| 1 | // Copyright (c) 2005, 2007, Google Inc. | 
| 2 | // All rights reserved. | 
| 3 | // Copyright (C) 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved. | 
| 4 | //  | 
| 5 | // Redistribution and use in source and binary forms, with or without | 
| 6 | // modification, are permitted provided that the following conditions are | 
| 7 | // met: | 
| 8 | //  | 
| 9 | //     * Redistributions of source code must retain the above copyright | 
| 10 | // notice, this list of conditions and the following disclaimer. | 
| 11 | //     * Redistributions in binary form must reproduce the above | 
| 12 | // copyright notice, this list of conditions and the following disclaimer | 
| 13 | // in the documentation and/or other materials provided with the | 
| 14 | // distribution. | 
| 15 | //     * Neither the name of Google Inc. nor the names of its | 
| 16 | // contributors may be used to endorse or promote products derived from | 
| 17 | // this software without specific prior written permission. | 
| 18 | //  | 
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| 30 |  | 
| 31 | // --- | 
| 32 | // Author: Sanjay Ghemawat <opensource@google.com> | 
| 33 | // | 
| 34 | // A malloc that uses a per-thread cache to satisfy small malloc requests. | 
| 35 | // (The time for malloc/free of a small object drops from 300 ns to 50 ns.) | 
| 36 | // | 
| 37 | // See doc/tcmalloc.html for a high-level | 
| 38 | // description of how this malloc works. | 
| 39 | // | 
| 40 | // SYNCHRONIZATION | 
| 41 | //  1. The thread-specific lists are accessed without acquiring any locks. | 
| 42 | //     This is safe because each such list is only accessed by one thread. | 
| 43 | //  2. We have a lock per central free-list, and hold it while manipulating | 
| 44 | //     the central free list for a particular size. | 
| 45 | //  3. The central page allocator is protected by "pageheap_lock". | 
| 46 | //  4. The pagemap (which maps from page-number to descriptor), | 
| 47 | //     can be read without holding any locks, and written while holding | 
| 48 | //     the "pageheap_lock". | 
| 49 | //  5. To improve performance, a subset of the information one can get | 
| 50 | //     from the pagemap is cached in a data structure, pagemap_cache_, | 
| 51 | //     that atomically reads and writes its entries.  This cache can be | 
| 52 | //     read and written without locking. | 
| 53 | // | 
| 54 | //     This multi-threaded access to the pagemap is safe for fairly | 
| 55 | //     subtle reasons.  We basically assume that when an object X is | 
| 56 | //     allocated by thread A and deallocated by thread B, there must | 
| 57 | //     have been appropriate synchronization in the handoff of object | 
| 58 | //     X from thread A to thread B.  The same logic applies to pagemap_cache_. | 
| 59 | // | 
| 60 | // THE PAGEID-TO-SIZECLASS CACHE | 
| 61 | // Hot PageID-to-sizeclass mappings are held by pagemap_cache_.  If this cache | 
| 62 | // returns 0 for a particular PageID then that means "no information," not that | 
| 63 | // the sizeclass is 0.  The cache may have stale information for pages that do | 
| 64 | // not hold the beginning of any free()'able object.  Staleness is eliminated | 
| 65 | // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and | 
| 66 | // do_memalign() for all other relevant pages. | 
| 67 | // | 
| 68 | // TODO: Bias reclamation to larger addresses | 
| 69 | // TODO: implement mallinfo/mallopt | 
| 70 | // TODO: Better testing | 
| 71 | // | 
| 72 | // 9/28/2003 (new page-level allocator replaces ptmalloc2): | 
| 73 | // * malloc/free of small objects goes from ~300 ns to ~50 ns. | 
| 74 | // * allocation of a reasonably complicated struct | 
| 75 | //   goes from about 1100 ns to about 300 ns. | 
| 76 |  | 
| 77 | #include "config.h" | 
| 78 | #include "FastMalloc.h" | 
| 79 |  | 
| 80 | #include "Assertions.h" | 
| 81 | #include <limits> | 
| 82 | #if ENABLE(JSC_MULTIPLE_THREADS) | 
| 83 | #include <pthread.h> | 
| 84 | #endif | 
| 85 |  | 
| 86 | #ifndef NO_TCMALLOC_SAMPLES | 
| 87 | #ifdef WTF_CHANGES | 
| 88 | #define NO_TCMALLOC_SAMPLES | 
| 89 | #endif | 
| 90 | #endif | 
| 91 |  | 
| 92 | #if !(defined(USE_SYSTEM_MALLOC) && USE_SYSTEM_MALLOC) && defined(NDEBUG) | 
| 93 | #define FORCE_SYSTEM_MALLOC 0 | 
| 94 | #else | 
| 95 | #define FORCE_SYSTEM_MALLOC 1 | 
| 96 | #endif | 
| 97 |  | 
| 98 | // Use a background thread to periodically scavenge memory to release back to the system | 
| 99 | // https://bugs.webkit.org/show_bug.cgi?id=27900: don't turn this on for Tiger until we have figured out why it caused a crash. | 
| 100 | #if defined(BUILDING_ON_TIGER) | 
| 101 | #define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 0 | 
| 102 | #else | 
| 103 | #define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 1 | 
| 104 | #endif | 
| 105 |  | 
| 106 | #if defined(__HP_aCC) | 
| 107 | // HP'a aCC compiler has broken for scoping | 
| 108 | # define for if(0){}else for | 
| 109 | #endif | 
| 110 |  | 
| 111 | #ifndef NDEBUG | 
| 112 | namespace WTF { | 
| 113 |  | 
| 114 | #if ENABLE(JSC_MULTIPLE_THREADS) | 
| 115 | static pthread_key_t isForbiddenKey; | 
| 116 | static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT; | 
| 117 | static void initializeIsForbiddenKey() | 
| 118 | { | 
| 119 |   pthread_key_create(&isForbiddenKey, 0); | 
| 120 | } | 
| 121 |  | 
| 122 | #if !ASSERT_DISABLED | 
| 123 | static bool isForbidden() | 
| 124 | { | 
| 125 |     pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey); | 
| 126 |     return !!pthread_getspecific(isForbiddenKey); | 
| 127 | } | 
| 128 | #endif | 
| 129 |  | 
| 130 | void fastMallocForbid() | 
| 131 | { | 
| 132 |     pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey); | 
| 133 |     pthread_setspecific(isForbiddenKey, &isForbiddenKey); | 
| 134 | } | 
| 135 |  | 
| 136 | void fastMallocAllow() | 
| 137 | { | 
| 138 |     pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey); | 
| 139 |     pthread_setspecific(isForbiddenKey, 0); | 
| 140 | } | 
| 141 |  | 
| 142 | #else | 
| 143 |  | 
| 144 | static bool staticIsForbidden; | 
| 145 | static bool isForbidden() | 
| 146 | { | 
| 147 |     return staticIsForbidden; | 
| 148 | } | 
| 149 |  | 
| 150 | void fastMallocForbid() | 
| 151 | { | 
| 152 |     staticIsForbidden = true; | 
| 153 | } | 
| 154 |  | 
| 155 | void fastMallocAllow() | 
| 156 | { | 
| 157 |     staticIsForbidden = false; | 
| 158 | } | 
| 159 | #endif // ENABLE(JSC_MULTIPLE_THREADS) | 
| 160 |  | 
| 161 | } // namespace WTF | 
| 162 | #endif // NDEBUG | 
| 163 |  | 
| 164 | #include <string.h> | 
| 165 |  | 
| 166 | namespace WTF { | 
| 167 |  | 
| 168 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 169 |  | 
| 170 | namespace Internal { | 
| 171 |  | 
| 172 | void fastMallocMatchFailed(void*) | 
| 173 | { | 
| 174 |     CRASH(); | 
| 175 | } | 
| 176 |  | 
| 177 | } // namespace Internal | 
| 178 |  | 
| 179 | #endif | 
| 180 |  | 
| 181 | void* fastZeroedMalloc(size_t n)  | 
| 182 | { | 
| 183 |     void* result = fastMalloc(n); | 
| 184 |     memset(s: result, c: 0, n: n); | 
| 185 |     return result; | 
| 186 | } | 
| 187 |  | 
| 188 | char* fastStrDup(const char* src) | 
| 189 | { | 
| 190 |     int len = strlen(s: src) + 1; | 
| 191 |     char* dup = static_cast<char*>(fastMalloc(len)); | 
| 192 |  | 
| 193 |     if (dup) | 
| 194 |         memcpy(dest: dup, src: src, n: len); | 
| 195 |  | 
| 196 |     return dup; | 
| 197 | } | 
| 198 |      | 
| 199 | TryMallocReturnValue tryFastZeroedMalloc(size_t n)  | 
| 200 | { | 
| 201 |     void* result; | 
| 202 |     if (!tryFastMalloc(n).getValue(data&: result)) | 
| 203 |         return 0; | 
| 204 |     memset(s: result, c: 0, n: n); | 
| 205 |     return result; | 
| 206 | } | 
| 207 |  | 
| 208 | } // namespace WTF | 
| 209 |  | 
| 210 | #if FORCE_SYSTEM_MALLOC | 
| 211 |  | 
| 212 | namespace WTF { | 
| 213 |  | 
| 214 | TryMallocReturnValue tryFastMalloc(size_t n)  | 
| 215 | { | 
| 216 |     ASSERT(!isForbidden()); | 
| 217 |  | 
| 218 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 219 |     if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n)  // If overflow would occur... | 
| 220 |         return 0; | 
| 221 |  | 
| 222 |     void* result = malloc(n + sizeof(AllocAlignmentInteger)); | 
| 223 |     if (!result) | 
| 224 |         return 0; | 
| 225 |  | 
| 226 |     *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc; | 
| 227 |     result = static_cast<AllocAlignmentInteger*>(result) + 1; | 
| 228 |  | 
| 229 |     return result; | 
| 230 | #else | 
| 231 |     return malloc(size: n); | 
| 232 | #endif | 
| 233 | } | 
| 234 |  | 
| 235 | void* fastMalloc(size_t n)  | 
| 236 | { | 
| 237 |     ASSERT(!isForbidden()); | 
| 238 |  | 
| 239 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 240 |     TryMallocReturnValue returnValue = tryFastMalloc(n); | 
| 241 |     void* result; | 
| 242 |     returnValue.getValue(result); | 
| 243 | #else | 
| 244 |     void* result = malloc(size: n); | 
| 245 | #endif | 
| 246 |  | 
| 247 |     if (!result) | 
| 248 |         CRASH(); | 
| 249 |     return result; | 
| 250 | } | 
| 251 |  | 
| 252 | TryMallocReturnValue tryFastCalloc(size_t n_elements, size_t element_size) | 
| 253 | { | 
| 254 |     ASSERT(!isForbidden()); | 
| 255 |  | 
| 256 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 257 |     size_t totalBytes = n_elements * element_size; | 
| 258 |     if (n_elements > 1 && element_size && (totalBytes / element_size) != n_elements || (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes)) | 
| 259 |         return 0; | 
| 260 |  | 
| 261 |     totalBytes += sizeof(AllocAlignmentInteger); | 
| 262 |     void* result = malloc(totalBytes); | 
| 263 |     if (!result) | 
| 264 |         return 0; | 
| 265 |  | 
| 266 |     memset(result, 0, totalBytes); | 
| 267 |     *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc; | 
| 268 |     result = static_cast<AllocAlignmentInteger*>(result) + 1; | 
| 269 |     return result; | 
| 270 | #else | 
| 271 |     return calloc(nmemb: n_elements, size: element_size); | 
| 272 | #endif | 
| 273 | } | 
| 274 |  | 
| 275 | void* fastCalloc(size_t n_elements, size_t element_size) | 
| 276 | { | 
| 277 |     ASSERT(!isForbidden()); | 
| 278 |  | 
| 279 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 280 |     TryMallocReturnValue returnValue = tryFastCalloc(n_elements, element_size); | 
| 281 |     void* result; | 
| 282 |     returnValue.getValue(result); | 
| 283 | #else | 
| 284 |     void* result = calloc(nmemb: n_elements, size: element_size); | 
| 285 | #endif | 
| 286 |  | 
| 287 |     if (!result) | 
| 288 |         CRASH(); | 
| 289 |     return result; | 
| 290 | } | 
| 291 |  | 
| 292 | void fastFree(void* p) | 
| 293 | { | 
| 294 |     ASSERT(!isForbidden()); | 
| 295 |  | 
| 296 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 297 |     if (!p) | 
| 298 |         return; | 
| 299 |  | 
| 300 |     AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p); | 
| 301 |     if (*header != Internal::AllocTypeMalloc) | 
| 302 |         Internal::fastMallocMatchFailed(p); | 
| 303 |     free(header); | 
| 304 | #else | 
| 305 |     free(ptr: p); | 
| 306 | #endif | 
| 307 | } | 
| 308 |  | 
| 309 | TryMallocReturnValue tryFastRealloc(void* p, size_t n) | 
| 310 | { | 
| 311 |     ASSERT(!isForbidden()); | 
| 312 |  | 
| 313 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 314 |     if (p) { | 
| 315 |         if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n)  // If overflow would occur... | 
| 316 |             return 0; | 
| 317 |         AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p); | 
| 318 |         if (*header != Internal::AllocTypeMalloc) | 
| 319 |             Internal::fastMallocMatchFailed(p); | 
| 320 |         void* result = realloc(header, n + sizeof(AllocAlignmentInteger)); | 
| 321 |         if (!result) | 
| 322 |             return 0; | 
| 323 |  | 
| 324 |         // This should not be needed because the value is already there: | 
| 325 |         // *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc; | 
| 326 |         result = static_cast<AllocAlignmentInteger*>(result) + 1; | 
| 327 |         return result; | 
| 328 |     } else { | 
| 329 |         return fastMalloc(n); | 
| 330 |     } | 
| 331 | #else | 
| 332 |     return realloc(ptr: p, size: n); | 
| 333 | #endif | 
| 334 | } | 
| 335 |  | 
| 336 | void* fastRealloc(void* p, size_t n) | 
| 337 | { | 
| 338 |     ASSERT(!isForbidden()); | 
| 339 |  | 
| 340 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 341 |     TryMallocReturnValue returnValue = tryFastRealloc(p, n); | 
| 342 |     void* result; | 
| 343 |     returnValue.getValue(result); | 
| 344 | #else | 
| 345 |     void* result = realloc(ptr: p, size: n); | 
| 346 | #endif | 
| 347 |  | 
| 348 |     if (!result) | 
| 349 |         CRASH(); | 
| 350 |     return result; | 
| 351 | } | 
| 352 |  | 
| 353 | void releaseFastMallocFreeMemory() { } | 
| 354 |      | 
| 355 | FastMallocStatistics fastMallocStatistics() | 
| 356 | { | 
| 357 |     FastMallocStatistics statistics = { .heapSize: 0, .freeSizeInHeap: 0, .freeSizeInCaches: 0, .returnedSize: 0 }; | 
| 358 |     return statistics; | 
| 359 | } | 
| 360 |  | 
| 361 | } // namespace WTF | 
| 362 |  | 
| 363 | #if OS(DARWIN) | 
| 364 | // This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled. | 
| 365 | // It will never be used in this case, so it's type and value are less interesting than its presence. | 
| 366 | extern "C"  const int jscore_fastmalloc_introspection = 0; | 
| 367 | #endif | 
| 368 |  | 
| 369 | #else // FORCE_SYSTEM_MALLOC | 
| 370 |  | 
| 371 | #if HAVE(STDINT_H) | 
| 372 | #include <stdint.h> | 
| 373 | #elif HAVE(INTTYPES_H) | 
| 374 | #include <inttypes.h> | 
| 375 | #else | 
| 376 | #include <sys/types.h> | 
| 377 | #endif | 
| 378 |  | 
| 379 | #include "AlwaysInline.h" | 
| 380 | #include "Assertions.h" | 
| 381 | #include "TCPackedCache.h" | 
| 382 | #include "TCPageMap.h" | 
| 383 | #include "TCSpinLock.h" | 
| 384 | #include "TCSystemAlloc.h" | 
| 385 | #include <algorithm> | 
| 386 | #include <errno.h> | 
| 387 | #include <limits> | 
| 388 | #include <new> | 
| 389 | #include <pthread.h> | 
| 390 | #include <stdarg.h> | 
| 391 | #include <stddef.h> | 
| 392 | #include <stdio.h> | 
| 393 | #if OS(UNIX) | 
| 394 | #include <unistd.h> | 
| 395 | #endif | 
| 396 | #if COMPILER(MSVC) | 
| 397 | #ifndef WIN32_LEAN_AND_MEAN | 
| 398 | #define WIN32_LEAN_AND_MEAN | 
| 399 | #endif | 
| 400 | #include <windows.h> | 
| 401 | #endif | 
| 402 |  | 
| 403 | #if WTF_CHANGES | 
| 404 |  | 
| 405 | #if OS(DARWIN) | 
| 406 | #include "MallocZoneSupport.h" | 
| 407 | #include <wtf/HashSet.h> | 
| 408 | #include <wtf/Vector.h> | 
| 409 | #endif | 
| 410 | #if HAVE(DISPATCH_H) | 
| 411 | #include <dispatch/dispatch.h> | 
| 412 | #endif | 
| 413 |  | 
| 414 |  | 
| 415 | #ifndef PRIuS | 
| 416 | #define PRIuS "zu" | 
| 417 | #endif | 
| 418 |  | 
| 419 | // Calling pthread_getspecific through a global function pointer is faster than a normal | 
| 420 | // call to the function on Mac OS X, and it's used in performance-critical code. So we | 
| 421 | // use a function pointer. But that's not necessarily faster on other platforms, and we had | 
| 422 | // problems with this technique on Windows, so we'll do this only on Mac OS X. | 
| 423 | #if OS(DARWIN) | 
| 424 | static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific; | 
| 425 | #define pthread_getspecific(key) pthread_getspecific_function_pointer(key) | 
| 426 | #endif | 
| 427 |  | 
| 428 | #define DEFINE_VARIABLE(type, name, value, meaning) \ | 
| 429 |   namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead {  \ | 
| 430 |   type FLAGS_##name(value);                                \ | 
| 431 |   char FLAGS_no##name;                                                        \ | 
| 432 |   }                                                                           \ | 
| 433 |   using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name | 
| 434 |    | 
| 435 | #define DEFINE_int64(name, value, meaning) \ | 
| 436 |   DEFINE_VARIABLE(int64_t, name, value, meaning) | 
| 437 |    | 
| 438 | #define DEFINE_double(name, value, meaning) \ | 
| 439 |   DEFINE_VARIABLE(double, name, value, meaning) | 
| 440 |  | 
| 441 | namespace WTF { | 
| 442 |  | 
| 443 | #define malloc fastMalloc | 
| 444 | #define calloc fastCalloc | 
| 445 | #define free fastFree | 
| 446 | #define realloc fastRealloc | 
| 447 |  | 
| 448 | #define MESSAGE LOG_ERROR | 
| 449 | #define CHECK_CONDITION ASSERT | 
| 450 |  | 
| 451 | #if OS(DARWIN) | 
| 452 | class Span; | 
| 453 | class TCMalloc_Central_FreeListPadded; | 
| 454 | class TCMalloc_PageHeap; | 
| 455 | class TCMalloc_ThreadCache; | 
| 456 | template <typename T> class PageHeapAllocator; | 
| 457 |  | 
| 458 | class FastMallocZone { | 
| 459 | public: | 
| 460 |     static void init(); | 
| 461 |  | 
| 462 |     static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t); | 
| 463 |     static size_t goodSize(malloc_zone_t*, size_t size) { return size; } | 
| 464 |     static boolean_t check(malloc_zone_t*) { return true; } | 
| 465 |     static void  print(malloc_zone_t*, boolean_t) { } | 
| 466 |     static void log(malloc_zone_t*, void*) { } | 
| 467 |     static void forceLock(malloc_zone_t*) { } | 
| 468 |     static void forceUnlock(malloc_zone_t*) { } | 
| 469 |     static void statistics(malloc_zone_t*, malloc_statistics_t* stats) { memset(stats, 0, sizeof(malloc_statistics_t)); } | 
| 470 |  | 
| 471 | private: | 
| 472 |     FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*, PageHeapAllocator<Span>*, PageHeapAllocator<TCMalloc_ThreadCache>*); | 
| 473 |     static size_t size(malloc_zone_t*, const void*); | 
| 474 |     static void* zoneMalloc(malloc_zone_t*, size_t); | 
| 475 |     static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size); | 
| 476 |     static void zoneFree(malloc_zone_t*, void*); | 
| 477 |     static void* zoneRealloc(malloc_zone_t*, void*, size_t); | 
| 478 |     static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported" ); return 0; } | 
| 479 |     static void zoneDestroy(malloc_zone_t*) { } | 
| 480 |  | 
| 481 |     malloc_zone_t m_zone; | 
| 482 |     TCMalloc_PageHeap* m_pageHeap; | 
| 483 |     TCMalloc_ThreadCache** m_threadHeaps; | 
| 484 |     TCMalloc_Central_FreeListPadded* m_centralCaches; | 
| 485 |     PageHeapAllocator<Span>* m_spanAllocator; | 
| 486 |     PageHeapAllocator<TCMalloc_ThreadCache>* m_pageHeapAllocator; | 
| 487 | }; | 
| 488 |  | 
| 489 | #endif | 
| 490 |  | 
| 491 | #endif | 
| 492 |  | 
| 493 | #ifndef WTF_CHANGES | 
| 494 | // This #ifdef should almost never be set.  Set NO_TCMALLOC_SAMPLES if | 
| 495 | // you're porting to a system where you really can't get a stacktrace. | 
| 496 | #ifdef NO_TCMALLOC_SAMPLES | 
| 497 | // We use #define so code compiles even if you #include stacktrace.h somehow. | 
| 498 | # define GetStackTrace(stack, depth, skip)  (0) | 
| 499 | #else | 
| 500 | # include <google/stacktrace.h> | 
| 501 | #endif | 
| 502 | #endif | 
| 503 |  | 
| 504 | // Even if we have support for thread-local storage in the compiler | 
| 505 | // and linker, the OS may not support it.  We need to check that at | 
| 506 | // runtime.  Right now, we have to keep a manual set of "bad" OSes. | 
| 507 | #if defined(HAVE_TLS) | 
| 508 |   static bool kernel_supports_tls = false;      // be conservative | 
| 509 |   static inline bool KernelSupportsTLS() { | 
| 510 |     return kernel_supports_tls; | 
| 511 |   } | 
| 512 | # if !HAVE_DECL_UNAME   // if too old for uname, probably too old for TLS | 
| 513 |     static void CheckIfKernelSupportsTLS() { | 
| 514 |       kernel_supports_tls = false; | 
| 515 |     } | 
| 516 | # else | 
| 517 | #   include <sys/utsname.h>    // DECL_UNAME checked for <sys/utsname.h> too | 
| 518 |     static void CheckIfKernelSupportsTLS() { | 
| 519 |       struct utsname buf; | 
| 520 |       if (uname(&buf) != 0) {   // should be impossible | 
| 521 |         MESSAGE("uname failed assuming no TLS support (errno=%d)\n" , errno); | 
| 522 |         kernel_supports_tls = false; | 
| 523 |       } else if (strcasecmp(buf.sysname, "linux" ) == 0) { | 
| 524 |         // The linux case: the first kernel to support TLS was 2.6.0 | 
| 525 |         if (buf.release[0] < '2' && buf.release[1] == '.')    // 0.x or 1.x | 
| 526 |           kernel_supports_tls = false; | 
| 527 |         else if (buf.release[0] == '2' && buf.release[1] == '.' && | 
| 528 |                  buf.release[2] >= '0' && buf.release[2] < '6' && | 
| 529 |                  buf.release[3] == '.')                       // 2.0 - 2.5 | 
| 530 |           kernel_supports_tls = false; | 
| 531 |         else | 
| 532 |           kernel_supports_tls = true; | 
| 533 |       } else {        // some other kernel, we'll be optimisitic | 
| 534 |         kernel_supports_tls = true; | 
| 535 |       } | 
| 536 |       // TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG | 
| 537 |     } | 
| 538 | #  endif  // HAVE_DECL_UNAME | 
| 539 | #endif    // HAVE_TLS | 
| 540 |  | 
| 541 | // __THROW is defined in glibc systems.  It means, counter-intuitively, | 
| 542 | // "This function will never throw an exception."  It's an optional | 
| 543 | // optimization tool, but we may need to use it to match glibc prototypes. | 
| 544 | #ifndef __THROW    // I guess we're not on a glibc system | 
| 545 | # define __THROW   // __THROW is just an optimization, so ok to make it "" | 
| 546 | #endif | 
| 547 |  | 
| 548 | //------------------------------------------------------------------- | 
| 549 | // Configuration | 
| 550 | //------------------------------------------------------------------- | 
| 551 |  | 
| 552 | // Not all possible combinations of the following parameters make | 
| 553 | // sense.  In particular, if kMaxSize increases, you may have to | 
| 554 | // increase kNumClasses as well. | 
| 555 | static const size_t kPageShift  = 12; | 
| 556 | static const size_t kPageSize   = 1 << kPageShift; | 
| 557 | static const size_t kMaxSize    = 8u * kPageSize; | 
| 558 | static const size_t kAlignShift = 3; | 
| 559 | static const size_t kAlignment  = 1 << kAlignShift; | 
| 560 | static const size_t kNumClasses = 68; | 
| 561 |  | 
| 562 | // Allocates a big block of memory for the pagemap once we reach more than | 
| 563 | // 128MB | 
| 564 | static const size_t kPageMapBigAllocationThreshold = 128 << 20; | 
| 565 |  | 
| 566 | // Minimum number of pages to fetch from system at a time.  Must be | 
| 567 | // significantly bigger than kPageSize to amortize system-call | 
| 568 | // overhead, and also to reduce external fragementation.  Also, we | 
| 569 | // should keep this value big because various incarnations of Linux | 
| 570 | // have small limits on the number of mmap() regions per | 
| 571 | // address-space. | 
| 572 | static const size_t kMinSystemAlloc = 1 << (20 - kPageShift); | 
| 573 |  | 
| 574 | // Number of objects to move between a per-thread list and a central | 
| 575 | // list in one shot.  We want this to be not too small so we can | 
| 576 | // amortize the lock overhead for accessing the central list.  Making | 
| 577 | // it too big may temporarily cause unnecessary memory wastage in the | 
| 578 | // per-thread free list until the scavenger cleans up the list. | 
| 579 | static int num_objects_to_move[kNumClasses]; | 
| 580 |  | 
| 581 | // Maximum length we allow a per-thread free-list to have before we | 
| 582 | // move objects from it into the corresponding central free-list.  We | 
| 583 | // want this big to avoid locking the central free-list too often.  It | 
| 584 | // should not hurt to make this list somewhat big because the | 
| 585 | // scavenging code will shrink it down when its contents are not in use. | 
| 586 | static const int kMaxFreeListLength = 256; | 
| 587 |  | 
| 588 | // Lower and upper bounds on the per-thread cache sizes | 
| 589 | static const size_t kMinThreadCacheSize = kMaxSize * 2; | 
| 590 | static const size_t kMaxThreadCacheSize = 2 << 20; | 
| 591 |  | 
| 592 | // Default bound on the total amount of thread caches | 
| 593 | static const size_t kDefaultOverallThreadCacheSize = 16 << 20; | 
| 594 |  | 
| 595 | // For all span-lengths < kMaxPages we keep an exact-size list. | 
| 596 | // REQUIRED: kMaxPages >= kMinSystemAlloc; | 
| 597 | static const size_t kMaxPages = kMinSystemAlloc; | 
| 598 |  | 
| 599 | /* The smallest prime > 2^n */ | 
| 600 | static int primes_list[] = { | 
| 601 |     // Small values might cause high rates of sampling | 
| 602 |     // and hence commented out. | 
| 603 |     // 2, 5, 11, 17, 37, 67, 131, 257, | 
| 604 |     // 521, 1031, 2053, 4099, 8209, 16411, | 
| 605 |     32771, 65537, 131101, 262147, 524309, 1048583, | 
| 606 |     2097169, 4194319, 8388617, 16777259, 33554467 }; | 
| 607 |  | 
| 608 | // Twice the approximate gap between sampling actions. | 
| 609 | // I.e., we take one sample approximately once every | 
| 610 | //      tcmalloc_sample_parameter/2 | 
| 611 | // bytes of allocation, i.e., ~ once every 128KB. | 
| 612 | // Must be a prime number. | 
| 613 | #ifdef NO_TCMALLOC_SAMPLES | 
| 614 | DEFINE_int64(tcmalloc_sample_parameter, 0, | 
| 615 |              "Unused: code is compiled with NO_TCMALLOC_SAMPLES" ); | 
| 616 | static size_t sample_period = 0; | 
| 617 | #else | 
| 618 | DEFINE_int64(tcmalloc_sample_parameter, 262147, | 
| 619 |          "Twice the approximate gap between sampling actions."  | 
| 620 |          " Must be a prime number. Otherwise will be rounded up to a "  | 
| 621 |          " larger prime number" ); | 
| 622 | static size_t sample_period = 262147; | 
| 623 | #endif | 
| 624 |  | 
| 625 | // Protects sample_period above | 
| 626 | static SpinLock sample_period_lock = SPINLOCK_INITIALIZER; | 
| 627 |  | 
| 628 | // Parameters for controlling how fast memory is returned to the OS. | 
| 629 |  | 
| 630 | DEFINE_double(tcmalloc_release_rate, 1, | 
| 631 |               "Rate at which we release unused memory to the system.  "  | 
| 632 |               "Zero means we never release memory back to the system.  "  | 
| 633 |               "Increase this flag to return memory faster; decrease it "  | 
| 634 |               "to return memory slower.  Reasonable rates are in the "  | 
| 635 |               "range [0,10]" ); | 
| 636 |  | 
| 637 | //------------------------------------------------------------------- | 
| 638 | // Mapping from size to size_class and vice versa | 
| 639 | //------------------------------------------------------------------- | 
| 640 |  | 
| 641 | // Sizes <= 1024 have an alignment >= 8.  So for such sizes we have an | 
| 642 | // array indexed by ceil(size/8).  Sizes > 1024 have an alignment >= 128. | 
| 643 | // So for these larger sizes we have an array indexed by ceil(size/128). | 
| 644 | // | 
| 645 | // We flatten both logical arrays into one physical array and use | 
| 646 | // arithmetic to compute an appropriate index.  The constants used by | 
| 647 | // ClassIndex() were selected to make the flattening work. | 
| 648 | // | 
| 649 | // Examples: | 
| 650 | //   Size       Expression                      Index | 
| 651 | //   ------------------------------------------------------- | 
| 652 | //   0          (0 + 7) / 8                     0 | 
| 653 | //   1          (1 + 7) / 8                     1 | 
| 654 | //   ... | 
| 655 | //   1024       (1024 + 7) / 8                  128 | 
| 656 | //   1025       (1025 + 127 + (120<<7)) / 128   129 | 
| 657 | //   ... | 
| 658 | //   32768      (32768 + 127 + (120<<7)) / 128  376 | 
| 659 | static const size_t kMaxSmallSize = 1024; | 
| 660 | static const int shift_amount[2] = { 3, 7 };  // For divides by 8 or 128 | 
| 661 | static const int add_amount[2] = { 7, 127 + (120 << 7) }; | 
| 662 | static unsigned char class_array[377]; | 
| 663 |  | 
| 664 | // Compute index of the class_array[] entry for a given size | 
| 665 | static inline int ClassIndex(size_t s) { | 
| 666 |   const int i = (s > kMaxSmallSize); | 
| 667 |   return static_cast<int>((s + add_amount[i]) >> shift_amount[i]); | 
| 668 | } | 
| 669 |  | 
| 670 | // Mapping from size class to max size storable in that class | 
| 671 | static size_t class_to_size[kNumClasses]; | 
| 672 |  | 
| 673 | // Mapping from size class to number of pages to allocate at a time | 
| 674 | static size_t class_to_pages[kNumClasses]; | 
| 675 |  | 
| 676 | // TransferCache is used to cache transfers of num_objects_to_move[size_class] | 
| 677 | // back and forth between thread caches and the central cache for a given size | 
| 678 | // class. | 
| 679 | struct TCEntry { | 
| 680 |   void *head;  // Head of chain of objects. | 
| 681 |   void *tail;  // Tail of chain of objects. | 
| 682 | }; | 
| 683 | // A central cache freelist can have anywhere from 0 to kNumTransferEntries | 
| 684 | // slots to put link list chains into.  To keep memory usage bounded the total | 
| 685 | // number of TCEntries across size classes is fixed.  Currently each size | 
| 686 | // class is initially given one TCEntry which also means that the maximum any | 
| 687 | // one class can have is kNumClasses. | 
| 688 | static const int kNumTransferEntries = kNumClasses; | 
| 689 |  | 
| 690 | // Note: the following only works for "n"s that fit in 32-bits, but | 
| 691 | // that is fine since we only use it for small sizes. | 
| 692 | static inline int LgFloor(size_t n) { | 
| 693 |   int log = 0; | 
| 694 |   for (int i = 4; i >= 0; --i) { | 
| 695 |     int shift = (1 << i); | 
| 696 |     size_t x = n >> shift; | 
| 697 |     if (x != 0) { | 
| 698 |       n = x; | 
| 699 |       log += shift; | 
| 700 |     } | 
| 701 |   } | 
| 702 |   ASSERT(n == 1); | 
| 703 |   return log; | 
| 704 | } | 
| 705 |  | 
| 706 | // Some very basic linked list functions for dealing with using void * as | 
| 707 | // storage. | 
| 708 |  | 
| 709 | static inline void *SLL_Next(void *t) { | 
| 710 |   return *(reinterpret_cast<void**>(t)); | 
| 711 | } | 
| 712 |  | 
| 713 | static inline void SLL_SetNext(void *t, void *n) { | 
| 714 |   *(reinterpret_cast<void**>(t)) = n; | 
| 715 | } | 
| 716 |  | 
| 717 | static inline void SLL_Push(void **list, void *element) { | 
| 718 |   SLL_SetNext(element, *list); | 
| 719 |   *list = element; | 
| 720 | } | 
| 721 |  | 
| 722 | static inline void *SLL_Pop(void **list) { | 
| 723 |   void *result = *list; | 
| 724 |   *list = SLL_Next(*list); | 
| 725 |   return result; | 
| 726 | } | 
| 727 |  | 
| 728 |  | 
| 729 | // Remove N elements from a linked list to which head points.  head will be | 
| 730 | // modified to point to the new head.  start and end will point to the first | 
| 731 | // and last nodes of the range.  Note that end will point to NULL after this | 
| 732 | // function is called. | 
| 733 | static inline void SLL_PopRange(void **head, int N, void **start, void **end) { | 
| 734 |   if (N == 0) { | 
| 735 |     *start = NULL; | 
| 736 |     *end = NULL; | 
| 737 |     return; | 
| 738 |   } | 
| 739 |  | 
| 740 |   void *tmp = *head; | 
| 741 |   for (int i = 1; i < N; ++i) { | 
| 742 |     tmp = SLL_Next(tmp); | 
| 743 |   } | 
| 744 |  | 
| 745 |   *start = *head; | 
| 746 |   *end = tmp; | 
| 747 |   *head = SLL_Next(tmp); | 
| 748 |   // Unlink range from list. | 
| 749 |   SLL_SetNext(tmp, NULL); | 
| 750 | } | 
| 751 |  | 
| 752 | static inline void SLL_PushRange(void **head, void *start, void *end) { | 
| 753 |   if (!start) return; | 
| 754 |   SLL_SetNext(end, *head); | 
| 755 |   *head = start; | 
| 756 | } | 
| 757 |  | 
| 758 | static inline size_t SLL_Size(void *head) { | 
| 759 |   int count = 0; | 
| 760 |   while (head) { | 
| 761 |     count++; | 
| 762 |     head = SLL_Next(head); | 
| 763 |   } | 
| 764 |   return count; | 
| 765 | } | 
| 766 |  | 
| 767 | // Setup helper functions. | 
| 768 |  | 
| 769 | static ALWAYS_INLINE size_t SizeClass(size_t size) { | 
| 770 |   return class_array[ClassIndex(size)]; | 
| 771 | } | 
| 772 |  | 
| 773 | // Get the byte-size for a specified class | 
| 774 | static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) { | 
| 775 |   return class_to_size[cl]; | 
| 776 | } | 
| 777 | static int NumMoveSize(size_t size) { | 
| 778 |   if (size == 0) return 0; | 
| 779 |   // Use approx 64k transfers between thread and central caches. | 
| 780 |   int num = static_cast<int>(64.0 * 1024.0 / size); | 
| 781 |   if (num < 2) num = 2; | 
| 782 |   // Clamp well below kMaxFreeListLength to avoid ping pong between central | 
| 783 |   // and thread caches. | 
| 784 |   if (num > static_cast<int>(0.8 * kMaxFreeListLength)) | 
| 785 |     num = static_cast<int>(0.8 * kMaxFreeListLength); | 
| 786 |  | 
| 787 |   // Also, avoid bringing in too many objects into small object free | 
| 788 |   // lists.  There are lots of such lists, and if we allow each one to | 
| 789 |   // fetch too many at a time, we end up having to scavenge too often | 
| 790 |   // (especially when there are lots of threads and each thread gets a | 
| 791 |   // small allowance for its thread cache). | 
| 792 |   // | 
| 793 |   // TODO: Make thread cache free list sizes dynamic so that we do not | 
| 794 |   // have to equally divide a fixed resource amongst lots of threads. | 
| 795 |   if (num > 32) num = 32; | 
| 796 |  | 
| 797 |   return num; | 
| 798 | } | 
| 799 |  | 
| 800 | // Initialize the mapping arrays | 
| 801 | static void InitSizeClasses() { | 
| 802 |   // Do some sanity checking on add_amount[]/shift_amount[]/class_array[] | 
| 803 |   if (ClassIndex(0) < 0) { | 
| 804 |     MESSAGE("Invalid class index %d for size 0\n" , ClassIndex(0)); | 
| 805 |     CRASH(); | 
| 806 |   } | 
| 807 |   if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) { | 
| 808 |     MESSAGE("Invalid class index %d for kMaxSize\n" , ClassIndex(kMaxSize)); | 
| 809 |     CRASH(); | 
| 810 |   } | 
| 811 |  | 
| 812 |   // Compute the size classes we want to use | 
| 813 |   size_t sc = 1;   // Next size class to assign | 
| 814 |   unsigned char alignshift = kAlignShift; | 
| 815 |   int last_lg = -1; | 
| 816 |   for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) { | 
| 817 |     int lg = LgFloor(size); | 
| 818 |     if (lg > last_lg) { | 
| 819 |       // Increase alignment every so often. | 
| 820 |       // | 
| 821 |       // Since we double the alignment every time size doubles and | 
| 822 |       // size >= 128, this means that space wasted due to alignment is | 
| 823 |       // at most 16/128 i.e., 12.5%.  Plus we cap the alignment at 256 | 
| 824 |       // bytes, so the space wasted as a percentage starts falling for | 
| 825 |       // sizes > 2K. | 
| 826 |       if ((lg >= 7) && (alignshift < 8)) { | 
| 827 |         alignshift++; | 
| 828 |       } | 
| 829 |       last_lg = lg; | 
| 830 |     } | 
| 831 |  | 
| 832 |     // Allocate enough pages so leftover is less than 1/8 of total. | 
| 833 |     // This bounds wasted space to at most 12.5%. | 
| 834 |     size_t psize = kPageSize; | 
| 835 |     while ((psize % size) > (psize >> 3)) { | 
| 836 |       psize += kPageSize; | 
| 837 |     } | 
| 838 |     const size_t my_pages = psize >> kPageShift; | 
| 839 |  | 
| 840 |     if (sc > 1 && my_pages == class_to_pages[sc-1]) { | 
| 841 |       // See if we can merge this into the previous class without | 
| 842 |       // increasing the fragmentation of the previous class. | 
| 843 |       const size_t my_objects = (my_pages << kPageShift) / size; | 
| 844 |       const size_t prev_objects = (class_to_pages[sc-1] << kPageShift) | 
| 845 |                                   / class_to_size[sc-1]; | 
| 846 |       if (my_objects == prev_objects) { | 
| 847 |         // Adjust last class to include this size | 
| 848 |         class_to_size[sc-1] = size; | 
| 849 |         continue; | 
| 850 |       } | 
| 851 |     } | 
| 852 |  | 
| 853 |     // Add new class | 
| 854 |     class_to_pages[sc] = my_pages; | 
| 855 |     class_to_size[sc] = size; | 
| 856 |     sc++; | 
| 857 |   } | 
| 858 |   if (sc != kNumClasses) { | 
| 859 |     MESSAGE("wrong number of size classes: found %"  PRIuS " instead of %d\n" , | 
| 860 |             sc, int(kNumClasses)); | 
| 861 |     CRASH(); | 
| 862 |   } | 
| 863 |  | 
| 864 |   // Initialize the mapping arrays | 
| 865 |   int next_size = 0; | 
| 866 |   for (unsigned char c = 1; c < kNumClasses; c++) { | 
| 867 |     const size_t max_size_in_class = class_to_size[c]; | 
| 868 |     for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) { | 
| 869 |       class_array[ClassIndex(s)] = c; | 
| 870 |     } | 
| 871 |     next_size = static_cast<int>(max_size_in_class + kAlignment); | 
| 872 |   } | 
| 873 |  | 
| 874 |   // Double-check sizes just to be safe | 
| 875 |   for (size_t size = 0; size <= kMaxSize; size++) { | 
| 876 |     const size_t sc = SizeClass(size); | 
| 877 |     if (sc == 0) { | 
| 878 |       MESSAGE("Bad size class %"  PRIuS " for %"  PRIuS "\n" , sc, size); | 
| 879 |       CRASH(); | 
| 880 |     } | 
| 881 |     if (sc > 1 && size <= class_to_size[sc-1]) { | 
| 882 |       MESSAGE("Allocating unnecessarily large class %"  PRIuS " for %"  PRIuS | 
| 883 |               "\n" , sc, size); | 
| 884 |       CRASH(); | 
| 885 |     } | 
| 886 |     if (sc >= kNumClasses) { | 
| 887 |       MESSAGE("Bad size class %"  PRIuS " for %"  PRIuS "\n" , sc, size); | 
| 888 |       CRASH(); | 
| 889 |     } | 
| 890 |     const size_t s = class_to_size[sc]; | 
| 891 |     if (size > s) { | 
| 892 |      MESSAGE("Bad size %"  PRIuS " for %"  PRIuS " (sc = %"  PRIuS ")\n" , s, size, sc); | 
| 893 |       CRASH(); | 
| 894 |     } | 
| 895 |     if (s == 0) { | 
| 896 |       MESSAGE("Bad size %"  PRIuS " for %"  PRIuS " (sc = %"  PRIuS ")\n" , s, size, sc); | 
| 897 |       CRASH(); | 
| 898 |     } | 
| 899 |   } | 
| 900 |  | 
| 901 |   // Initialize the num_objects_to_move array. | 
| 902 |   for (size_t cl = 1; cl  < kNumClasses; ++cl) { | 
| 903 |     num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl)); | 
| 904 |   } | 
| 905 |  | 
| 906 | #ifndef WTF_CHANGES | 
| 907 |   if (false) { | 
| 908 |     // Dump class sizes and maximum external wastage per size class | 
| 909 |     for (size_t cl = 1; cl  < kNumClasses; ++cl) { | 
| 910 |       const int alloc_size = class_to_pages[cl] << kPageShift; | 
| 911 |       const int alloc_objs = alloc_size / class_to_size[cl]; | 
| 912 |       const int min_used = (class_to_size[cl-1] + 1) * alloc_objs; | 
| 913 |       const int max_waste = alloc_size - min_used; | 
| 914 |       MESSAGE("SC %3d [ %8d .. %8d ] from %8d ; %2.0f%% maxwaste\n" , | 
| 915 |               int(cl), | 
| 916 |               int(class_to_size[cl-1] + 1), | 
| 917 |               int(class_to_size[cl]), | 
| 918 |               int(class_to_pages[cl] << kPageShift), | 
| 919 |               max_waste * 100.0 / alloc_size | 
| 920 |               ); | 
| 921 |     } | 
| 922 |   } | 
| 923 | #endif | 
| 924 | } | 
| 925 |  | 
| 926 | // ------------------------------------------------------------------------- | 
| 927 | // Simple allocator for objects of a specified type.  External locking | 
| 928 | // is required before accessing one of these objects. | 
| 929 | // ------------------------------------------------------------------------- | 
| 930 |  | 
| 931 | // Metadata allocator -- keeps stats about how many bytes allocated | 
| 932 | static uint64_t metadata_system_bytes = 0; | 
| 933 | static void* MetaDataAlloc(size_t bytes) { | 
| 934 |   void* result = TCMalloc_SystemAlloc(bytes, 0); | 
| 935 |   if (result != NULL) { | 
| 936 |     metadata_system_bytes += bytes; | 
| 937 |   } | 
| 938 |   return result; | 
| 939 | } | 
| 940 |  | 
| 941 | template <class T> | 
| 942 | class PageHeapAllocator { | 
| 943 |  private: | 
| 944 |   // How much to allocate from system at a time | 
| 945 |   static const size_t kAllocIncrement = 32 << 10; | 
| 946 |  | 
| 947 |   // Aligned size of T | 
| 948 |   static const size_t kAlignedSize | 
| 949 |   = (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment); | 
| 950 |  | 
| 951 |   // Free area from which to carve new objects | 
| 952 |   char* free_area_; | 
| 953 |   size_t free_avail_; | 
| 954 |  | 
| 955 |   // Linked list of all regions allocated by this allocator | 
| 956 |   void* allocated_regions_; | 
| 957 |  | 
| 958 |   // Free list of already carved objects | 
| 959 |   void* free_list_; | 
| 960 |  | 
| 961 |   // Number of allocated but unfreed objects | 
| 962 |   int inuse_; | 
| 963 |  | 
| 964 |  public: | 
| 965 |   void Init() { | 
| 966 |     ASSERT(kAlignedSize <= kAllocIncrement); | 
| 967 |     inuse_ = 0; | 
| 968 |     allocated_regions_ = 0; | 
| 969 |     free_area_ = NULL; | 
| 970 |     free_avail_ = 0; | 
| 971 |     free_list_ = NULL; | 
| 972 |   } | 
| 973 |  | 
| 974 |   T* New() { | 
| 975 |     // Consult free list | 
| 976 |     void* result; | 
| 977 |     if (free_list_ != NULL) { | 
| 978 |       result = free_list_; | 
| 979 |       free_list_ = *(reinterpret_cast<void**>(result)); | 
| 980 |     } else { | 
| 981 |       if (free_avail_ < kAlignedSize) { | 
| 982 |         // Need more room | 
| 983 |         char* new_allocation = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement)); | 
| 984 |         if (!new_allocation) | 
| 985 |           CRASH(); | 
| 986 |  | 
| 987 |         *(void**)new_allocation = allocated_regions_; | 
| 988 |         allocated_regions_ = new_allocation; | 
| 989 |         free_area_ = new_allocation + kAlignedSize; | 
| 990 |         free_avail_ = kAllocIncrement - kAlignedSize; | 
| 991 |       } | 
| 992 |       result = free_area_; | 
| 993 |       free_area_ += kAlignedSize; | 
| 994 |       free_avail_ -= kAlignedSize; | 
| 995 |     } | 
| 996 |     inuse_++; | 
| 997 |     return reinterpret_cast<T*>(result); | 
| 998 |   } | 
| 999 |  | 
| 1000 |   void Delete(T* p) { | 
| 1001 |     *(reinterpret_cast<void**>(p)) = free_list_; | 
| 1002 |     free_list_ = p; | 
| 1003 |     inuse_--; | 
| 1004 |   } | 
| 1005 |  | 
| 1006 |   int inuse() const { return inuse_; } | 
| 1007 |  | 
| 1008 | #if defined(WTF_CHANGES) && OS(DARWIN) | 
| 1009 |   template <class Recorder> | 
| 1010 |   void recordAdministrativeRegions(Recorder& recorder, const RemoteMemoryReader& reader) | 
| 1011 |   { | 
| 1012 |       vm_address_t adminAllocation = reinterpret_cast<vm_address_t>(allocated_regions_); | 
| 1013 |       while (adminAllocation) { | 
| 1014 |           recorder.recordRegion(adminAllocation, kAllocIncrement); | 
| 1015 |           adminAllocation = *reader(reinterpret_cast<vm_address_t*>(adminAllocation)); | 
| 1016 |       } | 
| 1017 |   } | 
| 1018 | #endif | 
| 1019 | }; | 
| 1020 |  | 
| 1021 | // ------------------------------------------------------------------------- | 
| 1022 | // Span - a contiguous run of pages | 
| 1023 | // ------------------------------------------------------------------------- | 
| 1024 |  | 
| 1025 | // Type that can hold a page number | 
| 1026 | typedef uintptr_t PageID; | 
| 1027 |  | 
| 1028 | // Type that can hold the length of a run of pages | 
| 1029 | typedef uintptr_t Length; | 
| 1030 |  | 
| 1031 | static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift; | 
| 1032 |  | 
| 1033 | // Convert byte size into pages.  This won't overflow, but may return | 
| 1034 | // an unreasonably large value if bytes is huge enough. | 
| 1035 | static inline Length pages(size_t bytes) { | 
| 1036 |   return (bytes >> kPageShift) + | 
| 1037 |       ((bytes & (kPageSize - 1)) > 0 ? 1 : 0); | 
| 1038 | } | 
| 1039 |  | 
| 1040 | // Convert a user size into the number of bytes that will actually be | 
| 1041 | // allocated | 
| 1042 | static size_t AllocationSize(size_t bytes) { | 
| 1043 |   if (bytes > kMaxSize) { | 
| 1044 |     // Large object: we allocate an integral number of pages | 
| 1045 |     ASSERT(bytes <= (kMaxValidPages << kPageShift)); | 
| 1046 |     return pages(bytes) << kPageShift; | 
| 1047 |   } else { | 
| 1048 |     // Small object: find the size class to which it belongs | 
| 1049 |     return ByteSizeForClass(SizeClass(bytes)); | 
| 1050 |   } | 
| 1051 | } | 
| 1052 |  | 
| 1053 | // Information kept for a span (a contiguous run of pages). | 
| 1054 | struct Span { | 
| 1055 |   PageID        start;          // Starting page number | 
| 1056 |   Length        length;         // Number of pages in span | 
| 1057 |   Span*         next;           // Used when in link list | 
| 1058 |   Span*         prev;           // Used when in link list | 
| 1059 |   void*         objects;        // Linked list of free objects | 
| 1060 |   unsigned int  free : 1;       // Is the span free | 
| 1061 | #ifndef NO_TCMALLOC_SAMPLES | 
| 1062 |   unsigned int  sample : 1;     // Sampled object? | 
| 1063 | #endif | 
| 1064 |   unsigned int  sizeclass : 8;  // Size-class for small objects (or 0) | 
| 1065 |   unsigned int  refcount : 11;  // Number of non-free objects | 
| 1066 |   bool decommitted : 1; | 
| 1067 |  | 
| 1068 | #undef SPAN_HISTORY | 
| 1069 | #ifdef SPAN_HISTORY | 
| 1070 |   // For debugging, we can keep a log events per span | 
| 1071 |   int nexthistory; | 
| 1072 |   char history[64]; | 
| 1073 |   int value[64]; | 
| 1074 | #endif | 
| 1075 | }; | 
| 1076 |  | 
| 1077 | #define ASSERT_SPAN_COMMITTED(span) ASSERT(!span->decommitted) | 
| 1078 |  | 
| 1079 | #ifdef SPAN_HISTORY | 
| 1080 | void Event(Span* span, char op, int v = 0) { | 
| 1081 |   span->history[span->nexthistory] = op; | 
| 1082 |   span->value[span->nexthistory] = v; | 
| 1083 |   span->nexthistory++; | 
| 1084 |   if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0; | 
| 1085 | } | 
| 1086 | #else | 
| 1087 | #define Event(s,o,v) ((void) 0) | 
| 1088 | #endif | 
| 1089 |  | 
| 1090 | // Allocator/deallocator for spans | 
| 1091 | static PageHeapAllocator<Span> span_allocator; | 
| 1092 | static Span* NewSpan(PageID p, Length len) { | 
| 1093 |   Span* result = span_allocator.New(); | 
| 1094 |   memset(result, 0, sizeof(*result)); | 
| 1095 |   result->start = p; | 
| 1096 |   result->length = len; | 
| 1097 | #ifdef SPAN_HISTORY | 
| 1098 |   result->nexthistory = 0; | 
| 1099 | #endif | 
| 1100 |   return result; | 
| 1101 | } | 
| 1102 |  | 
| 1103 | static inline void DeleteSpan(Span* span) { | 
| 1104 | #ifndef NDEBUG | 
| 1105 |   // In debug mode, trash the contents of deleted Spans | 
| 1106 |   memset(span, 0x3f, sizeof(*span)); | 
| 1107 | #endif | 
| 1108 |   span_allocator.Delete(span); | 
| 1109 | } | 
| 1110 |  | 
| 1111 | // ------------------------------------------------------------------------- | 
| 1112 | // Doubly linked list of spans. | 
| 1113 | // ------------------------------------------------------------------------- | 
| 1114 |  | 
| 1115 | static inline void DLL_Init(Span* list) { | 
| 1116 |   list->next = list; | 
| 1117 |   list->prev = list; | 
| 1118 | } | 
| 1119 |  | 
| 1120 | static inline void DLL_Remove(Span* span) { | 
| 1121 |   span->prev->next = span->next; | 
| 1122 |   span->next->prev = span->prev; | 
| 1123 |   span->prev = NULL; | 
| 1124 |   span->next = NULL; | 
| 1125 | } | 
| 1126 |  | 
| 1127 | static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) { | 
| 1128 |   return list->next == list; | 
| 1129 | } | 
| 1130 |  | 
| 1131 | static int DLL_Length(const Span* list) { | 
| 1132 |   int result = 0; | 
| 1133 |   for (Span* s = list->next; s != list; s = s->next) { | 
| 1134 |     result++; | 
| 1135 |   } | 
| 1136 |   return result; | 
| 1137 | } | 
| 1138 |  | 
| 1139 | #if 0 /* Not needed at the moment -- causes compiler warnings if not used */ | 
| 1140 | static void DLL_Print(const char* label, const Span* list) { | 
| 1141 |   MESSAGE("%-10s %p:" , label, list); | 
| 1142 |   for (const Span* s = list->next; s != list; s = s->next) { | 
| 1143 |     MESSAGE(" <%p,%u,%u>" , s, s->start, s->length); | 
| 1144 |   } | 
| 1145 |   MESSAGE("\n" ); | 
| 1146 | } | 
| 1147 | #endif | 
| 1148 |  | 
| 1149 | static inline void DLL_Prepend(Span* list, Span* span) { | 
| 1150 |   ASSERT(span->next == NULL); | 
| 1151 |   ASSERT(span->prev == NULL); | 
| 1152 |   span->next = list->next; | 
| 1153 |   span->prev = list; | 
| 1154 |   list->next->prev = span; | 
| 1155 |   list->next = span; | 
| 1156 | } | 
| 1157 |  | 
| 1158 | // ------------------------------------------------------------------------- | 
| 1159 | // Stack traces kept for sampled allocations | 
| 1160 | //   The following state is protected by pageheap_lock_. | 
| 1161 | // ------------------------------------------------------------------------- | 
| 1162 |  | 
| 1163 | // size/depth are made the same size as a pointer so that some generic | 
| 1164 | // code below can conveniently cast them back and forth to void*. | 
| 1165 | static const int kMaxStackDepth = 31; | 
| 1166 | struct StackTrace { | 
| 1167 |   uintptr_t size;          // Size of object | 
| 1168 |   uintptr_t depth;         // Number of PC values stored in array below | 
| 1169 |   void*     stack[kMaxStackDepth]; | 
| 1170 | }; | 
| 1171 | static PageHeapAllocator<StackTrace> stacktrace_allocator; | 
| 1172 | static Span sampled_objects; | 
| 1173 |  | 
| 1174 | // ------------------------------------------------------------------------- | 
| 1175 | // Map from page-id to per-page data | 
| 1176 | // ------------------------------------------------------------------------- | 
| 1177 |  | 
| 1178 | // We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines. | 
| 1179 | // We also use a simple one-level cache for hot PageID-to-sizeclass mappings, | 
| 1180 | // because sometimes the sizeclass is all the information we need. | 
| 1181 |  | 
| 1182 | // Selector class -- general selector uses 3-level map | 
| 1183 | template <int BITS> class MapSelector { | 
| 1184 |  public: | 
| 1185 |   typedef TCMalloc_PageMap3<BITS-kPageShift> Type; | 
| 1186 |   typedef PackedCache<BITS, uint64_t> CacheType; | 
| 1187 | }; | 
| 1188 |  | 
| 1189 | #if defined(WTF_CHANGES) | 
| 1190 | #if CPU(X86_64) | 
| 1191 | // On all known X86-64 platforms, the upper 16 bits are always unused and therefore  | 
| 1192 | // can be excluded from the PageMap key. | 
| 1193 | // See http://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details | 
| 1194 |  | 
| 1195 | static const size_t kBitsUnusedOn64Bit = 16; | 
| 1196 | #else | 
| 1197 | static const size_t kBitsUnusedOn64Bit = 0; | 
| 1198 | #endif | 
| 1199 |  | 
| 1200 | // A three-level map for 64-bit machines | 
| 1201 | template <> class MapSelector<64> { | 
| 1202 |  public: | 
| 1203 |   typedef TCMalloc_PageMap3<64 - kPageShift - kBitsUnusedOn64Bit> Type; | 
| 1204 |   typedef PackedCache<64, uint64_t> CacheType; | 
| 1205 | }; | 
| 1206 | #endif | 
| 1207 |  | 
| 1208 | // A two-level map for 32-bit machines | 
| 1209 | template <> class MapSelector<32> { | 
| 1210 |  public: | 
| 1211 |   typedef TCMalloc_PageMap2<32 - kPageShift> Type; | 
| 1212 |   typedef PackedCache<32 - kPageShift, uint16_t> CacheType; | 
| 1213 | }; | 
| 1214 |  | 
| 1215 | // ------------------------------------------------------------------------- | 
| 1216 | // Page-level allocator | 
| 1217 | //  * Eager coalescing | 
| 1218 | // | 
| 1219 | // Heap for page-level allocation.  We allow allocating and freeing a | 
| 1220 | // contiguous runs of pages (called a "span"). | 
| 1221 | // ------------------------------------------------------------------------- | 
| 1222 |  | 
| 1223 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1224 | // The central page heap collects spans of memory that have been deleted but are still committed until they are released | 
| 1225 | // back to the system.  We use a background thread to periodically scan the list of free spans and release some back to the | 
| 1226 | // system.  Every 5 seconds, the background thread wakes up and does the following: | 
| 1227 | // - Check if we needed to commit memory in the last 5 seconds.  If so, skip this scavenge because it's a sign that we are short | 
| 1228 | // of free committed pages and so we should not release them back to the system yet. | 
| 1229 | // - Otherwise, go through the list of free spans (from largest to smallest) and release up to a fraction of the free committed pages | 
| 1230 | // back to the system. | 
| 1231 | // - If the number of free committed pages reaches kMinimumFreeCommittedPageCount, we can stop the scavenging and block the | 
| 1232 | // scavenging thread until the number of free committed pages goes above kMinimumFreeCommittedPageCount. | 
| 1233 |  | 
| 1234 | // Background thread wakes up every 5 seconds to scavenge as long as there is memory available to return to the system. | 
| 1235 | static const int kScavengeTimerDelayInSeconds = 5; | 
| 1236 |  | 
| 1237 | // Number of free committed pages that we want to keep around. | 
| 1238 | static const size_t kMinimumFreeCommittedPageCount = 512; | 
| 1239 |  | 
| 1240 | // During a scavenge, we'll release up to a fraction of the free committed pages. | 
| 1241 | #if OS(WINDOWS) | 
| 1242 | // We are slightly less aggressive in releasing memory on Windows due to performance reasons. | 
| 1243 | static const int kMaxScavengeAmountFactor = 3; | 
| 1244 | #else | 
| 1245 | static const int kMaxScavengeAmountFactor = 2; | 
| 1246 | #endif | 
| 1247 | #endif | 
| 1248 |  | 
| 1249 | class TCMalloc_PageHeap { | 
| 1250 |  public: | 
| 1251 |   void init(); | 
| 1252 |  | 
| 1253 |   // Allocate a run of "n" pages.  Returns zero if out of memory. | 
| 1254 |   Span* New(Length n); | 
| 1255 |  | 
| 1256 |   // Delete the span "[p, p+n-1]". | 
| 1257 |   // REQUIRES: span was returned by earlier call to New() and | 
| 1258 |   //           has not yet been deleted. | 
| 1259 |   void Delete(Span* span); | 
| 1260 |  | 
| 1261 |   // Mark an allocated span as being used for small objects of the | 
| 1262 |   // specified size-class. | 
| 1263 |   // REQUIRES: span was returned by an earlier call to New() | 
| 1264 |   //           and has not yet been deleted. | 
| 1265 |   void RegisterSizeClass(Span* span, size_t sc); | 
| 1266 |  | 
| 1267 |   // Split an allocated span into two spans: one of length "n" pages | 
| 1268 |   // followed by another span of length "span->length - n" pages. | 
| 1269 |   // Modifies "*span" to point to the first span of length "n" pages. | 
| 1270 |   // Returns a pointer to the second span. | 
| 1271 |   // | 
| 1272 |   // REQUIRES: "0 < n < span->length" | 
| 1273 |   // REQUIRES: !span->free | 
| 1274 |   // REQUIRES: span->sizeclass == 0 | 
| 1275 |   Span* Split(Span* span, Length n); | 
| 1276 |  | 
| 1277 |   // Return the descriptor for the specified page. | 
| 1278 |   inline Span* GetDescriptor(PageID p) const { | 
| 1279 |     return reinterpret_cast<Span*>(pagemap_.get(p)); | 
| 1280 |   } | 
| 1281 |  | 
| 1282 | #ifdef WTF_CHANGES | 
| 1283 |   inline Span* GetDescriptorEnsureSafe(PageID p) | 
| 1284 |   { | 
| 1285 |       pagemap_.Ensure(p, 1); | 
| 1286 |       return GetDescriptor(p); | 
| 1287 |   } | 
| 1288 |      | 
| 1289 |   size_t ReturnedBytes() const; | 
| 1290 | #endif | 
| 1291 |  | 
| 1292 |   // Dump state to stderr | 
| 1293 | #ifndef WTF_CHANGES | 
| 1294 |   void Dump(TCMalloc_Printer* out); | 
| 1295 | #endif | 
| 1296 |  | 
| 1297 |   // Return number of bytes allocated from system | 
| 1298 |   inline uint64_t SystemBytes() const { return system_bytes_; } | 
| 1299 |  | 
| 1300 |   // Return number of free bytes in heap | 
| 1301 |   uint64_t FreeBytes() const { | 
| 1302 |     return (static_cast<uint64_t>(free_pages_) << kPageShift); | 
| 1303 |   } | 
| 1304 |  | 
| 1305 |   bool Check(); | 
| 1306 |   bool CheckList(Span* list, Length min_pages, Length max_pages); | 
| 1307 |  | 
| 1308 |   // Release all pages on the free list for reuse by the OS: | 
| 1309 |   void ReleaseFreePages(); | 
| 1310 |  | 
| 1311 |   // Return 0 if we have no information, or else the correct sizeclass for p. | 
| 1312 |   // Reads and writes to pagemap_cache_ do not require locking. | 
| 1313 |   // The entries are 64 bits on 64-bit hardware and 16 bits on | 
| 1314 |   // 32-bit hardware, and we don't mind raciness as long as each read of | 
| 1315 |   // an entry yields a valid entry, not a partially updated entry. | 
| 1316 |   size_t GetSizeClassIfCached(PageID p) const { | 
| 1317 |     return pagemap_cache_.GetOrDefault(p, 0); | 
| 1318 |   } | 
| 1319 |   void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); } | 
| 1320 |  | 
| 1321 |  private: | 
| 1322 |   // Pick the appropriate map and cache types based on pointer size | 
| 1323 |   typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap; | 
| 1324 |   typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache; | 
| 1325 |   PageMap pagemap_; | 
| 1326 |   mutable PageMapCache pagemap_cache_; | 
| 1327 |  | 
| 1328 |   // We segregate spans of a given size into two circular linked | 
| 1329 |   // lists: one for normal spans, and one for spans whose memory | 
| 1330 |   // has been returned to the system. | 
| 1331 |   struct SpanList { | 
| 1332 |     Span        normal; | 
| 1333 |     Span        returned; | 
| 1334 |   }; | 
| 1335 |  | 
| 1336 |   // List of free spans of length >= kMaxPages | 
| 1337 |   SpanList large_; | 
| 1338 |  | 
| 1339 |   // Array mapping from span length to a doubly linked list of free spans | 
| 1340 |   SpanList free_[kMaxPages]; | 
| 1341 |  | 
| 1342 |   // Number of pages kept in free lists | 
| 1343 |   uintptr_t free_pages_; | 
| 1344 |  | 
| 1345 |   // Bytes allocated from system | 
| 1346 |   uint64_t system_bytes_; | 
| 1347 |  | 
| 1348 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1349 |   // Number of pages kept in free lists that are still committed. | 
| 1350 |   Length free_committed_pages_; | 
| 1351 |  | 
| 1352 |   // Number of pages that we committed in the last scavenge wait interval. | 
| 1353 |   Length pages_committed_since_last_scavenge_; | 
| 1354 | #endif | 
| 1355 |  | 
| 1356 |   bool GrowHeap(Length n); | 
| 1357 |  | 
| 1358 |   // REQUIRES   span->length >= n | 
| 1359 |   // Remove span from its free list, and move any leftover part of | 
| 1360 |   // span into appropriate free lists.  Also update "span" to have | 
| 1361 |   // length exactly "n" and mark it as non-free so it can be returned | 
| 1362 |   // to the client. | 
| 1363 |   // | 
| 1364 |   // "released" is true iff "span" was found on a "returned" list. | 
| 1365 |   void Carve(Span* span, Length n, bool released); | 
| 1366 |  | 
| 1367 |   void RecordSpan(Span* span) { | 
| 1368 |     pagemap_.set(span->start, span); | 
| 1369 |     if (span->length > 1) { | 
| 1370 |       pagemap_.set(span->start + span->length - 1, span); | 
| 1371 |     } | 
| 1372 |   } | 
| 1373 |    | 
| 1374 |     // Allocate a large span of length == n.  If successful, returns a | 
| 1375 |   // span of exactly the specified length.  Else, returns NULL. | 
| 1376 |   Span* AllocLarge(Length n); | 
| 1377 |  | 
| 1378 | #if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1379 |   // Incrementally release some memory to the system. | 
| 1380 |   // IncrementalScavenge(n) is called whenever n pages are freed. | 
| 1381 |   void IncrementalScavenge(Length n); | 
| 1382 | #endif | 
| 1383 |  | 
| 1384 |   // Number of pages to deallocate before doing more scavenging | 
| 1385 |   int64_t scavenge_counter_; | 
| 1386 |  | 
| 1387 |   // Index of last free list we scavenged | 
| 1388 |   size_t scavenge_index_; | 
| 1389 |    | 
| 1390 | #if defined(WTF_CHANGES) && OS(DARWIN) | 
| 1391 |   friend class FastMallocZone; | 
| 1392 | #endif | 
| 1393 |  | 
| 1394 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1395 |   void initializeScavenger(); | 
| 1396 |   ALWAYS_INLINE void signalScavenger(); | 
| 1397 |   void scavenge(); | 
| 1398 |   ALWAYS_INLINE bool shouldContinueScavenging() const; | 
| 1399 |  | 
| 1400 | #if !HAVE(DISPATCH_H) | 
| 1401 |   static NO_RETURN void* runScavengerThread(void*); | 
| 1402 |   NO_RETURN void scavengerThread(); | 
| 1403 |  | 
| 1404 |   // Keeps track of whether the background thread is actively scavenging memory every kScavengeTimerDelayInSeconds, or | 
| 1405 |   // it's blocked waiting for more pages to be deleted. | 
| 1406 |   bool m_scavengeThreadActive; | 
| 1407 |  | 
| 1408 |   pthread_mutex_t m_scavengeMutex; | 
| 1409 |   pthread_cond_t m_scavengeCondition; | 
| 1410 | #else // !HAVE(DISPATCH_H) | 
| 1411 |   void periodicScavenge(); | 
| 1412 |  | 
| 1413 |   dispatch_queue_t m_scavengeQueue; | 
| 1414 |   dispatch_source_t m_scavengeTimer; | 
| 1415 |   bool m_scavengingScheduled; | 
| 1416 | #endif | 
| 1417 |  | 
| 1418 | #endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1419 | }; | 
| 1420 |  | 
| 1421 | void TCMalloc_PageHeap::init() | 
| 1422 | { | 
| 1423 |   pagemap_.init(MetaDataAlloc); | 
| 1424 |   pagemap_cache_ = PageMapCache(0); | 
| 1425 |   free_pages_ = 0; | 
| 1426 |   system_bytes_ = 0; | 
| 1427 |  | 
| 1428 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1429 |   free_committed_pages_ = 0; | 
| 1430 |   pages_committed_since_last_scavenge_ = 0; | 
| 1431 | #endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1432 |  | 
| 1433 |   scavenge_counter_ = 0; | 
| 1434 |   // Start scavenging at kMaxPages list | 
| 1435 |   scavenge_index_ = kMaxPages-1; | 
| 1436 |   COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits); | 
| 1437 |   DLL_Init(&large_.normal); | 
| 1438 |   DLL_Init(&large_.returned); | 
| 1439 |   for (size_t i = 0; i < kMaxPages; i++) { | 
| 1440 |     DLL_Init(&free_[i].normal); | 
| 1441 |     DLL_Init(&free_[i].returned); | 
| 1442 |   } | 
| 1443 |  | 
| 1444 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1445 |   initializeScavenger(); | 
| 1446 | #endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1447 | } | 
| 1448 |  | 
| 1449 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1450 |  | 
| 1451 | #if !HAVE(DISPATCH_H) | 
| 1452 |  | 
| 1453 | void TCMalloc_PageHeap::initializeScavenger() | 
| 1454 | { | 
| 1455 |   pthread_mutex_init(&m_scavengeMutex, 0); | 
| 1456 |   pthread_cond_init(&m_scavengeCondition, 0); | 
| 1457 |   m_scavengeThreadActive = true; | 
| 1458 |   pthread_t thread; | 
| 1459 |   pthread_create(&thread, 0, runScavengerThread, this); | 
| 1460 | } | 
| 1461 |  | 
| 1462 | void* TCMalloc_PageHeap::runScavengerThread(void* context) | 
| 1463 | { | 
| 1464 |   static_cast<TCMalloc_PageHeap*>(context)->scavengerThread(); | 
| 1465 | #if COMPILER(MSVC) || OS(SOLARIS) | 
| 1466 |   // Without this, Visual Studio will complain that this method does not return a value. | 
| 1467 |   return 0; | 
| 1468 | #endif | 
| 1469 | } | 
| 1470 |  | 
| 1471 | ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger() | 
| 1472 | { | 
| 1473 |   if (!m_scavengeThreadActive && shouldContinueScavenging()) | 
| 1474 |     pthread_cond_signal(&m_scavengeCondition); | 
| 1475 | } | 
| 1476 |  | 
| 1477 | #else // !HAVE(DISPATCH_H) | 
| 1478 |  | 
| 1479 | void TCMalloc_PageHeap::initializeScavenger() | 
| 1480 | { | 
| 1481 |   m_scavengeQueue = dispatch_queue_create("com.apple.JavaScriptCore.FastMallocSavenger" , NULL); | 
| 1482 |   m_scavengeTimer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, m_scavengeQueue); | 
| 1483 |   dispatch_time_t startTime = dispatch_time(DISPATCH_TIME_NOW, kScavengeTimerDelayInSeconds * NSEC_PER_SEC); | 
| 1484 |   dispatch_source_set_timer(m_scavengeTimer, startTime, kScavengeTimerDelayInSeconds * NSEC_PER_SEC, 1000 * NSEC_PER_USEC); | 
| 1485 |   dispatch_source_set_event_handler(m_scavengeTimer, ^{ periodicScavenge(); }); | 
| 1486 |   m_scavengingScheduled = false; | 
| 1487 | } | 
| 1488 |  | 
| 1489 | ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger() | 
| 1490 | { | 
| 1491 |   if (!m_scavengingScheduled && shouldContinueScavenging()) { | 
| 1492 |     m_scavengingScheduled = true; | 
| 1493 |     dispatch_resume(m_scavengeTimer); | 
| 1494 |   } | 
| 1495 | } | 
| 1496 |  | 
| 1497 | #endif | 
| 1498 |  | 
| 1499 | void TCMalloc_PageHeap::scavenge()  | 
| 1500 | { | 
| 1501 |     // If we have to commit memory in the last 5 seconds, it means we don't have enough free committed pages | 
| 1502 |     // for the amount of allocations that we do.  So hold off on releasing memory back to the system. | 
| 1503 |     if (pages_committed_since_last_scavenge_ > 0) { | 
| 1504 |         pages_committed_since_last_scavenge_ = 0; | 
| 1505 |         return; | 
| 1506 |     } | 
| 1507 |     Length pagesDecommitted = 0; | 
| 1508 |     for (int i = kMaxPages; i >= 0; i--) { | 
| 1509 |         SpanList* slist = (static_cast<size_t>(i) == kMaxPages) ? &large_ : &free_[i]; | 
| 1510 |         if (!DLL_IsEmpty(&slist->normal)) { | 
| 1511 |             // Release the last span on the normal portion of this list | 
| 1512 |             Span* s = slist->normal.prev;  | 
| 1513 |             // Only decommit up to a fraction of the free committed pages if pages_allocated_since_last_scavenge_ > 0. | 
| 1514 |             if ((pagesDecommitted + s->length) * kMaxScavengeAmountFactor > free_committed_pages_) | 
| 1515 |                 continue; | 
| 1516 |             DLL_Remove(s); | 
| 1517 |             TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift), | 
| 1518 |                                    static_cast<size_t>(s->length << kPageShift)); | 
| 1519 |             if (!s->decommitted) { | 
| 1520 |                 pagesDecommitted += s->length; | 
| 1521 |                 s->decommitted = true; | 
| 1522 |             } | 
| 1523 |             DLL_Prepend(&slist->returned, s); | 
| 1524 |             // We can stop scavenging if the number of free committed pages left is less than or equal to the minimum number we want to keep around. | 
| 1525 |             if (free_committed_pages_ <= kMinimumFreeCommittedPageCount + pagesDecommitted) | 
| 1526 |                 break; | 
| 1527 |         } | 
| 1528 |     } | 
| 1529 |     pages_committed_since_last_scavenge_ = 0; | 
| 1530 |     ASSERT(free_committed_pages_ >= pagesDecommitted); | 
| 1531 |     free_committed_pages_ -= pagesDecommitted; | 
| 1532 | } | 
| 1533 |  | 
| 1534 | ALWAYS_INLINE bool TCMalloc_PageHeap::shouldContinueScavenging() const  | 
| 1535 | { | 
| 1536 |     return free_committed_pages_ > kMinimumFreeCommittedPageCount;  | 
| 1537 | } | 
| 1538 |  | 
| 1539 | #endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1540 |  | 
| 1541 | inline Span* TCMalloc_PageHeap::New(Length n) { | 
| 1542 |   ASSERT(Check()); | 
| 1543 |   ASSERT(n > 0); | 
| 1544 |  | 
| 1545 |   // Find first size >= n that has a non-empty list | 
| 1546 |   for (Length s = n; s < kMaxPages; s++) { | 
| 1547 |     Span* ll = NULL; | 
| 1548 |     bool released = false; | 
| 1549 |     if (!DLL_IsEmpty(&free_[s].normal)) { | 
| 1550 |       // Found normal span | 
| 1551 |       ll = &free_[s].normal; | 
| 1552 |     } else if (!DLL_IsEmpty(&free_[s].returned)) { | 
| 1553 |       // Found returned span; reallocate it | 
| 1554 |       ll = &free_[s].returned; | 
| 1555 |       released = true; | 
| 1556 |     } else { | 
| 1557 |       // Keep looking in larger classes | 
| 1558 |       continue; | 
| 1559 |     } | 
| 1560 |  | 
| 1561 |     Span* result = ll->next; | 
| 1562 |     Carve(result, n, released); | 
| 1563 |     if (result->decommitted) { | 
| 1564 |         TCMalloc_SystemCommit(reinterpret_cast<void*>(result->start << kPageShift), static_cast<size_t>(n << kPageShift)); | 
| 1565 |         result->decommitted = false; | 
| 1566 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1567 |         pages_committed_since_last_scavenge_ += n; | 
| 1568 | #endif | 
| 1569 |     } | 
| 1570 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1571 |     else { | 
| 1572 |         // The newly allocated memory is from a span that's in the normal span list (already committed).  Update the | 
| 1573 |         // free committed pages count. | 
| 1574 |         ASSERT(free_committed_pages_ >= n); | 
| 1575 |         free_committed_pages_ -= n; | 
| 1576 |     } | 
| 1577 | #endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1578 |     ASSERT(Check()); | 
| 1579 |     free_pages_ -= n; | 
| 1580 |     return result; | 
| 1581 |   } | 
| 1582 |  | 
| 1583 |   Span* result = AllocLarge(n); | 
| 1584 |   if (result != NULL) { | 
| 1585 |       ASSERT_SPAN_COMMITTED(result); | 
| 1586 |       return result; | 
| 1587 |   } | 
| 1588 |  | 
| 1589 |   // Grow the heap and try again | 
| 1590 |   if (!GrowHeap(n)) { | 
| 1591 |     ASSERT(Check()); | 
| 1592 |     return NULL; | 
| 1593 |   } | 
| 1594 |  | 
| 1595 |   return AllocLarge(n); | 
| 1596 | } | 
| 1597 |  | 
| 1598 | Span* TCMalloc_PageHeap::AllocLarge(Length n) { | 
| 1599 |   // find the best span (closest to n in size). | 
| 1600 |   // The following loops implements address-ordered best-fit. | 
| 1601 |   bool from_released = false; | 
| 1602 |   Span *best = NULL; | 
| 1603 |  | 
| 1604 |   // Search through normal list | 
| 1605 |   for (Span* span = large_.normal.next; | 
| 1606 |        span != &large_.normal; | 
| 1607 |        span = span->next) { | 
| 1608 |     if (span->length >= n) { | 
| 1609 |       if ((best == NULL) | 
| 1610 |           || (span->length < best->length) | 
| 1611 |           || ((span->length == best->length) && (span->start < best->start))) { | 
| 1612 |         best = span; | 
| 1613 |         from_released = false; | 
| 1614 |       } | 
| 1615 |     } | 
| 1616 |   } | 
| 1617 |  | 
| 1618 |   // Search through released list in case it has a better fit | 
| 1619 |   for (Span* span = large_.returned.next; | 
| 1620 |        span != &large_.returned; | 
| 1621 |        span = span->next) { | 
| 1622 |     if (span->length >= n) { | 
| 1623 |       if ((best == NULL) | 
| 1624 |           || (span->length < best->length) | 
| 1625 |           || ((span->length == best->length) && (span->start < best->start))) { | 
| 1626 |         best = span; | 
| 1627 |         from_released = true; | 
| 1628 |       } | 
| 1629 |     } | 
| 1630 |   } | 
| 1631 |  | 
| 1632 |   if (best != NULL) { | 
| 1633 |     Carve(best, n, from_released); | 
| 1634 |     if (best->decommitted) { | 
| 1635 |         TCMalloc_SystemCommit(reinterpret_cast<void*>(best->start << kPageShift), static_cast<size_t>(n << kPageShift)); | 
| 1636 |         best->decommitted = false; | 
| 1637 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1638 |         pages_committed_since_last_scavenge_ += n; | 
| 1639 | #endif | 
| 1640 |     } | 
| 1641 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1642 |     else { | 
| 1643 |         // The newly allocated memory is from a span that's in the normal span list (already committed).  Update the | 
| 1644 |         // free committed pages count. | 
| 1645 |         ASSERT(free_committed_pages_ >= n); | 
| 1646 |         free_committed_pages_ -= n; | 
| 1647 |     } | 
| 1648 | #endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1649 |     ASSERT(Check()); | 
| 1650 |     free_pages_ -= n; | 
| 1651 |     return best; | 
| 1652 |   } | 
| 1653 |   return NULL; | 
| 1654 | } | 
| 1655 |  | 
| 1656 | Span* TCMalloc_PageHeap::Split(Span* span, Length n) { | 
| 1657 |   ASSERT(0 < n); | 
| 1658 |   ASSERT(n < span->length); | 
| 1659 |   ASSERT(!span->free); | 
| 1660 |   ASSERT(span->sizeclass == 0); | 
| 1661 |   Event(span, 'T', n); | 
| 1662 |  | 
| 1663 |   const Length extra = span->length - n; | 
| 1664 |   Span* leftover = NewSpan(span->start + n, extra); | 
| 1665 |   Event(leftover, 'U', extra); | 
| 1666 |   RecordSpan(leftover); | 
| 1667 |   pagemap_.set(span->start + n - 1, span); // Update map from pageid to span | 
| 1668 |   span->length = n; | 
| 1669 |  | 
| 1670 |   return leftover; | 
| 1671 | } | 
| 1672 |  | 
| 1673 | static ALWAYS_INLINE void propagateDecommittedState(Span* destination, Span* source) | 
| 1674 | { | 
| 1675 |     destination->decommitted = source->decommitted; | 
| 1676 | } | 
| 1677 |  | 
| 1678 | inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) { | 
| 1679 |   ASSERT(n > 0); | 
| 1680 |   DLL_Remove(span); | 
| 1681 |   span->free = 0; | 
| 1682 |   Event(span, 'A', n); | 
| 1683 |  | 
| 1684 |   const int extra = static_cast<int>(span->length - n); | 
| 1685 |   ASSERT(extra >= 0); | 
| 1686 |   if (extra > 0) { | 
| 1687 |     Span* leftover = NewSpan(span->start + n, extra); | 
| 1688 |     leftover->free = 1; | 
| 1689 |     propagateDecommittedState(leftover, span); | 
| 1690 |     Event(leftover, 'S', extra); | 
| 1691 |     RecordSpan(leftover); | 
| 1692 |  | 
| 1693 |     // Place leftover span on appropriate free list | 
| 1694 |     SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_; | 
| 1695 |     Span* dst = released ? &listpair->returned : &listpair->normal; | 
| 1696 |     DLL_Prepend(dst, leftover); | 
| 1697 |  | 
| 1698 |     span->length = n; | 
| 1699 |     pagemap_.set(span->start + n - 1, span); | 
| 1700 |   } | 
| 1701 | } | 
| 1702 |  | 
| 1703 | static ALWAYS_INLINE void mergeDecommittedStates(Span* destination, Span* other) | 
| 1704 | { | 
| 1705 |     if (destination->decommitted && !other->decommitted) { | 
| 1706 |         TCMalloc_SystemRelease(reinterpret_cast<void*>(other->start << kPageShift), | 
| 1707 |                                static_cast<size_t>(other->length << kPageShift)); | 
| 1708 |     } else if (other->decommitted && !destination->decommitted) { | 
| 1709 |         TCMalloc_SystemRelease(reinterpret_cast<void*>(destination->start << kPageShift), | 
| 1710 |                                static_cast<size_t>(destination->length << kPageShift)); | 
| 1711 |         destination->decommitted = true; | 
| 1712 |     } | 
| 1713 | } | 
| 1714 |  | 
| 1715 | inline void TCMalloc_PageHeap::Delete(Span* span) { | 
| 1716 |   ASSERT(Check()); | 
| 1717 |   ASSERT(!span->free); | 
| 1718 |   ASSERT(span->length > 0); | 
| 1719 |   ASSERT(GetDescriptor(span->start) == span); | 
| 1720 |   ASSERT(GetDescriptor(span->start + span->length - 1) == span); | 
| 1721 |   span->sizeclass = 0; | 
| 1722 | #ifndef NO_TCMALLOC_SAMPLES | 
| 1723 |   span->sample = 0; | 
| 1724 | #endif | 
| 1725 |  | 
| 1726 |   // Coalesce -- we guarantee that "p" != 0, so no bounds checking | 
| 1727 |   // necessary.  We do not bother resetting the stale pagemap | 
| 1728 |   // entries for the pieces we are merging together because we only | 
| 1729 |   // care about the pagemap entries for the boundaries. | 
| 1730 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1731 |   // Track the total size of the neighboring free spans that are committed. | 
| 1732 |   Length neighboringCommittedSpansLength = 0; | 
| 1733 | #endif | 
| 1734 |   const PageID p = span->start; | 
| 1735 |   const Length n = span->length; | 
| 1736 |   Span* prev = GetDescriptor(p-1); | 
| 1737 |   if (prev != NULL && prev->free) { | 
| 1738 |     // Merge preceding span into this span | 
| 1739 |     ASSERT(prev->start + prev->length == p); | 
| 1740 |     const Length len = prev->length; | 
| 1741 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1742 |     if (!prev->decommitted) | 
| 1743 |         neighboringCommittedSpansLength += len; | 
| 1744 | #endif | 
| 1745 |     mergeDecommittedStates(span, prev); | 
| 1746 |     DLL_Remove(prev); | 
| 1747 |     DeleteSpan(prev); | 
| 1748 |     span->start -= len; | 
| 1749 |     span->length += len; | 
| 1750 |     pagemap_.set(span->start, span); | 
| 1751 |     Event(span, 'L', len); | 
| 1752 |   } | 
| 1753 |   Span* next = GetDescriptor(p+n); | 
| 1754 |   if (next != NULL && next->free) { | 
| 1755 |     // Merge next span into this span | 
| 1756 |     ASSERT(next->start == p+n); | 
| 1757 |     const Length len = next->length; | 
| 1758 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1759 |     if (!next->decommitted) | 
| 1760 |         neighboringCommittedSpansLength += len; | 
| 1761 | #endif | 
| 1762 |     mergeDecommittedStates(span, next); | 
| 1763 |     DLL_Remove(next); | 
| 1764 |     DeleteSpan(next); | 
| 1765 |     span->length += len; | 
| 1766 |     pagemap_.set(span->start + span->length - 1, span); | 
| 1767 |     Event(span, 'R', len); | 
| 1768 |   } | 
| 1769 |  | 
| 1770 |   Event(span, 'D', span->length); | 
| 1771 |   span->free = 1; | 
| 1772 |   if (span->decommitted) { | 
| 1773 |     if (span->length < kMaxPages) | 
| 1774 |       DLL_Prepend(&free_[span->length].returned, span); | 
| 1775 |     else | 
| 1776 |       DLL_Prepend(&large_.returned, span); | 
| 1777 |   } else { | 
| 1778 |     if (span->length < kMaxPages) | 
| 1779 |       DLL_Prepend(&free_[span->length].normal, span); | 
| 1780 |     else | 
| 1781 |       DLL_Prepend(&large_.normal, span); | 
| 1782 |   } | 
| 1783 |   free_pages_ += n; | 
| 1784 |  | 
| 1785 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1786 |   if (span->decommitted) { | 
| 1787 |       // If the merged span is decommitted, that means we decommitted any neighboring spans that were | 
| 1788 |       // committed.  Update the free committed pages count. | 
| 1789 |       free_committed_pages_ -= neighboringCommittedSpansLength; | 
| 1790 |   } else { | 
| 1791 |       // If the merged span remains committed, add the deleted span's size to the free committed pages count. | 
| 1792 |       free_committed_pages_ += n; | 
| 1793 |   } | 
| 1794 |  | 
| 1795 |   // Make sure the scavenge thread becomes active if we have enough freed pages to release some back to the system. | 
| 1796 |   signalScavenger(); | 
| 1797 | #else | 
| 1798 |   IncrementalScavenge(n); | 
| 1799 | #endif | 
| 1800 |  | 
| 1801 |   ASSERT(Check()); | 
| 1802 | } | 
| 1803 |  | 
| 1804 | #if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1805 | void TCMalloc_PageHeap::IncrementalScavenge(Length n) { | 
| 1806 |   // Fast path; not yet time to release memory | 
| 1807 |   scavenge_counter_ -= n; | 
| 1808 |   if (scavenge_counter_ >= 0) return;  // Not yet time to scavenge | 
| 1809 |  | 
| 1810 |   // If there is nothing to release, wait for so many pages before | 
| 1811 |   // scavenging again.  With 4K pages, this comes to 16MB of memory. | 
| 1812 |   static const size_t kDefaultReleaseDelay = 1 << 8; | 
| 1813 |  | 
| 1814 |   // Find index of free list to scavenge | 
| 1815 |   size_t index = scavenge_index_ + 1; | 
| 1816 |   for (size_t i = 0; i < kMaxPages+1; i++) { | 
| 1817 |     if (index > kMaxPages) index = 0; | 
| 1818 |     SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index]; | 
| 1819 |     if (!DLL_IsEmpty(&slist->normal)) { | 
| 1820 |       // Release the last span on the normal portion of this list | 
| 1821 |       Span* s = slist->normal.prev; | 
| 1822 |       DLL_Remove(s); | 
| 1823 |       TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift), | 
| 1824 |                              static_cast<size_t>(s->length << kPageShift)); | 
| 1825 |       s->decommitted = true; | 
| 1826 |       DLL_Prepend(&slist->returned, s); | 
| 1827 |  | 
| 1828 |       scavenge_counter_ = std::max<size_t>(64UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay))); | 
| 1829 |  | 
| 1830 |       if (index == kMaxPages && !DLL_IsEmpty(&slist->normal)) | 
| 1831 |         scavenge_index_ = index - 1; | 
| 1832 |       else | 
| 1833 |         scavenge_index_ = index; | 
| 1834 |       return; | 
| 1835 |     } | 
| 1836 |     index++; | 
| 1837 |   } | 
| 1838 |  | 
| 1839 |   // Nothing to scavenge, delay for a while | 
| 1840 |   scavenge_counter_ = kDefaultReleaseDelay; | 
| 1841 | } | 
| 1842 | #endif | 
| 1843 |  | 
| 1844 | void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) { | 
| 1845 |   // Associate span object with all interior pages as well | 
| 1846 |   ASSERT(!span->free); | 
| 1847 |   ASSERT(GetDescriptor(span->start) == span); | 
| 1848 |   ASSERT(GetDescriptor(span->start+span->length-1) == span); | 
| 1849 |   Event(span, 'C', sc); | 
| 1850 |   span->sizeclass = static_cast<unsigned int>(sc); | 
| 1851 |   for (Length i = 1; i < span->length-1; i++) { | 
| 1852 |     pagemap_.set(span->start+i, span); | 
| 1853 |   } | 
| 1854 | } | 
| 1855 |      | 
| 1856 | #ifdef WTF_CHANGES | 
| 1857 | size_t TCMalloc_PageHeap::ReturnedBytes() const { | 
| 1858 |     size_t result = 0; | 
| 1859 |     for (unsigned s = 0; s < kMaxPages; s++) { | 
| 1860 |         const int r_length = DLL_Length(&free_[s].returned); | 
| 1861 |         unsigned r_pages = s * r_length; | 
| 1862 |         result += r_pages << kPageShift; | 
| 1863 |     } | 
| 1864 |      | 
| 1865 |     for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) | 
| 1866 |         result += s->length << kPageShift; | 
| 1867 |     return result; | 
| 1868 | } | 
| 1869 | #endif | 
| 1870 |  | 
| 1871 | #ifndef WTF_CHANGES | 
| 1872 | static double PagesToMB(uint64_t pages) { | 
| 1873 |   return (pages << kPageShift) / 1048576.0; | 
| 1874 | } | 
| 1875 |  | 
| 1876 | void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) { | 
| 1877 |   int nonempty_sizes = 0; | 
| 1878 |   for (int s = 0; s < kMaxPages; s++) { | 
| 1879 |     if (!DLL_IsEmpty(&free_[s].normal) || !DLL_IsEmpty(&free_[s].returned)) { | 
| 1880 |       nonempty_sizes++; | 
| 1881 |     } | 
| 1882 |   } | 
| 1883 |   out->printf("------------------------------------------------\n" ); | 
| 1884 |   out->printf("PageHeap: %d sizes; %6.1f MB free\n" , | 
| 1885 |               nonempty_sizes, PagesToMB(free_pages_)); | 
| 1886 |   out->printf("------------------------------------------------\n" ); | 
| 1887 |   uint64_t total_normal = 0; | 
| 1888 |   uint64_t total_returned = 0; | 
| 1889 |   for (int s = 0; s < kMaxPages; s++) { | 
| 1890 |     const int n_length = DLL_Length(&free_[s].normal); | 
| 1891 |     const int r_length = DLL_Length(&free_[s].returned); | 
| 1892 |     if (n_length + r_length > 0) { | 
| 1893 |       uint64_t n_pages = s * n_length; | 
| 1894 |       uint64_t r_pages = s * r_length; | 
| 1895 |       total_normal += n_pages; | 
| 1896 |       total_returned += r_pages; | 
| 1897 |       out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum"  | 
| 1898 |                   "; unmapped: %6.1f MB; %6.1f MB cum\n" , | 
| 1899 |                   s, | 
| 1900 |                   (n_length + r_length), | 
| 1901 |                   PagesToMB(n_pages + r_pages), | 
| 1902 |                   PagesToMB(total_normal + total_returned), | 
| 1903 |                   PagesToMB(r_pages), | 
| 1904 |                   PagesToMB(total_returned)); | 
| 1905 |     } | 
| 1906 |   } | 
| 1907 |  | 
| 1908 |   uint64_t n_pages = 0; | 
| 1909 |   uint64_t r_pages = 0; | 
| 1910 |   int n_spans = 0; | 
| 1911 |   int r_spans = 0; | 
| 1912 |   out->printf("Normal large spans:\n" ); | 
| 1913 |   for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) { | 
| 1914 |     out->printf("   [ %6"  PRIuS " pages ] %6.1f MB\n" , | 
| 1915 |                 s->length, PagesToMB(s->length)); | 
| 1916 |     n_pages += s->length; | 
| 1917 |     n_spans++; | 
| 1918 |   } | 
| 1919 |   out->printf("Unmapped large spans:\n" ); | 
| 1920 |   for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) { | 
| 1921 |     out->printf("   [ %6"  PRIuS " pages ] %6.1f MB\n" , | 
| 1922 |                 s->length, PagesToMB(s->length)); | 
| 1923 |     r_pages += s->length; | 
| 1924 |     r_spans++; | 
| 1925 |   } | 
| 1926 |   total_normal += n_pages; | 
| 1927 |   total_returned += r_pages; | 
| 1928 |   out->printf(">255   large * %6u spans ~ %6.1f MB; %6.1f MB cum"  | 
| 1929 |               "; unmapped: %6.1f MB; %6.1f MB cum\n" , | 
| 1930 |               (n_spans + r_spans), | 
| 1931 |               PagesToMB(n_pages + r_pages), | 
| 1932 |               PagesToMB(total_normal + total_returned), | 
| 1933 |               PagesToMB(r_pages), | 
| 1934 |               PagesToMB(total_returned)); | 
| 1935 | } | 
| 1936 | #endif | 
| 1937 |  | 
| 1938 | bool TCMalloc_PageHeap::GrowHeap(Length n) { | 
| 1939 |   ASSERT(kMaxPages >= kMinSystemAlloc); | 
| 1940 |   if (n > kMaxValidPages) return false; | 
| 1941 |   Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc); | 
| 1942 |   size_t actual_size; | 
| 1943 |   void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize); | 
| 1944 |   if (ptr == NULL) { | 
| 1945 |     if (n < ask) { | 
| 1946 |       // Try growing just "n" pages | 
| 1947 |       ask = n; | 
| 1948 |       ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize); | 
| 1949 |     } | 
| 1950 |     if (ptr == NULL) return false; | 
| 1951 |   } | 
| 1952 |   ask = actual_size >> kPageShift; | 
| 1953 |  | 
| 1954 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 1955 |   pages_committed_since_last_scavenge_ += ask; | 
| 1956 | #endif | 
| 1957 |  | 
| 1958 |   uint64_t old_system_bytes = system_bytes_; | 
| 1959 |   system_bytes_ += (ask << kPageShift); | 
| 1960 |   const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; | 
| 1961 |   ASSERT(p > 0); | 
| 1962 |  | 
| 1963 |   // If we have already a lot of pages allocated, just pre allocate a bunch of | 
| 1964 |   // memory for the page map. This prevents fragmentation by pagemap metadata | 
| 1965 |   // when a program keeps allocating and freeing large blocks. | 
| 1966 |  | 
| 1967 |   if (old_system_bytes < kPageMapBigAllocationThreshold | 
| 1968 |       && system_bytes_ >= kPageMapBigAllocationThreshold) { | 
| 1969 |     pagemap_.PreallocateMoreMemory(); | 
| 1970 |   } | 
| 1971 |  | 
| 1972 |   // Make sure pagemap_ has entries for all of the new pages. | 
| 1973 |   // Plus ensure one before and one after so coalescing code | 
| 1974 |   // does not need bounds-checking. | 
| 1975 |   if (pagemap_.Ensure(p-1, ask+2)) { | 
| 1976 |     // Pretend the new area is allocated and then Delete() it to | 
| 1977 |     // cause any necessary coalescing to occur. | 
| 1978 |     // | 
| 1979 |     // We do not adjust free_pages_ here since Delete() will do it for us. | 
| 1980 |     Span* span = NewSpan(p, ask); | 
| 1981 |     RecordSpan(span); | 
| 1982 |     Delete(span); | 
| 1983 |     ASSERT(Check()); | 
| 1984 |     return true; | 
| 1985 |   } else { | 
| 1986 |     // We could not allocate memory within "pagemap_" | 
| 1987 |     // TODO: Once we can return memory to the system, return the new span | 
| 1988 |     return false; | 
| 1989 |   } | 
| 1990 | } | 
| 1991 |  | 
| 1992 | bool TCMalloc_PageHeap::Check() { | 
| 1993 |   ASSERT(free_[0].normal.next == &free_[0].normal); | 
| 1994 |   ASSERT(free_[0].returned.next == &free_[0].returned); | 
| 1995 |   CheckList(&large_.normal, kMaxPages, 1000000000); | 
| 1996 |   CheckList(&large_.returned, kMaxPages, 1000000000); | 
| 1997 |   for (Length s = 1; s < kMaxPages; s++) { | 
| 1998 |     CheckList(&free_[s].normal, s, s); | 
| 1999 |     CheckList(&free_[s].returned, s, s); | 
| 2000 |   } | 
| 2001 |   return true; | 
| 2002 | } | 
| 2003 |  | 
| 2004 | #if ASSERT_DISABLED | 
| 2005 | bool TCMalloc_PageHeap::CheckList(Span*, Length, Length) { | 
| 2006 |   return true; | 
| 2007 | } | 
| 2008 | #else | 
| 2009 | bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages) { | 
| 2010 |   for (Span* s = list->next; s != list; s = s->next) { | 
| 2011 |     CHECK_CONDITION(s->free); | 
| 2012 |     CHECK_CONDITION(s->length >= min_pages); | 
| 2013 |     CHECK_CONDITION(s->length <= max_pages); | 
| 2014 |     CHECK_CONDITION(GetDescriptor(s->start) == s); | 
| 2015 |     CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s); | 
| 2016 |   } | 
| 2017 |   return true; | 
| 2018 | } | 
| 2019 | #endif | 
| 2020 |  | 
| 2021 | static void ReleaseFreeList(Span* list, Span* returned) { | 
| 2022 |   // Walk backwards through list so that when we push these | 
| 2023 |   // spans on the "returned" list, we preserve the order. | 
| 2024 |   while (!DLL_IsEmpty(list)) { | 
| 2025 |     Span* s = list->prev; | 
| 2026 |     DLL_Remove(s); | 
| 2027 |     DLL_Prepend(returned, s); | 
| 2028 |     TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift), | 
| 2029 |                            static_cast<size_t>(s->length << kPageShift)); | 
| 2030 |   } | 
| 2031 | } | 
| 2032 |  | 
| 2033 | void TCMalloc_PageHeap::ReleaseFreePages() { | 
| 2034 |   for (Length s = 0; s < kMaxPages; s++) { | 
| 2035 |     ReleaseFreeList(&free_[s].normal, &free_[s].returned); | 
| 2036 |   } | 
| 2037 |   ReleaseFreeList(&large_.normal, &large_.returned); | 
| 2038 |   ASSERT(Check()); | 
| 2039 | } | 
| 2040 |  | 
| 2041 | //------------------------------------------------------------------- | 
| 2042 | // Free list | 
| 2043 | //------------------------------------------------------------------- | 
| 2044 |  | 
| 2045 | class TCMalloc_ThreadCache_FreeList { | 
| 2046 |  private: | 
| 2047 |   void*    list_;       // Linked list of nodes | 
| 2048 |   uint16_t length_;     // Current length | 
| 2049 |   uint16_t lowater_;    // Low water mark for list length | 
| 2050 |  | 
| 2051 |  public: | 
| 2052 |   void Init() { | 
| 2053 |     list_ = NULL; | 
| 2054 |     length_ = 0; | 
| 2055 |     lowater_ = 0; | 
| 2056 |   } | 
| 2057 |  | 
| 2058 |   // Return current length of list | 
| 2059 |   int length() const { | 
| 2060 |     return length_; | 
| 2061 |   } | 
| 2062 |  | 
| 2063 |   // Is list empty? | 
| 2064 |   bool empty() const { | 
| 2065 |     return list_ == NULL; | 
| 2066 |   } | 
| 2067 |  | 
| 2068 |   // Low-water mark management | 
| 2069 |   int lowwatermark() const { return lowater_; } | 
| 2070 |   void clear_lowwatermark() { lowater_ = length_; } | 
| 2071 |  | 
| 2072 |   ALWAYS_INLINE void Push(void* ptr) { | 
| 2073 |     SLL_Push(&list_, ptr); | 
| 2074 |     length_++; | 
| 2075 |   } | 
| 2076 |  | 
| 2077 |   void PushRange(int N, void *start, void *end) { | 
| 2078 |     SLL_PushRange(&list_, start, end); | 
| 2079 |     length_ = length_ + static_cast<uint16_t>(N); | 
| 2080 |   } | 
| 2081 |  | 
| 2082 |   void PopRange(int N, void **start, void **end) { | 
| 2083 |     SLL_PopRange(&list_, N, start, end); | 
| 2084 |     ASSERT(length_ >= N); | 
| 2085 |     length_ = length_ - static_cast<uint16_t>(N); | 
| 2086 |     if (length_ < lowater_) lowater_ = length_; | 
| 2087 |   } | 
| 2088 |  | 
| 2089 |   ALWAYS_INLINE void* Pop() { | 
| 2090 |     ASSERT(list_ != NULL); | 
| 2091 |     length_--; | 
| 2092 |     if (length_ < lowater_) lowater_ = length_; | 
| 2093 |     return SLL_Pop(&list_); | 
| 2094 |   } | 
| 2095 |  | 
| 2096 | #ifdef WTF_CHANGES | 
| 2097 |   template <class Finder, class Reader> | 
| 2098 |   void enumerateFreeObjects(Finder& finder, const Reader& reader) | 
| 2099 |   { | 
| 2100 |       for (void* nextObject = list_; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject))) | 
| 2101 |           finder.visit(nextObject); | 
| 2102 |   } | 
| 2103 | #endif | 
| 2104 | }; | 
| 2105 |  | 
| 2106 | //------------------------------------------------------------------- | 
| 2107 | // Data kept per thread | 
| 2108 | //------------------------------------------------------------------- | 
| 2109 |  | 
| 2110 | class TCMalloc_ThreadCache { | 
| 2111 |  private: | 
| 2112 |   typedef TCMalloc_ThreadCache_FreeList FreeList; | 
| 2113 | #if COMPILER(MSVC) | 
| 2114 |   typedef DWORD ThreadIdentifier; | 
| 2115 | #else | 
| 2116 |   typedef pthread_t ThreadIdentifier; | 
| 2117 | #endif | 
| 2118 |  | 
| 2119 |   size_t        size_;                  // Combined size of data | 
| 2120 |   ThreadIdentifier tid_;                // Which thread owns it | 
| 2121 |   bool          in_setspecific_;           // Called pthread_setspecific? | 
| 2122 |   FreeList      list_[kNumClasses];     // Array indexed by size-class | 
| 2123 |  | 
| 2124 |   // We sample allocations, biased by the size of the allocation | 
| 2125 |   uint32_t      rnd_;                   // Cheap random number generator | 
| 2126 |   size_t        bytes_until_sample_;    // Bytes until we sample next | 
| 2127 |  | 
| 2128 |   // Allocate a new heap. REQUIRES: pageheap_lock is held. | 
| 2129 |   static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid); | 
| 2130 |  | 
| 2131 |   // Use only as pthread thread-specific destructor function. | 
| 2132 |   static void DestroyThreadCache(void* ptr); | 
| 2133 |  public: | 
| 2134 |   // All ThreadCache objects are kept in a linked list (for stats collection) | 
| 2135 |   TCMalloc_ThreadCache* next_; | 
| 2136 |   TCMalloc_ThreadCache* prev_; | 
| 2137 |  | 
| 2138 |   void Init(ThreadIdentifier tid); | 
| 2139 |   void Cleanup(); | 
| 2140 |  | 
| 2141 |   // Accessors (mostly just for printing stats) | 
| 2142 |   int freelist_length(size_t cl) const { return list_[cl].length(); } | 
| 2143 |  | 
| 2144 |   // Total byte size in cache | 
| 2145 |   size_t Size() const { return size_; } | 
| 2146 |  | 
| 2147 |   void* Allocate(size_t size); | 
| 2148 |   void Deallocate(void* ptr, size_t size_class); | 
| 2149 |  | 
| 2150 |   void FetchFromCentralCache(size_t cl, size_t allocationSize); | 
| 2151 |   void ReleaseToCentralCache(size_t cl, int N); | 
| 2152 |   void Scavenge(); | 
| 2153 |   void Print() const; | 
| 2154 |  | 
| 2155 |   // Record allocation of "k" bytes.  Return true iff allocation | 
| 2156 |   // should be sampled | 
| 2157 |   bool SampleAllocation(size_t k); | 
| 2158 |  | 
| 2159 |   // Pick next sampling point | 
| 2160 |   void PickNextSample(size_t k); | 
| 2161 |  | 
| 2162 |   static void                  InitModule(); | 
| 2163 |   static void                  InitTSD(); | 
| 2164 |   static TCMalloc_ThreadCache* GetThreadHeap(); | 
| 2165 |   static TCMalloc_ThreadCache* GetCache(); | 
| 2166 |   static TCMalloc_ThreadCache* GetCacheIfPresent(); | 
| 2167 |   static TCMalloc_ThreadCache* CreateCacheIfNecessary(); | 
| 2168 |   static void                  DeleteCache(TCMalloc_ThreadCache* heap); | 
| 2169 |   static void                  BecomeIdle(); | 
| 2170 |   static void                  RecomputeThreadCacheSize(); | 
| 2171 |  | 
| 2172 | #ifdef WTF_CHANGES | 
| 2173 |   template <class Finder, class Reader> | 
| 2174 |   void enumerateFreeObjects(Finder& finder, const Reader& reader) | 
| 2175 |   { | 
| 2176 |       for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++) | 
| 2177 |           list_[sizeClass].enumerateFreeObjects(finder, reader); | 
| 2178 |   } | 
| 2179 | #endif | 
| 2180 | }; | 
| 2181 |  | 
| 2182 | //------------------------------------------------------------------- | 
| 2183 | // Data kept per size-class in central cache | 
| 2184 | //------------------------------------------------------------------- | 
| 2185 |  | 
| 2186 | class TCMalloc_Central_FreeList { | 
| 2187 |  public: | 
| 2188 |   void Init(size_t cl); | 
| 2189 |  | 
| 2190 |   // These methods all do internal locking. | 
| 2191 |  | 
| 2192 |   // Insert the specified range into the central freelist.  N is the number of | 
| 2193 |   // elements in the range. | 
| 2194 |   void InsertRange(void *start, void *end, int N); | 
| 2195 |  | 
| 2196 |   // Returns the actual number of fetched elements into N. | 
| 2197 |   void RemoveRange(void **start, void **end, int *N); | 
| 2198 |  | 
| 2199 |   // Returns the number of free objects in cache. | 
| 2200 |   size_t length() { | 
| 2201 |     SpinLockHolder h(&lock_); | 
| 2202 |     return counter_; | 
| 2203 |   } | 
| 2204 |  | 
| 2205 |   // Returns the number of free objects in the transfer cache. | 
| 2206 |   int tc_length() { | 
| 2207 |     SpinLockHolder h(&lock_); | 
| 2208 |     return used_slots_ * num_objects_to_move[size_class_]; | 
| 2209 |   } | 
| 2210 |  | 
| 2211 | #ifdef WTF_CHANGES | 
| 2212 |   template <class Finder, class Reader> | 
| 2213 |   void enumerateFreeObjects(Finder& finder, const Reader& reader, TCMalloc_Central_FreeList* remoteCentralFreeList) | 
| 2214 |   { | 
| 2215 |     for (Span* span = &empty_; span && span != &empty_; span = (span->next ? reader(span->next) : 0)) | 
| 2216 |       ASSERT(!span->objects); | 
| 2217 |  | 
| 2218 |     ASSERT(!nonempty_.objects); | 
| 2219 |     static const ptrdiff_t nonemptyOffset = reinterpret_cast<const char*>(&nonempty_) - reinterpret_cast<const char*>(this); | 
| 2220 |  | 
| 2221 |     Span* remoteNonempty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + nonemptyOffset); | 
| 2222 |     Span* remoteSpan = nonempty_.next; | 
| 2223 |  | 
| 2224 |     for (Span* span = reader(remoteSpan); span && remoteSpan != remoteNonempty; remoteSpan = span->next, span = (span->next ? reader(span->next) : 0)) { | 
| 2225 |       for (void* nextObject = span->objects; nextObject; nextObject = *reader(reinterpret_cast<void**>(nextObject))) | 
| 2226 |         finder.visit(nextObject); | 
| 2227 |     } | 
| 2228 |   } | 
| 2229 | #endif | 
| 2230 |  | 
| 2231 |  private: | 
| 2232 |   // REQUIRES: lock_ is held | 
| 2233 |   // Remove object from cache and return. | 
| 2234 |   // Return NULL if no free entries in cache. | 
| 2235 |   void* FetchFromSpans(); | 
| 2236 |  | 
| 2237 |   // REQUIRES: lock_ is held | 
| 2238 |   // Remove object from cache and return.  Fetches | 
| 2239 |   // from pageheap if cache is empty.  Only returns | 
| 2240 |   // NULL on allocation failure. | 
| 2241 |   void* FetchFromSpansSafe(); | 
| 2242 |  | 
| 2243 |   // REQUIRES: lock_ is held | 
| 2244 |   // Release a linked list of objects to spans. | 
| 2245 |   // May temporarily release lock_. | 
| 2246 |   void ReleaseListToSpans(void *start); | 
| 2247 |  | 
| 2248 |   // REQUIRES: lock_ is held | 
| 2249 |   // Release an object to spans. | 
| 2250 |   // May temporarily release lock_. | 
| 2251 |   void ReleaseToSpans(void* object); | 
| 2252 |  | 
| 2253 |   // REQUIRES: lock_ is held | 
| 2254 |   // Populate cache by fetching from the page heap. | 
| 2255 |   // May temporarily release lock_. | 
| 2256 |   void Populate(); | 
| 2257 |  | 
| 2258 |   // REQUIRES: lock is held. | 
| 2259 |   // Tries to make room for a TCEntry.  If the cache is full it will try to | 
| 2260 |   // expand it at the cost of some other cache size.  Return false if there is | 
| 2261 |   // no space. | 
| 2262 |   bool MakeCacheSpace(); | 
| 2263 |  | 
| 2264 |   // REQUIRES: lock_ for locked_size_class is held. | 
| 2265 |   // Picks a "random" size class to steal TCEntry slot from.  In reality it | 
| 2266 |   // just iterates over the sizeclasses but does so without taking a lock. | 
| 2267 |   // Returns true on success. | 
| 2268 |   // May temporarily lock a "random" size class. | 
| 2269 |   static bool EvictRandomSizeClass(size_t locked_size_class, bool force); | 
| 2270 |  | 
| 2271 |   // REQUIRES: lock_ is *not* held. | 
| 2272 |   // Tries to shrink the Cache.  If force is true it will relase objects to | 
| 2273 |   // spans if it allows it to shrink the cache.  Return false if it failed to | 
| 2274 |   // shrink the cache.  Decrements cache_size_ on succeess. | 
| 2275 |   // May temporarily take lock_.  If it takes lock_, the locked_size_class | 
| 2276 |   // lock is released to the thread from holding two size class locks | 
| 2277 |   // concurrently which could lead to a deadlock. | 
| 2278 |   bool ShrinkCache(int locked_size_class, bool force); | 
| 2279 |  | 
| 2280 |   // This lock protects all the data members.  cached_entries and cache_size_ | 
| 2281 |   // may be looked at without holding the lock. | 
| 2282 |   SpinLock lock_; | 
| 2283 |  | 
| 2284 |   // We keep linked lists of empty and non-empty spans. | 
| 2285 |   size_t   size_class_;     // My size class | 
| 2286 |   Span     empty_;          // Dummy header for list of empty spans | 
| 2287 |   Span     nonempty_;       // Dummy header for list of non-empty spans | 
| 2288 |   size_t   counter_;        // Number of free objects in cache entry | 
| 2289 |  | 
| 2290 |   // Here we reserve space for TCEntry cache slots.  Since one size class can | 
| 2291 |   // end up getting all the TCEntries quota in the system we just preallocate | 
| 2292 |   // sufficient number of entries here. | 
| 2293 |   TCEntry tc_slots_[kNumTransferEntries]; | 
| 2294 |  | 
| 2295 |   // Number of currently used cached entries in tc_slots_.  This variable is | 
| 2296 |   // updated under a lock but can be read without one. | 
| 2297 |   int32_t used_slots_; | 
| 2298 |   // The current number of slots for this size class.  This is an | 
| 2299 |   // adaptive value that is increased if there is lots of traffic | 
| 2300 |   // on a given size class. | 
| 2301 |   int32_t cache_size_; | 
| 2302 | }; | 
| 2303 |  | 
| 2304 | // Pad each CentralCache object to multiple of 64 bytes | 
| 2305 | class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList { | 
| 2306 |  private: | 
| 2307 |   char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64]; | 
| 2308 | }; | 
| 2309 |  | 
| 2310 | //------------------------------------------------------------------- | 
| 2311 | // Global variables | 
| 2312 | //------------------------------------------------------------------- | 
| 2313 |  | 
| 2314 | // Central cache -- a collection of free-lists, one per size-class. | 
| 2315 | // We have a separate lock per free-list to reduce contention. | 
| 2316 | static TCMalloc_Central_FreeListPadded central_cache[kNumClasses]; | 
| 2317 |  | 
| 2318 | // Page-level allocator | 
| 2319 | static SpinLock pageheap_lock = SPINLOCK_INITIALIZER; | 
| 2320 | static void* pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(void*) - 1) / sizeof(void*)]; | 
| 2321 | static bool phinited = false; | 
| 2322 |  | 
| 2323 | // Avoid extra level of indirection by making "pageheap" be just an alias | 
| 2324 | // of pageheap_memory. | 
| 2325 | typedef union { | 
| 2326 |     void* m_memory; | 
| 2327 |     TCMalloc_PageHeap* m_pageHeap; | 
| 2328 | } PageHeapUnion; | 
| 2329 |  | 
| 2330 | static inline TCMalloc_PageHeap* getPageHeap() | 
| 2331 | { | 
| 2332 |     PageHeapUnion u = { &pageheap_memory[0] }; | 
| 2333 |     return u.m_pageHeap; | 
| 2334 | } | 
| 2335 |  | 
| 2336 | #define pageheap getPageHeap() | 
| 2337 |  | 
| 2338 | #if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY | 
| 2339 |  | 
| 2340 | #if !HAVE(DISPATCH_H) | 
| 2341 | #if OS(WINDOWS) | 
| 2342 | static void sleep(unsigned seconds) | 
| 2343 | { | 
| 2344 |     ::Sleep(seconds * 1000); | 
| 2345 | } | 
| 2346 | #endif | 
| 2347 |  | 
| 2348 | void TCMalloc_PageHeap::scavengerThread() | 
| 2349 | { | 
| 2350 | #if HAVE(PTHREAD_SETNAME_NP) | 
| 2351 |   pthread_setname_np("JavaScriptCore: FastMalloc scavenger" ); | 
| 2352 | #endif | 
| 2353 |  | 
| 2354 |   while (1) { | 
| 2355 |       if (!shouldContinueScavenging()) { | 
| 2356 |           pthread_mutex_lock(&m_scavengeMutex); | 
| 2357 |           m_scavengeThreadActive = false; | 
| 2358 |           // Block until there are enough freed pages to release back to the system. | 
| 2359 |           pthread_cond_wait(&m_scavengeCondition, &m_scavengeMutex); | 
| 2360 |           m_scavengeThreadActive = true; | 
| 2361 |           pthread_mutex_unlock(&m_scavengeMutex); | 
| 2362 |       } | 
| 2363 |       sleep(kScavengeTimerDelayInSeconds); | 
| 2364 |       { | 
| 2365 |           SpinLockHolder h(&pageheap_lock); | 
| 2366 |           pageheap->scavenge(); | 
| 2367 |       } | 
| 2368 |   } | 
| 2369 | } | 
| 2370 |  | 
| 2371 | #else | 
| 2372 |  | 
| 2373 | void TCMalloc_PageHeap::periodicScavenge() | 
| 2374 | { | 
| 2375 |   { | 
| 2376 |     SpinLockHolder h(&pageheap_lock); | 
| 2377 |     pageheap->scavenge(); | 
| 2378 |   } | 
| 2379 |  | 
| 2380 |   if (!shouldContinueScavenging()) { | 
| 2381 |     m_scavengingScheduled = false; | 
| 2382 |     dispatch_suspend(m_scavengeTimer); | 
| 2383 |   } | 
| 2384 | } | 
| 2385 | #endif // HAVE(DISPATCH_H) | 
| 2386 |  | 
| 2387 | #endif | 
| 2388 |  | 
| 2389 | // If TLS is available, we also store a copy | 
| 2390 | // of the per-thread object in a __thread variable | 
| 2391 | // since __thread variables are faster to read | 
| 2392 | // than pthread_getspecific().  We still need | 
| 2393 | // pthread_setspecific() because __thread | 
| 2394 | // variables provide no way to run cleanup | 
| 2395 | // code when a thread is destroyed. | 
| 2396 | #ifdef HAVE_TLS | 
| 2397 | static __thread TCMalloc_ThreadCache *threadlocal_heap; | 
| 2398 | #endif | 
| 2399 | // Thread-specific key.  Initialization here is somewhat tricky | 
| 2400 | // because some Linux startup code invokes malloc() before it | 
| 2401 | // is in a good enough state to handle pthread_keycreate(). | 
| 2402 | // Therefore, we use TSD keys only after tsd_inited is set to true. | 
| 2403 | // Until then, we use a slow path to get the heap object. | 
| 2404 | static bool tsd_inited = false; | 
| 2405 | static pthread_key_t heap_key; | 
| 2406 | #if COMPILER(MSVC) | 
| 2407 | DWORD tlsIndex = TLS_OUT_OF_INDEXES; | 
| 2408 | #endif | 
| 2409 |  | 
| 2410 | static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap) | 
| 2411 | { | 
| 2412 |     // still do pthread_setspecific when using MSVC fast TLS to | 
| 2413 |     // benefit from the delete callback. | 
| 2414 |     pthread_setspecific(heap_key, heap); | 
| 2415 | #if COMPILER(MSVC) | 
| 2416 |     TlsSetValue(tlsIndex, heap); | 
| 2417 | #endif | 
| 2418 | } | 
| 2419 |  | 
| 2420 | // Allocator for thread heaps | 
| 2421 | static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator; | 
| 2422 |  | 
| 2423 | // Linked list of heap objects.  Protected by pageheap_lock. | 
| 2424 | static TCMalloc_ThreadCache* thread_heaps = NULL; | 
| 2425 | static int thread_heap_count = 0; | 
| 2426 |  | 
| 2427 | // Overall thread cache size.  Protected by pageheap_lock. | 
| 2428 | static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize; | 
| 2429 |  | 
| 2430 | // Global per-thread cache size.  Writes are protected by | 
| 2431 | // pageheap_lock.  Reads are done without any locking, which should be | 
| 2432 | // fine as long as size_t can be written atomically and we don't place | 
| 2433 | // invariants between this variable and other pieces of state. | 
| 2434 | static volatile size_t per_thread_cache_size = kMaxThreadCacheSize; | 
| 2435 |  | 
| 2436 | //------------------------------------------------------------------- | 
| 2437 | // Central cache implementation | 
| 2438 | //------------------------------------------------------------------- | 
| 2439 |  | 
| 2440 | void TCMalloc_Central_FreeList::Init(size_t cl) { | 
| 2441 |   lock_.Init(); | 
| 2442 |   size_class_ = cl; | 
| 2443 |   DLL_Init(&empty_); | 
| 2444 |   DLL_Init(&nonempty_); | 
| 2445 |   counter_ = 0; | 
| 2446 |  | 
| 2447 |   cache_size_ = 1; | 
| 2448 |   used_slots_ = 0; | 
| 2449 |   ASSERT(cache_size_ <= kNumTransferEntries); | 
| 2450 | } | 
| 2451 |  | 
| 2452 | void TCMalloc_Central_FreeList::ReleaseListToSpans(void* start) { | 
| 2453 |   while (start) { | 
| 2454 |     void *next = SLL_Next(start); | 
| 2455 |     ReleaseToSpans(start); | 
| 2456 |     start = next; | 
| 2457 |   } | 
| 2458 | } | 
| 2459 |  | 
| 2460 | ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(void* object) { | 
| 2461 |   const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift; | 
| 2462 |   Span* span = pageheap->GetDescriptor(p); | 
| 2463 |   ASSERT(span != NULL); | 
| 2464 |   ASSERT(span->refcount > 0); | 
| 2465 |  | 
| 2466 |   // If span is empty, move it to non-empty list | 
| 2467 |   if (span->objects == NULL) { | 
| 2468 |     DLL_Remove(span); | 
| 2469 |     DLL_Prepend(&nonempty_, span); | 
| 2470 |     Event(span, 'N', 0); | 
| 2471 |   } | 
| 2472 |  | 
| 2473 |   // The following check is expensive, so it is disabled by default | 
| 2474 |   if (false) { | 
| 2475 |     // Check that object does not occur in list | 
| 2476 |     unsigned got = 0; | 
| 2477 |     for (void* p = span->objects; p != NULL; p = *((void**) p)) { | 
| 2478 |       ASSERT(p != object); | 
| 2479 |       got++; | 
| 2480 |     } | 
| 2481 |     ASSERT(got + span->refcount == | 
| 2482 |            (span->length<<kPageShift)/ByteSizeForClass(span->sizeclass)); | 
| 2483 |   } | 
| 2484 |  | 
| 2485 |   counter_++; | 
| 2486 |   span->refcount--; | 
| 2487 |   if (span->refcount == 0) { | 
| 2488 |     Event(span, '#', 0); | 
| 2489 |     counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass); | 
| 2490 |     DLL_Remove(span); | 
| 2491 |  | 
| 2492 |     // Release central list lock while operating on pageheap | 
| 2493 |     lock_.Unlock(); | 
| 2494 |     { | 
| 2495 |       SpinLockHolder h(&pageheap_lock); | 
| 2496 |       pageheap->Delete(span); | 
| 2497 |     } | 
| 2498 |     lock_.Lock(); | 
| 2499 |   } else { | 
| 2500 |     *(reinterpret_cast<void**>(object)) = span->objects; | 
| 2501 |     span->objects = object; | 
| 2502 |   } | 
| 2503 | } | 
| 2504 |  | 
| 2505 | ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass( | 
| 2506 |     size_t locked_size_class, bool force) { | 
| 2507 |   static int race_counter = 0; | 
| 2508 |   int t = race_counter++;  // Updated without a lock, but who cares. | 
| 2509 |   if (t >= static_cast<int>(kNumClasses)) { | 
| 2510 |     while (t >= static_cast<int>(kNumClasses)) { | 
| 2511 |       t -= kNumClasses; | 
| 2512 |     } | 
| 2513 |     race_counter = t; | 
| 2514 |   } | 
| 2515 |   ASSERT(t >= 0); | 
| 2516 |   ASSERT(t < static_cast<int>(kNumClasses)); | 
| 2517 |   if (t == static_cast<int>(locked_size_class)) return false; | 
| 2518 |   return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force); | 
| 2519 | } | 
| 2520 |  | 
| 2521 | bool TCMalloc_Central_FreeList::MakeCacheSpace() { | 
| 2522 |   // Is there room in the cache? | 
| 2523 |   if (used_slots_ < cache_size_) return true; | 
| 2524 |   // Check if we can expand this cache? | 
| 2525 |   if (cache_size_ == kNumTransferEntries) return false; | 
| 2526 |   // Ok, we'll try to grab an entry from some other size class. | 
| 2527 |   if (EvictRandomSizeClass(size_class_, false) || | 
| 2528 |       EvictRandomSizeClass(size_class_, true)) { | 
| 2529 |     // Succeeded in evicting, we're going to make our cache larger. | 
| 2530 |     cache_size_++; | 
| 2531 |     return true; | 
| 2532 |   } | 
| 2533 |   return false; | 
| 2534 | } | 
| 2535 |  | 
| 2536 |  | 
| 2537 | namespace { | 
| 2538 | class LockInverter { | 
| 2539 |  private: | 
| 2540 |   SpinLock *held_, *temp_; | 
| 2541 |  public: | 
| 2542 |   inline explicit LockInverter(SpinLock* held, SpinLock *temp) | 
| 2543 |     : held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); } | 
| 2544 |   inline ~LockInverter() { temp_->Unlock(); held_->Lock();  } | 
| 2545 | }; | 
| 2546 | } | 
| 2547 |  | 
| 2548 | bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) { | 
| 2549 |   // Start with a quick check without taking a lock. | 
| 2550 |   if (cache_size_ == 0) return false; | 
| 2551 |   // We don't evict from a full cache unless we are 'forcing'. | 
| 2552 |   if (force == false && used_slots_ == cache_size_) return false; | 
| 2553 |  | 
| 2554 |   // Grab lock, but first release the other lock held by this thread.  We use | 
| 2555 |   // the lock inverter to ensure that we never hold two size class locks | 
| 2556 |   // concurrently.  That can create a deadlock because there is no well | 
| 2557 |   // defined nesting order. | 
| 2558 |   LockInverter li(¢ral_cache[locked_size_class].lock_, &lock_); | 
| 2559 |   ASSERT(used_slots_ <= cache_size_); | 
| 2560 |   ASSERT(0 <= cache_size_); | 
| 2561 |   if (cache_size_ == 0) return false; | 
| 2562 |   if (used_slots_ == cache_size_) { | 
| 2563 |     if (force == false) return false; | 
| 2564 |     // ReleaseListToSpans releases the lock, so we have to make all the | 
| 2565 |     // updates to the central list before calling it. | 
| 2566 |     cache_size_--; | 
| 2567 |     used_slots_--; | 
| 2568 |     ReleaseListToSpans(tc_slots_[used_slots_].head); | 
| 2569 |     return true; | 
| 2570 |   } | 
| 2571 |   cache_size_--; | 
| 2572 |   return true; | 
| 2573 | } | 
| 2574 |  | 
| 2575 | void TCMalloc_Central_FreeList::InsertRange(void *start, void *end, int N) { | 
| 2576 |   SpinLockHolder h(&lock_); | 
| 2577 |   if (N == num_objects_to_move[size_class_] && | 
| 2578 |     MakeCacheSpace()) { | 
| 2579 |     int slot = used_slots_++; | 
| 2580 |     ASSERT(slot >=0); | 
| 2581 |     ASSERT(slot < kNumTransferEntries); | 
| 2582 |     TCEntry *entry = &tc_slots_[slot]; | 
| 2583 |     entry->head = start; | 
| 2584 |     entry->tail = end; | 
| 2585 |     return; | 
| 2586 |   } | 
| 2587 |   ReleaseListToSpans(start); | 
| 2588 | } | 
| 2589 |  | 
| 2590 | void TCMalloc_Central_FreeList::RemoveRange(void **start, void **end, int *N) { | 
| 2591 |   int num = *N; | 
| 2592 |   ASSERT(num > 0); | 
| 2593 |  | 
| 2594 |   SpinLockHolder h(&lock_); | 
| 2595 |   if (num == num_objects_to_move[size_class_] && used_slots_ > 0) { | 
| 2596 |     int slot = --used_slots_; | 
| 2597 |     ASSERT(slot >= 0); | 
| 2598 |     TCEntry *entry = &tc_slots_[slot]; | 
| 2599 |     *start = entry->head; | 
| 2600 |     *end = entry->tail; | 
| 2601 |     return; | 
| 2602 |   } | 
| 2603 |  | 
| 2604 |   // TODO: Prefetch multiple TCEntries? | 
| 2605 |   void *tail = FetchFromSpansSafe(); | 
| 2606 |   if (!tail) { | 
| 2607 |     // We are completely out of memory. | 
| 2608 |     *start = *end = NULL; | 
| 2609 |     *N = 0; | 
| 2610 |     return; | 
| 2611 |   } | 
| 2612 |  | 
| 2613 |   SLL_SetNext(tail, NULL); | 
| 2614 |   void *head = tail; | 
| 2615 |   int count = 1; | 
| 2616 |   while (count < num) { | 
| 2617 |     void *t = FetchFromSpans(); | 
| 2618 |     if (!t) break; | 
| 2619 |     SLL_Push(&head, t); | 
| 2620 |     count++; | 
| 2621 |   } | 
| 2622 |   *start = head; | 
| 2623 |   *end = tail; | 
| 2624 |   *N = count; | 
| 2625 | } | 
| 2626 |  | 
| 2627 |  | 
| 2628 | void* TCMalloc_Central_FreeList::FetchFromSpansSafe() { | 
| 2629 |   void *t = FetchFromSpans(); | 
| 2630 |   if (!t) { | 
| 2631 |     Populate(); | 
| 2632 |     t = FetchFromSpans(); | 
| 2633 |   } | 
| 2634 |   return t; | 
| 2635 | } | 
| 2636 |  | 
| 2637 | void* TCMalloc_Central_FreeList::FetchFromSpans() { | 
| 2638 | // Intel compiler bug; issue id 6000056746 | 
| 2639 | //  if (DLL_IsEmpty(&nonempty_)) return NULL; | 
| 2640 |   Span* span = nonempty_.next; | 
| 2641 |   if (span == &nonempty_) | 
| 2642 |     return NULL; | 
| 2643 |  | 
| 2644 |   ASSERT(span->objects != NULL); | 
| 2645 |   ASSERT_SPAN_COMMITTED(span); | 
| 2646 |   span->refcount++; | 
| 2647 |   void* result = span->objects; | 
| 2648 |   span->objects = *(reinterpret_cast<void**>(result)); | 
| 2649 |   if (span->objects == NULL) { | 
| 2650 |     // Move to empty list | 
| 2651 |     DLL_Remove(span); | 
| 2652 |     DLL_Prepend(&empty_, span); | 
| 2653 |     Event(span, 'E', 0); | 
| 2654 |   } | 
| 2655 |   counter_--; | 
| 2656 |   return result; | 
| 2657 | } | 
| 2658 |  | 
| 2659 | // Fetch memory from the system and add to the central cache freelist. | 
| 2660 | ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() { | 
| 2661 |   // Release central list lock while operating on pageheap | 
| 2662 |   lock_.Unlock(); | 
| 2663 |   const size_t npages = class_to_pages[size_class_]; | 
| 2664 |  | 
| 2665 |   Span* span; | 
| 2666 |   { | 
| 2667 |     SpinLockHolder h(&pageheap_lock); | 
| 2668 |     span = pageheap->New(npages); | 
| 2669 |     if (span) pageheap->RegisterSizeClass(span, size_class_); | 
| 2670 |   } | 
| 2671 |   if (span == NULL) { | 
| 2672 |     MESSAGE("allocation failed: %d\n" , errno); | 
| 2673 |     lock_.Lock(); | 
| 2674 |     return; | 
| 2675 |   } | 
| 2676 |   ASSERT_SPAN_COMMITTED(span); | 
| 2677 |   ASSERT(span->length == npages); | 
| 2678 |   // Cache sizeclass info eagerly.  Locking is not necessary. | 
| 2679 |   // (Instead of being eager, we could just replace any stale info | 
| 2680 |   // about this span, but that seems to be no better in practice.) | 
| 2681 |   for (size_t i = 0; i < npages; i++) { | 
| 2682 |     pageheap->CacheSizeClass(span->start + i, size_class_); | 
| 2683 |   } | 
| 2684 |  | 
| 2685 |   // Split the block into pieces and add to the free-list | 
| 2686 |   // TODO: coloring of objects to avoid cache conflicts? | 
| 2687 |   void** tail = &span->objects; | 
| 2688 |   char* ptr = reinterpret_cast<char*>(span->start << kPageShift); | 
| 2689 |   char* limit = ptr + (npages << kPageShift); | 
| 2690 |   const size_t size = ByteSizeForClass(size_class_); | 
| 2691 |   int num = 0; | 
| 2692 |   char* nptr; | 
| 2693 |   while ((nptr = ptr + size) <= limit) { | 
| 2694 |     *tail = ptr; | 
| 2695 |     tail = reinterpret_cast<void**>(ptr); | 
| 2696 |     ptr = nptr; | 
| 2697 |     num++; | 
| 2698 |   } | 
| 2699 |   ASSERT(ptr <= limit); | 
| 2700 |   *tail = NULL; | 
| 2701 |   span->refcount = 0; // No sub-object in use yet | 
| 2702 |  | 
| 2703 |   // Add span to list of non-empty spans | 
| 2704 |   lock_.Lock(); | 
| 2705 |   DLL_Prepend(&nonempty_, span); | 
| 2706 |   counter_ += num; | 
| 2707 | } | 
| 2708 |  | 
| 2709 | //------------------------------------------------------------------- | 
| 2710 | // TCMalloc_ThreadCache implementation | 
| 2711 | //------------------------------------------------------------------- | 
| 2712 |  | 
| 2713 | inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) { | 
| 2714 |   if (bytes_until_sample_ < k) { | 
| 2715 |     PickNextSample(k); | 
| 2716 |     return true; | 
| 2717 |   } else { | 
| 2718 |     bytes_until_sample_ -= k; | 
| 2719 |     return false; | 
| 2720 |   } | 
| 2721 | } | 
| 2722 |  | 
| 2723 | void TCMalloc_ThreadCache::Init(ThreadIdentifier tid) { | 
| 2724 |   size_ = 0; | 
| 2725 |   next_ = NULL; | 
| 2726 |   prev_ = NULL; | 
| 2727 |   tid_  = tid; | 
| 2728 |   in_setspecific_ = false; | 
| 2729 |   for (size_t cl = 0; cl < kNumClasses; ++cl) { | 
| 2730 |     list_[cl].Init(); | 
| 2731 |   } | 
| 2732 |  | 
| 2733 |   // Initialize RNG -- run it for a bit to get to good values | 
| 2734 |   bytes_until_sample_ = 0; | 
| 2735 |   rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this)); | 
| 2736 |   for (int i = 0; i < 100; i++) { | 
| 2737 |     PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2)); | 
| 2738 |   } | 
| 2739 | } | 
| 2740 |  | 
| 2741 | void TCMalloc_ThreadCache::Cleanup() { | 
| 2742 |   // Put unused memory back into central cache | 
| 2743 |   for (size_t cl = 0; cl < kNumClasses; ++cl) { | 
| 2744 |     if (list_[cl].length() > 0) { | 
| 2745 |       ReleaseToCentralCache(cl, list_[cl].length()); | 
| 2746 |     } | 
| 2747 |   } | 
| 2748 | } | 
| 2749 |  | 
| 2750 | ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) { | 
| 2751 |   ASSERT(size <= kMaxSize); | 
| 2752 |   const size_t cl = SizeClass(size); | 
| 2753 |   FreeList* list = &list_[cl]; | 
| 2754 |   size_t allocationSize = ByteSizeForClass(cl); | 
| 2755 |   if (list->empty()) { | 
| 2756 |     FetchFromCentralCache(cl, allocationSize); | 
| 2757 |     if (list->empty()) return NULL; | 
| 2758 |   } | 
| 2759 |   size_ -= allocationSize; | 
| 2760 |   return list->Pop(); | 
| 2761 | } | 
| 2762 |  | 
| 2763 | inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) { | 
| 2764 |   size_ += ByteSizeForClass(cl); | 
| 2765 |   FreeList* list = &list_[cl]; | 
| 2766 |   list->Push(ptr); | 
| 2767 |   // If enough data is free, put back into central cache | 
| 2768 |   if (list->length() > kMaxFreeListLength) { | 
| 2769 |     ReleaseToCentralCache(cl, num_objects_to_move[cl]); | 
| 2770 |   } | 
| 2771 |   if (size_ >= per_thread_cache_size) Scavenge(); | 
| 2772 | } | 
| 2773 |  | 
| 2774 | // Remove some objects of class "cl" from central cache and add to thread heap | 
| 2775 | ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) { | 
| 2776 |   int fetch_count = num_objects_to_move[cl]; | 
| 2777 |   void *start, *end; | 
| 2778 |   central_cache[cl].RemoveRange(&start, &end, &fetch_count); | 
| 2779 |   list_[cl].PushRange(fetch_count, start, end); | 
| 2780 |   size_ += allocationSize * fetch_count; | 
| 2781 | } | 
| 2782 |  | 
| 2783 | // Remove some objects of class "cl" from thread heap and add to central cache | 
| 2784 | inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) { | 
| 2785 |   ASSERT(N > 0); | 
| 2786 |   FreeList* src = &list_[cl]; | 
| 2787 |   if (N > src->length()) N = src->length(); | 
| 2788 |   size_ -= N*ByteSizeForClass(cl); | 
| 2789 |  | 
| 2790 |   // We return prepackaged chains of the correct size to the central cache. | 
| 2791 |   // TODO: Use the same format internally in the thread caches? | 
| 2792 |   int batch_size = num_objects_to_move[cl]; | 
| 2793 |   while (N > batch_size) { | 
| 2794 |     void *tail, *head; | 
| 2795 |     src->PopRange(batch_size, &head, &tail); | 
| 2796 |     central_cache[cl].InsertRange(head, tail, batch_size); | 
| 2797 |     N -= batch_size; | 
| 2798 |   } | 
| 2799 |   void *tail, *head; | 
| 2800 |   src->PopRange(N, &head, &tail); | 
| 2801 |   central_cache[cl].InsertRange(head, tail, N); | 
| 2802 | } | 
| 2803 |  | 
| 2804 | // Release idle memory to the central cache | 
| 2805 | inline void TCMalloc_ThreadCache::Scavenge() { | 
| 2806 |   // If the low-water mark for the free list is L, it means we would | 
| 2807 |   // not have had to allocate anything from the central cache even if | 
| 2808 |   // we had reduced the free list size by L.  We aim to get closer to | 
| 2809 |   // that situation by dropping L/2 nodes from the free list.  This | 
| 2810 |   // may not release much memory, but if so we will call scavenge again | 
| 2811 |   // pretty soon and the low-water marks will be high on that call. | 
| 2812 |   //int64 start = CycleClock::Now(); | 
| 2813 |  | 
| 2814 |   for (size_t cl = 0; cl < kNumClasses; cl++) { | 
| 2815 |     FreeList* list = &list_[cl]; | 
| 2816 |     const int lowmark = list->lowwatermark(); | 
| 2817 |     if (lowmark > 0) { | 
| 2818 |       const int drop = (lowmark > 1) ? lowmark/2 : 1; | 
| 2819 |       ReleaseToCentralCache(cl, drop); | 
| 2820 |     } | 
| 2821 |     list->clear_lowwatermark(); | 
| 2822 |   } | 
| 2823 |  | 
| 2824 |   //int64 finish = CycleClock::Now(); | 
| 2825 |   //CycleTimer ct; | 
| 2826 |   //MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0); | 
| 2827 | } | 
| 2828 |  | 
| 2829 | void TCMalloc_ThreadCache::PickNextSample(size_t k) { | 
| 2830 |   // Make next "random" number | 
| 2831 |   // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers | 
| 2832 |   static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0); | 
| 2833 |   uint32_t r = rnd_; | 
| 2834 |   rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly); | 
| 2835 |  | 
| 2836 |   // Next point is "rnd_ % (sample_period)".  I.e., average | 
| 2837 |   // increment is "sample_period/2". | 
| 2838 |   const int flag_value = static_cast<int>(FLAGS_tcmalloc_sample_parameter); | 
| 2839 |   static int last_flag_value = -1; | 
| 2840 |  | 
| 2841 |   if (flag_value != last_flag_value) { | 
| 2842 |     SpinLockHolder h(&sample_period_lock); | 
| 2843 |     int i; | 
| 2844 |     for (i = 0; i < (static_cast<int>(sizeof(primes_list)/sizeof(primes_list[0])) - 1); i++) { | 
| 2845 |       if (primes_list[i] >= flag_value) { | 
| 2846 |         break; | 
| 2847 |       } | 
| 2848 |     } | 
| 2849 |     sample_period = primes_list[i]; | 
| 2850 |     last_flag_value = flag_value; | 
| 2851 |   } | 
| 2852 |  | 
| 2853 |   bytes_until_sample_ += rnd_ % sample_period; | 
| 2854 |  | 
| 2855 |   if (k > (static_cast<size_t>(-1) >> 2)) { | 
| 2856 |     // If the user has asked for a huge allocation then it is possible | 
| 2857 |     // for the code below to loop infinitely.  Just return (note that | 
| 2858 |     // this throws off the sampling accuracy somewhat, but a user who | 
| 2859 |     // is allocating more than 1G of memory at a time can live with a | 
| 2860 |     // minor inaccuracy in profiling of small allocations, and also | 
| 2861 |     // would rather not wait for the loop below to terminate). | 
| 2862 |     return; | 
| 2863 |   } | 
| 2864 |  | 
| 2865 |   while (bytes_until_sample_ < k) { | 
| 2866 |     // Increase bytes_until_sample_ by enough average sampling periods | 
| 2867 |     // (sample_period >> 1) to allow us to sample past the current | 
| 2868 |     // allocation. | 
| 2869 |     bytes_until_sample_ += (sample_period >> 1); | 
| 2870 |   } | 
| 2871 |  | 
| 2872 |   bytes_until_sample_ -= k; | 
| 2873 | } | 
| 2874 |  | 
| 2875 | void TCMalloc_ThreadCache::InitModule() { | 
| 2876 |   // There is a slight potential race here because of double-checked | 
| 2877 |   // locking idiom.  However, as long as the program does a small | 
| 2878 |   // allocation before switching to multi-threaded mode, we will be | 
| 2879 |   // fine.  We increase the chances of doing such a small allocation | 
| 2880 |   // by doing one in the constructor of the module_enter_exit_hook | 
| 2881 |   // object declared below. | 
| 2882 |   SpinLockHolder h(&pageheap_lock); | 
| 2883 |   if (!phinited) { | 
| 2884 | #ifdef WTF_CHANGES | 
| 2885 |     InitTSD(); | 
| 2886 | #endif | 
| 2887 |     InitSizeClasses(); | 
| 2888 |     threadheap_allocator.Init(); | 
| 2889 |     span_allocator.Init(); | 
| 2890 |     span_allocator.New(); // Reduce cache conflicts | 
| 2891 |     span_allocator.New(); // Reduce cache conflicts | 
| 2892 |     stacktrace_allocator.Init(); | 
| 2893 |     DLL_Init(&sampled_objects); | 
| 2894 |     for (size_t i = 0; i < kNumClasses; ++i) { | 
| 2895 |       central_cache[i].Init(i); | 
| 2896 |     } | 
| 2897 |     pageheap->init(); | 
| 2898 |     phinited = 1; | 
| 2899 | #if defined(WTF_CHANGES) && OS(DARWIN) | 
| 2900 |     FastMallocZone::init(); | 
| 2901 | #endif | 
| 2902 |   } | 
| 2903 | } | 
| 2904 |  | 
| 2905 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::NewHeap(ThreadIdentifier tid) { | 
| 2906 |   // Create the heap and add it to the linked list | 
| 2907 |   TCMalloc_ThreadCache *heap = threadheap_allocator.New(); | 
| 2908 |   heap->Init(tid); | 
| 2909 |   heap->next_ = thread_heaps; | 
| 2910 |   heap->prev_ = NULL; | 
| 2911 |   if (thread_heaps != NULL) thread_heaps->prev_ = heap; | 
| 2912 |   thread_heaps = heap; | 
| 2913 |   thread_heap_count++; | 
| 2914 |   RecomputeThreadCacheSize(); | 
| 2915 |   return heap; | 
| 2916 | } | 
| 2917 |  | 
| 2918 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetThreadHeap() { | 
| 2919 | #ifdef HAVE_TLS | 
| 2920 |     // __thread is faster, but only when the kernel supports it | 
| 2921 |   if (KernelSupportsTLS()) | 
| 2922 |     return threadlocal_heap; | 
| 2923 | #elif COMPILER(MSVC) | 
| 2924 |     return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex)); | 
| 2925 | #else | 
| 2926 |     return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key)); | 
| 2927 | #endif | 
| 2928 | } | 
| 2929 |  | 
| 2930 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() { | 
| 2931 |   TCMalloc_ThreadCache* ptr = NULL; | 
| 2932 |   if (!tsd_inited) { | 
| 2933 |     InitModule(); | 
| 2934 |   } else { | 
| 2935 |     ptr = GetThreadHeap(); | 
| 2936 |   } | 
| 2937 |   if (ptr == NULL) ptr = CreateCacheIfNecessary(); | 
| 2938 |   return ptr; | 
| 2939 | } | 
| 2940 |  | 
| 2941 | // In deletion paths, we do not try to create a thread-cache.  This is | 
| 2942 | // because we may be in the thread destruction code and may have | 
| 2943 | // already cleaned up the cache for this thread. | 
| 2944 | inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() { | 
| 2945 |   if (!tsd_inited) return NULL; | 
| 2946 |   void* const p = GetThreadHeap(); | 
| 2947 |   return reinterpret_cast<TCMalloc_ThreadCache*>(p); | 
| 2948 | } | 
| 2949 |  | 
| 2950 | void TCMalloc_ThreadCache::InitTSD() { | 
| 2951 |   ASSERT(!tsd_inited); | 
| 2952 |   pthread_key_create(&heap_key, DestroyThreadCache); | 
| 2953 | #if COMPILER(MSVC) | 
| 2954 |   tlsIndex = TlsAlloc(); | 
| 2955 | #endif | 
| 2956 |   tsd_inited = true; | 
| 2957 |      | 
| 2958 | #if !COMPILER(MSVC) | 
| 2959 |   // We may have used a fake pthread_t for the main thread.  Fix it. | 
| 2960 |   pthread_t zero; | 
| 2961 |   memset(&zero, 0, sizeof(zero)); | 
| 2962 | #endif | 
| 2963 | #ifndef WTF_CHANGES | 
| 2964 |   SpinLockHolder h(&pageheap_lock); | 
| 2965 | #else | 
| 2966 |   ASSERT(pageheap_lock.IsHeld()); | 
| 2967 | #endif | 
| 2968 |   for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) { | 
| 2969 | #if COMPILER(MSVC) | 
| 2970 |     if (h->tid_ == 0) { | 
| 2971 |       h->tid_ = GetCurrentThreadId(); | 
| 2972 |     } | 
| 2973 | #else | 
| 2974 |     if (pthread_equal(h->tid_, zero)) { | 
| 2975 |       h->tid_ = pthread_self(); | 
| 2976 |     } | 
| 2977 | #endif | 
| 2978 |   } | 
| 2979 | } | 
| 2980 |  | 
| 2981 | TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() { | 
| 2982 |   // Initialize per-thread data if necessary | 
| 2983 |   TCMalloc_ThreadCache* heap = NULL; | 
| 2984 |   { | 
| 2985 |     SpinLockHolder lockholder(&pageheap_lock); | 
| 2986 |  | 
| 2987 | #if COMPILER(MSVC) | 
| 2988 |     DWORD me; | 
| 2989 |     if (!tsd_inited) { | 
| 2990 |       me = 0; | 
| 2991 |     } else { | 
| 2992 |       me = GetCurrentThreadId(); | 
| 2993 |     } | 
| 2994 | #else | 
| 2995 |     // Early on in glibc's life, we cannot even call pthread_self() | 
| 2996 |     pthread_t me; | 
| 2997 |     if (!tsd_inited) { | 
| 2998 |       memset(&me, 0, sizeof(me)); | 
| 2999 |     } else { | 
| 3000 |       me = pthread_self(); | 
| 3001 |     } | 
| 3002 | #endif | 
| 3003 |  | 
| 3004 |     // This may be a recursive malloc call from pthread_setspecific() | 
| 3005 |     // In that case, the heap for this thread has already been created | 
| 3006 |     // and added to the linked list.  So we search for that first. | 
| 3007 |     for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) { | 
| 3008 | #if COMPILER(MSVC) | 
| 3009 |       if (h->tid_ == me) { | 
| 3010 | #else | 
| 3011 |       if (pthread_equal(h->tid_, me)) { | 
| 3012 | #endif | 
| 3013 |         heap = h; | 
| 3014 |         break; | 
| 3015 |       } | 
| 3016 |     } | 
| 3017 |  | 
| 3018 |     if (heap == NULL) heap = NewHeap(me); | 
| 3019 |   } | 
| 3020 |  | 
| 3021 |   // We call pthread_setspecific() outside the lock because it may | 
| 3022 |   // call malloc() recursively.  The recursive call will never get | 
| 3023 |   // here again because it will find the already allocated heap in the | 
| 3024 |   // linked list of heaps. | 
| 3025 |   if (!heap->in_setspecific_ && tsd_inited) { | 
| 3026 |     heap->in_setspecific_ = true; | 
| 3027 |     setThreadHeap(heap); | 
| 3028 |   } | 
| 3029 |   return heap; | 
| 3030 | } | 
| 3031 |  | 
| 3032 | void TCMalloc_ThreadCache::BecomeIdle() { | 
| 3033 |   if (!tsd_inited) return;              // No caches yet | 
| 3034 |   TCMalloc_ThreadCache* heap = GetThreadHeap(); | 
| 3035 |   if (heap == NULL) return;             // No thread cache to remove | 
| 3036 |   if (heap->in_setspecific_) return;    // Do not disturb the active caller | 
| 3037 |  | 
| 3038 |   heap->in_setspecific_ = true; | 
| 3039 |   pthread_setspecific(heap_key, NULL); | 
| 3040 | #ifdef HAVE_TLS | 
| 3041 |   // Also update the copy in __thread | 
| 3042 |   threadlocal_heap = NULL; | 
| 3043 | #endif | 
| 3044 |   heap->in_setspecific_ = false; | 
| 3045 |   if (GetThreadHeap() == heap) { | 
| 3046 |     // Somehow heap got reinstated by a recursive call to malloc | 
| 3047 |     // from pthread_setspecific.  We give up in this case. | 
| 3048 |     return; | 
| 3049 |   } | 
| 3050 |  | 
| 3051 |   // We can now get rid of the heap | 
| 3052 |   DeleteCache(heap); | 
| 3053 | } | 
| 3054 |  | 
| 3055 | void TCMalloc_ThreadCache::DestroyThreadCache(void* ptr) { | 
| 3056 |   // Note that "ptr" cannot be NULL since pthread promises not | 
| 3057 |   // to invoke the destructor on NULL values, but for safety, | 
| 3058 |   // we check anyway. | 
| 3059 |   if (ptr == NULL) return; | 
| 3060 | #ifdef HAVE_TLS | 
| 3061 |   // Prevent fast path of GetThreadHeap() from returning heap. | 
| 3062 |   threadlocal_heap = NULL; | 
| 3063 | #endif | 
| 3064 |   DeleteCache(reinterpret_cast<TCMalloc_ThreadCache*>(ptr)); | 
| 3065 | } | 
| 3066 |  | 
| 3067 | void TCMalloc_ThreadCache::DeleteCache(TCMalloc_ThreadCache* heap) { | 
| 3068 |   // Remove all memory from heap | 
| 3069 |   heap->Cleanup(); | 
| 3070 |  | 
| 3071 |   // Remove from linked list | 
| 3072 |   SpinLockHolder h(&pageheap_lock); | 
| 3073 |   if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_; | 
| 3074 |   if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_; | 
| 3075 |   if (thread_heaps == heap) thread_heaps = heap->next_; | 
| 3076 |   thread_heap_count--; | 
| 3077 |   RecomputeThreadCacheSize(); | 
| 3078 |  | 
| 3079 |   threadheap_allocator.Delete(heap); | 
| 3080 | } | 
| 3081 |  | 
| 3082 | void TCMalloc_ThreadCache::RecomputeThreadCacheSize() { | 
| 3083 |   // Divide available space across threads | 
| 3084 |   int n = thread_heap_count > 0 ? thread_heap_count : 1; | 
| 3085 |   size_t space = overall_thread_cache_size / n; | 
| 3086 |  | 
| 3087 |   // Limit to allowed range | 
| 3088 |   if (space < kMinThreadCacheSize) space = kMinThreadCacheSize; | 
| 3089 |   if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize; | 
| 3090 |  | 
| 3091 |   per_thread_cache_size = space; | 
| 3092 | } | 
| 3093 |  | 
| 3094 | void TCMalloc_ThreadCache::Print() const { | 
| 3095 |   for (size_t cl = 0; cl < kNumClasses; ++cl) { | 
| 3096 |     MESSAGE("      %5"  PRIuS " : %4d len; %4d lo\n" , | 
| 3097 |             ByteSizeForClass(cl), | 
| 3098 |             list_[cl].length(), | 
| 3099 |             list_[cl].lowwatermark()); | 
| 3100 |   } | 
| 3101 | } | 
| 3102 |  | 
| 3103 | // Extract interesting stats | 
| 3104 | struct TCMallocStats { | 
| 3105 |   uint64_t system_bytes;        // Bytes alloced from system | 
| 3106 |   uint64_t thread_bytes;        // Bytes in thread caches | 
| 3107 |   uint64_t central_bytes;       // Bytes in central cache | 
| 3108 |   uint64_t transfer_bytes;      // Bytes in central transfer cache | 
| 3109 |   uint64_t pageheap_bytes;      // Bytes in page heap | 
| 3110 |   uint64_t metadata_bytes;      // Bytes alloced for metadata | 
| 3111 | }; | 
| 3112 |  | 
| 3113 | #ifndef WTF_CHANGES | 
| 3114 | // Get stats into "r".  Also get per-size-class counts if class_count != NULL | 
| 3115 | static void ExtractStats(TCMallocStats* r, uint64_t* class_count) { | 
| 3116 |   r->central_bytes = 0; | 
| 3117 |   r->transfer_bytes = 0; | 
| 3118 |   for (int cl = 0; cl < kNumClasses; ++cl) { | 
| 3119 |     const int length = central_cache[cl].length(); | 
| 3120 |     const int tc_length = central_cache[cl].tc_length(); | 
| 3121 |     r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length; | 
| 3122 |     r->transfer_bytes += | 
| 3123 |       static_cast<uint64_t>(ByteSizeForClass(cl)) * tc_length; | 
| 3124 |     if (class_count) class_count[cl] = length + tc_length; | 
| 3125 |   } | 
| 3126 |  | 
| 3127 |   // Add stats from per-thread heaps | 
| 3128 |   r->thread_bytes = 0; | 
| 3129 |   { // scope | 
| 3130 |     SpinLockHolder h(&pageheap_lock); | 
| 3131 |     for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) { | 
| 3132 |       r->thread_bytes += h->Size(); | 
| 3133 |       if (class_count) { | 
| 3134 |         for (size_t cl = 0; cl < kNumClasses; ++cl) { | 
| 3135 |           class_count[cl] += h->freelist_length(cl); | 
| 3136 |         } | 
| 3137 |       } | 
| 3138 |     } | 
| 3139 |   } | 
| 3140 |  | 
| 3141 |   { //scope | 
| 3142 |     SpinLockHolder h(&pageheap_lock); | 
| 3143 |     r->system_bytes = pageheap->SystemBytes(); | 
| 3144 |     r->metadata_bytes = metadata_system_bytes; | 
| 3145 |     r->pageheap_bytes = pageheap->FreeBytes(); | 
| 3146 |   } | 
| 3147 | } | 
| 3148 | #endif | 
| 3149 |  | 
| 3150 | #ifndef WTF_CHANGES | 
| 3151 | // WRITE stats to "out" | 
| 3152 | static void DumpStats(TCMalloc_Printer* out, int level) { | 
| 3153 |   TCMallocStats stats; | 
| 3154 |   uint64_t class_count[kNumClasses]; | 
| 3155 |   ExtractStats(&stats, (level >= 2 ? class_count : NULL)); | 
| 3156 |  | 
| 3157 |   if (level >= 2) { | 
| 3158 |     out->printf("------------------------------------------------\n" ); | 
| 3159 |     uint64_t cumulative = 0; | 
| 3160 |     for (int cl = 0; cl < kNumClasses; ++cl) { | 
| 3161 |       if (class_count[cl] > 0) { | 
| 3162 |         uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl); | 
| 3163 |         cumulative += class_bytes; | 
| 3164 |         out->printf("class %3d [ %8"  PRIuS " bytes ] : "  | 
| 3165 |                 "%8"  PRIu64 " objs; %5.1f MB; %5.1f cum MB\n" , | 
| 3166 |                 cl, ByteSizeForClass(cl), | 
| 3167 |                 class_count[cl], | 
| 3168 |                 class_bytes / 1048576.0, | 
| 3169 |                 cumulative / 1048576.0); | 
| 3170 |       } | 
| 3171 |     } | 
| 3172 |  | 
| 3173 |     SpinLockHolder h(&pageheap_lock); | 
| 3174 |     pageheap->Dump(out); | 
| 3175 |   } | 
| 3176 |  | 
| 3177 |   const uint64_t bytes_in_use = stats.system_bytes | 
| 3178 |                                 - stats.pageheap_bytes | 
| 3179 |                                 - stats.central_bytes | 
| 3180 |                                 - stats.transfer_bytes | 
| 3181 |                                 - stats.thread_bytes; | 
| 3182 |  | 
| 3183 |   out->printf("------------------------------------------------\n"  | 
| 3184 |               "MALLOC: %12"  PRIu64 " Heap size\n"  | 
| 3185 |               "MALLOC: %12"  PRIu64 " Bytes in use by application\n"  | 
| 3186 |               "MALLOC: %12"  PRIu64 " Bytes free in page heap\n"  | 
| 3187 |               "MALLOC: %12"  PRIu64 " Bytes free in central cache\n"  | 
| 3188 |               "MALLOC: %12"  PRIu64 " Bytes free in transfer cache\n"  | 
| 3189 |               "MALLOC: %12"  PRIu64 " Bytes free in thread caches\n"  | 
| 3190 |               "MALLOC: %12"  PRIu64 " Spans in use\n"  | 
| 3191 |               "MALLOC: %12"  PRIu64 " Thread heaps in use\n"  | 
| 3192 |               "MALLOC: %12"  PRIu64 " Metadata allocated\n"  | 
| 3193 |               "------------------------------------------------\n" , | 
| 3194 |               stats.system_bytes, | 
| 3195 |               bytes_in_use, | 
| 3196 |               stats.pageheap_bytes, | 
| 3197 |               stats.central_bytes, | 
| 3198 |               stats.transfer_bytes, | 
| 3199 |               stats.thread_bytes, | 
| 3200 |               uint64_t(span_allocator.inuse()), | 
| 3201 |               uint64_t(threadheap_allocator.inuse()), | 
| 3202 |               stats.metadata_bytes); | 
| 3203 | } | 
| 3204 |  | 
| 3205 | static void PrintStats(int level) { | 
| 3206 |   const int kBufferSize = 16 << 10; | 
| 3207 |   char* buffer = new char[kBufferSize]; | 
| 3208 |   TCMalloc_Printer printer(buffer, kBufferSize); | 
| 3209 |   DumpStats(&printer, level); | 
| 3210 |   write(STDERR_FILENO, buffer, strlen(buffer)); | 
| 3211 |   delete[] buffer; | 
| 3212 | } | 
| 3213 |  | 
| 3214 | static void** DumpStackTraces() { | 
| 3215 |   // Count how much space we need | 
| 3216 |   int needed_slots = 0; | 
| 3217 |   { | 
| 3218 |     SpinLockHolder h(&pageheap_lock); | 
| 3219 |     for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) { | 
| 3220 |       StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects); | 
| 3221 |       needed_slots += 3 + stack->depth; | 
| 3222 |     } | 
| 3223 |     needed_slots += 100;            // Slop in case sample grows | 
| 3224 |     needed_slots += needed_slots/8; // An extra 12.5% slop | 
| 3225 |   } | 
| 3226 |  | 
| 3227 |   void** result = new void*[needed_slots]; | 
| 3228 |   if (result == NULL) { | 
| 3229 |     MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n" , | 
| 3230 |             needed_slots); | 
| 3231 |     return NULL; | 
| 3232 |   } | 
| 3233 |  | 
| 3234 |   SpinLockHolder h(&pageheap_lock); | 
| 3235 |   int used_slots = 0; | 
| 3236 |   for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) { | 
| 3237 |     ASSERT(used_slots < needed_slots);  // Need to leave room for terminator | 
| 3238 |     StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects); | 
| 3239 |     if (used_slots + 3 + stack->depth >= needed_slots) { | 
| 3240 |       // No more room | 
| 3241 |       break; | 
| 3242 |     } | 
| 3243 |  | 
| 3244 |     result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1)); | 
| 3245 |     result[used_slots+1] = reinterpret_cast<void*>(stack->size); | 
| 3246 |     result[used_slots+2] = reinterpret_cast<void*>(stack->depth); | 
| 3247 |     for (int d = 0; d < stack->depth; d++) { | 
| 3248 |       result[used_slots+3+d] = stack->stack[d]; | 
| 3249 |     } | 
| 3250 |     used_slots += 3 + stack->depth; | 
| 3251 |   } | 
| 3252 |   result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0)); | 
| 3253 |   return result; | 
| 3254 | } | 
| 3255 | #endif | 
| 3256 |  | 
| 3257 | #ifndef WTF_CHANGES | 
| 3258 |  | 
| 3259 | // TCMalloc's support for extra malloc interfaces | 
| 3260 | class TCMallocImplementation : public MallocExtension { | 
| 3261 |  public: | 
| 3262 |   virtual void GetStats(char* buffer, int buffer_length) { | 
| 3263 |     ASSERT(buffer_length > 0); | 
| 3264 |     TCMalloc_Printer printer(buffer, buffer_length); | 
| 3265 |  | 
| 3266 |     // Print level one stats unless lots of space is available | 
| 3267 |     if (buffer_length < 10000) { | 
| 3268 |       DumpStats(&printer, 1); | 
| 3269 |     } else { | 
| 3270 |       DumpStats(&printer, 2); | 
| 3271 |     } | 
| 3272 |   } | 
| 3273 |  | 
| 3274 |   virtual void** ReadStackTraces() { | 
| 3275 |     return DumpStackTraces(); | 
| 3276 |   } | 
| 3277 |  | 
| 3278 |   virtual bool GetNumericProperty(const char* name, size_t* value) { | 
| 3279 |     ASSERT(name != NULL); | 
| 3280 |  | 
| 3281 |     if (strcmp(name, "generic.current_allocated_bytes" ) == 0) { | 
| 3282 |       TCMallocStats stats; | 
| 3283 |       ExtractStats(&stats, NULL); | 
| 3284 |       *value = stats.system_bytes | 
| 3285 |                - stats.thread_bytes | 
| 3286 |                - stats.central_bytes | 
| 3287 |                - stats.pageheap_bytes; | 
| 3288 |       return true; | 
| 3289 |     } | 
| 3290 |  | 
| 3291 |     if (strcmp(name, "generic.heap_size" ) == 0) { | 
| 3292 |       TCMallocStats stats; | 
| 3293 |       ExtractStats(&stats, NULL); | 
| 3294 |       *value = stats.system_bytes; | 
| 3295 |       return true; | 
| 3296 |     } | 
| 3297 |  | 
| 3298 |     if (strcmp(name, "tcmalloc.slack_bytes" ) == 0) { | 
| 3299 |       // We assume that bytes in the page heap are not fragmented too | 
| 3300 |       // badly, and are therefore available for allocation. | 
| 3301 |       SpinLockHolder l(&pageheap_lock); | 
| 3302 |       *value = pageheap->FreeBytes(); | 
| 3303 |       return true; | 
| 3304 |     } | 
| 3305 |  | 
| 3306 |     if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes" ) == 0) { | 
| 3307 |       SpinLockHolder l(&pageheap_lock); | 
| 3308 |       *value = overall_thread_cache_size; | 
| 3309 |       return true; | 
| 3310 |     } | 
| 3311 |  | 
| 3312 |     if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes" ) == 0) { | 
| 3313 |       TCMallocStats stats; | 
| 3314 |       ExtractStats(&stats, NULL); | 
| 3315 |       *value = stats.thread_bytes; | 
| 3316 |       return true; | 
| 3317 |     } | 
| 3318 |  | 
| 3319 |     return false; | 
| 3320 |   } | 
| 3321 |  | 
| 3322 |   virtual bool SetNumericProperty(const char* name, size_t value) { | 
| 3323 |     ASSERT(name != NULL); | 
| 3324 |  | 
| 3325 |     if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes" ) == 0) { | 
| 3326 |       // Clip the value to a reasonable range | 
| 3327 |       if (value < kMinThreadCacheSize) value = kMinThreadCacheSize; | 
| 3328 |       if (value > (1<<30)) value = (1<<30);     // Limit to 1GB | 
| 3329 |  | 
| 3330 |       SpinLockHolder l(&pageheap_lock); | 
| 3331 |       overall_thread_cache_size = static_cast<size_t>(value); | 
| 3332 |       TCMalloc_ThreadCache::RecomputeThreadCacheSize(); | 
| 3333 |       return true; | 
| 3334 |     } | 
| 3335 |  | 
| 3336 |     return false; | 
| 3337 |   } | 
| 3338 |  | 
| 3339 |   virtual void MarkThreadIdle() { | 
| 3340 |     TCMalloc_ThreadCache::BecomeIdle(); | 
| 3341 |   } | 
| 3342 |  | 
| 3343 |   virtual void ReleaseFreeMemory() { | 
| 3344 |     SpinLockHolder h(&pageheap_lock); | 
| 3345 |     pageheap->ReleaseFreePages(); | 
| 3346 |   } | 
| 3347 | }; | 
| 3348 | #endif | 
| 3349 |  | 
| 3350 | // The constructor allocates an object to ensure that initialization | 
| 3351 | // runs before main(), and therefore we do not have a chance to become | 
| 3352 | // multi-threaded before initialization.  We also create the TSD key | 
| 3353 | // here.  Presumably by the time this constructor runs, glibc is in | 
| 3354 | // good enough shape to handle pthread_key_create(). | 
| 3355 | // | 
| 3356 | // The constructor also takes the opportunity to tell STL to use | 
| 3357 | // tcmalloc.  We want to do this early, before construct time, so | 
| 3358 | // all user STL allocations go through tcmalloc (which works really | 
| 3359 | // well for STL). | 
| 3360 | // | 
| 3361 | // The destructor prints stats when the program exits. | 
| 3362 | class TCMallocGuard { | 
| 3363 |  public: | 
| 3364 |  | 
| 3365 |   TCMallocGuard() { | 
| 3366 | #ifdef HAVE_TLS    // this is true if the cc/ld/libc combo support TLS | 
| 3367 |     // Check whether the kernel also supports TLS (needs to happen at runtime) | 
| 3368 |     CheckIfKernelSupportsTLS(); | 
| 3369 | #endif | 
| 3370 | #ifndef WTF_CHANGES | 
| 3371 | #ifdef WIN32                    // patch the windows VirtualAlloc, etc. | 
| 3372 |     PatchWindowsFunctions();    // defined in windows/patch_functions.cc | 
| 3373 | #endif | 
| 3374 | #endif | 
| 3375 |     free(malloc(1)); | 
| 3376 |     TCMalloc_ThreadCache::InitTSD(); | 
| 3377 |     free(malloc(1)); | 
| 3378 | #ifndef WTF_CHANGES | 
| 3379 |     MallocExtension::Register(new TCMallocImplementation); | 
| 3380 | #endif | 
| 3381 |   } | 
| 3382 |  | 
| 3383 | #ifndef WTF_CHANGES | 
| 3384 |   ~TCMallocGuard() { | 
| 3385 |     const char* env = getenv("MALLOCSTATS" ); | 
| 3386 |     if (env != NULL) { | 
| 3387 |       int level = atoi(env); | 
| 3388 |       if (level < 1) level = 1; | 
| 3389 |       PrintStats(level); | 
| 3390 |     } | 
| 3391 | #ifdef WIN32 | 
| 3392 |     UnpatchWindowsFunctions(); | 
| 3393 | #endif | 
| 3394 |   } | 
| 3395 | #endif | 
| 3396 | }; | 
| 3397 |  | 
| 3398 | #ifndef WTF_CHANGES | 
| 3399 | static TCMallocGuard module_enter_exit_hook; | 
| 3400 | #endif | 
| 3401 |  | 
| 3402 |  | 
| 3403 | //------------------------------------------------------------------- | 
| 3404 | // Helpers for the exported routines below | 
| 3405 | //------------------------------------------------------------------- | 
| 3406 |  | 
| 3407 | #ifndef WTF_CHANGES | 
| 3408 |  | 
| 3409 | static Span* DoSampledAllocation(size_t size) { | 
| 3410 |  | 
| 3411 |   // Grab the stack trace outside the heap lock | 
| 3412 |   StackTrace tmp; | 
| 3413 |   tmp.depth = GetStackTrace(tmp.stack, kMaxStackDepth, 1); | 
| 3414 |   tmp.size = size; | 
| 3415 |  | 
| 3416 |   SpinLockHolder h(&pageheap_lock); | 
| 3417 |   // Allocate span | 
| 3418 |   Span *span = pageheap->New(pages(size == 0 ? 1 : size)); | 
| 3419 |   if (span == NULL) { | 
| 3420 |     return NULL; | 
| 3421 |   } | 
| 3422 |  | 
| 3423 |   // Allocate stack trace | 
| 3424 |   StackTrace *stack = stacktrace_allocator.New(); | 
| 3425 |   if (stack == NULL) { | 
| 3426 |     // Sampling failed because of lack of memory | 
| 3427 |     return span; | 
| 3428 |   } | 
| 3429 |  | 
| 3430 |   *stack = tmp; | 
| 3431 |   span->sample = 1; | 
| 3432 |   span->objects = stack; | 
| 3433 |   DLL_Prepend(&sampled_objects, span); | 
| 3434 |  | 
| 3435 |   return span; | 
| 3436 | } | 
| 3437 | #endif | 
| 3438 |  | 
| 3439 | static inline bool CheckCachedSizeClass(void *ptr) { | 
| 3440 |   PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; | 
| 3441 |   size_t cached_value = pageheap->GetSizeClassIfCached(p); | 
| 3442 |   return cached_value == 0 || | 
| 3443 |       cached_value == pageheap->GetDescriptor(p)->sizeclass; | 
| 3444 | } | 
| 3445 |  | 
| 3446 | static inline void* CheckedMallocResult(void *result) | 
| 3447 | { | 
| 3448 |   ASSERT(result == 0 || CheckCachedSizeClass(result)); | 
| 3449 |   return result; | 
| 3450 | } | 
| 3451 |  | 
| 3452 | static inline void* SpanToMallocResult(Span *span) { | 
| 3453 |   ASSERT_SPAN_COMMITTED(span); | 
| 3454 |   pageheap->CacheSizeClass(span->start, 0); | 
| 3455 |   return | 
| 3456 |       CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift)); | 
| 3457 | } | 
| 3458 |  | 
| 3459 | #ifdef WTF_CHANGES | 
| 3460 | template <bool crashOnFailure> | 
| 3461 | #endif | 
| 3462 | static ALWAYS_INLINE void* do_malloc(size_t size) { | 
| 3463 |   void* ret = NULL; | 
| 3464 |  | 
| 3465 | #ifdef WTF_CHANGES | 
| 3466 |     ASSERT(!isForbidden()); | 
| 3467 | #endif | 
| 3468 |  | 
| 3469 |   // The following call forces module initialization | 
| 3470 |   TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache(); | 
| 3471 | #ifndef WTF_CHANGES | 
| 3472 |   if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) { | 
| 3473 |     Span* span = DoSampledAllocation(size); | 
| 3474 |     if (span != NULL) { | 
| 3475 |       ret = SpanToMallocResult(span); | 
| 3476 |     } | 
| 3477 |   } else | 
| 3478 | #endif | 
| 3479 |   if (size > kMaxSize) { | 
| 3480 |     // Use page-level allocator | 
| 3481 |     SpinLockHolder h(&pageheap_lock); | 
| 3482 |     Span* span = pageheap->New(pages(size)); | 
| 3483 |     if (span != NULL) { | 
| 3484 |       ret = SpanToMallocResult(span); | 
| 3485 |     } | 
| 3486 |   } else { | 
| 3487 |     // The common case, and also the simplest.  This just pops the | 
| 3488 |     // size-appropriate freelist, afer replenishing it if it's empty. | 
| 3489 |     ret = CheckedMallocResult(heap->Allocate(size)); | 
| 3490 |   } | 
| 3491 |   if (!ret) { | 
| 3492 | #ifdef WTF_CHANGES | 
| 3493 |     if (crashOnFailure) // This branch should be optimized out by the compiler. | 
| 3494 |         CRASH(); | 
| 3495 | #else | 
| 3496 |     errno = ENOMEM; | 
| 3497 | #endif | 
| 3498 |   } | 
| 3499 |   return ret; | 
| 3500 | } | 
| 3501 |  | 
| 3502 | static ALWAYS_INLINE void do_free(void* ptr) { | 
| 3503 |   if (ptr == NULL) return; | 
| 3504 |   ASSERT(pageheap != NULL);  // Should not call free() before malloc() | 
| 3505 |   const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift; | 
| 3506 |   Span* span = NULL; | 
| 3507 |   size_t cl = pageheap->GetSizeClassIfCached(p); | 
| 3508 |  | 
| 3509 |   if (cl == 0) { | 
| 3510 |     span = pageheap->GetDescriptor(p); | 
| 3511 |     cl = span->sizeclass; | 
| 3512 |     pageheap->CacheSizeClass(p, cl); | 
| 3513 |   } | 
| 3514 |   if (cl != 0) { | 
| 3515 | #ifndef NO_TCMALLOC_SAMPLES | 
| 3516 |     ASSERT(!pageheap->GetDescriptor(p)->sample); | 
| 3517 | #endif | 
| 3518 |     TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent(); | 
| 3519 |     if (heap != NULL) { | 
| 3520 |       heap->Deallocate(ptr, cl); | 
| 3521 |     } else { | 
| 3522 |       // Delete directly into central cache | 
| 3523 |       SLL_SetNext(ptr, NULL); | 
| 3524 |       central_cache[cl].InsertRange(ptr, ptr, 1); | 
| 3525 |     } | 
| 3526 |   } else { | 
| 3527 |     SpinLockHolder h(&pageheap_lock); | 
| 3528 |     ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0); | 
| 3529 |     ASSERT(span != NULL && span->start == p); | 
| 3530 | #ifndef NO_TCMALLOC_SAMPLES | 
| 3531 |     if (span->sample) { | 
| 3532 |       DLL_Remove(span); | 
| 3533 |       stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects)); | 
| 3534 |       span->objects = NULL; | 
| 3535 |     } | 
| 3536 | #endif | 
| 3537 |     pageheap->Delete(span); | 
| 3538 |   } | 
| 3539 | } | 
| 3540 |  | 
| 3541 | #ifndef WTF_CHANGES | 
| 3542 | // For use by exported routines below that want specific alignments | 
| 3543 | // | 
| 3544 | // Note: this code can be slow, and can significantly fragment memory. | 
| 3545 | // The expectation is that memalign/posix_memalign/valloc/pvalloc will | 
| 3546 | // not be invoked very often.  This requirement simplifies our | 
| 3547 | // implementation and allows us to tune for expected allocation | 
| 3548 | // patterns. | 
| 3549 | static void* do_memalign(size_t align, size_t size) { | 
| 3550 |   ASSERT((align & (align - 1)) == 0); | 
| 3551 |   ASSERT(align > 0); | 
| 3552 |   if (pageheap == NULL) TCMalloc_ThreadCache::InitModule(); | 
| 3553 |  | 
| 3554 |   // Allocate at least one byte to avoid boundary conditions below | 
| 3555 |   if (size == 0) size = 1; | 
| 3556 |  | 
| 3557 |   if (size <= kMaxSize && align < kPageSize) { | 
| 3558 |     // Search through acceptable size classes looking for one with | 
| 3559 |     // enough alignment.  This depends on the fact that | 
| 3560 |     // InitSizeClasses() currently produces several size classes that | 
| 3561 |     // are aligned at powers of two.  We will waste time and space if | 
| 3562 |     // we miss in the size class array, but that is deemed acceptable | 
| 3563 |     // since memalign() should be used rarely. | 
| 3564 |     size_t cl = SizeClass(size); | 
| 3565 |     while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) { | 
| 3566 |       cl++; | 
| 3567 |     } | 
| 3568 |     if (cl < kNumClasses) { | 
| 3569 |       TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache(); | 
| 3570 |       return CheckedMallocResult(heap->Allocate(class_to_size[cl])); | 
| 3571 |     } | 
| 3572 |   } | 
| 3573 |  | 
| 3574 |   // We will allocate directly from the page heap | 
| 3575 |   SpinLockHolder h(&pageheap_lock); | 
| 3576 |  | 
| 3577 |   if (align <= kPageSize) { | 
| 3578 |     // Any page-level allocation will be fine | 
| 3579 |     // TODO: We could put the rest of this page in the appropriate | 
| 3580 |     // TODO: cache but it does not seem worth it. | 
| 3581 |     Span* span = pageheap->New(pages(size)); | 
| 3582 |     return span == NULL ? NULL : SpanToMallocResult(span); | 
| 3583 |   } | 
| 3584 |  | 
| 3585 |   // Allocate extra pages and carve off an aligned portion | 
| 3586 |   const Length alloc = pages(size + align); | 
| 3587 |   Span* span = pageheap->New(alloc); | 
| 3588 |   if (span == NULL) return NULL; | 
| 3589 |  | 
| 3590 |   // Skip starting portion so that we end up aligned | 
| 3591 |   Length skip = 0; | 
| 3592 |   while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) { | 
| 3593 |     skip++; | 
| 3594 |   } | 
| 3595 |   ASSERT(skip < alloc); | 
| 3596 |   if (skip > 0) { | 
| 3597 |     Span* rest = pageheap->Split(span, skip); | 
| 3598 |     pageheap->Delete(span); | 
| 3599 |     span = rest; | 
| 3600 |   } | 
| 3601 |  | 
| 3602 |   // Skip trailing portion that we do not need to return | 
| 3603 |   const Length needed = pages(size); | 
| 3604 |   ASSERT(span->length >= needed); | 
| 3605 |   if (span->length > needed) { | 
| 3606 |     Span* trailer = pageheap->Split(span, needed); | 
| 3607 |     pageheap->Delete(trailer); | 
| 3608 |   } | 
| 3609 |   return SpanToMallocResult(span); | 
| 3610 | } | 
| 3611 | #endif | 
| 3612 |  | 
| 3613 | // Helpers for use by exported routines below: | 
| 3614 |  | 
| 3615 | #ifndef WTF_CHANGES | 
| 3616 | static inline void do_malloc_stats() { | 
| 3617 |   PrintStats(1); | 
| 3618 | } | 
| 3619 | #endif | 
| 3620 |  | 
| 3621 | static inline int do_mallopt(int, int) { | 
| 3622 |   return 1;     // Indicates error | 
| 3623 | } | 
| 3624 |  | 
| 3625 | #ifdef HAVE_STRUCT_MALLINFO  // mallinfo isn't defined on freebsd, for instance | 
| 3626 | static inline struct mallinfo do_mallinfo() { | 
| 3627 |   TCMallocStats stats; | 
| 3628 |   ExtractStats(&stats, NULL); | 
| 3629 |  | 
| 3630 |   // Just some of the fields are filled in. | 
| 3631 |   struct mallinfo info; | 
| 3632 |   memset(&info, 0, sizeof(info)); | 
| 3633 |  | 
| 3634 |   // Unfortunately, the struct contains "int" field, so some of the | 
| 3635 |   // size values will be truncated. | 
| 3636 |   info.arena     = static_cast<int>(stats.system_bytes); | 
| 3637 |   info.fsmblks   = static_cast<int>(stats.thread_bytes | 
| 3638 |                                     + stats.central_bytes | 
| 3639 |                                     + stats.transfer_bytes); | 
| 3640 |   info.fordblks  = static_cast<int>(stats.pageheap_bytes); | 
| 3641 |   info.uordblks  = static_cast<int>(stats.system_bytes | 
| 3642 |                                     - stats.thread_bytes | 
| 3643 |                                     - stats.central_bytes | 
| 3644 |                                     - stats.transfer_bytes | 
| 3645 |                                     - stats.pageheap_bytes); | 
| 3646 |  | 
| 3647 |   return info; | 
| 3648 | } | 
| 3649 | #endif | 
| 3650 |  | 
| 3651 | //------------------------------------------------------------------- | 
| 3652 | // Exported routines | 
| 3653 | //------------------------------------------------------------------- | 
| 3654 |  | 
| 3655 | // CAVEAT: The code structure below ensures that MallocHook methods are always | 
| 3656 | //         called from the stack frame of the invoked allocation function. | 
| 3657 | //         heap-checker.cc depends on this to start a stack trace from | 
| 3658 | //         the call to the (de)allocation function. | 
| 3659 |  | 
| 3660 | #ifndef WTF_CHANGES | 
| 3661 | extern "C"   | 
| 3662 | #else | 
| 3663 | #define do_malloc do_malloc<crashOnFailure> | 
| 3664 |  | 
| 3665 | template <bool crashOnFailure> | 
| 3666 | void* malloc(size_t); | 
| 3667 |  | 
| 3668 | void* fastMalloc(size_t size) | 
| 3669 | { | 
| 3670 |     return malloc<true>(size); | 
| 3671 | } | 
| 3672 |  | 
| 3673 | TryMallocReturnValue tryFastMalloc(size_t size) | 
| 3674 | { | 
| 3675 |     return malloc<false>(size); | 
| 3676 | } | 
| 3677 |  | 
| 3678 | template <bool crashOnFailure> | 
| 3679 | ALWAYS_INLINE | 
| 3680 | #endif | 
| 3681 | void* malloc(size_t size) { | 
| 3682 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 3683 |     if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= size)  // If overflow would occur... | 
| 3684 |         return 0; | 
| 3685 |     size += sizeof(AllocAlignmentInteger); | 
| 3686 |     void* result = do_malloc(size); | 
| 3687 |     if (!result) | 
| 3688 |         return 0; | 
| 3689 |  | 
| 3690 |     *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc; | 
| 3691 |     result = static_cast<AllocAlignmentInteger*>(result) + 1; | 
| 3692 | #else | 
| 3693 |     void* result = do_malloc(size); | 
| 3694 | #endif | 
| 3695 |  | 
| 3696 | #ifndef WTF_CHANGES | 
| 3697 |   MallocHook::InvokeNewHook(result, size); | 
| 3698 | #endif | 
| 3699 |   return result; | 
| 3700 | } | 
| 3701 |  | 
| 3702 | #ifndef WTF_CHANGES | 
| 3703 | extern "C"   | 
| 3704 | #endif | 
| 3705 | void free(void* ptr) { | 
| 3706 | #ifndef WTF_CHANGES | 
| 3707 |   MallocHook::InvokeDeleteHook(ptr); | 
| 3708 | #endif | 
| 3709 |  | 
| 3710 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 3711 |     if (!ptr) | 
| 3712 |         return; | 
| 3713 |  | 
| 3714 |     AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(ptr); | 
| 3715 |     if (*header != Internal::AllocTypeMalloc) | 
| 3716 |         Internal::fastMallocMatchFailed(ptr); | 
| 3717 |     do_free(header); | 
| 3718 | #else | 
| 3719 |     do_free(ptr); | 
| 3720 | #endif | 
| 3721 | } | 
| 3722 |  | 
| 3723 | #ifndef WTF_CHANGES | 
| 3724 | extern "C"   | 
| 3725 | #else | 
| 3726 | template <bool crashOnFailure> | 
| 3727 | void* calloc(size_t, size_t); | 
| 3728 |  | 
| 3729 | void* fastCalloc(size_t n, size_t elem_size) | 
| 3730 | { | 
| 3731 |     return calloc<true>(n, elem_size); | 
| 3732 | } | 
| 3733 |  | 
| 3734 | TryMallocReturnValue tryFastCalloc(size_t n, size_t elem_size) | 
| 3735 | { | 
| 3736 |     return calloc<false>(n, elem_size); | 
| 3737 | } | 
| 3738 |  | 
| 3739 | template <bool crashOnFailure> | 
| 3740 | ALWAYS_INLINE | 
| 3741 | #endif | 
| 3742 | void* calloc(size_t n, size_t elem_size) { | 
| 3743 |   size_t totalBytes = n * elem_size; | 
| 3744 |      | 
| 3745 |   // Protect against overflow | 
| 3746 |   if (n > 1 && elem_size && (totalBytes / elem_size) != n) | 
| 3747 |     return 0; | 
| 3748 |  | 
| 3749 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 3750 |     if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes)  // If overflow would occur... | 
| 3751 |         return 0; | 
| 3752 |  | 
| 3753 |     totalBytes += sizeof(AllocAlignmentInteger); | 
| 3754 |     void* result = do_malloc(totalBytes); | 
| 3755 |     if (!result) | 
| 3756 |         return 0; | 
| 3757 |  | 
| 3758 |     memset(result, 0, totalBytes); | 
| 3759 |     *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc; | 
| 3760 |     result = static_cast<AllocAlignmentInteger*>(result) + 1; | 
| 3761 | #else | 
| 3762 |     void* result = do_malloc(totalBytes); | 
| 3763 |     if (result != NULL) { | 
| 3764 |         memset(result, 0, totalBytes); | 
| 3765 |     } | 
| 3766 | #endif | 
| 3767 |  | 
| 3768 | #ifndef WTF_CHANGES | 
| 3769 |   MallocHook::InvokeNewHook(result, totalBytes); | 
| 3770 | #endif | 
| 3771 |   return result; | 
| 3772 | } | 
| 3773 |  | 
| 3774 | // Since cfree isn't used anywhere, we don't compile it in. | 
| 3775 | #ifndef WTF_CHANGES | 
| 3776 | #ifndef WTF_CHANGES | 
| 3777 | extern "C"   | 
| 3778 | #endif | 
| 3779 | void cfree(void* ptr) { | 
| 3780 | #ifndef WTF_CHANGES | 
| 3781 |     MallocHook::InvokeDeleteHook(ptr); | 
| 3782 | #endif | 
| 3783 |   do_free(ptr); | 
| 3784 | } | 
| 3785 | #endif | 
| 3786 |  | 
| 3787 | #ifndef WTF_CHANGES | 
| 3788 | extern "C"   | 
| 3789 | #else | 
| 3790 | template <bool crashOnFailure> | 
| 3791 | void* realloc(void*, size_t); | 
| 3792 |  | 
| 3793 | void* fastRealloc(void* old_ptr, size_t new_size) | 
| 3794 | { | 
| 3795 |     return realloc<true>(old_ptr, new_size); | 
| 3796 | } | 
| 3797 |  | 
| 3798 | TryMallocReturnValue tryFastRealloc(void* old_ptr, size_t new_size) | 
| 3799 | { | 
| 3800 |     return realloc<false>(old_ptr, new_size); | 
| 3801 | } | 
| 3802 |  | 
| 3803 | template <bool crashOnFailure> | 
| 3804 | ALWAYS_INLINE | 
| 3805 | #endif | 
| 3806 | void* realloc(void* old_ptr, size_t new_size) { | 
| 3807 |   if (old_ptr == NULL) { | 
| 3808 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 3809 |     void* result = malloc(new_size); | 
| 3810 | #else | 
| 3811 |     void* result = do_malloc(new_size); | 
| 3812 | #ifndef WTF_CHANGES | 
| 3813 |     MallocHook::InvokeNewHook(result, new_size); | 
| 3814 | #endif | 
| 3815 | #endif | 
| 3816 |     return result; | 
| 3817 |   } | 
| 3818 |   if (new_size == 0) { | 
| 3819 | #ifndef WTF_CHANGES | 
| 3820 |     MallocHook::InvokeDeleteHook(old_ptr); | 
| 3821 | #endif | 
| 3822 |     free(old_ptr); | 
| 3823 |     return NULL; | 
| 3824 |   } | 
| 3825 |  | 
| 3826 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 3827 |     if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= new_size)  // If overflow would occur... | 
| 3828 |         return 0; | 
| 3829 |     new_size += sizeof(AllocAlignmentInteger); | 
| 3830 |     AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(old_ptr); | 
| 3831 |     if (*header != Internal::AllocTypeMalloc) | 
| 3832 |         Internal::fastMallocMatchFailed(old_ptr); | 
| 3833 |     old_ptr = header; | 
| 3834 | #endif | 
| 3835 |  | 
| 3836 |   // Get the size of the old entry | 
| 3837 |   const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift; | 
| 3838 |   size_t cl = pageheap->GetSizeClassIfCached(p); | 
| 3839 |   Span *span = NULL; | 
| 3840 |   size_t old_size; | 
| 3841 |   if (cl == 0) { | 
| 3842 |     span = pageheap->GetDescriptor(p); | 
| 3843 |     cl = span->sizeclass; | 
| 3844 |     pageheap->CacheSizeClass(p, cl); | 
| 3845 |   } | 
| 3846 |   if (cl != 0) { | 
| 3847 |     old_size = ByteSizeForClass(cl); | 
| 3848 |   } else { | 
| 3849 |     ASSERT(span != NULL); | 
| 3850 |     old_size = span->length << kPageShift; | 
| 3851 |   } | 
| 3852 |  | 
| 3853 |   // Reallocate if the new size is larger than the old size, | 
| 3854 |   // or if the new size is significantly smaller than the old size. | 
| 3855 |   if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) { | 
| 3856 |     // Need to reallocate | 
| 3857 |     void* new_ptr = do_malloc(new_size); | 
| 3858 |     if (new_ptr == NULL) { | 
| 3859 |       return NULL; | 
| 3860 |     } | 
| 3861 | #ifndef WTF_CHANGES | 
| 3862 |     MallocHook::InvokeNewHook(new_ptr, new_size); | 
| 3863 | #endif | 
| 3864 |     memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size)); | 
| 3865 | #ifndef WTF_CHANGES | 
| 3866 |     MallocHook::InvokeDeleteHook(old_ptr); | 
| 3867 | #endif | 
| 3868 |     // We could use a variant of do_free() that leverages the fact | 
| 3869 |     // that we already know the sizeclass of old_ptr.  The benefit | 
| 3870 |     // would be small, so don't bother. | 
| 3871 |     do_free(old_ptr); | 
| 3872 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 3873 |     new_ptr = static_cast<AllocAlignmentInteger*>(new_ptr) + 1; | 
| 3874 | #endif | 
| 3875 |     return new_ptr; | 
| 3876 |   } else { | 
| 3877 | #if ENABLE(FAST_MALLOC_MATCH_VALIDATION) | 
| 3878 |     old_ptr = static_cast<AllocAlignmentInteger*>(old_ptr) + 1; // Set old_ptr back to the user pointer. | 
| 3879 | #endif | 
| 3880 |     return old_ptr; | 
| 3881 |   } | 
| 3882 | } | 
| 3883 |  | 
| 3884 | #ifdef WTF_CHANGES | 
| 3885 | #undef do_malloc | 
| 3886 | #else | 
| 3887 |  | 
| 3888 | static SpinLock set_new_handler_lock = SPINLOCK_INITIALIZER; | 
| 3889 |  | 
| 3890 | static inline void* cpp_alloc(size_t size, bool nothrow) { | 
| 3891 |   for (;;) { | 
| 3892 |     void* p = do_malloc(size); | 
| 3893 | #ifdef PREANSINEW | 
| 3894 |     return p; | 
| 3895 | #else | 
| 3896 |     if (p == NULL) {  // allocation failed | 
| 3897 |       // Get the current new handler.  NB: this function is not | 
| 3898 |       // thread-safe.  We make a feeble stab at making it so here, but | 
| 3899 |       // this lock only protects against tcmalloc interfering with | 
| 3900 |       // itself, not with other libraries calling set_new_handler. | 
| 3901 |       std::new_handler nh; | 
| 3902 |       { | 
| 3903 |         SpinLockHolder h(&set_new_handler_lock); | 
| 3904 |         nh = std::set_new_handler(0); | 
| 3905 |         (void) std::set_new_handler(nh); | 
| 3906 |       } | 
| 3907 |       // If no new_handler is established, the allocation failed. | 
| 3908 |       if (!nh) { | 
| 3909 |         if (nothrow) return 0; | 
| 3910 |         throw std::bad_alloc(); | 
| 3911 |       } | 
| 3912 |       // Otherwise, try the new_handler.  If it returns, retry the | 
| 3913 |       // allocation.  If it throws std::bad_alloc, fail the allocation. | 
| 3914 |       // if it throws something else, don't interfere. | 
| 3915 |       try { | 
| 3916 |         (*nh)(); | 
| 3917 |       } catch (const std::bad_alloc&) { | 
| 3918 |         if (!nothrow) throw; | 
| 3919 |         return p; | 
| 3920 |       } | 
| 3921 |     } else {  // allocation success | 
| 3922 |       return p; | 
| 3923 |     } | 
| 3924 | #endif | 
| 3925 |   } | 
| 3926 | } | 
| 3927 |  | 
| 3928 | void* operator new(size_t size) { | 
| 3929 |   void* p = cpp_alloc(size, false); | 
| 3930 |   // We keep this next instruction out of cpp_alloc for a reason: when | 
| 3931 |   // it's in, and new just calls cpp_alloc, the optimizer may fold the | 
| 3932 |   // new call into cpp_alloc, which messes up our whole section-based | 
| 3933 |   // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc | 
| 3934 |   // isn't the last thing this fn calls, and prevents the folding. | 
| 3935 |   MallocHook::InvokeNewHook(p, size); | 
| 3936 |   return p; | 
| 3937 | } | 
| 3938 |  | 
| 3939 | void* operator new(size_t size, const std::nothrow_t&) __THROW { | 
| 3940 |   void* p = cpp_alloc(size, true); | 
| 3941 |   MallocHook::InvokeNewHook(p, size); | 
| 3942 |   return p; | 
| 3943 | } | 
| 3944 |  | 
| 3945 | void operator delete(void* p) __THROW { | 
| 3946 |   MallocHook::InvokeDeleteHook(p); | 
| 3947 |   do_free(p); | 
| 3948 | } | 
| 3949 |  | 
| 3950 | void operator delete(void* p, const std::nothrow_t&) __THROW { | 
| 3951 |   MallocHook::InvokeDeleteHook(p); | 
| 3952 |   do_free(p); | 
| 3953 | } | 
| 3954 |  | 
| 3955 | void* operator new[](size_t size) { | 
| 3956 |   void* p = cpp_alloc(size, false); | 
| 3957 |   // We keep this next instruction out of cpp_alloc for a reason: when | 
| 3958 |   // it's in, and new just calls cpp_alloc, the optimizer may fold the | 
| 3959 |   // new call into cpp_alloc, which messes up our whole section-based | 
| 3960 |   // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc | 
| 3961 |   // isn't the last thing this fn calls, and prevents the folding. | 
| 3962 |   MallocHook::InvokeNewHook(p, size); | 
| 3963 |   return p; | 
| 3964 | } | 
| 3965 |  | 
| 3966 | void* operator new[](size_t size, const std::nothrow_t&) __THROW { | 
| 3967 |   void* p = cpp_alloc(size, true); | 
| 3968 |   MallocHook::InvokeNewHook(p, size); | 
| 3969 |   return p; | 
| 3970 | } | 
| 3971 |  | 
| 3972 | void operator delete[](void* p) __THROW { | 
| 3973 |   MallocHook::InvokeDeleteHook(p); | 
| 3974 |   do_free(p); | 
| 3975 | } | 
| 3976 |  | 
| 3977 | void operator delete[](void* p, const std::nothrow_t&) __THROW { | 
| 3978 |   MallocHook::InvokeDeleteHook(p); | 
| 3979 |   do_free(p); | 
| 3980 | } | 
| 3981 |  | 
| 3982 | extern "C"  void* memalign(size_t align, size_t size) __THROW { | 
| 3983 |   void* result = do_memalign(align, size); | 
| 3984 |   MallocHook::InvokeNewHook(result, size); | 
| 3985 |   return result; | 
| 3986 | } | 
| 3987 |  | 
| 3988 | extern "C"  int posix_memalign(void** result_ptr, size_t align, size_t size) | 
| 3989 |     __THROW { | 
| 3990 |   if (((align % sizeof(void*)) != 0) || | 
| 3991 |       ((align & (align - 1)) != 0) || | 
| 3992 |       (align == 0)) { | 
| 3993 |     return EINVAL; | 
| 3994 |   } | 
| 3995 |  | 
| 3996 |   void* result = do_memalign(align, size); | 
| 3997 |   MallocHook::InvokeNewHook(result, size); | 
| 3998 |   if (result == NULL) { | 
| 3999 |     return ENOMEM; | 
| 4000 |   } else { | 
| 4001 |     *result_ptr = result; | 
| 4002 |     return 0; | 
| 4003 |   } | 
| 4004 | } | 
| 4005 |  | 
| 4006 | static size_t pagesize = 0; | 
| 4007 |  | 
| 4008 | extern "C"  void* valloc(size_t size) __THROW { | 
| 4009 |   // Allocate page-aligned object of length >= size bytes | 
| 4010 |   if (pagesize == 0) pagesize = getpagesize(); | 
| 4011 |   void* result = do_memalign(pagesize, size); | 
| 4012 |   MallocHook::InvokeNewHook(result, size); | 
| 4013 |   return result; | 
| 4014 | } | 
| 4015 |  | 
| 4016 | extern "C"  void* pvalloc(size_t size) __THROW { | 
| 4017 |   // Round up size to a multiple of pagesize | 
| 4018 |   if (pagesize == 0) pagesize = getpagesize(); | 
| 4019 |   size = (size + pagesize - 1) & ~(pagesize - 1); | 
| 4020 |   void* result = do_memalign(pagesize, size); | 
| 4021 |   MallocHook::InvokeNewHook(result, size); | 
| 4022 |   return result; | 
| 4023 | } | 
| 4024 |  | 
| 4025 | extern "C"  void malloc_stats(void) { | 
| 4026 |   do_malloc_stats(); | 
| 4027 | } | 
| 4028 |  | 
| 4029 | extern "C"  int mallopt(int cmd, int value) { | 
| 4030 |   return do_mallopt(cmd, value); | 
| 4031 | } | 
| 4032 |  | 
| 4033 | #ifdef HAVE_STRUCT_MALLINFO | 
| 4034 | extern "C"  struct mallinfo mallinfo(void) { | 
| 4035 |   return do_mallinfo(); | 
| 4036 | } | 
| 4037 | #endif | 
| 4038 |  | 
| 4039 | //------------------------------------------------------------------- | 
| 4040 | // Some library routines on RedHat 9 allocate memory using malloc() | 
| 4041 | // and free it using __libc_free() (or vice-versa).  Since we provide | 
| 4042 | // our own implementations of malloc/free, we need to make sure that | 
| 4043 | // the __libc_XXX variants (defined as part of glibc) also point to | 
| 4044 | // the same implementations. | 
| 4045 | //------------------------------------------------------------------- | 
| 4046 |  | 
| 4047 | #if defined(__GLIBC__) | 
| 4048 | extern "C"  { | 
| 4049 | #if COMPILER(GCC) && !defined(__MACH__) && defined(HAVE___ATTRIBUTE__) | 
| 4050 |   // Potentially faster variants that use the gcc alias extension. | 
| 4051 |   // Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check. | 
| 4052 | # define ALIAS(x) __attribute__ ((weak, alias (x))) | 
| 4053 |   void* __libc_malloc(size_t size)              ALIAS("malloc" ); | 
| 4054 |   void  __libc_free(void* ptr)                  ALIAS("free" ); | 
| 4055 |   void* __libc_realloc(void* ptr, size_t size)  ALIAS("realloc" ); | 
| 4056 |   void* __libc_calloc(size_t n, size_t size)    ALIAS("calloc" ); | 
| 4057 |   void  __libc_cfree(void* ptr)                 ALIAS("cfree" ); | 
| 4058 |   void* __libc_memalign(size_t align, size_t s) ALIAS("memalign" ); | 
| 4059 |   void* __libc_valloc(size_t size)              ALIAS("valloc" ); | 
| 4060 |   void* __libc_pvalloc(size_t size)             ALIAS("pvalloc" ); | 
| 4061 |   int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign" ); | 
| 4062 | # undef ALIAS | 
| 4063 | # else   /* not __GNUC__ */ | 
| 4064 |   // Portable wrappers | 
| 4065 |   void* __libc_malloc(size_t size)              { return malloc(size);       } | 
| 4066 |   void  __libc_free(void* ptr)                  { free(ptr);                 } | 
| 4067 |   void* __libc_realloc(void* ptr, size_t size)  { return realloc(ptr, size); } | 
| 4068 |   void* __libc_calloc(size_t n, size_t size)    { return calloc(n, size);    } | 
| 4069 |   void  __libc_cfree(void* ptr)                 { cfree(ptr);                } | 
| 4070 |   void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); } | 
| 4071 |   void* __libc_valloc(size_t size)              { return valloc(size);       } | 
| 4072 |   void* __libc_pvalloc(size_t size)             { return pvalloc(size);      } | 
| 4073 |   int __posix_memalign(void** r, size_t a, size_t s) { | 
| 4074 |     return posix_memalign(r, a, s); | 
| 4075 |   } | 
| 4076 | # endif  /* __GNUC__ */ | 
| 4077 | } | 
| 4078 | #endif   /* __GLIBC__ */ | 
| 4079 |  | 
| 4080 | // Override __libc_memalign in libc on linux boxes specially. | 
| 4081 | // They have a bug in libc that causes them to (very rarely) allocate | 
| 4082 | // with __libc_memalign() yet deallocate with free() and the | 
| 4083 | // definitions above don't catch it. | 
| 4084 | // This function is an exception to the rule of calling MallocHook method | 
| 4085 | // from the stack frame of the allocation function; | 
| 4086 | // heap-checker handles this special case explicitly. | 
| 4087 | static void *MemalignOverride(size_t align, size_t size, const void *caller) | 
| 4088 |     __THROW { | 
| 4089 |   void* result = do_memalign(align, size); | 
| 4090 |   MallocHook::InvokeNewHook(result, size); | 
| 4091 |   return result; | 
| 4092 | } | 
| 4093 | void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride; | 
| 4094 |  | 
| 4095 | #endif | 
| 4096 |  | 
| 4097 | #if defined(WTF_CHANGES) && OS(DARWIN) | 
| 4098 |  | 
| 4099 | class FreeObjectFinder { | 
| 4100 |     const RemoteMemoryReader& m_reader; | 
| 4101 |     HashSet<void*> m_freeObjects; | 
| 4102 |  | 
| 4103 | public: | 
| 4104 |     FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { } | 
| 4105 |  | 
| 4106 |     void visit(void* ptr) { m_freeObjects.add(ptr); } | 
| 4107 |     bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); } | 
| 4108 |     bool isFreeObject(vm_address_t ptr) const { return isFreeObject(reinterpret_cast<void*>(ptr)); } | 
| 4109 |     size_t freeObjectCount() const { return m_freeObjects.size(); } | 
| 4110 |  | 
| 4111 |     void findFreeObjects(TCMalloc_ThreadCache* threadCache) | 
| 4112 |     { | 
| 4113 |         for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0)) | 
| 4114 |             threadCache->enumerateFreeObjects(*this, m_reader); | 
| 4115 |     } | 
| 4116 |  | 
| 4117 |     void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes, TCMalloc_Central_FreeListPadded* remoteCentralFreeList) | 
| 4118 |     { | 
| 4119 |         for (unsigned i = 0; i < numSizes; i++) | 
| 4120 |             centralFreeList[i].enumerateFreeObjects(*this, m_reader, remoteCentralFreeList + i); | 
| 4121 |     } | 
| 4122 | }; | 
| 4123 |  | 
| 4124 | class PageMapFreeObjectFinder { | 
| 4125 |     const RemoteMemoryReader& m_reader; | 
| 4126 |     FreeObjectFinder& m_freeObjectFinder; | 
| 4127 |  | 
| 4128 | public: | 
| 4129 |     PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder) | 
| 4130 |         : m_reader(reader) | 
| 4131 |         , m_freeObjectFinder(freeObjectFinder) | 
| 4132 |     { } | 
| 4133 |  | 
| 4134 |     int visit(void* ptr) const | 
| 4135 |     { | 
| 4136 |         if (!ptr) | 
| 4137 |             return 1; | 
| 4138 |  | 
| 4139 |         Span* span = m_reader(reinterpret_cast<Span*>(ptr)); | 
| 4140 |         if (span->free) { | 
| 4141 |             void* ptr = reinterpret_cast<void*>(span->start << kPageShift); | 
| 4142 |             m_freeObjectFinder.visit(ptr); | 
| 4143 |         } else if (span->sizeclass) { | 
| 4144 |             // Walk the free list of the small-object span, keeping track of each object seen | 
| 4145 |             for (void* nextObject = span->objects; nextObject; nextObject = *m_reader(reinterpret_cast<void**>(nextObject))) | 
| 4146 |                 m_freeObjectFinder.visit(nextObject); | 
| 4147 |         } | 
| 4148 |         return span->length; | 
| 4149 |     } | 
| 4150 | }; | 
| 4151 |  | 
| 4152 | class PageMapMemoryUsageRecorder { | 
| 4153 |     task_t m_task; | 
| 4154 |     void* m_context; | 
| 4155 |     unsigned m_typeMask; | 
| 4156 |     vm_range_recorder_t* m_recorder; | 
| 4157 |     const RemoteMemoryReader& m_reader; | 
| 4158 |     const FreeObjectFinder& m_freeObjectFinder; | 
| 4159 |  | 
| 4160 |     HashSet<void*> m_seenPointers; | 
| 4161 |     Vector<Span*> m_coalescedSpans; | 
| 4162 |  | 
| 4163 | public: | 
| 4164 |     PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder) | 
| 4165 |         : m_task(task) | 
| 4166 |         , m_context(context) | 
| 4167 |         , m_typeMask(typeMask) | 
| 4168 |         , m_recorder(recorder) | 
| 4169 |         , m_reader(reader) | 
| 4170 |         , m_freeObjectFinder(freeObjectFinder) | 
| 4171 |     { } | 
| 4172 |  | 
| 4173 |     ~PageMapMemoryUsageRecorder() | 
| 4174 |     { | 
| 4175 |         ASSERT(!m_coalescedSpans.size()); | 
| 4176 |     } | 
| 4177 |  | 
| 4178 |     void recordPendingRegions() | 
| 4179 |     { | 
| 4180 |         Span* lastSpan = m_coalescedSpans[m_coalescedSpans.size() - 1]; | 
| 4181 |         vm_range_t ptrRange = { m_coalescedSpans[0]->start << kPageShift, 0 }; | 
| 4182 |         ptrRange.size = (lastSpan->start << kPageShift) - ptrRange.address + (lastSpan->length * kPageSize); | 
| 4183 |  | 
| 4184 |         // Mark the memory region the spans represent as a candidate for containing pointers | 
| 4185 |         if (m_typeMask & MALLOC_PTR_REGION_RANGE_TYPE) | 
| 4186 |             (*m_recorder)(m_task, m_context, MALLOC_PTR_REGION_RANGE_TYPE, &ptrRange, 1); | 
| 4187 |  | 
| 4188 |         if (!(m_typeMask & MALLOC_PTR_IN_USE_RANGE_TYPE)) { | 
| 4189 |             m_coalescedSpans.clear(); | 
| 4190 |             return; | 
| 4191 |         } | 
| 4192 |  | 
| 4193 |         Vector<vm_range_t, 1024> allocatedPointers; | 
| 4194 |         for (size_t i = 0; i < m_coalescedSpans.size(); ++i) { | 
| 4195 |             Span *theSpan = m_coalescedSpans[i]; | 
| 4196 |             if (theSpan->free) | 
| 4197 |                 continue; | 
| 4198 |  | 
| 4199 |             vm_address_t spanStartAddress = theSpan->start << kPageShift; | 
| 4200 |             vm_size_t spanSizeInBytes = theSpan->length * kPageSize; | 
| 4201 |  | 
| 4202 |             if (!theSpan->sizeclass) { | 
| 4203 |                 // If it's an allocated large object span, mark it as in use | 
| 4204 |                 if (!m_freeObjectFinder.isFreeObject(spanStartAddress)) | 
| 4205 |                     allocatedPointers.append((vm_range_t){spanStartAddress, spanSizeInBytes}); | 
| 4206 |             } else { | 
| 4207 |                 const size_t objectSize = ByteSizeForClass(theSpan->sizeclass); | 
| 4208 |  | 
| 4209 |                 // Mark each allocated small object within the span as in use | 
| 4210 |                 const vm_address_t endOfSpan = spanStartAddress + spanSizeInBytes; | 
| 4211 |                 for (vm_address_t object = spanStartAddress; object + objectSize <= endOfSpan; object += objectSize) { | 
| 4212 |                     if (!m_freeObjectFinder.isFreeObject(object)) | 
| 4213 |                         allocatedPointers.append((vm_range_t){object, objectSize}); | 
| 4214 |                 } | 
| 4215 |             } | 
| 4216 |         } | 
| 4217 |  | 
| 4218 |         (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, allocatedPointers.data(), allocatedPointers.size()); | 
| 4219 |  | 
| 4220 |         m_coalescedSpans.clear(); | 
| 4221 |     } | 
| 4222 |  | 
| 4223 |     int visit(void* ptr) | 
| 4224 |     { | 
| 4225 |         if (!ptr) | 
| 4226 |             return 1; | 
| 4227 |  | 
| 4228 |         Span* span = m_reader(reinterpret_cast<Span*>(ptr)); | 
| 4229 |         if (!span->start) | 
| 4230 |             return 1; | 
| 4231 |  | 
| 4232 |         if (m_seenPointers.contains(ptr)) | 
| 4233 |             return span->length; | 
| 4234 |         m_seenPointers.add(ptr); | 
| 4235 |  | 
| 4236 |         if (!m_coalescedSpans.size()) { | 
| 4237 |             m_coalescedSpans.append(span); | 
| 4238 |             return span->length; | 
| 4239 |         } | 
| 4240 |  | 
| 4241 |         Span* previousSpan = m_coalescedSpans[m_coalescedSpans.size() - 1]; | 
| 4242 |         vm_address_t previousSpanStartAddress = previousSpan->start << kPageShift; | 
| 4243 |         vm_size_t previousSpanSizeInBytes = previousSpan->length * kPageSize; | 
| 4244 |  | 
| 4245 |         // If the new span is adjacent to the previous span, do nothing for now. | 
| 4246 |         vm_address_t spanStartAddress = span->start << kPageShift; | 
| 4247 |         if (spanStartAddress == previousSpanStartAddress + previousSpanSizeInBytes) { | 
| 4248 |             m_coalescedSpans.append(span); | 
| 4249 |             return span->length; | 
| 4250 |         } | 
| 4251 |  | 
| 4252 |         // New span is not adjacent to previous span, so record the spans coalesced so far. | 
| 4253 |         recordPendingRegions(); | 
| 4254 |         m_coalescedSpans.append(span); | 
| 4255 |  | 
| 4256 |         return span->length; | 
| 4257 |     } | 
| 4258 | }; | 
| 4259 |  | 
| 4260 | class AdminRegionRecorder { | 
| 4261 |     task_t m_task; | 
| 4262 |     void* m_context; | 
| 4263 |     unsigned m_typeMask; | 
| 4264 |     vm_range_recorder_t* m_recorder; | 
| 4265 |     const RemoteMemoryReader& m_reader; | 
| 4266 |  | 
| 4267 |     Vector<vm_range_t, 1024> m_pendingRegions; | 
| 4268 |  | 
| 4269 | public: | 
| 4270 |     AdminRegionRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader) | 
| 4271 |         : m_task(task) | 
| 4272 |         , m_context(context) | 
| 4273 |         , m_typeMask(typeMask) | 
| 4274 |         , m_recorder(recorder) | 
| 4275 |         , m_reader(reader) | 
| 4276 |     { } | 
| 4277 |  | 
| 4278 |     void recordRegion(vm_address_t ptr, size_t size) | 
| 4279 |     { | 
| 4280 |         if (m_typeMask & MALLOC_ADMIN_REGION_RANGE_TYPE) | 
| 4281 |             m_pendingRegions.append((vm_range_t){ ptr, size }); | 
| 4282 |     } | 
| 4283 |  | 
| 4284 |     void visit(void *ptr, size_t size) | 
| 4285 |     { | 
| 4286 |         recordRegion(reinterpret_cast<vm_address_t>(ptr), size); | 
| 4287 |     } | 
| 4288 |  | 
| 4289 |     void recordPendingRegions() | 
| 4290 |     { | 
| 4291 |         if (m_pendingRegions.size()) { | 
| 4292 |             (*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, m_pendingRegions.data(), m_pendingRegions.size()); | 
| 4293 |             m_pendingRegions.clear(); | 
| 4294 |         } | 
| 4295 |     } | 
| 4296 |  | 
| 4297 |     ~AdminRegionRecorder() | 
| 4298 |     { | 
| 4299 |         ASSERT(!m_pendingRegions.size()); | 
| 4300 |     } | 
| 4301 | }; | 
| 4302 |  | 
| 4303 | kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder) | 
| 4304 | { | 
| 4305 |     RemoteMemoryReader memoryReader(task, reader); | 
| 4306 |  | 
| 4307 |     InitSizeClasses(); | 
| 4308 |  | 
| 4309 |     FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress)); | 
| 4310 |     TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap); | 
| 4311 |     TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps); | 
| 4312 |     TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer); | 
| 4313 |  | 
| 4314 |     TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses); | 
| 4315 |  | 
| 4316 |     FreeObjectFinder finder(memoryReader); | 
| 4317 |     finder.findFreeObjects(threadHeaps); | 
| 4318 |     finder.findFreeObjects(centralCaches, kNumClasses, mzone->m_centralCaches); | 
| 4319 |  | 
| 4320 |     TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_; | 
| 4321 |     PageMapFreeObjectFinder pageMapFinder(memoryReader, finder); | 
| 4322 |     pageMap->visitValues(pageMapFinder, memoryReader); | 
| 4323 |  | 
| 4324 |     PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder); | 
| 4325 |     pageMap->visitValues(usageRecorder, memoryReader); | 
| 4326 |     usageRecorder.recordPendingRegions(); | 
| 4327 |  | 
| 4328 |     AdminRegionRecorder adminRegionRecorder(task, context, typeMask, recorder, memoryReader); | 
| 4329 |     pageMap->visitAllocations(adminRegionRecorder, memoryReader); | 
| 4330 |  | 
| 4331 |     PageHeapAllocator<Span>* spanAllocator = memoryReader(mzone->m_spanAllocator); | 
| 4332 |     PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator = memoryReader(mzone->m_pageHeapAllocator); | 
| 4333 |  | 
| 4334 |     spanAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader); | 
| 4335 |     pageHeapAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader); | 
| 4336 |  | 
| 4337 |     adminRegionRecorder.recordPendingRegions(); | 
| 4338 |  | 
| 4339 |     return 0; | 
| 4340 | } | 
| 4341 |  | 
| 4342 | size_t FastMallocZone::size(malloc_zone_t*, const void*) | 
| 4343 | { | 
| 4344 |     return 0; | 
| 4345 | } | 
| 4346 |  | 
| 4347 | void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t) | 
| 4348 | { | 
| 4349 |     return 0; | 
| 4350 | } | 
| 4351 |  | 
| 4352 | void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t) | 
| 4353 | { | 
| 4354 |     return 0; | 
| 4355 | } | 
| 4356 |  | 
| 4357 | void FastMallocZone::zoneFree(malloc_zone_t*, void* ptr) | 
| 4358 | { | 
| 4359 |     // Due to <rdar://problem/5671357> zoneFree may be called by the system free even if the pointer | 
| 4360 |     // is not in this zone.  When this happens, the pointer being freed was not allocated by any | 
| 4361 |     // zone so we need to print a useful error for the application developer. | 
| 4362 |     malloc_printf("*** error for object %p: pointer being freed was not allocated\n" , ptr); | 
| 4363 | } | 
| 4364 |  | 
| 4365 | void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t) | 
| 4366 | { | 
| 4367 |     return 0; | 
| 4368 | } | 
| 4369 |  | 
| 4370 |  | 
| 4371 | #undef malloc | 
| 4372 | #undef free | 
| 4373 | #undef realloc | 
| 4374 | #undef calloc | 
| 4375 |  | 
| 4376 | extern "C"  { | 
| 4377 | malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print, | 
| 4378 |     &FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics | 
| 4379 |  | 
| 4380 | #if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD) && !OS(IPHONE_OS) | 
| 4381 |     , 0 // zone_locked will not be called on the zone unless it advertises itself as version five or higher. | 
| 4382 | #endif | 
| 4383 |  | 
| 4384 |     }; | 
| 4385 | } | 
| 4386 |  | 
| 4387 | FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches, PageHeapAllocator<Span>* spanAllocator, PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator) | 
| 4388 |     : m_pageHeap(pageHeap) | 
| 4389 |     , m_threadHeaps(threadHeaps) | 
| 4390 |     , m_centralCaches(centralCaches) | 
| 4391 |     , m_spanAllocator(spanAllocator) | 
| 4392 |     , m_pageHeapAllocator(pageHeapAllocator) | 
| 4393 | { | 
| 4394 |     memset(&m_zone, 0, sizeof(m_zone)); | 
| 4395 |     m_zone.version = 4; | 
| 4396 |     m_zone.zone_name = "JavaScriptCore FastMalloc" ; | 
| 4397 |     m_zone.size = &FastMallocZone::size; | 
| 4398 |     m_zone.malloc = &FastMallocZone::zoneMalloc; | 
| 4399 |     m_zone.calloc = &FastMallocZone::zoneCalloc; | 
| 4400 |     m_zone.realloc = &FastMallocZone::zoneRealloc; | 
| 4401 |     m_zone.free = &FastMallocZone::zoneFree; | 
| 4402 |     m_zone.valloc = &FastMallocZone::zoneValloc; | 
| 4403 |     m_zone.destroy = &FastMallocZone::zoneDestroy; | 
| 4404 |     m_zone.introspect = &jscore_fastmalloc_introspection; | 
| 4405 |     malloc_zone_register(&m_zone); | 
| 4406 | } | 
| 4407 |  | 
| 4408 |  | 
| 4409 | void FastMallocZone::init() | 
| 4410 | { | 
| 4411 |     static FastMallocZone zone(pageheap, &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache), &span_allocator, &threadheap_allocator); | 
| 4412 | } | 
| 4413 |  | 
| 4414 | #endif | 
| 4415 |  | 
| 4416 | #if WTF_CHANGES | 
| 4417 | void releaseFastMallocFreeMemory() | 
| 4418 | { | 
| 4419 |     // Flush free pages in the current thread cache back to the page heap. | 
| 4420 |     // Low watermark mechanism in Scavenge() prevents full return on the first pass. | 
| 4421 |     // The second pass flushes everything. | 
| 4422 |     if (TCMalloc_ThreadCache* threadCache = TCMalloc_ThreadCache::GetCacheIfPresent()) { | 
| 4423 |         threadCache->Scavenge(); | 
| 4424 |         threadCache->Scavenge(); | 
| 4425 |     } | 
| 4426 |  | 
| 4427 |     SpinLockHolder h(&pageheap_lock); | 
| 4428 |     pageheap->ReleaseFreePages(); | 
| 4429 | } | 
| 4430 |      | 
| 4431 | FastMallocStatistics fastMallocStatistics() | 
| 4432 | { | 
| 4433 |     FastMallocStatistics statistics; | 
| 4434 |     { | 
| 4435 |         SpinLockHolder lockHolder(&pageheap_lock); | 
| 4436 |         statistics.heapSize = static_cast<size_t>(pageheap->SystemBytes()); | 
| 4437 |         statistics.freeSizeInHeap = static_cast<size_t>(pageheap->FreeBytes()); | 
| 4438 |         statistics.returnedSize = pageheap->ReturnedBytes(); | 
| 4439 |         statistics.freeSizeInCaches = 0; | 
| 4440 |         for (TCMalloc_ThreadCache* threadCache = thread_heaps; threadCache ; threadCache = threadCache->next_) | 
| 4441 |             statistics.freeSizeInCaches += threadCache->Size(); | 
| 4442 |     } | 
| 4443 |     for (unsigned cl = 0; cl < kNumClasses; ++cl) { | 
| 4444 |         const int length = central_cache[cl].length(); | 
| 4445 |         const int tc_length = central_cache[cl].tc_length(); | 
| 4446 |         statistics.freeSizeInCaches += ByteSizeForClass(cl) * (length + tc_length); | 
| 4447 |     } | 
| 4448 |     return statistics; | 
| 4449 | } | 
| 4450 |  | 
| 4451 | } // namespace WTF | 
| 4452 | #endif | 
| 4453 |  | 
| 4454 | #endif // FORCE_SYSTEM_MALLOC | 
| 4455 |  |