) { return pvalloc(size); } |
4073 | int __posix_memalign(void** r, size_t a, size_t s) { |
4074 | return posix_memalign(r, a, s); |
4075 | } |
4076 | # endif /* __GNUC__ */ |
4077 | } |
4078 | #endif /* __GLIBC__ */ |
4079 | |
4080 | // Override __libc_memalign in libc on linux boxes specially. |
4081 | // They have a bug in libc that causes them to (very rarely) allocate |
4082 | // with __libc_memalign() yet deallocate with free() and the |
4083 | // definitions above don't catch it. |
4084 | // This function is an exception to the rule of calling MallocHook method |
4085 | // from the stack frame of the allocation function; |
4086 | // heap-checker handles this special case explicitly. |
4087 | static void *MemalignOverride(size_t align, size_t size, const void *caller) |
4088 | __THROW { |
4089 | void* result = do_memalign(align, size); |
4090 | MallocHook::InvokeNewHook(result, size); |
4091 | return result; |
4092 | } |
4093 | void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride; |
4094 | |
4095 | #endif |
4096 | |
4097 | #if defined(WTF_CHANGES) && OS(DARWIN) |
4098 | |
4099 | class FreeObjectFinder { |
4100 | const RemoteMemoryReader& m_reader; |
4101 | HashSet<void*> m_freeObjects; |
4102 | |
4103 | public: |
4104 | FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { } |
4105 | |
4106 | void visit(void* ptr) { m_freeObjects.add(ptr); } |
4107 | bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); } |
4108 | bool isFreeObject(vm_address_t ptr) const { return isFreeObject(reinterpret_cast<void*>(ptr)); } |
4109 | size_t freeObjectCount() const { return m_freeObjects.size(); } |
4110 | |
4111 | void findFreeObjects(TCMalloc_ThreadCache* threadCache) |
4112 | { |
4113 | for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0)) |
4114 | threadCache->enumerateFreeObjects(*this, m_reader); |
4115 | } |
4116 | |
4117 | void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes, TCMalloc_Central_FreeListPadded* remoteCentralFreeList) |
4118 | { |
4119 | for (unsigned i = 0; i < numSizes; i++) |
4120 | centralFreeList[i].enumerateFreeObjects(*this, m_reader, remoteCentralFreeList + i); |
4121 | } |
4122 | }; |
4123 | |
4124 | class PageMapFreeObjectFinder { |
4125 | const RemoteMemoryReader& m_reader; |
4126 | FreeObjectFinder& m_freeObjectFinder; |
4127 | |
4128 | public: |
4129 | PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder) |
4130 | : m_reader(reader) |
4131 | , m_freeObjectFinder(freeObjectFinder) |
4132 | { } |
4133 | |
4134 | int visit(void* ptr) const |
4135 | { |
4136 | if (!ptr) |
4137 | return 1; |
4138 | |
4139 | Span* span = m_reader(reinterpret_cast<Span*>(ptr)); |
4140 | if (span->free) { |
4141 | void* ptr = reinterpret_cast<void*>(span->start << kPageShift); |
4142 | m_freeObjectFinder.visit(ptr); |
4143 | } else if (span->sizeclass) { |
4144 | // Walk the free list of the small-object span, keeping track of each object seen |
4145 | for (void* nextObject = span->objects; nextObject; nextObject = *m_reader(reinterpret_cast<void**>(nextObject))) |
4146 | m_freeObjectFinder.visit(nextObject); |
4147 | } |
4148 | return span->length; |
4149 | } |
4150 | }; |
4151 | |
4152 | class PageMapMemoryUsageRecorder { |
4153 | task_t m_task; |
4154 | void* m_context; |
4155 | unsigned m_typeMask; |
4156 | vm_range_recorder_t* m_recorder; |
4157 | const RemoteMemoryReader& m_reader; |
4158 | const FreeObjectFinder& m_freeObjectFinder; |
4159 | |
4160 | HashSet<void*> m_seenPointers; |
4161 | Vector<Span*> m_coalescedSpans; |
4162 | |
4163 | public: |
4164 | PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder) |
4165 | : m_task(task) |
4166 | , m_context(context) |
4167 | , m_typeMask(typeMask) |
4168 | , m_recorder(recorder) |
4169 | , m_reader(reader) |
4170 | , m_freeObjectFinder(freeObjectFinder) |
4171 | { } |
4172 | |
4173 | ~PageMapMemoryUsageRecorder() |
4174 | { |
4175 | ASSERT(!m_coalescedSpans.size()); |
4176 | } |
4177 | |
4178 | void recordPendingRegions() |
4179 | { |
4180 | Span* lastSpan = m_coalescedSpans[m_coalescedSpans.size() - 1]; |
4181 | vm_range_t ptrRange = { m_coalescedSpans[0]->start << kPageShift, 0 }; |
4182 | ptrRange.size = (lastSpan->start << kPageShift) - ptrRange.address + (lastSpan->length * kPageSize); |
4183 | |
4184 | // Mark the memory region the spans represent as a candidate for containing pointers |
4185 | if (m_typeMask & MALLOC_PTR_REGION_RANGE_TYPE) |
4186 | (*m_recorder)(m_task, m_context, MALLOC_PTR_REGION_RANGE_TYPE, &ptrRange, 1); |
4187 | |
4188 | if (!(m_typeMask & MALLOC_PTR_IN_USE_RANGE_TYPE)) { |
4189 | m_coalescedSpans.clear(); |
4190 | return; |
4191 | } |
4192 | |
4193 | Vector<vm_range_t, 1024> allocatedPointers; |
4194 | for (size_t i = 0; i < m_coalescedSpans.size(); ++i) { |
4195 | Span *theSpan = m_coalescedSpans[i]; |
4196 | if (theSpan->free) |
4197 | continue; |
4198 | |
4199 | vm_address_t spanStartAddress = theSpan->start << kPageShift; |
4200 | vm_size_t spanSizeInBytes = theSpan->length * kPageSize; |
4201 | |
4202 | if (!theSpan->sizeclass) { |
4203 | // If it's an allocated large object span, mark it as in use |
4204 | if (!m_freeObjectFinder.isFreeObject(spanStartAddress)) |
4205 | allocatedPointers.append((vm_range_t){spanStartAddress, spanSizeInBytes}); |
4206 | } else { |
4207 | const size_t objectSize = ByteSizeForClass(theSpan->sizeclass); |
4208 | |
4209 | // Mark each allocated small object within the span as in use |
4210 | const vm_address_t endOfSpan = spanStartAddress + spanSizeInBytes; |
4211 | for (vm_address_t object = spanStartAddress; object + objectSize <= endOfSpan; object += objectSize) { |
4212 | if (!m_freeObjectFinder.isFreeObject(object)) |
4213 | allocatedPointers.append((vm_range_t){object, objectSize}); |
4214 | } |
4215 | } |
4216 | } |
4217 | |
4218 | (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, allocatedPointers.data(), allocatedPointers.size()); |
4219 | |
4220 | m_coalescedSpans.clear(); |
4221 | } |
4222 | |
4223 | int visit(void* ptr) |
4224 | { |
4225 | if (!ptr) |
4226 | return 1; |
4227 | |
4228 | Span* span = m_reader(reinterpret_cast<Span*>(ptr)); |
4229 | if (!span->start) |
4230 | return 1; |
4231 | |
4232 | if (m_seenPointers.contains(ptr)) |
4233 | return span->length; |
4234 | m_seenPointers.add(ptr); |
4235 | |
4236 | if (!m_coalescedSpans.size()) { |
4237 | m_coalescedSpans.append(span); |
4238 | return span->length; |
4239 | } |
4240 | |
4241 | Span* previousSpan = m_coalescedSpans[m_coalescedSpans.size() - 1]; |
4242 | vm_address_t previousSpanStartAddress = previousSpan->start << kPageShift; |
4243 | vm_size_t previousSpanSizeInBytes = previousSpan->length * kPageSize; |
4244 | |
4245 | // If the new span is adjacent to the previous span, do nothing for now. |
4246 | vm_address_t spanStartAddress = span->start << kPageShift; |
4247 | if (spanStartAddress == previousSpanStartAddress + previousSpanSizeInBytes) { |
4248 | m_coalescedSpans.append(span); |
4249 | return span->length; |
4250 | } |
4251 | |
4252 | // New span is not adjacent to previous span, so record the spans coalesced so far. |
4253 | recordPendingRegions(); |
4254 | m_coalescedSpans.append(span); |
4255 | |
4256 | return span->length; |
4257 | } |
4258 | }; |
4259 | |
4260 | class AdminRegionRecorder { |
4261 | task_t m_task; |
4262 | void* m_context; |
4263 | unsigned m_typeMask; |
4264 | vm_range_recorder_t* m_recorder; |
4265 | const RemoteMemoryReader& m_reader; |
4266 | |
4267 | Vector<vm_range_t, 1024> m_pendingRegions; |
4268 | |
4269 | public: |
4270 | AdminRegionRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader) |
4271 | : m_task(task) |
4272 | , m_context(context) |
4273 | , m_typeMask(typeMask) |
4274 | , m_recorder(recorder) |
4275 | , m_reader(reader) |
4276 | { } |
4277 | |
4278 | void recordRegion(vm_address_t ptr, size_t size) |
4279 | { |
4280 | if (m_typeMask & MALLOC_ADMIN_REGION_RANGE_TYPE) |
4281 | m_pendingRegions.append((vm_range_t){ ptr, size }); |
4282 | } |
4283 | |
4284 | void visit(void *ptr, size_t size) |
4285 | { |
4286 | recordRegion(reinterpret_cast<vm_address_t>(ptr), size); |
4287 | } |
4288 | |
4289 | void recordPendingRegions() |
4290 | { |
4291 | if (m_pendingRegions.size()) { |
4292 | (*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, m_pendingRegions.data(), m_pendingRegions.size()); |
4293 | m_pendingRegions.clear(); |
4294 | } |
4295 | } |
4296 | |
4297 | ~AdminRegionRecorder() |
4298 | { |
4299 | ASSERT(!m_pendingRegions.size()); |
4300 | } |
4301 | }; |
4302 | |
4303 | kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder) |
4304 | { |
4305 | RemoteMemoryReader memoryReader(task, reader); |
4306 | |
4307 | InitSizeClasses(); |
4308 | |
4309 | FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress)); |
4310 | TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap); |
4311 | TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps); |
4312 | TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer); |
4313 | |
4314 | TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses); |
4315 | |
4316 | FreeObjectFinder finder(memoryReader); |
4317 | finder.findFreeObjects(threadHeaps); |
4318 | finder.findFreeObjects(centralCaches, kNumClasses, mzone->m_centralCaches); |
4319 | |
4320 | TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_; |
4321 | PageMapFreeObjectFinder pageMapFinder(memoryReader, finder); |
4322 | pageMap->visitValues(pageMapFinder, memoryReader); |
4323 | |
4324 | PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder); |
4325 | pageMap->visitValues(usageRecorder, memoryReader); |
4326 | usageRecorder.recordPendingRegions(); |
4327 | |
4328 | AdminRegionRecorder adminRegionRecorder(task, context, typeMask, recorder, memoryReader); |
4329 | pageMap->visitAllocations(adminRegionRecorder, memoryReader); |
4330 | |
4331 | PageHeapAllocator<Span>* spanAllocator = memoryReader(mzone->m_spanAllocator); |
4332 | PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator = memoryReader(mzone->m_pageHeapAllocator); |
4333 | |
4334 | spanAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader); |
4335 | pageHeapAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader); |
4336 | |
4337 | adminRegionRecorder.recordPendingRegions(); |
4338 | |
4339 | return 0; |
4340 | } |
4341 | |
4342 | size_t FastMallocZone::size(malloc_zone_t*, const void*) |
4343 | { |
4344 | return 0; |
4345 | } |
4346 | |
4347 | void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t) |
4348 | { |
4349 | return 0; |
4350 | } |
4351 | |
4352 | void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t) |
4353 | { |
4354 | return 0; |
4355 | } |
4356 | |
4357 | void FastMallocZone::zoneFree(malloc_zone_t*, void* ptr) |
4358 | { |
4359 | // Due to <rdar://problem/5671357> zoneFree may be called by the system free even if the pointer |
4360 | // is not in this zone. When this happens, the pointer being freed was not allocated by any |
4361 | // zone so we need to print a useful error for the application developer. |
4362 | malloc_printf("*** error for object %p: pointer being freed was not allocated\n" , ptr); |
4363 | } |
4364 | |
4365 | void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t) |
4366 | { |
4367 | return 0; |
4368 | } |
4369 | |
4370 | |
4371 | #undef malloc |
4372 | #undef free |
4373 | #undef realloc |
4374 | #undef calloc |
4375 | |
4376 | extern "C" { |
4377 | malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print, |
4378 | &FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics |
4379 | |
4380 | #if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD) && !OS(IPHONE_OS) |
4381 | , 0 // zone_locked will not be called on the zone unless it advertises itself as version five or higher. |
4382 | #endif |
4383 | |
4384 | }; |
4385 | } |
4386 | |
4387 | FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches, PageHeapAllocator<Span>* spanAllocator, PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator) |
4388 | : m_pageHeap(pageHeap) |
4389 | , m_threadHeaps(threadHeaps) |
4390 | , m_centralCaches(centralCaches) |
4391 | , m_spanAllocator(spanAllocator) |
4392 | , m_pageHeapAllocator(pageHeapAllocator) |
4393 | { |
4394 | memset(&m_zone, 0, sizeof(m_zone)); |
4395 | m_zone.version = 4; |
4396 | m_zone.zone_name = "JavaScriptCore FastMalloc" ; |
4397 | m_zone.size = &FastMallocZone::size; |
4398 | m_zone.malloc = &FastMallocZone::zoneMalloc; |
4399 | m_zone.calloc = &FastMallocZone::zoneCalloc; |
4400 | m_zone.realloc = &FastMallocZone::zoneRealloc; |
4401 | m_zone.free = &FastMallocZone::zoneFree; |
4402 | m_zone.valloc = &FastMallocZone::zoneValloc; |
4403 | m_zone.destroy = &FastMallocZone::zoneDestroy; |
4404 | m_zone.introspect = &jscore_fastmalloc_introspection; |
4405 | malloc_zone_register(&m_zone); |
4406 | } |
4407 | |
4408 | |
4409 | void FastMallocZone::init() |
4410 | { |
4411 | static FastMallocZone zone(pageheap, &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache), &span_allocator, &threadheap_allocator); |
4412 | } |
4413 | |
4414 | #endif |
4415 | |
4416 | #if WTF_CHANGES |
4417 | void releaseFastMallocFreeMemory() |
4418 | { |
4419 | // Flush free pages in the current thread cache back to the page heap. |
4420 | // Low watermark mechanism in Scavenge() prevents full return on the first pass. |
4421 | // The second pass flushes everything. |
4422 | if (TCMalloc_ThreadCache* threadCache = TCMalloc_ThreadCache::GetCacheIfPresent()) { |
4423 | threadCache->Scavenge(); |
4424 | threadCache->Scavenge(); |
4425 | } |
4426 | |
4427 | SpinLockHolder h(&pageheap_lock); |
4428 | pageheap->ReleaseFreePages(); |
4429 | } |
4430 | |
4431 | FastMallocStatistics fastMallocStatistics() |
4432 | { |
4433 | FastMallocStatistics statistics; |
4434 | { |
4435 | SpinLockHolder lockHolder(&pageheap_lock); |
4436 | statistics.heapSize = static_cast<size_t>(pageheap->SystemBytes()); |
4437 | statistics.freeSizeInHeap = static_cast<size_t>(pageheap->FreeBytes()); |
4438 | statistics.returnedSize = pageheap->ReturnedBytes(); |
4439 | statistics.freeSizeInCaches = 0; |
4440 | for (TCMalloc_ThreadCache* threadCache = thread_heaps; threadCache ; threadCache = threadCache->next_) |
4441 | statistics.freeSizeInCaches += threadCache->Size(); |
4442 | } |
4443 | for (unsigned cl = 0; cl < kNumClasses; ++cl) { |
4444 | const int length = central_cache[cl].length(); |
4445 | const int tc_length = central_cache[cl].tc_length(); |
4446 | statistics.freeSizeInCaches += ByteSizeForClass(cl) * (length + tc_length); |
4447 | } |
4448 | return statistics; |
4449 | } |
4450 | |
4451 | } // namespace WTF |
4452 | #endif |
4453 | |
4454 | #endif // FORCE_SYSTEM_MALLOC |
4455 | |