| 1 | /**************************************************************** |
| 2 | * |
| 3 | * The author of this software is David M. Gay. |
| 4 | * |
| 5 | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
| 6 | * Copyright (C) 2002, 2005, 2006, 2007, 2008 Apple Inc. All rights reserved. |
| 7 | * |
| 8 | * Permission to use, copy, modify, and distribute this software for any |
| 9 | * purpose without fee is hereby granted, provided that this entire notice |
| 10 | * is included in all copies of any software which is or includes a copy |
| 11 | * or modification of this software and in all copies of the supporting |
| 12 | * documentation for such software. |
| 13 | * |
| 14 | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
| 15 | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
| 16 | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
| 17 | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
| 18 | * |
| 19 | ***************************************************************/ |
| 20 | |
| 21 | /* Please send bug reports to |
| 22 | David M. Gay |
| 23 | Bell Laboratories, Room 2C-463 |
| 24 | 600 Mountain Avenue |
| 25 | Murray Hill, NJ 07974-0636 |
| 26 | U.S.A. |
| 27 | dmg@bell-labs.com |
| 28 | */ |
| 29 | |
| 30 | /* On a machine with IEEE extended-precision registers, it is |
| 31 | * necessary to specify double-precision (53-bit) rounding precision |
| 32 | * before invoking strtod or dtoa. If the machine uses (the equivalent |
| 33 | * of) Intel 80x87 arithmetic, the call |
| 34 | * _control87(PC_53, MCW_PC); |
| 35 | * does this with many compilers. Whether this or another call is |
| 36 | * appropriate depends on the compiler; for this to work, it may be |
| 37 | * necessary to #include "float.h" or another system-dependent header |
| 38 | * file. |
| 39 | */ |
| 40 | |
| 41 | /* strtod for IEEE-arithmetic machines. |
| 42 | * |
| 43 | * This strtod returns a nearest machine number to the input decimal |
| 44 | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
| 45 | * broken by the IEEE round-even rule. Otherwise ties are broken by |
| 46 | * biased rounding (add half and chop). |
| 47 | * |
| 48 | * Inspired loosely by William D. Clinger's paper "How to Read Floating |
| 49 | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
| 50 | * |
| 51 | * Modifications: |
| 52 | * |
| 53 | * 1. We only require IEEE. |
| 54 | * 2. We get by with floating-point arithmetic in a case that |
| 55 | * Clinger missed -- when we're computing d * 10^n |
| 56 | * for a small integer d and the integer n is not too |
| 57 | * much larger than 22 (the maximum integer k for which |
| 58 | * we can represent 10^k exactly), we may be able to |
| 59 | * compute (d*10^k) * 10^(e-k) with just one roundoff. |
| 60 | * 3. Rather than a bit-at-a-time adjustment of the binary |
| 61 | * result in the hard case, we use floating-point |
| 62 | * arithmetic to determine the adjustment to within |
| 63 | * one bit; only in really hard cases do we need to |
| 64 | * compute a second residual. |
| 65 | * 4. Because of 3., we don't need a large table of powers of 10 |
| 66 | * for ten-to-e (just some small tables, e.g. of 10^k |
| 67 | * for 0 <= k <= 22). |
| 68 | */ |
| 69 | |
| 70 | /* |
| 71 | * #define IEEE_8087 for IEEE-arithmetic machines where the least |
| 72 | * significant byte has the lowest address. |
| 73 | * #define IEEE_MC68k for IEEE-arithmetic machines where the most |
| 74 | * significant byte has the lowest address. |
| 75 | * #define No_leftright to omit left-right logic in fast floating-point |
| 76 | * computation of dtoa. |
| 77 | * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
| 78 | * and Honor_FLT_ROUNDS is not #defined. |
| 79 | * #define Inaccurate_Divide for IEEE-format with correctly rounded |
| 80 | * products but inaccurate quotients, e.g., for Intel i860. |
| 81 | * #define USE_LONG_LONG on machines that have a "long long" |
| 82 | * integer type (of >= 64 bits), and performance testing shows that |
| 83 | * it is faster than 32-bit fallback (which is often not the case |
| 84 | * on 32-bit machines). On such machines, you can #define Just_16 |
| 85 | * to store 16 bits per 32-bit int32_t when doing high-precision integer |
| 86 | * arithmetic. Whether this speeds things up or slows things down |
| 87 | * depends on the machine and the number being converted. |
| 88 | * #define Bad_float_h if your system lacks a float.h or if it does not |
| 89 | * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, |
| 90 | * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. |
| 91 | * #define INFNAN_CHECK on IEEE systems to cause strtod to check for |
| 92 | * Infinity and NaN (case insensitively). On some systems (e.g., |
| 93 | * some HP systems), it may be necessary to #define NAN_WORD0 |
| 94 | * appropriately -- to the most significant word of a quiet NaN. |
| 95 | * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) |
| 96 | * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, |
| 97 | * strtod also accepts (case insensitively) strings of the form |
| 98 | * NaN(x), where x is a string of hexadecimal digits and spaces; |
| 99 | * if there is only one string of hexadecimal digits, it is taken |
| 100 | * for the 52 fraction bits of the resulting NaN; if there are two |
| 101 | * or more strings of hex digits, the first is for the high 20 bits, |
| 102 | * the second and subsequent for the low 32 bits, with intervening |
| 103 | * white space ignored; but if this results in none of the 52 |
| 104 | * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 |
| 105 | * and NAN_WORD1 are used instead. |
| 106 | * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that |
| 107 | * avoids underflows on inputs whose result does not underflow. |
| 108 | * If you #define NO_IEEE_Scale on a machine that uses IEEE-format |
| 109 | * floating-point numbers and flushes underflows to zero rather |
| 110 | * than implementing gradual underflow, then you must also #define |
| 111 | * Sudden_Underflow. |
| 112 | * #define YES_ALIAS to permit aliasing certain double values with |
| 113 | * arrays of ULongs. This leads to slightly better code with |
| 114 | * some compilers and was always used prior to 19990916, but it |
| 115 | * is not strictly legal and can cause trouble with aggressively |
| 116 | * optimizing compilers (e.g., gcc 2.95.1 under -O2). |
| 117 | * #define SET_INEXACT if IEEE arithmetic is being used and extra |
| 118 | * computation should be done to set the inexact flag when the |
| 119 | * result is inexact and avoid setting inexact when the result |
| 120 | * is exact. In this case, dtoa.c must be compiled in |
| 121 | * an environment, perhaps provided by #include "dtoa.c" in a |
| 122 | * suitable wrapper, that defines two functions, |
| 123 | * int get_inexact(void); |
| 124 | * void clear_inexact(void); |
| 125 | * such that get_inexact() returns a nonzero value if the |
| 126 | * inexact bit is already set, and clear_inexact() sets the |
| 127 | * inexact bit to 0. When SET_INEXACT is #defined, strtod |
| 128 | * also does extra computations to set the underflow and overflow |
| 129 | * flags when appropriate (i.e., when the result is tiny and |
| 130 | * inexact or when it is a numeric value rounded to +-infinity). |
| 131 | * #define NO_ERRNO if strtod should not assign errno = ERANGE when |
| 132 | * the result overflows to +-Infinity or underflows to 0. |
| 133 | */ |
| 134 | |
| 135 | #include "config.h" |
| 136 | #include "dtoa.h" |
| 137 | |
| 138 | #if HAVE(ERRNO_H) |
| 139 | #include <errno.h> |
| 140 | #else |
| 141 | #define NO_ERRNO |
| 142 | #endif |
| 143 | #include <math.h> |
| 144 | #include <stdint.h> |
| 145 | #include <stdlib.h> |
| 146 | #include <string.h> |
| 147 | #include <wtf/AlwaysInline.h> |
| 148 | #include <wtf/Assertions.h> |
| 149 | #include <wtf/FastMalloc.h> |
| 150 | #include <wtf/Vector.h> |
| 151 | #include <wtf/Threading.h> |
| 152 | |
| 153 | #include <stdio.h> |
| 154 | |
| 155 | #include <wtf/MathExtras.h> |
| 156 | |
| 157 | #if COMPILER(MSVC) |
| 158 | #pragma warning(disable: 4244) |
| 159 | #pragma warning(disable: 4245) |
| 160 | #pragma warning(disable: 4554) |
| 161 | #endif |
| 162 | |
| 163 | #if CPU(BIG_ENDIAN) |
| 164 | #define IEEE_MC68k |
| 165 | #elif CPU(MIDDLE_ENDIAN) |
| 166 | #define IEEE_ARM |
| 167 | #else |
| 168 | #define IEEE_8087 |
| 169 | #endif |
| 170 | |
| 171 | #define INFNAN_CHECK |
| 172 | |
| 173 | #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_ARM) != 1 |
| 174 | Exactly one of IEEE_8087, IEEE_ARM or IEEE_MC68k should be defined. |
| 175 | #endif |
| 176 | |
| 177 | namespace WTF { |
| 178 | |
| 179 | #if ENABLE(JSC_MULTIPLE_THREADS) |
| 180 | Mutex* s_dtoaP5Mutex; |
| 181 | #endif |
| 182 | |
| 183 | typedef union { double d; uint32_t L[2]; } U; |
| 184 | |
| 185 | #ifdef YES_ALIAS |
| 186 | #define dval(x) x |
| 187 | #ifdef IEEE_8087 |
| 188 | #define word0(x) ((uint32_t*)&x)[1] |
| 189 | #define word1(x) ((uint32_t*)&x)[0] |
| 190 | #else |
| 191 | #define word0(x) ((uint32_t*)&x)[0] |
| 192 | #define word1(x) ((uint32_t*)&x)[1] |
| 193 | #endif |
| 194 | #else |
| 195 | #ifdef IEEE_8087 |
| 196 | #define word0(x) (x)->L[1] |
| 197 | #define word1(x) (x)->L[0] |
| 198 | #else |
| 199 | #define word0(x) (x)->L[0] |
| 200 | #define word1(x) (x)->L[1] |
| 201 | #endif |
| 202 | #define dval(x) (x)->d |
| 203 | #endif |
| 204 | |
| 205 | /* The following definition of Storeinc is appropriate for MIPS processors. |
| 206 | * An alternative that might be better on some machines is |
| 207 | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
| 208 | */ |
| 209 | #if defined(IEEE_8087) || defined(IEEE_ARM) |
| 210 | #define Storeinc(a,b,c) (((unsigned short*)a)[1] = (unsigned short)b, ((unsigned short*)a)[0] = (unsigned short)c, a++) |
| 211 | #else |
| 212 | #define Storeinc(a,b,c) (((unsigned short*)a)[0] = (unsigned short)b, ((unsigned short*)a)[1] = (unsigned short)c, a++) |
| 213 | #endif |
| 214 | |
| 215 | #define Exp_shift 20 |
| 216 | #define Exp_shift1 20 |
| 217 | #define Exp_msk1 0x100000 |
| 218 | #define Exp_msk11 0x100000 |
| 219 | #define Exp_mask 0x7ff00000 |
| 220 | #define P 53 |
| 221 | #define Bias 1023 |
| 222 | #define Emin (-1022) |
| 223 | #define Exp_1 0x3ff00000 |
| 224 | #define Exp_11 0x3ff00000 |
| 225 | #define Ebits 11 |
| 226 | #define Frac_mask 0xfffff |
| 227 | #define Frac_mask1 0xfffff |
| 228 | #define Ten_pmax 22 |
| 229 | #define Bletch 0x10 |
| 230 | #define Bndry_mask 0xfffff |
| 231 | #define Bndry_mask1 0xfffff |
| 232 | #define LSB 1 |
| 233 | #define Sign_bit 0x80000000 |
| 234 | #define Log2P 1 |
| 235 | #define Tiny0 0 |
| 236 | #define Tiny1 1 |
| 237 | #define Quick_max 14 |
| 238 | #define Int_max 14 |
| 239 | |
| 240 | #if !defined(NO_IEEE_Scale) |
| 241 | #undef Avoid_Underflow |
| 242 | #define Avoid_Underflow |
| 243 | #endif |
| 244 | |
| 245 | #if !defined(Flt_Rounds) |
| 246 | #if defined(FLT_ROUNDS) |
| 247 | #define Flt_Rounds FLT_ROUNDS |
| 248 | #else |
| 249 | #define Flt_Rounds 1 |
| 250 | #endif |
| 251 | #endif /*Flt_Rounds*/ |
| 252 | |
| 253 | |
| 254 | #define rounded_product(a,b) a *= b |
| 255 | #define rounded_quotient(a,b) a /= b |
| 256 | |
| 257 | #define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) |
| 258 | #define Big1 0xffffffff |
| 259 | |
| 260 | |
| 261 | // FIXME: we should remove non-Pack_32 mode since it is unused and unmaintained |
| 262 | #ifndef Pack_32 |
| 263 | #define Pack_32 |
| 264 | #endif |
| 265 | |
| 266 | #if CPU(PPC64) || CPU(X86_64) |
| 267 | // FIXME: should we enable this on all 64-bit CPUs? |
| 268 | // 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware. |
| 269 | #define USE_LONG_LONG |
| 270 | #endif |
| 271 | |
| 272 | #ifndef USE_LONG_LONG |
| 273 | #ifdef Just_16 |
| 274 | #undef Pack_32 |
| 275 | /* When Pack_32 is not defined, we store 16 bits per 32-bit int32_t. |
| 276 | * This makes some inner loops simpler and sometimes saves work |
| 277 | * during multiplications, but it often seems to make things slightly |
| 278 | * slower. Hence the default is now to store 32 bits per int32_t. |
| 279 | */ |
| 280 | #endif |
| 281 | #endif |
| 282 | |
| 283 | #define Kmax 15 |
| 284 | |
| 285 | struct BigInt { |
| 286 | BigInt() : sign(0) { } |
| 287 | int sign; |
| 288 | |
| 289 | void clear() |
| 290 | { |
| 291 | sign = 0; |
| 292 | m_words.clear(); |
| 293 | } |
| 294 | |
| 295 | size_t size() const |
| 296 | { |
| 297 | return m_words.size(); |
| 298 | } |
| 299 | |
| 300 | void resize(size_t s) |
| 301 | { |
| 302 | m_words.resize(size: s); |
| 303 | } |
| 304 | |
| 305 | uint32_t* words() |
| 306 | { |
| 307 | return m_words.data(); |
| 308 | } |
| 309 | |
| 310 | const uint32_t* words() const |
| 311 | { |
| 312 | return m_words.data(); |
| 313 | } |
| 314 | |
| 315 | void append(uint32_t w) |
| 316 | { |
| 317 | m_words.append(val: w); |
| 318 | } |
| 319 | |
| 320 | Vector<uint32_t, 16> m_words; |
| 321 | }; |
| 322 | |
| 323 | static void multadd(BigInt& b, int m, int a) /* multiply by m and add a */ |
| 324 | { |
| 325 | #ifdef USE_LONG_LONG |
| 326 | unsigned long long carry; |
| 327 | #else |
| 328 | uint32_t carry; |
| 329 | #endif |
| 330 | |
| 331 | int wds = b.size(); |
| 332 | uint32_t* x = b.words(); |
| 333 | int i = 0; |
| 334 | carry = a; |
| 335 | do { |
| 336 | #ifdef USE_LONG_LONG |
| 337 | unsigned long long y = *x * (unsigned long long)m + carry; |
| 338 | carry = y >> 32; |
| 339 | *x++ = (uint32_t)y & 0xffffffffUL; |
| 340 | #else |
| 341 | #ifdef Pack_32 |
| 342 | uint32_t xi = *x; |
| 343 | uint32_t y = (xi & 0xffff) * m + carry; |
| 344 | uint32_t z = (xi >> 16) * m + (y >> 16); |
| 345 | carry = z >> 16; |
| 346 | *x++ = (z << 16) + (y & 0xffff); |
| 347 | #else |
| 348 | uint32_t y = *x * m + carry; |
| 349 | carry = y >> 16; |
| 350 | *x++ = y & 0xffff; |
| 351 | #endif |
| 352 | #endif |
| 353 | } while (++i < wds); |
| 354 | |
| 355 | if (carry) |
| 356 | b.append(w: (uint32_t)carry); |
| 357 | } |
| 358 | |
| 359 | static void s2b(BigInt& b, const char* s, int nd0, int nd, uint32_t y9) |
| 360 | { |
| 361 | int k; |
| 362 | int32_t y; |
| 363 | int32_t x = (nd + 8) / 9; |
| 364 | |
| 365 | for (k = 0, y = 1; x > y; y <<= 1, k++) { } |
| 366 | #ifdef Pack_32 |
| 367 | b.sign = 0; |
| 368 | b.resize(s: 1); |
| 369 | b.words()[0] = y9; |
| 370 | #else |
| 371 | b.sign = 0; |
| 372 | b.resize((b->x[1] = y9 >> 16) ? 2 : 1); |
| 373 | b.words()[0] = y9 & 0xffff; |
| 374 | #endif |
| 375 | |
| 376 | int i = 9; |
| 377 | if (9 < nd0) { |
| 378 | s += 9; |
| 379 | do { |
| 380 | multadd(b, m: 10, a: *s++ - '0'); |
| 381 | } while (++i < nd0); |
| 382 | s++; |
| 383 | } else |
| 384 | s += 10; |
| 385 | for (; i < nd; i++) |
| 386 | multadd(b, m: 10, a: *s++ - '0'); |
| 387 | } |
| 388 | |
| 389 | static int hi0bits(uint32_t x) |
| 390 | { |
| 391 | int k = 0; |
| 392 | |
| 393 | if (!(x & 0xffff0000)) { |
| 394 | k = 16; |
| 395 | x <<= 16; |
| 396 | } |
| 397 | if (!(x & 0xff000000)) { |
| 398 | k += 8; |
| 399 | x <<= 8; |
| 400 | } |
| 401 | if (!(x & 0xf0000000)) { |
| 402 | k += 4; |
| 403 | x <<= 4; |
| 404 | } |
| 405 | if (!(x & 0xc0000000)) { |
| 406 | k += 2; |
| 407 | x <<= 2; |
| 408 | } |
| 409 | if (!(x & 0x80000000)) { |
| 410 | k++; |
| 411 | if (!(x & 0x40000000)) |
| 412 | return 32; |
| 413 | } |
| 414 | return k; |
| 415 | } |
| 416 | |
| 417 | static int lo0bits (uint32_t* y) |
| 418 | { |
| 419 | int k; |
| 420 | uint32_t x = *y; |
| 421 | |
| 422 | if (x & 7) { |
| 423 | if (x & 1) |
| 424 | return 0; |
| 425 | if (x & 2) { |
| 426 | *y = x >> 1; |
| 427 | return 1; |
| 428 | } |
| 429 | *y = x >> 2; |
| 430 | return 2; |
| 431 | } |
| 432 | k = 0; |
| 433 | if (!(x & 0xffff)) { |
| 434 | k = 16; |
| 435 | x >>= 16; |
| 436 | } |
| 437 | if (!(x & 0xff)) { |
| 438 | k += 8; |
| 439 | x >>= 8; |
| 440 | } |
| 441 | if (!(x & 0xf)) { |
| 442 | k += 4; |
| 443 | x >>= 4; |
| 444 | } |
| 445 | if (!(x & 0x3)) { |
| 446 | k += 2; |
| 447 | x >>= 2; |
| 448 | } |
| 449 | if (!(x & 1)) { |
| 450 | k++; |
| 451 | x >>= 1; |
| 452 | if (!x & 1) |
| 453 | return 32; |
| 454 | } |
| 455 | *y = x; |
| 456 | return k; |
| 457 | } |
| 458 | |
| 459 | static void i2b(BigInt& b, int i) |
| 460 | { |
| 461 | b.sign = 0; |
| 462 | b.resize(s: 1); |
| 463 | b.words()[0] = i; |
| 464 | } |
| 465 | |
| 466 | static void mult(BigInt& aRef, const BigInt& bRef) |
| 467 | { |
| 468 | const BigInt* a = &aRef; |
| 469 | const BigInt* b = &bRef; |
| 470 | BigInt c; |
| 471 | int wa, wb, wc; |
| 472 | const uint32_t *x = 0, *xa, *xb, *xae, *xbe; |
| 473 | uint32_t *xc, *xc0; |
| 474 | uint32_t y; |
| 475 | #ifdef USE_LONG_LONG |
| 476 | unsigned long long carry, z; |
| 477 | #else |
| 478 | uint32_t carry, z; |
| 479 | #endif |
| 480 | |
| 481 | if (a->size() < b->size()) { |
| 482 | const BigInt* tmp = a; |
| 483 | a = b; |
| 484 | b = tmp; |
| 485 | } |
| 486 | |
| 487 | wa = a->size(); |
| 488 | wb = b->size(); |
| 489 | wc = wa + wb; |
| 490 | c.resize(s: wc); |
| 491 | |
| 492 | for (xc = c.words(), xa = xc + wc; xc < xa; xc++) |
| 493 | *xc = 0; |
| 494 | xa = a->words(); |
| 495 | xae = xa + wa; |
| 496 | xb = b->words(); |
| 497 | xbe = xb + wb; |
| 498 | xc0 = c.words(); |
| 499 | #ifdef USE_LONG_LONG |
| 500 | for (; xb < xbe; xc0++) { |
| 501 | if ((y = *xb++)) { |
| 502 | x = xa; |
| 503 | xc = xc0; |
| 504 | carry = 0; |
| 505 | do { |
| 506 | z = *x++ * (unsigned long long)y + *xc + carry; |
| 507 | carry = z >> 32; |
| 508 | *xc++ = (uint32_t)z & 0xffffffffUL; |
| 509 | } while (x < xae); |
| 510 | *xc = (uint32_t)carry; |
| 511 | } |
| 512 | } |
| 513 | #else |
| 514 | #ifdef Pack_32 |
| 515 | for (; xb < xbe; xb++, xc0++) { |
| 516 | if ((y = *xb & 0xffff)) { |
| 517 | x = xa; |
| 518 | xc = xc0; |
| 519 | carry = 0; |
| 520 | do { |
| 521 | z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; |
| 522 | carry = z >> 16; |
| 523 | uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; |
| 524 | carry = z2 >> 16; |
| 525 | Storeinc(xc, z2, z); |
| 526 | } while (x < xae); |
| 527 | *xc = carry; |
| 528 | } |
| 529 | if ((y = *xb >> 16)) { |
| 530 | x = xa; |
| 531 | xc = xc0; |
| 532 | carry = 0; |
| 533 | uint32_t z2 = *xc; |
| 534 | do { |
| 535 | z = (*x & 0xffff) * y + (*xc >> 16) + carry; |
| 536 | carry = z >> 16; |
| 537 | Storeinc(xc, z, z2); |
| 538 | z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
| 539 | carry = z2 >> 16; |
| 540 | } while (x < xae); |
| 541 | *xc = z2; |
| 542 | } |
| 543 | } |
| 544 | #else |
| 545 | for(; xb < xbe; xc0++) { |
| 546 | if ((y = *xb++)) { |
| 547 | x = xa; |
| 548 | xc = xc0; |
| 549 | carry = 0; |
| 550 | do { |
| 551 | z = *x++ * y + *xc + carry; |
| 552 | carry = z >> 16; |
| 553 | *xc++ = z & 0xffff; |
| 554 | } while (x < xae); |
| 555 | *xc = carry; |
| 556 | } |
| 557 | } |
| 558 | #endif |
| 559 | #endif |
| 560 | for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { } |
| 561 | c.resize(s: wc); |
| 562 | aRef = c; |
| 563 | } |
| 564 | |
| 565 | struct P5Node : Noncopyable { |
| 566 | BigInt val; |
| 567 | P5Node* next; |
| 568 | }; |
| 569 | |
| 570 | static P5Node* p5s; |
| 571 | static int p5s_count; |
| 572 | |
| 573 | static ALWAYS_INLINE void pow5mult(BigInt& b, int k) |
| 574 | { |
| 575 | static int p05[3] = { 5, 25, 125 }; |
| 576 | |
| 577 | if (int i = k & 3) |
| 578 | multadd(b, m: p05[i - 1], a: 0); |
| 579 | |
| 580 | if (!(k >>= 2)) |
| 581 | return; |
| 582 | |
| 583 | #if ENABLE(JSC_MULTIPLE_THREADS) |
| 584 | s_dtoaP5Mutex->lock(); |
| 585 | #endif |
| 586 | P5Node* p5 = p5s; |
| 587 | |
| 588 | if (!p5) { |
| 589 | /* first time */ |
| 590 | p5 = new P5Node; |
| 591 | i2b(b&: p5->val, i: 625); |
| 592 | p5->next = 0; |
| 593 | p5s = p5; |
| 594 | p5s_count = 1; |
| 595 | } |
| 596 | |
| 597 | int p5s_count_local = p5s_count; |
| 598 | #if ENABLE(JSC_MULTIPLE_THREADS) |
| 599 | s_dtoaP5Mutex->unlock(); |
| 600 | #endif |
| 601 | int p5s_used = 0; |
| 602 | |
| 603 | for (;;) { |
| 604 | if (k & 1) |
| 605 | mult(aRef&: b, bRef: p5->val); |
| 606 | |
| 607 | if (!(k >>= 1)) |
| 608 | break; |
| 609 | |
| 610 | if (++p5s_used == p5s_count_local) { |
| 611 | #if ENABLE(JSC_MULTIPLE_THREADS) |
| 612 | s_dtoaP5Mutex->lock(); |
| 613 | #endif |
| 614 | if (p5s_used == p5s_count) { |
| 615 | ASSERT(!p5->next); |
| 616 | p5->next = new P5Node; |
| 617 | p5->next->next = 0; |
| 618 | p5->next->val = p5->val; |
| 619 | mult(aRef&: p5->next->val, bRef: p5->next->val); |
| 620 | ++p5s_count; |
| 621 | } |
| 622 | |
| 623 | p5s_count_local = p5s_count; |
| 624 | #if ENABLE(JSC_MULTIPLE_THREADS) |
| 625 | s_dtoaP5Mutex->unlock(); |
| 626 | #endif |
| 627 | } |
| 628 | p5 = p5->next; |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | static ALWAYS_INLINE void lshift(BigInt& b, int k) |
| 633 | { |
| 634 | #ifdef Pack_32 |
| 635 | int n = k >> 5; |
| 636 | #else |
| 637 | int n = k >> 4; |
| 638 | #endif |
| 639 | |
| 640 | int origSize = b.size(); |
| 641 | int n1 = n + origSize + 1; |
| 642 | |
| 643 | if (k &= 0x1f) |
| 644 | b.resize(s: b.size() + n + 1); |
| 645 | else |
| 646 | b.resize(s: b.size() + n); |
| 647 | |
| 648 | const uint32_t* srcStart = b.words(); |
| 649 | uint32_t* dstStart = b.words(); |
| 650 | const uint32_t* src = srcStart + origSize - 1; |
| 651 | uint32_t* dst = dstStart + n1 - 1; |
| 652 | #ifdef Pack_32 |
| 653 | if (k) { |
| 654 | uint32_t hiSubword = 0; |
| 655 | int s = 32 - k; |
| 656 | for (; src >= srcStart; --src) { |
| 657 | *dst-- = hiSubword | *src >> s; |
| 658 | hiSubword = *src << k; |
| 659 | } |
| 660 | *dst = hiSubword; |
| 661 | ASSERT(dst == dstStart + n); |
| 662 | |
| 663 | b.resize(s: origSize + n + (b.words()[n1 - 1] != 0)); |
| 664 | } |
| 665 | #else |
| 666 | if (k &= 0xf) { |
| 667 | uint32_t hiSubword = 0; |
| 668 | int s = 16 - k; |
| 669 | for (; src >= srcStart; --src) { |
| 670 | *dst-- = hiSubword | *src >> s; |
| 671 | hiSubword = (*src << k) & 0xffff; |
| 672 | } |
| 673 | *dst = hiSubword; |
| 674 | ASSERT(dst == dstStart + n); |
| 675 | result->wds = b->wds + n + (result->x[n1 - 1] != 0); |
| 676 | } |
| 677 | #endif |
| 678 | else { |
| 679 | do { |
| 680 | *--dst = *src--; |
| 681 | } while (src >= srcStart); |
| 682 | } |
| 683 | for (dst = dstStart + n; dst != dstStart; ) |
| 684 | *--dst = 0; |
| 685 | |
| 686 | ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); |
| 687 | } |
| 688 | |
| 689 | static int cmp(const BigInt& a, const BigInt& b) |
| 690 | { |
| 691 | const uint32_t *xa, *xa0, *xb, *xb0; |
| 692 | int i, j; |
| 693 | |
| 694 | i = a.size(); |
| 695 | j = b.size(); |
| 696 | ASSERT(i <= 1 || a.words()[i - 1]); |
| 697 | ASSERT(j <= 1 || b.words()[j - 1]); |
| 698 | if (i -= j) |
| 699 | return i; |
| 700 | xa0 = a.words(); |
| 701 | xa = xa0 + j; |
| 702 | xb0 = b.words(); |
| 703 | xb = xb0 + j; |
| 704 | for (;;) { |
| 705 | if (*--xa != *--xb) |
| 706 | return *xa < *xb ? -1 : 1; |
| 707 | if (xa <= xa0) |
| 708 | break; |
| 709 | } |
| 710 | return 0; |
| 711 | } |
| 712 | |
| 713 | static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef) |
| 714 | { |
| 715 | const BigInt* a = &aRef; |
| 716 | const BigInt* b = &bRef; |
| 717 | int i, wa, wb; |
| 718 | uint32_t *xc; |
| 719 | |
| 720 | i = cmp(a: *a, b: *b); |
| 721 | if (!i) { |
| 722 | c.sign = 0; |
| 723 | c.resize(s: 1); |
| 724 | c.words()[0] = 0; |
| 725 | return; |
| 726 | } |
| 727 | if (i < 0) { |
| 728 | const BigInt* tmp = a; |
| 729 | a = b; |
| 730 | b = tmp; |
| 731 | i = 1; |
| 732 | } else |
| 733 | i = 0; |
| 734 | |
| 735 | wa = a->size(); |
| 736 | const uint32_t* xa = a->words(); |
| 737 | const uint32_t* xae = xa + wa; |
| 738 | wb = b->size(); |
| 739 | const uint32_t* xb = b->words(); |
| 740 | const uint32_t* xbe = xb + wb; |
| 741 | |
| 742 | c.resize(s: wa); |
| 743 | c.sign = i; |
| 744 | xc = c.words(); |
| 745 | #ifdef USE_LONG_LONG |
| 746 | unsigned long long borrow = 0; |
| 747 | do { |
| 748 | unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow; |
| 749 | borrow = y >> 32 & (uint32_t)1; |
| 750 | *xc++ = (uint32_t)y & 0xffffffffUL; |
| 751 | } while (xb < xbe); |
| 752 | while (xa < xae) { |
| 753 | unsigned long long y = *xa++ - borrow; |
| 754 | borrow = y >> 32 & (uint32_t)1; |
| 755 | *xc++ = (uint32_t)y & 0xffffffffUL; |
| 756 | } |
| 757 | #else |
| 758 | uint32_t borrow = 0; |
| 759 | #ifdef Pack_32 |
| 760 | do { |
| 761 | uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; |
| 762 | borrow = (y & 0x10000) >> 16; |
| 763 | uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; |
| 764 | borrow = (z & 0x10000) >> 16; |
| 765 | Storeinc(xc, z, y); |
| 766 | } while (xb < xbe); |
| 767 | while (xa < xae) { |
| 768 | uint32_t y = (*xa & 0xffff) - borrow; |
| 769 | borrow = (y & 0x10000) >> 16; |
| 770 | uint32_t z = (*xa++ >> 16) - borrow; |
| 771 | borrow = (z & 0x10000) >> 16; |
| 772 | Storeinc(xc, z, y); |
| 773 | } |
| 774 | #else |
| 775 | do { |
| 776 | uint32_t y = *xa++ - *xb++ - borrow; |
| 777 | borrow = (y & 0x10000) >> 16; |
| 778 | *xc++ = y & 0xffff; |
| 779 | } while (xb < xbe); |
| 780 | while (xa < xae) { |
| 781 | uint32_t y = *xa++ - borrow; |
| 782 | borrow = (y & 0x10000) >> 16; |
| 783 | *xc++ = y & 0xffff; |
| 784 | } |
| 785 | #endif |
| 786 | #endif |
| 787 | while (!*--xc) |
| 788 | wa--; |
| 789 | c.resize(s: wa); |
| 790 | } |
| 791 | |
| 792 | static double ulp(U *x) |
| 793 | { |
| 794 | int32_t L; |
| 795 | U u; |
| 796 | |
| 797 | L = (word0(x) & Exp_mask) - (P - 1) * Exp_msk1; |
| 798 | #ifndef Avoid_Underflow |
| 799 | #ifndef Sudden_Underflow |
| 800 | if (L > 0) { |
| 801 | #endif |
| 802 | #endif |
| 803 | word0(&u) = L; |
| 804 | word1(&u) = 0; |
| 805 | #ifndef Avoid_Underflow |
| 806 | #ifndef Sudden_Underflow |
| 807 | } else { |
| 808 | L = -L >> Exp_shift; |
| 809 | if (L < Exp_shift) { |
| 810 | word0(&u) = 0x80000 >> L; |
| 811 | word1(&u) = 0; |
| 812 | } else { |
| 813 | word0(&u) = 0; |
| 814 | L -= Exp_shift; |
| 815 | word1(&u) = L >= 31 ? 1 : 1 << 31 - L; |
| 816 | } |
| 817 | } |
| 818 | #endif |
| 819 | #endif |
| 820 | return dval(&u); |
| 821 | } |
| 822 | |
| 823 | static double b2d(const BigInt& a, int* e) |
| 824 | { |
| 825 | const uint32_t* xa; |
| 826 | const uint32_t* xa0; |
| 827 | uint32_t w; |
| 828 | uint32_t y; |
| 829 | uint32_t z; |
| 830 | int k; |
| 831 | U d; |
| 832 | |
| 833 | #define d0 word0(&d) |
| 834 | #define d1 word1(&d) |
| 835 | |
| 836 | xa0 = a.words(); |
| 837 | xa = xa0 + a.size(); |
| 838 | y = *--xa; |
| 839 | ASSERT(y); |
| 840 | k = hi0bits(x: y); |
| 841 | *e = 32 - k; |
| 842 | #ifdef Pack_32 |
| 843 | if (k < Ebits) { |
| 844 | d0 = Exp_1 | (y >> (Ebits - k)); |
| 845 | w = xa > xa0 ? *--xa : 0; |
| 846 | d1 = (y << (32 - Ebits + k)) | (w >> (Ebits - k)); |
| 847 | goto ret_d; |
| 848 | } |
| 849 | z = xa > xa0 ? *--xa : 0; |
| 850 | if (k -= Ebits) { |
| 851 | d0 = Exp_1 | (y << k) | (z >> (32 - k)); |
| 852 | y = xa > xa0 ? *--xa : 0; |
| 853 | d1 = (z << k) | (y >> (32 - k)); |
| 854 | } else { |
| 855 | d0 = Exp_1 | y; |
| 856 | d1 = z; |
| 857 | } |
| 858 | #else |
| 859 | if (k < Ebits + 16) { |
| 860 | z = xa > xa0 ? *--xa : 0; |
| 861 | d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; |
| 862 | w = xa > xa0 ? *--xa : 0; |
| 863 | y = xa > xa0 ? *--xa : 0; |
| 864 | d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; |
| 865 | goto ret_d; |
| 866 | } |
| 867 | z = xa > xa0 ? *--xa : 0; |
| 868 | w = xa > xa0 ? *--xa : 0; |
| 869 | k -= Ebits + 16; |
| 870 | d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; |
| 871 | y = xa > xa0 ? *--xa : 0; |
| 872 | d1 = w << k + 16 | y << k; |
| 873 | #endif |
| 874 | ret_d: |
| 875 | #undef d0 |
| 876 | #undef d1 |
| 877 | return dval(&d); |
| 878 | } |
| 879 | |
| 880 | static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits) |
| 881 | { |
| 882 | int de, k; |
| 883 | uint32_t *x, y, z; |
| 884 | #ifndef Sudden_Underflow |
| 885 | int i; |
| 886 | #endif |
| 887 | #define d0 word0(d) |
| 888 | #define d1 word1(d) |
| 889 | |
| 890 | b.sign = 0; |
| 891 | #ifdef Pack_32 |
| 892 | b.resize(s: 1); |
| 893 | #else |
| 894 | b.resize(2); |
| 895 | #endif |
| 896 | x = b.words(); |
| 897 | |
| 898 | z = d0 & Frac_mask; |
| 899 | d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ |
| 900 | #ifdef Sudden_Underflow |
| 901 | de = (int)(d0 >> Exp_shift); |
| 902 | #else |
| 903 | if ((de = (int)(d0 >> Exp_shift))) |
| 904 | z |= Exp_msk1; |
| 905 | #endif |
| 906 | #ifdef Pack_32 |
| 907 | if ((y = d1)) { |
| 908 | if ((k = lo0bits(y: &y))) { |
| 909 | x[0] = y | (z << (32 - k)); |
| 910 | z >>= k; |
| 911 | } else |
| 912 | x[0] = y; |
| 913 | if (z) { |
| 914 | b.resize(s: 2); |
| 915 | x[1] = z; |
| 916 | } |
| 917 | |
| 918 | #ifndef Sudden_Underflow |
| 919 | i = b.size(); |
| 920 | #endif |
| 921 | } else { |
| 922 | k = lo0bits(y: &z); |
| 923 | x[0] = z; |
| 924 | #ifndef Sudden_Underflow |
| 925 | i = 1; |
| 926 | #endif |
| 927 | b.resize(s: 1); |
| 928 | k += 32; |
| 929 | } |
| 930 | #else |
| 931 | if ((y = d1)) { |
| 932 | if ((k = lo0bits(&y))) { |
| 933 | if (k >= 16) { |
| 934 | x[0] = y | z << 32 - k & 0xffff; |
| 935 | x[1] = z >> k - 16 & 0xffff; |
| 936 | x[2] = z >> k; |
| 937 | i = 2; |
| 938 | } else { |
| 939 | x[0] = y & 0xffff; |
| 940 | x[1] = y >> 16 | z << 16 - k & 0xffff; |
| 941 | x[2] = z >> k & 0xffff; |
| 942 | x[3] = z >> k + 16; |
| 943 | i = 3; |
| 944 | } |
| 945 | } else { |
| 946 | x[0] = y & 0xffff; |
| 947 | x[1] = y >> 16; |
| 948 | x[2] = z & 0xffff; |
| 949 | x[3] = z >> 16; |
| 950 | i = 3; |
| 951 | } |
| 952 | } else { |
| 953 | k = lo0bits(&z); |
| 954 | if (k >= 16) { |
| 955 | x[0] = z; |
| 956 | i = 0; |
| 957 | } else { |
| 958 | x[0] = z & 0xffff; |
| 959 | x[1] = z >> 16; |
| 960 | i = 1; |
| 961 | } |
| 962 | k += 32; |
| 963 | } while (!x[i]) |
| 964 | --i; |
| 965 | b->resize(i + 1); |
| 966 | #endif |
| 967 | #ifndef Sudden_Underflow |
| 968 | if (de) { |
| 969 | #endif |
| 970 | *e = de - Bias - (P - 1) + k; |
| 971 | *bits = P - k; |
| 972 | #ifndef Sudden_Underflow |
| 973 | } else { |
| 974 | *e = de - Bias - (P - 1) + 1 + k; |
| 975 | #ifdef Pack_32 |
| 976 | *bits = (32 * i) - hi0bits(x: x[i - 1]); |
| 977 | #else |
| 978 | *bits = (i + 2) * 16 - hi0bits(x[i]); |
| 979 | #endif |
| 980 | } |
| 981 | #endif |
| 982 | } |
| 983 | #undef d0 |
| 984 | #undef d1 |
| 985 | |
| 986 | static double ratio(const BigInt& a, const BigInt& b) |
| 987 | { |
| 988 | U da, db; |
| 989 | int k, ka, kb; |
| 990 | |
| 991 | dval(&da) = b2d(a, e: &ka); |
| 992 | dval(&db) = b2d(a: b, e: &kb); |
| 993 | #ifdef Pack_32 |
| 994 | k = ka - kb + 32 * (a.size() - b.size()); |
| 995 | #else |
| 996 | k = ka - kb + 16 * (a.size() - b.size()); |
| 997 | #endif |
| 998 | if (k > 0) |
| 999 | word0(&da) += k * Exp_msk1; |
| 1000 | else { |
| 1001 | k = -k; |
| 1002 | word0(&db) += k * Exp_msk1; |
| 1003 | } |
| 1004 | return dval(&da) / dval(&db); |
| 1005 | } |
| 1006 | |
| 1007 | static const double tens[] = { |
| 1008 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
| 1009 | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
| 1010 | 1e20, 1e21, 1e22 |
| 1011 | }; |
| 1012 | |
| 1013 | static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
| 1014 | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, |
| 1015 | #ifdef Avoid_Underflow |
| 1016 | 9007199254740992. * 9007199254740992.e-256 |
| 1017 | /* = 2^106 * 1e-53 */ |
| 1018 | #else |
| 1019 | 1e-256 |
| 1020 | #endif |
| 1021 | }; |
| 1022 | |
| 1023 | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
| 1024 | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
| 1025 | #define Scale_Bit 0x10 |
| 1026 | #define n_bigtens 5 |
| 1027 | |
| 1028 | #if defined(INFNAN_CHECK) |
| 1029 | |
| 1030 | #ifndef NAN_WORD0 |
| 1031 | #define NAN_WORD0 0x7ff80000 |
| 1032 | #endif |
| 1033 | |
| 1034 | #ifndef NAN_WORD1 |
| 1035 | #define NAN_WORD1 0 |
| 1036 | #endif |
| 1037 | |
| 1038 | static int match(const char** sp, const char* t) |
| 1039 | { |
| 1040 | int c, d; |
| 1041 | const char* s = *sp; |
| 1042 | |
| 1043 | while ((d = *t++)) { |
| 1044 | if ((c = *++s) >= 'A' && c <= 'Z') |
| 1045 | c += 'a' - 'A'; |
| 1046 | if (c != d) |
| 1047 | return 0; |
| 1048 | } |
| 1049 | *sp = s + 1; |
| 1050 | return 1; |
| 1051 | } |
| 1052 | |
| 1053 | #ifndef No_Hex_NaN |
| 1054 | static void hexnan(U* rvp, const char** sp) |
| 1055 | { |
| 1056 | uint32_t c, x[2]; |
| 1057 | const char* s; |
| 1058 | int havedig, udx0, xshift; |
| 1059 | |
| 1060 | x[0] = x[1] = 0; |
| 1061 | havedig = xshift = 0; |
| 1062 | udx0 = 1; |
| 1063 | s = *sp; |
| 1064 | while ((c = *(const unsigned char*)++s)) { |
| 1065 | if (c >= '0' && c <= '9') |
| 1066 | c -= '0'; |
| 1067 | else if (c >= 'a' && c <= 'f') |
| 1068 | c += 10 - 'a'; |
| 1069 | else if (c >= 'A' && c <= 'F') |
| 1070 | c += 10 - 'A'; |
| 1071 | else if (c <= ' ') { |
| 1072 | if (udx0 && havedig) { |
| 1073 | udx0 = 0; |
| 1074 | xshift = 1; |
| 1075 | } |
| 1076 | continue; |
| 1077 | } else if (/*(*/ c == ')' && havedig) { |
| 1078 | *sp = s + 1; |
| 1079 | break; |
| 1080 | } else |
| 1081 | return; /* invalid form: don't change *sp */ |
| 1082 | havedig = 1; |
| 1083 | if (xshift) { |
| 1084 | xshift = 0; |
| 1085 | x[0] = x[1]; |
| 1086 | x[1] = 0; |
| 1087 | } |
| 1088 | if (udx0) |
| 1089 | x[0] = (x[0] << 4) | (x[1] >> 28); |
| 1090 | x[1] = (x[1] << 4) | c; |
| 1091 | } |
| 1092 | if ((x[0] &= 0xfffff) || x[1]) { |
| 1093 | word0(rvp) = Exp_mask | x[0]; |
| 1094 | word1(rvp) = x[1]; |
| 1095 | } |
| 1096 | } |
| 1097 | #endif /*No_Hex_NaN*/ |
| 1098 | #endif /* INFNAN_CHECK */ |
| 1099 | |
| 1100 | double strtod(const char* s00, char** se) |
| 1101 | { |
| 1102 | #ifdef Avoid_Underflow |
| 1103 | int scale; |
| 1104 | #endif |
| 1105 | int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, |
| 1106 | e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; |
| 1107 | const char *s, *s0, *s1; |
| 1108 | double aadj, aadj1; |
| 1109 | U aadj2, adj, rv, rv0; |
| 1110 | int32_t L; |
| 1111 | uint32_t y, z; |
| 1112 | BigInt bb, bb1, bd, bd0, bs, delta; |
| 1113 | #ifdef SET_INEXACT |
| 1114 | int inexact, oldinexact; |
| 1115 | #endif |
| 1116 | |
| 1117 | sign = nz0 = nz = 0; |
| 1118 | dval(&rv) = 0; |
| 1119 | for (s = s00; ; s++) |
| 1120 | switch (*s) { |
| 1121 | case '-': |
| 1122 | sign = 1; |
| 1123 | /* no break */ |
| 1124 | case '+': |
| 1125 | if (*++s) |
| 1126 | goto break2; |
| 1127 | /* no break */ |
| 1128 | case 0: |
| 1129 | goto ret0; |
| 1130 | case '\t': |
| 1131 | case '\n': |
| 1132 | case '\v': |
| 1133 | case '\f': |
| 1134 | case '\r': |
| 1135 | case ' ': |
| 1136 | continue; |
| 1137 | default: |
| 1138 | goto break2; |
| 1139 | } |
| 1140 | break2: |
| 1141 | if (*s == '0') { |
| 1142 | nz0 = 1; |
| 1143 | while (*++s == '0') { } |
| 1144 | if (!*s) |
| 1145 | goto ret; |
| 1146 | } |
| 1147 | s0 = s; |
| 1148 | y = z = 0; |
| 1149 | for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) |
| 1150 | if (nd < 9) |
| 1151 | y = (10 * y) + c - '0'; |
| 1152 | else if (nd < 16) |
| 1153 | z = (10 * z) + c - '0'; |
| 1154 | nd0 = nd; |
| 1155 | if (c == '.') { |
| 1156 | c = *++s; |
| 1157 | if (!nd) { |
| 1158 | for (; c == '0'; c = *++s) |
| 1159 | nz++; |
| 1160 | if (c > '0' && c <= '9') { |
| 1161 | s0 = s; |
| 1162 | nf += nz; |
| 1163 | nz = 0; |
| 1164 | goto have_dig; |
| 1165 | } |
| 1166 | goto dig_done; |
| 1167 | } |
| 1168 | for (; c >= '0' && c <= '9'; c = *++s) { |
| 1169 | have_dig: |
| 1170 | nz++; |
| 1171 | if (c -= '0') { |
| 1172 | nf += nz; |
| 1173 | for (i = 1; i < nz; i++) |
| 1174 | if (nd++ < 9) |
| 1175 | y *= 10; |
| 1176 | else if (nd <= DBL_DIG + 1) |
| 1177 | z *= 10; |
| 1178 | if (nd++ < 9) |
| 1179 | y = (10 * y) + c; |
| 1180 | else if (nd <= DBL_DIG + 1) |
| 1181 | z = (10 * z) + c; |
| 1182 | nz = 0; |
| 1183 | } |
| 1184 | } |
| 1185 | } |
| 1186 | dig_done: |
| 1187 | e = 0; |
| 1188 | if (c == 'e' || c == 'E') { |
| 1189 | if (!nd && !nz && !nz0) { |
| 1190 | goto ret0; |
| 1191 | } |
| 1192 | s00 = s; |
| 1193 | esign = 0; |
| 1194 | switch (c = *++s) { |
| 1195 | case '-': |
| 1196 | esign = 1; |
| 1197 | case '+': |
| 1198 | c = *++s; |
| 1199 | } |
| 1200 | if (c >= '0' && c <= '9') { |
| 1201 | while (c == '0') |
| 1202 | c = *++s; |
| 1203 | if (c > '0' && c <= '9') { |
| 1204 | L = c - '0'; |
| 1205 | s1 = s; |
| 1206 | while ((c = *++s) >= '0' && c <= '9') |
| 1207 | L = (10 * L) + c - '0'; |
| 1208 | if (s - s1 > 8 || L > 19999) |
| 1209 | /* Avoid confusion from exponents |
| 1210 | * so large that e might overflow. |
| 1211 | */ |
| 1212 | e = 19999; /* safe for 16 bit ints */ |
| 1213 | else |
| 1214 | e = (int)L; |
| 1215 | if (esign) |
| 1216 | e = -e; |
| 1217 | } else |
| 1218 | e = 0; |
| 1219 | } else |
| 1220 | s = s00; |
| 1221 | } |
| 1222 | if (!nd) { |
| 1223 | if (!nz && !nz0) { |
| 1224 | #ifdef INFNAN_CHECK |
| 1225 | /* Check for Nan and Infinity */ |
| 1226 | switch(c) { |
| 1227 | case 'i': |
| 1228 | case 'I': |
| 1229 | if (match(sp: &s,t: "nf" )) { |
| 1230 | --s; |
| 1231 | if (!match(sp: &s,t: "inity" )) |
| 1232 | ++s; |
| 1233 | word0(&rv) = 0x7ff00000; |
| 1234 | word1(&rv) = 0; |
| 1235 | goto ret; |
| 1236 | } |
| 1237 | break; |
| 1238 | case 'n': |
| 1239 | case 'N': |
| 1240 | if (match(sp: &s, t: "an" )) { |
| 1241 | word0(&rv) = NAN_WORD0; |
| 1242 | word1(&rv) = NAN_WORD1; |
| 1243 | #ifndef No_Hex_NaN |
| 1244 | if (*s == '(') /*)*/ |
| 1245 | hexnan(rvp: &rv, sp: &s); |
| 1246 | #endif |
| 1247 | goto ret; |
| 1248 | } |
| 1249 | } |
| 1250 | #endif /* INFNAN_CHECK */ |
| 1251 | ret0: |
| 1252 | s = s00; |
| 1253 | sign = 0; |
| 1254 | } |
| 1255 | goto ret; |
| 1256 | } |
| 1257 | e1 = e -= nf; |
| 1258 | |
| 1259 | /* Now we have nd0 digits, starting at s0, followed by a |
| 1260 | * decimal point, followed by nd-nd0 digits. The number we're |
| 1261 | * after is the integer represented by those digits times |
| 1262 | * 10**e */ |
| 1263 | |
| 1264 | if (!nd0) |
| 1265 | nd0 = nd; |
| 1266 | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
| 1267 | dval(&rv) = y; |
| 1268 | if (k > 9) { |
| 1269 | #ifdef SET_INEXACT |
| 1270 | if (k > DBL_DIG) |
| 1271 | oldinexact = get_inexact(); |
| 1272 | #endif |
| 1273 | dval(&rv) = tens[k - 9] * dval(&rv) + z; |
| 1274 | } |
| 1275 | if (nd <= DBL_DIG && Flt_Rounds == 1) { |
| 1276 | if (!e) |
| 1277 | goto ret; |
| 1278 | if (e > 0) { |
| 1279 | if (e <= Ten_pmax) { |
| 1280 | /* rv = */ rounded_product(dval(&rv), tens[e]); |
| 1281 | goto ret; |
| 1282 | } |
| 1283 | i = DBL_DIG - nd; |
| 1284 | if (e <= Ten_pmax + i) { |
| 1285 | /* A fancier test would sometimes let us do |
| 1286 | * this for larger i values. |
| 1287 | */ |
| 1288 | e -= i; |
| 1289 | dval(&rv) *= tens[i]; |
| 1290 | /* rv = */ rounded_product(dval(&rv), tens[e]); |
| 1291 | goto ret; |
| 1292 | } |
| 1293 | } |
| 1294 | #ifndef Inaccurate_Divide |
| 1295 | else if (e >= -Ten_pmax) { |
| 1296 | /* rv = */ rounded_quotient(dval(&rv), tens[-e]); |
| 1297 | goto ret; |
| 1298 | } |
| 1299 | #endif |
| 1300 | } |
| 1301 | e1 += nd - k; |
| 1302 | |
| 1303 | #ifdef SET_INEXACT |
| 1304 | inexact = 1; |
| 1305 | if (k <= DBL_DIG) |
| 1306 | oldinexact = get_inexact(); |
| 1307 | #endif |
| 1308 | #ifdef Avoid_Underflow |
| 1309 | scale = 0; |
| 1310 | #endif |
| 1311 | |
| 1312 | /* Get starting approximation = rv * 10**e1 */ |
| 1313 | |
| 1314 | if (e1 > 0) { |
| 1315 | if ((i = e1 & 15)) |
| 1316 | dval(&rv) *= tens[i]; |
| 1317 | if (e1 &= ~15) { |
| 1318 | if (e1 > DBL_MAX_10_EXP) { |
| 1319 | ovfl: |
| 1320 | #ifndef NO_ERRNO |
| 1321 | errno = ERANGE; |
| 1322 | #endif |
| 1323 | /* Can't trust HUGE_VAL */ |
| 1324 | word0(&rv) = Exp_mask; |
| 1325 | word1(&rv) = 0; |
| 1326 | #ifdef SET_INEXACT |
| 1327 | /* set overflow bit */ |
| 1328 | dval(&rv0) = 1e300; |
| 1329 | dval(&rv0) *= dval(&rv0); |
| 1330 | #endif |
| 1331 | goto ret; |
| 1332 | } |
| 1333 | e1 >>= 4; |
| 1334 | for (j = 0; e1 > 1; j++, e1 >>= 1) |
| 1335 | if (e1 & 1) |
| 1336 | dval(&rv) *= bigtens[j]; |
| 1337 | /* The last multiplication could overflow. */ |
| 1338 | word0(&rv) -= P * Exp_msk1; |
| 1339 | dval(&rv) *= bigtens[j]; |
| 1340 | if ((z = word0(&rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P)) |
| 1341 | goto ovfl; |
| 1342 | if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) { |
| 1343 | /* set to largest number */ |
| 1344 | /* (Can't trust DBL_MAX) */ |
| 1345 | word0(&rv) = Big0; |
| 1346 | word1(&rv) = Big1; |
| 1347 | } else |
| 1348 | word0(&rv) += P * Exp_msk1; |
| 1349 | } |
| 1350 | } else if (e1 < 0) { |
| 1351 | e1 = -e1; |
| 1352 | if ((i = e1 & 15)) |
| 1353 | dval(&rv) /= tens[i]; |
| 1354 | if (e1 >>= 4) { |
| 1355 | if (e1 >= 1 << n_bigtens) |
| 1356 | goto undfl; |
| 1357 | #ifdef Avoid_Underflow |
| 1358 | if (e1 & Scale_Bit) |
| 1359 | scale = 2 * P; |
| 1360 | for (j = 0; e1 > 0; j++, e1 >>= 1) |
| 1361 | if (e1 & 1) |
| 1362 | dval(&rv) *= tinytens[j]; |
| 1363 | if (scale && (j = (2 * P) + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0) { |
| 1364 | /* scaled rv is denormal; zap j low bits */ |
| 1365 | if (j >= 32) { |
| 1366 | word1(&rv) = 0; |
| 1367 | if (j >= 53) |
| 1368 | word0(&rv) = (P + 2) * Exp_msk1; |
| 1369 | else |
| 1370 | word0(&rv) &= 0xffffffff << (j - 32); |
| 1371 | } else |
| 1372 | word1(&rv) &= 0xffffffff << j; |
| 1373 | } |
| 1374 | #else |
| 1375 | for (j = 0; e1 > 1; j++, e1 >>= 1) |
| 1376 | if (e1 & 1) |
| 1377 | dval(&rv) *= tinytens[j]; |
| 1378 | /* The last multiplication could underflow. */ |
| 1379 | dval(&rv0) = dval(&rv); |
| 1380 | dval(&rv) *= tinytens[j]; |
| 1381 | if (!dval(&rv)) { |
| 1382 | dval(&rv) = 2. * dval(&rv0); |
| 1383 | dval(&rv) *= tinytens[j]; |
| 1384 | #endif |
| 1385 | if (!dval(&rv)) { |
| 1386 | undfl: |
| 1387 | dval(&rv) = 0.; |
| 1388 | #ifndef NO_ERRNO |
| 1389 | errno = ERANGE; |
| 1390 | #endif |
| 1391 | goto ret; |
| 1392 | } |
| 1393 | #ifndef Avoid_Underflow |
| 1394 | word0(&rv) = Tiny0; |
| 1395 | word1(&rv) = Tiny1; |
| 1396 | /* The refinement below will clean |
| 1397 | * this approximation up. |
| 1398 | */ |
| 1399 | } |
| 1400 | #endif |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | /* Now the hard part -- adjusting rv to the correct value.*/ |
| 1405 | |
| 1406 | /* Put digits into bd: true value = bd * 10^e */ |
| 1407 | |
| 1408 | s2b(b&: bd0, s: s0, nd0, nd, y9: y); |
| 1409 | |
| 1410 | for (;;) { |
| 1411 | bd = bd0; |
| 1412 | d2b(b&: bb, d: &rv, e: &bbe, bits: &bbbits); /* rv = bb * 2^bbe */ |
| 1413 | i2b(b&: bs, i: 1); |
| 1414 | |
| 1415 | if (e >= 0) { |
| 1416 | bb2 = bb5 = 0; |
| 1417 | bd2 = bd5 = e; |
| 1418 | } else { |
| 1419 | bb2 = bb5 = -e; |
| 1420 | bd2 = bd5 = 0; |
| 1421 | } |
| 1422 | if (bbe >= 0) |
| 1423 | bb2 += bbe; |
| 1424 | else |
| 1425 | bd2 -= bbe; |
| 1426 | bs2 = bb2; |
| 1427 | #ifdef Avoid_Underflow |
| 1428 | j = bbe - scale; |
| 1429 | i = j + bbbits - 1; /* logb(rv) */ |
| 1430 | if (i < Emin) /* denormal */ |
| 1431 | j += P - Emin; |
| 1432 | else |
| 1433 | j = P + 1 - bbbits; |
| 1434 | #else /*Avoid_Underflow*/ |
| 1435 | #ifdef Sudden_Underflow |
| 1436 | j = P + 1 - bbbits; |
| 1437 | #else /*Sudden_Underflow*/ |
| 1438 | j = bbe; |
| 1439 | i = j + bbbits - 1; /* logb(rv) */ |
| 1440 | if (i < Emin) /* denormal */ |
| 1441 | j += P - Emin; |
| 1442 | else |
| 1443 | j = P + 1 - bbbits; |
| 1444 | #endif /*Sudden_Underflow*/ |
| 1445 | #endif /*Avoid_Underflow*/ |
| 1446 | bb2 += j; |
| 1447 | bd2 += j; |
| 1448 | #ifdef Avoid_Underflow |
| 1449 | bd2 += scale; |
| 1450 | #endif |
| 1451 | i = bb2 < bd2 ? bb2 : bd2; |
| 1452 | if (i > bs2) |
| 1453 | i = bs2; |
| 1454 | if (i > 0) { |
| 1455 | bb2 -= i; |
| 1456 | bd2 -= i; |
| 1457 | bs2 -= i; |
| 1458 | } |
| 1459 | if (bb5 > 0) { |
| 1460 | pow5mult(b&: bs, k: bb5); |
| 1461 | mult(aRef&: bb, bRef: bs); |
| 1462 | } |
| 1463 | if (bb2 > 0) |
| 1464 | lshift(b&: bb, k: bb2); |
| 1465 | if (bd5 > 0) |
| 1466 | pow5mult(b&: bd, k: bd5); |
| 1467 | if (bd2 > 0) |
| 1468 | lshift(b&: bd, k: bd2); |
| 1469 | if (bs2 > 0) |
| 1470 | lshift(b&: bs, k: bs2); |
| 1471 | diff(c&: delta, aRef: bb, bRef: bd); |
| 1472 | dsign = delta.sign; |
| 1473 | delta.sign = 0; |
| 1474 | i = cmp(a: delta, b: bs); |
| 1475 | |
| 1476 | if (i < 0) { |
| 1477 | /* Error is less than half an ulp -- check for |
| 1478 | * special case of mantissa a power of two. |
| 1479 | */ |
| 1480 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask |
| 1481 | #ifdef Avoid_Underflow |
| 1482 | || (word0(&rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1 |
| 1483 | #else |
| 1484 | || (word0(&rv) & Exp_mask) <= Exp_msk1 |
| 1485 | #endif |
| 1486 | ) { |
| 1487 | #ifdef SET_INEXACT |
| 1488 | if (!delta->words()[0] && delta->size() <= 1) |
| 1489 | inexact = 0; |
| 1490 | #endif |
| 1491 | break; |
| 1492 | } |
| 1493 | if (!delta.words()[0] && delta.size() <= 1) { |
| 1494 | /* exact result */ |
| 1495 | #ifdef SET_INEXACT |
| 1496 | inexact = 0; |
| 1497 | #endif |
| 1498 | break; |
| 1499 | } |
| 1500 | lshift(b&: delta, Log2P); |
| 1501 | if (cmp(a: delta, b: bs) > 0) |
| 1502 | goto drop_down; |
| 1503 | break; |
| 1504 | } |
| 1505 | if (i == 0) { |
| 1506 | /* exactly half-way between */ |
| 1507 | if (dsign) { |
| 1508 | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 |
| 1509 | && word1(&rv) == ( |
| 1510 | #ifdef Avoid_Underflow |
| 1511 | (scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) |
| 1512 | ? (0xffffffff & (0xffffffff << (2 * P + 1 - (y >> Exp_shift)))) : |
| 1513 | #endif |
| 1514 | 0xffffffff)) { |
| 1515 | /*boundary case -- increment exponent*/ |
| 1516 | word0(&rv) = (word0(&rv) & Exp_mask) + Exp_msk1; |
| 1517 | word1(&rv) = 0; |
| 1518 | #ifdef Avoid_Underflow |
| 1519 | dsign = 0; |
| 1520 | #endif |
| 1521 | break; |
| 1522 | } |
| 1523 | } else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { |
| 1524 | drop_down: |
| 1525 | /* boundary case -- decrement exponent */ |
| 1526 | #ifdef Sudden_Underflow /*{{*/ |
| 1527 | L = word0(&rv) & Exp_mask; |
| 1528 | #ifdef Avoid_Underflow |
| 1529 | if (L <= (scale ? (2 * P + 1) * Exp_msk1 : Exp_msk1)) |
| 1530 | #else |
| 1531 | if (L <= Exp_msk1) |
| 1532 | #endif /*Avoid_Underflow*/ |
| 1533 | goto undfl; |
| 1534 | L -= Exp_msk1; |
| 1535 | #else /*Sudden_Underflow}{*/ |
| 1536 | #ifdef Avoid_Underflow |
| 1537 | if (scale) { |
| 1538 | L = word0(&rv) & Exp_mask; |
| 1539 | if (L <= (2 * P + 1) * Exp_msk1) { |
| 1540 | if (L > (P + 2) * Exp_msk1) |
| 1541 | /* round even ==> */ |
| 1542 | /* accept rv */ |
| 1543 | break; |
| 1544 | /* rv = smallest denormal */ |
| 1545 | goto undfl; |
| 1546 | } |
| 1547 | } |
| 1548 | #endif /*Avoid_Underflow*/ |
| 1549 | L = (word0(&rv) & Exp_mask) - Exp_msk1; |
| 1550 | #endif /*Sudden_Underflow}}*/ |
| 1551 | word0(&rv) = L | Bndry_mask1; |
| 1552 | word1(&rv) = 0xffffffff; |
| 1553 | break; |
| 1554 | } |
| 1555 | if (!(word1(&rv) & LSB)) |
| 1556 | break; |
| 1557 | if (dsign) |
| 1558 | dval(&rv) += ulp(x: &rv); |
| 1559 | else { |
| 1560 | dval(&rv) -= ulp(x: &rv); |
| 1561 | #ifndef Sudden_Underflow |
| 1562 | if (!dval(&rv)) |
| 1563 | goto undfl; |
| 1564 | #endif |
| 1565 | } |
| 1566 | #ifdef Avoid_Underflow |
| 1567 | dsign = 1 - dsign; |
| 1568 | #endif |
| 1569 | break; |
| 1570 | } |
| 1571 | if ((aadj = ratio(a: delta, b: bs)) <= 2.) { |
| 1572 | if (dsign) |
| 1573 | aadj = aadj1 = 1.; |
| 1574 | else if (word1(&rv) || word0(&rv) & Bndry_mask) { |
| 1575 | #ifndef Sudden_Underflow |
| 1576 | if (word1(&rv) == Tiny1 && !word0(&rv)) |
| 1577 | goto undfl; |
| 1578 | #endif |
| 1579 | aadj = 1.; |
| 1580 | aadj1 = -1.; |
| 1581 | } else { |
| 1582 | /* special case -- power of FLT_RADIX to be */ |
| 1583 | /* rounded down... */ |
| 1584 | |
| 1585 | if (aadj < 2. / FLT_RADIX) |
| 1586 | aadj = 1. / FLT_RADIX; |
| 1587 | else |
| 1588 | aadj *= 0.5; |
| 1589 | aadj1 = -aadj; |
| 1590 | } |
| 1591 | } else { |
| 1592 | aadj *= 0.5; |
| 1593 | aadj1 = dsign ? aadj : -aadj; |
| 1594 | #ifdef Check_FLT_ROUNDS |
| 1595 | switch (Rounding) { |
| 1596 | case 2: /* towards +infinity */ |
| 1597 | aadj1 -= 0.5; |
| 1598 | break; |
| 1599 | case 0: /* towards 0 */ |
| 1600 | case 3: /* towards -infinity */ |
| 1601 | aadj1 += 0.5; |
| 1602 | } |
| 1603 | #else |
| 1604 | if (Flt_Rounds == 0) |
| 1605 | aadj1 += 0.5; |
| 1606 | #endif /*Check_FLT_ROUNDS*/ |
| 1607 | } |
| 1608 | y = word0(&rv) & Exp_mask; |
| 1609 | |
| 1610 | /* Check for overflow */ |
| 1611 | |
| 1612 | if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) { |
| 1613 | dval(&rv0) = dval(&rv); |
| 1614 | word0(&rv) -= P * Exp_msk1; |
| 1615 | adj.d = aadj1 * ulp(x: &rv); |
| 1616 | dval(&rv) += adj.d; |
| 1617 | if ((word0(&rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P)) { |
| 1618 | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) |
| 1619 | goto ovfl; |
| 1620 | word0(&rv) = Big0; |
| 1621 | word1(&rv) = Big1; |
| 1622 | goto cont; |
| 1623 | } else |
| 1624 | word0(&rv) += P * Exp_msk1; |
| 1625 | } else { |
| 1626 | #ifdef Avoid_Underflow |
| 1627 | if (scale && y <= 2 * P * Exp_msk1) { |
| 1628 | if (aadj <= 0x7fffffff) { |
| 1629 | if ((z = (uint32_t)aadj) <= 0) |
| 1630 | z = 1; |
| 1631 | aadj = z; |
| 1632 | aadj1 = dsign ? aadj : -aadj; |
| 1633 | } |
| 1634 | dval(&aadj2) = aadj1; |
| 1635 | word0(&aadj2) += (2 * P + 1) * Exp_msk1 - y; |
| 1636 | aadj1 = dval(&aadj2); |
| 1637 | } |
| 1638 | adj.d = aadj1 * ulp(x: &rv); |
| 1639 | dval(&rv) += adj.d; |
| 1640 | #else |
| 1641 | #ifdef Sudden_Underflow |
| 1642 | if ((word0(&rv) & Exp_mask) <= P * Exp_msk1) { |
| 1643 | dval(&rv0) = dval(&rv); |
| 1644 | word0(&rv) += P * Exp_msk1; |
| 1645 | adj.d = aadj1 * ulp(&rv); |
| 1646 | dval(&rv) += adj.d; |
| 1647 | if ((word0(&rv) & Exp_mask) <= P * Exp_msk1) |
| 1648 | { |
| 1649 | if (word0(&rv0) == Tiny0 && word1(&rv0) == Tiny1) |
| 1650 | goto undfl; |
| 1651 | word0(&rv) = Tiny0; |
| 1652 | word1(&rv) = Tiny1; |
| 1653 | goto cont; |
| 1654 | } |
| 1655 | else |
| 1656 | word0(&rv) -= P * Exp_msk1; |
| 1657 | } else { |
| 1658 | adj.d = aadj1 * ulp(&rv); |
| 1659 | dval(&rv) += adj.d; |
| 1660 | } |
| 1661 | #else /*Sudden_Underflow*/ |
| 1662 | /* Compute adj so that the IEEE rounding rules will |
| 1663 | * correctly round rv + adj in some half-way cases. |
| 1664 | * If rv * ulp(rv) is denormalized (i.e., |
| 1665 | * y <= (P - 1) * Exp_msk1), we must adjust aadj to avoid |
| 1666 | * trouble from bits lost to denormalization; |
| 1667 | * example: 1.2e-307 . |
| 1668 | */ |
| 1669 | if (y <= (P - 1) * Exp_msk1 && aadj > 1.) { |
| 1670 | aadj1 = (double)(int)(aadj + 0.5); |
| 1671 | if (!dsign) |
| 1672 | aadj1 = -aadj1; |
| 1673 | } |
| 1674 | adj.d = aadj1 * ulp(&rv); |
| 1675 | dval(&rv) += adj.d; |
| 1676 | #endif /*Sudden_Underflow*/ |
| 1677 | #endif /*Avoid_Underflow*/ |
| 1678 | } |
| 1679 | z = word0(&rv) & Exp_mask; |
| 1680 | #ifndef SET_INEXACT |
| 1681 | #ifdef Avoid_Underflow |
| 1682 | if (!scale) |
| 1683 | #endif |
| 1684 | if (y == z) { |
| 1685 | /* Can we stop now? */ |
| 1686 | L = (int32_t)aadj; |
| 1687 | aadj -= L; |
| 1688 | /* The tolerances below are conservative. */ |
| 1689 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { |
| 1690 | if (aadj < .4999999 || aadj > .5000001) |
| 1691 | break; |
| 1692 | } else if (aadj < .4999999 / FLT_RADIX) |
| 1693 | break; |
| 1694 | } |
| 1695 | #endif |
| 1696 | cont: |
| 1697 | ; |
| 1698 | } |
| 1699 | #ifdef SET_INEXACT |
| 1700 | if (inexact) { |
| 1701 | if (!oldinexact) { |
| 1702 | word0(&rv0) = Exp_1 + (70 << Exp_shift); |
| 1703 | word1(&rv0) = 0; |
| 1704 | dval(&rv0) += 1.; |
| 1705 | } |
| 1706 | } else if (!oldinexact) |
| 1707 | clear_inexact(); |
| 1708 | #endif |
| 1709 | #ifdef Avoid_Underflow |
| 1710 | if (scale) { |
| 1711 | word0(&rv0) = Exp_1 - 2 * P * Exp_msk1; |
| 1712 | word1(&rv0) = 0; |
| 1713 | dval(&rv) *= dval(&rv0); |
| 1714 | #ifndef NO_ERRNO |
| 1715 | /* try to avoid the bug of testing an 8087 register value */ |
| 1716 | if (word0(&rv) == 0 && word1(&rv) == 0) |
| 1717 | errno = ERANGE; |
| 1718 | #endif |
| 1719 | } |
| 1720 | #endif /* Avoid_Underflow */ |
| 1721 | #ifdef SET_INEXACT |
| 1722 | if (inexact && !(word0(&rv) & Exp_mask)) { |
| 1723 | /* set underflow bit */ |
| 1724 | dval(&rv0) = 1e-300; |
| 1725 | dval(&rv0) *= dval(&rv0); |
| 1726 | } |
| 1727 | #endif |
| 1728 | ret: |
| 1729 | if (se) |
| 1730 | *se = const_cast<char*>(s); |
| 1731 | return sign ? -dval(&rv) : dval(&rv); |
| 1732 | } |
| 1733 | |
| 1734 | static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S) |
| 1735 | { |
| 1736 | size_t n; |
| 1737 | uint32_t *bx, *bxe, q, *sx, *sxe; |
| 1738 | #ifdef USE_LONG_LONG |
| 1739 | unsigned long long borrow, carry, y, ys; |
| 1740 | #else |
| 1741 | uint32_t borrow, carry, y, ys; |
| 1742 | #ifdef Pack_32 |
| 1743 | uint32_t si, z, zs; |
| 1744 | #endif |
| 1745 | #endif |
| 1746 | ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); |
| 1747 | ASSERT(S.size() <= 1 || S.words()[S.size() - 1]); |
| 1748 | |
| 1749 | n = S.size(); |
| 1750 | ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem" ); |
| 1751 | if (b.size() < n) |
| 1752 | return 0; |
| 1753 | sx = S.words(); |
| 1754 | sxe = sx + --n; |
| 1755 | bx = b.words(); |
| 1756 | bxe = bx + n; |
| 1757 | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
| 1758 | ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem" ); |
| 1759 | if (q) { |
| 1760 | borrow = 0; |
| 1761 | carry = 0; |
| 1762 | do { |
| 1763 | #ifdef USE_LONG_LONG |
| 1764 | ys = *sx++ * (unsigned long long)q + carry; |
| 1765 | carry = ys >> 32; |
| 1766 | y = *bx - (ys & 0xffffffffUL) - borrow; |
| 1767 | borrow = y >> 32 & (uint32_t)1; |
| 1768 | *bx++ = (uint32_t)y & 0xffffffffUL; |
| 1769 | #else |
| 1770 | #ifdef Pack_32 |
| 1771 | si = *sx++; |
| 1772 | ys = (si & 0xffff) * q + carry; |
| 1773 | zs = (si >> 16) * q + (ys >> 16); |
| 1774 | carry = zs >> 16; |
| 1775 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
| 1776 | borrow = (y & 0x10000) >> 16; |
| 1777 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
| 1778 | borrow = (z & 0x10000) >> 16; |
| 1779 | Storeinc(bx, z, y); |
| 1780 | #else |
| 1781 | ys = *sx++ * q + carry; |
| 1782 | carry = ys >> 16; |
| 1783 | y = *bx - (ys & 0xffff) - borrow; |
| 1784 | borrow = (y & 0x10000) >> 16; |
| 1785 | *bx++ = y & 0xffff; |
| 1786 | #endif |
| 1787 | #endif |
| 1788 | } while (sx <= sxe); |
| 1789 | if (!*bxe) { |
| 1790 | bx = b.words(); |
| 1791 | while (--bxe > bx && !*bxe) |
| 1792 | --n; |
| 1793 | b.resize(s: n); |
| 1794 | } |
| 1795 | } |
| 1796 | if (cmp(a: b, b: S) >= 0) { |
| 1797 | q++; |
| 1798 | borrow = 0; |
| 1799 | carry = 0; |
| 1800 | bx = b.words(); |
| 1801 | sx = S.words(); |
| 1802 | do { |
| 1803 | #ifdef USE_LONG_LONG |
| 1804 | ys = *sx++ + carry; |
| 1805 | carry = ys >> 32; |
| 1806 | y = *bx - (ys & 0xffffffffUL) - borrow; |
| 1807 | borrow = y >> 32 & (uint32_t)1; |
| 1808 | *bx++ = (uint32_t)y & 0xffffffffUL; |
| 1809 | #else |
| 1810 | #ifdef Pack_32 |
| 1811 | si = *sx++; |
| 1812 | ys = (si & 0xffff) + carry; |
| 1813 | zs = (si >> 16) + (ys >> 16); |
| 1814 | carry = zs >> 16; |
| 1815 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
| 1816 | borrow = (y & 0x10000) >> 16; |
| 1817 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
| 1818 | borrow = (z & 0x10000) >> 16; |
| 1819 | Storeinc(bx, z, y); |
| 1820 | #else |
| 1821 | ys = *sx++ + carry; |
| 1822 | carry = ys >> 16; |
| 1823 | y = *bx - (ys & 0xffff) - borrow; |
| 1824 | borrow = (y & 0x10000) >> 16; |
| 1825 | *bx++ = y & 0xffff; |
| 1826 | #endif |
| 1827 | #endif |
| 1828 | } while (sx <= sxe); |
| 1829 | bx = b.words(); |
| 1830 | bxe = bx + n; |
| 1831 | if (!*bxe) { |
| 1832 | while (--bxe > bx && !*bxe) |
| 1833 | --n; |
| 1834 | b.resize(s: n); |
| 1835 | } |
| 1836 | } |
| 1837 | return q; |
| 1838 | } |
| 1839 | |
| 1840 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
| 1841 | * |
| 1842 | * Inspired by "How to Print Floating-Point Numbers Accurately" by |
| 1843 | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. |
| 1844 | * |
| 1845 | * Modifications: |
| 1846 | * 1. Rather than iterating, we use a simple numeric overestimate |
| 1847 | * to determine k = floor(log10(d)). We scale relevant |
| 1848 | * quantities using O(log2(k)) rather than O(k) multiplications. |
| 1849 | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
| 1850 | * try to generate digits strictly left to right. Instead, we |
| 1851 | * compute with fewer bits and propagate the carry if necessary |
| 1852 | * when rounding the final digit up. This is often faster. |
| 1853 | * 3. Under the assumption that input will be rounded nearest, |
| 1854 | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
| 1855 | * That is, we allow equality in stopping tests when the |
| 1856 | * round-nearest rule will give the same floating-point value |
| 1857 | * as would satisfaction of the stopping test with strict |
| 1858 | * inequality. |
| 1859 | * 4. We remove common factors of powers of 2 from relevant |
| 1860 | * quantities. |
| 1861 | * 5. When converting floating-point integers less than 1e16, |
| 1862 | * we use floating-point arithmetic rather than resorting |
| 1863 | * to multiple-precision integers. |
| 1864 | * 6. When asked to produce fewer than 15 digits, we first try |
| 1865 | * to get by with floating-point arithmetic; we resort to |
| 1866 | * multiple-precision integer arithmetic only if we cannot |
| 1867 | * guarantee that the floating-point calculation has given |
| 1868 | * the correctly rounded result. For k requested digits and |
| 1869 | * "uniformly" distributed input, the probability is |
| 1870 | * something like 10^(k-15) that we must resort to the int32_t |
| 1871 | * calculation. |
| 1872 | */ |
| 1873 | |
| 1874 | void dtoa(DtoaBuffer result, double dd, int ndigits, int* decpt, int* sign, char** rve) |
| 1875 | { |
| 1876 | /* |
| 1877 | Arguments ndigits, decpt, sign are similar to those |
| 1878 | of ecvt and fcvt; trailing zeros are suppressed from |
| 1879 | the returned string. If not null, *rve is set to point |
| 1880 | to the end of the return value. If d is +-Infinity or NaN, |
| 1881 | then *decpt is set to 9999. |
| 1882 | |
| 1883 | */ |
| 1884 | |
| 1885 | int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, |
| 1886 | j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
| 1887 | spec_case, try_quick; |
| 1888 | int32_t L; |
| 1889 | #ifndef Sudden_Underflow |
| 1890 | int denorm; |
| 1891 | uint32_t x; |
| 1892 | #endif |
| 1893 | BigInt b, b1, delta, mlo, mhi, S; |
| 1894 | U d2, eps, u; |
| 1895 | double ds; |
| 1896 | char *s, *s0; |
| 1897 | #ifdef SET_INEXACT |
| 1898 | int inexact, oldinexact; |
| 1899 | #endif |
| 1900 | |
| 1901 | u.d = dd; |
| 1902 | if (word0(&u) & Sign_bit) { |
| 1903 | /* set sign for everything, including 0's and NaNs */ |
| 1904 | *sign = 1; |
| 1905 | word0(&u) &= ~Sign_bit; /* clear sign bit */ |
| 1906 | } else |
| 1907 | *sign = 0; |
| 1908 | |
| 1909 | if ((word0(&u) & Exp_mask) == Exp_mask) |
| 1910 | { |
| 1911 | /* Infinity or NaN */ |
| 1912 | *decpt = 9999; |
| 1913 | if (!word1(&u) && !(word0(&u) & 0xfffff)) { |
| 1914 | strcpy(dest: result, src: "Infinity" ); |
| 1915 | if (rve) |
| 1916 | *rve = result + 8; |
| 1917 | } else { |
| 1918 | strcpy(dest: result, src: "NaN" ); |
| 1919 | if (rve) |
| 1920 | *rve = result + 3; |
| 1921 | } |
| 1922 | return; |
| 1923 | } |
| 1924 | if (!dval(&u)) { |
| 1925 | *decpt = 1; |
| 1926 | result[0] = '0'; |
| 1927 | result[1] = '\0'; |
| 1928 | if (rve) |
| 1929 | *rve = result + 1; |
| 1930 | return; |
| 1931 | } |
| 1932 | |
| 1933 | #ifdef SET_INEXACT |
| 1934 | try_quick = oldinexact = get_inexact(); |
| 1935 | inexact = 1; |
| 1936 | #endif |
| 1937 | |
| 1938 | d2b(b, d: &u, e: &be, bits: &bbits); |
| 1939 | #ifdef Sudden_Underflow |
| 1940 | i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)); |
| 1941 | #else |
| 1942 | if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) { |
| 1943 | #endif |
| 1944 | dval(&d2) = dval(&u); |
| 1945 | word0(&d2) &= Frac_mask1; |
| 1946 | word0(&d2) |= Exp_11; |
| 1947 | |
| 1948 | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
| 1949 | * log10(x) = log(x) / log(10) |
| 1950 | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
| 1951 | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
| 1952 | * |
| 1953 | * This suggests computing an approximation k to log10(d) by |
| 1954 | * |
| 1955 | * k = (i - Bias)*0.301029995663981 |
| 1956 | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
| 1957 | * |
| 1958 | * We want k to be too large rather than too small. |
| 1959 | * The error in the first-order Taylor series approximation |
| 1960 | * is in our favor, so we just round up the constant enough |
| 1961 | * to compensate for any error in the multiplication of |
| 1962 | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
| 1963 | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
| 1964 | * adding 1e-13 to the constant term more than suffices. |
| 1965 | * Hence we adjust the constant term to 0.1760912590558. |
| 1966 | * (We could get a more accurate k by invoking log10, |
| 1967 | * but this is probably not worthwhile.) |
| 1968 | */ |
| 1969 | |
| 1970 | i -= Bias; |
| 1971 | #ifndef Sudden_Underflow |
| 1972 | denorm = 0; |
| 1973 | } else { |
| 1974 | /* d is denormalized */ |
| 1975 | |
| 1976 | i = bbits + be + (Bias + (P - 1) - 1); |
| 1977 | x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32)) |
| 1978 | : word1(&u) << (32 - i); |
| 1979 | dval(&d2) = x; |
| 1980 | word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */ |
| 1981 | i -= (Bias + (P - 1) - 1) + 1; |
| 1982 | denorm = 1; |
| 1983 | } |
| 1984 | #endif |
| 1985 | ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981); |
| 1986 | k = (int)ds; |
| 1987 | if (ds < 0. && ds != k) |
| 1988 | k--; /* want k = floor(ds) */ |
| 1989 | k_check = 1; |
| 1990 | if (k >= 0 && k <= Ten_pmax) { |
| 1991 | if (dval(&u) < tens[k]) |
| 1992 | k--; |
| 1993 | k_check = 0; |
| 1994 | } |
| 1995 | j = bbits - i - 1; |
| 1996 | if (j >= 0) { |
| 1997 | b2 = 0; |
| 1998 | s2 = j; |
| 1999 | } else { |
| 2000 | b2 = -j; |
| 2001 | s2 = 0; |
| 2002 | } |
| 2003 | if (k >= 0) { |
| 2004 | b5 = 0; |
| 2005 | s5 = k; |
| 2006 | s2 += k; |
| 2007 | } else { |
| 2008 | b2 -= k; |
| 2009 | b5 = -k; |
| 2010 | s5 = 0; |
| 2011 | } |
| 2012 | |
| 2013 | #ifndef SET_INEXACT |
| 2014 | #ifdef Check_FLT_ROUNDS |
| 2015 | try_quick = Rounding == 1; |
| 2016 | #else |
| 2017 | try_quick = 1; |
| 2018 | #endif |
| 2019 | #endif /*SET_INEXACT*/ |
| 2020 | |
| 2021 | leftright = 1; |
| 2022 | ilim = ilim1 = -1; |
| 2023 | i = 18; |
| 2024 | ndigits = 0; |
| 2025 | s = s0 = result; |
| 2026 | |
| 2027 | if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
| 2028 | |
| 2029 | /* Try to get by with floating-point arithmetic. */ |
| 2030 | |
| 2031 | i = 0; |
| 2032 | dval(&d2) = dval(&u); |
| 2033 | k0 = k; |
| 2034 | ilim0 = ilim; |
| 2035 | ieps = 2; /* conservative */ |
| 2036 | if (k > 0) { |
| 2037 | ds = tens[k & 0xf]; |
| 2038 | j = k >> 4; |
| 2039 | if (j & Bletch) { |
| 2040 | /* prevent overflows */ |
| 2041 | j &= Bletch - 1; |
| 2042 | dval(&u) /= bigtens[n_bigtens - 1]; |
| 2043 | ieps++; |
| 2044 | } |
| 2045 | for (; j; j >>= 1, i++) { |
| 2046 | if (j & 1) { |
| 2047 | ieps++; |
| 2048 | ds *= bigtens[i]; |
| 2049 | } |
| 2050 | } |
| 2051 | dval(&u) /= ds; |
| 2052 | } else if ((j1 = -k)) { |
| 2053 | dval(&u) *= tens[j1 & 0xf]; |
| 2054 | for (j = j1 >> 4; j; j >>= 1, i++) { |
| 2055 | if (j & 1) { |
| 2056 | ieps++; |
| 2057 | dval(&u) *= bigtens[i]; |
| 2058 | } |
| 2059 | } |
| 2060 | } |
| 2061 | if (k_check && dval(&u) < 1. && ilim > 0) { |
| 2062 | if (ilim1 <= 0) |
| 2063 | goto fast_failed; |
| 2064 | ilim = ilim1; |
| 2065 | k--; |
| 2066 | dval(&u) *= 10.; |
| 2067 | ieps++; |
| 2068 | } |
| 2069 | dval(&eps) = (ieps * dval(&u)) + 7.; |
| 2070 | word0(&eps) -= (P - 1) * Exp_msk1; |
| 2071 | if (ilim == 0) { |
| 2072 | S.clear(); |
| 2073 | mhi.clear(); |
| 2074 | dval(&u) -= 5.; |
| 2075 | if (dval(&u) > dval(&eps)) |
| 2076 | goto one_digit; |
| 2077 | if (dval(&u) < -dval(&eps)) |
| 2078 | goto no_digits; |
| 2079 | goto fast_failed; |
| 2080 | } |
| 2081 | #ifndef No_leftright |
| 2082 | if (leftright) { |
| 2083 | /* Use Steele & White method of only |
| 2084 | * generating digits needed. |
| 2085 | */ |
| 2086 | dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps); |
| 2087 | for (i = 0;;) { |
| 2088 | L = (long int)dval(&u); |
| 2089 | dval(&u) -= L; |
| 2090 | *s++ = '0' + (int)L; |
| 2091 | if (dval(&u) < dval(&eps)) |
| 2092 | goto ret; |
| 2093 | if (1. - dval(&u) < dval(&eps)) |
| 2094 | goto bump_up; |
| 2095 | if (++i >= ilim) |
| 2096 | break; |
| 2097 | dval(&eps) *= 10.; |
| 2098 | dval(&u) *= 10.; |
| 2099 | } |
| 2100 | } else { |
| 2101 | #endif |
| 2102 | /* Generate ilim digits, then fix them up. */ |
| 2103 | dval(&eps) *= tens[ilim - 1]; |
| 2104 | for (i = 1;; i++, dval(&u) *= 10.) { |
| 2105 | L = (int32_t)(dval(&u)); |
| 2106 | if (!(dval(&u) -= L)) |
| 2107 | ilim = i; |
| 2108 | *s++ = '0' + (int)L; |
| 2109 | if (i == ilim) { |
| 2110 | if (dval(&u) > 0.5 + dval(&eps)) |
| 2111 | goto bump_up; |
| 2112 | else if (dval(&u) < 0.5 - dval(&eps)) { |
| 2113 | while (*--s == '0') { } |
| 2114 | s++; |
| 2115 | goto ret; |
| 2116 | } |
| 2117 | break; |
| 2118 | } |
| 2119 | } |
| 2120 | #ifndef No_leftright |
| 2121 | } |
| 2122 | #endif |
| 2123 | fast_failed: |
| 2124 | s = s0; |
| 2125 | dval(&u) = dval(&d2); |
| 2126 | k = k0; |
| 2127 | ilim = ilim0; |
| 2128 | } |
| 2129 | |
| 2130 | /* Do we have a "small" integer? */ |
| 2131 | |
| 2132 | if (be >= 0 && k <= Int_max) { |
| 2133 | /* Yes. */ |
| 2134 | ds = tens[k]; |
| 2135 | if (ndigits < 0 && ilim <= 0) { |
| 2136 | S.clear(); |
| 2137 | mhi.clear(); |
| 2138 | if (ilim < 0 || dval(&u) <= 5 * ds) |
| 2139 | goto no_digits; |
| 2140 | goto one_digit; |
| 2141 | } |
| 2142 | for (i = 1;; i++, dval(&u) *= 10.) { |
| 2143 | L = (int32_t)(dval(&u) / ds); |
| 2144 | dval(&u) -= L * ds; |
| 2145 | #ifdef Check_FLT_ROUNDS |
| 2146 | /* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
| 2147 | if (dval(&u) < 0) { |
| 2148 | L--; |
| 2149 | dval(&u) += ds; |
| 2150 | } |
| 2151 | #endif |
| 2152 | *s++ = '0' + (int)L; |
| 2153 | if (!dval(&u)) { |
| 2154 | #ifdef SET_INEXACT |
| 2155 | inexact = 0; |
| 2156 | #endif |
| 2157 | break; |
| 2158 | } |
| 2159 | if (i == ilim) { |
| 2160 | dval(&u) += dval(&u); |
| 2161 | if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) { |
| 2162 | bump_up: |
| 2163 | while (*--s == '9') |
| 2164 | if (s == s0) { |
| 2165 | k++; |
| 2166 | *s = '0'; |
| 2167 | break; |
| 2168 | } |
| 2169 | ++*s++; |
| 2170 | } |
| 2171 | break; |
| 2172 | } |
| 2173 | } |
| 2174 | goto ret; |
| 2175 | } |
| 2176 | |
| 2177 | m2 = b2; |
| 2178 | m5 = b5; |
| 2179 | mhi.clear(); |
| 2180 | mlo.clear(); |
| 2181 | if (leftright) { |
| 2182 | i = |
| 2183 | #ifndef Sudden_Underflow |
| 2184 | denorm ? be + (Bias + (P - 1) - 1 + 1) : |
| 2185 | #endif |
| 2186 | 1 + P - bbits; |
| 2187 | b2 += i; |
| 2188 | s2 += i; |
| 2189 | i2b(b&: mhi, i: 1); |
| 2190 | } |
| 2191 | if (m2 > 0 && s2 > 0) { |
| 2192 | i = m2 < s2 ? m2 : s2; |
| 2193 | b2 -= i; |
| 2194 | m2 -= i; |
| 2195 | s2 -= i; |
| 2196 | } |
| 2197 | if (b5 > 0) { |
| 2198 | if (leftright) { |
| 2199 | if (m5 > 0) { |
| 2200 | pow5mult(b&: mhi, k: m5); |
| 2201 | mult(aRef&: b, bRef: mhi); |
| 2202 | } |
| 2203 | if ((j = b5 - m5)) |
| 2204 | pow5mult(b, k: j); |
| 2205 | } else |
| 2206 | pow5mult(b, k: b5); |
| 2207 | } |
| 2208 | i2b(b&: S, i: 1); |
| 2209 | if (s5 > 0) |
| 2210 | pow5mult(b&: S, k: s5); |
| 2211 | |
| 2212 | /* Check for special case that d is a normalized power of 2. */ |
| 2213 | |
| 2214 | spec_case = 0; |
| 2215 | if (!word1(&u) && !(word0(&u) & Bndry_mask) |
| 2216 | #ifndef Sudden_Underflow |
| 2217 | && word0(&u) & (Exp_mask & ~Exp_msk1) |
| 2218 | #endif |
| 2219 | ) { |
| 2220 | /* The special case */ |
| 2221 | b2 += Log2P; |
| 2222 | s2 += Log2P; |
| 2223 | spec_case = 1; |
| 2224 | } |
| 2225 | |
| 2226 | /* Arrange for convenient computation of quotients: |
| 2227 | * shift left if necessary so divisor has 4 leading 0 bits. |
| 2228 | * |
| 2229 | * Perhaps we should just compute leading 28 bits of S once |
| 2230 | * and for all and pass them and a shift to quorem, so it |
| 2231 | * can do shifts and ors to compute the numerator for q. |
| 2232 | */ |
| 2233 | #ifdef Pack_32 |
| 2234 | if ((i = ((s5 ? 32 - hi0bits(x: S.words()[S.size() - 1]) : 1) + s2) & 0x1f)) |
| 2235 | i = 32 - i; |
| 2236 | #else |
| 2237 | if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0xf)) |
| 2238 | i = 16 - i; |
| 2239 | #endif |
| 2240 | if (i > 4) { |
| 2241 | i -= 4; |
| 2242 | b2 += i; |
| 2243 | m2 += i; |
| 2244 | s2 += i; |
| 2245 | } else if (i < 4) { |
| 2246 | i += 28; |
| 2247 | b2 += i; |
| 2248 | m2 += i; |
| 2249 | s2 += i; |
| 2250 | } |
| 2251 | if (b2 > 0) |
| 2252 | lshift(b, k: b2); |
| 2253 | if (s2 > 0) |
| 2254 | lshift(b&: S, k: s2); |
| 2255 | if (k_check) { |
| 2256 | if (cmp(a: b,b: S) < 0) { |
| 2257 | k--; |
| 2258 | multadd(b, m: 10, a: 0); /* we botched the k estimate */ |
| 2259 | if (leftright) |
| 2260 | multadd(b&: mhi, m: 10, a: 0); |
| 2261 | ilim = ilim1; |
| 2262 | } |
| 2263 | } |
| 2264 | |
| 2265 | if (leftright) { |
| 2266 | if (m2 > 0) |
| 2267 | lshift(b&: mhi, k: m2); |
| 2268 | |
| 2269 | /* Compute mlo -- check for special case |
| 2270 | * that d is a normalized power of 2. |
| 2271 | */ |
| 2272 | |
| 2273 | mlo = mhi; |
| 2274 | if (spec_case) { |
| 2275 | mhi = mlo; |
| 2276 | lshift(b&: mhi, Log2P); |
| 2277 | } |
| 2278 | |
| 2279 | for (i = 1;;i++) { |
| 2280 | dig = quorem(b,S) + '0'; |
| 2281 | /* Do we yet have the shortest decimal string |
| 2282 | * that will round to d? |
| 2283 | */ |
| 2284 | j = cmp(a: b, b: mlo); |
| 2285 | diff(c&: delta, aRef: S, bRef: mhi); |
| 2286 | j1 = delta.sign ? 1 : cmp(a: b, b: delta); |
| 2287 | if (j1 == 0 && !(word1(&u) & 1)) { |
| 2288 | if (dig == '9') |
| 2289 | goto round_9_up; |
| 2290 | if (j > 0) |
| 2291 | dig++; |
| 2292 | #ifdef SET_INEXACT |
| 2293 | else if (!b->x[0] && b->wds <= 1) |
| 2294 | inexact = 0; |
| 2295 | #endif |
| 2296 | *s++ = dig; |
| 2297 | goto ret; |
| 2298 | } |
| 2299 | if (j < 0 || (j == 0 && !(word1(&u) & 1))) { |
| 2300 | if (!b.words()[0] && b.size() <= 1) { |
| 2301 | #ifdef SET_INEXACT |
| 2302 | inexact = 0; |
| 2303 | #endif |
| 2304 | goto accept_dig; |
| 2305 | } |
| 2306 | if (j1 > 0) { |
| 2307 | lshift(b, k: 1); |
| 2308 | j1 = cmp(a: b, b: S); |
| 2309 | if ((j1 > 0 || (j1 == 0 && (dig & 1))) && dig++ == '9') |
| 2310 | goto round_9_up; |
| 2311 | } |
| 2312 | accept_dig: |
| 2313 | *s++ = dig; |
| 2314 | goto ret; |
| 2315 | } |
| 2316 | if (j1 > 0) { |
| 2317 | if (dig == '9') { /* possible if i == 1 */ |
| 2318 | round_9_up: |
| 2319 | *s++ = '9'; |
| 2320 | goto roundoff; |
| 2321 | } |
| 2322 | *s++ = dig + 1; |
| 2323 | goto ret; |
| 2324 | } |
| 2325 | *s++ = dig; |
| 2326 | if (i == ilim) |
| 2327 | break; |
| 2328 | multadd(b, m: 10, a: 0); |
| 2329 | multadd(b&: mlo, m: 10, a: 0); |
| 2330 | multadd(b&: mhi, m: 10, a: 0); |
| 2331 | } |
| 2332 | } else |
| 2333 | for (i = 1;; i++) { |
| 2334 | *s++ = dig = quorem(b,S) + '0'; |
| 2335 | if (!b.words()[0] && b.size() <= 1) { |
| 2336 | #ifdef SET_INEXACT |
| 2337 | inexact = 0; |
| 2338 | #endif |
| 2339 | goto ret; |
| 2340 | } |
| 2341 | if (i >= ilim) |
| 2342 | break; |
| 2343 | multadd(b, m: 10, a: 0); |
| 2344 | } |
| 2345 | |
| 2346 | /* Round off last digit */ |
| 2347 | |
| 2348 | lshift(b, k: 1); |
| 2349 | j = cmp(a: b, b: S); |
| 2350 | if (j > 0 || (j == 0 && (dig & 1))) { |
| 2351 | roundoff: |
| 2352 | while (*--s == '9') |
| 2353 | if (s == s0) { |
| 2354 | k++; |
| 2355 | *s++ = '1'; |
| 2356 | goto ret; |
| 2357 | } |
| 2358 | ++*s++; |
| 2359 | } else { |
| 2360 | while (*--s == '0') { } |
| 2361 | s++; |
| 2362 | } |
| 2363 | goto ret; |
| 2364 | no_digits: |
| 2365 | k = -1 - ndigits; |
| 2366 | goto ret; |
| 2367 | one_digit: |
| 2368 | *s++ = '1'; |
| 2369 | k++; |
| 2370 | goto ret; |
| 2371 | ret: |
| 2372 | #ifdef SET_INEXACT |
| 2373 | if (inexact) { |
| 2374 | if (!oldinexact) { |
| 2375 | word0(&u) = Exp_1 + (70 << Exp_shift); |
| 2376 | word1(&u) = 0; |
| 2377 | dval(&u) += 1.; |
| 2378 | } |
| 2379 | } else if (!oldinexact) |
| 2380 | clear_inexact(); |
| 2381 | #endif |
| 2382 | *s = 0; |
| 2383 | *decpt = k + 1; |
| 2384 | if (rve) |
| 2385 | *rve = s; |
| 2386 | } |
| 2387 | |
| 2388 | static ALWAYS_INLINE void append(char*& next, const char* src, unsigned size) |
| 2389 | { |
| 2390 | for (unsigned i = 0; i < size; ++i) |
| 2391 | *next++ = *src++; |
| 2392 | } |
| 2393 | |
| 2394 | void doubleToStringInJavaScriptFormat(double d, DtoaBuffer buffer, unsigned* resultLength) |
| 2395 | { |
| 2396 | ASSERT(buffer); |
| 2397 | |
| 2398 | // avoid ever printing -NaN, in JS conceptually there is only one NaN value |
| 2399 | if (std::isnan(x: d)) { |
| 2400 | append(next&: buffer, src: "NaN" , size: 3); |
| 2401 | if (resultLength) |
| 2402 | *resultLength = 3; |
| 2403 | return; |
| 2404 | } |
| 2405 | // -0 -> "0" |
| 2406 | if (!d) { |
| 2407 | buffer[0] = '0'; |
| 2408 | if (resultLength) |
| 2409 | *resultLength = 1; |
| 2410 | return; |
| 2411 | } |
| 2412 | |
| 2413 | int decimalPoint; |
| 2414 | int sign; |
| 2415 | |
| 2416 | DtoaBuffer result; |
| 2417 | char* resultEnd = 0; |
| 2418 | WTF::dtoa(result, dd: d, ndigits: 0, decpt: &decimalPoint, sign: &sign, rve: &resultEnd); |
| 2419 | int length = resultEnd - result; |
| 2420 | |
| 2421 | char* next = buffer; |
| 2422 | if (sign) |
| 2423 | *next++ = '-'; |
| 2424 | |
| 2425 | if (decimalPoint <= 0 && decimalPoint > -6) { |
| 2426 | *next++ = '0'; |
| 2427 | *next++ = '.'; |
| 2428 | for (int j = decimalPoint; j < 0; j++) |
| 2429 | *next++ = '0'; |
| 2430 | append(next, src: result, size: length); |
| 2431 | } else if (decimalPoint <= 21 && decimalPoint > 0) { |
| 2432 | if (length <= decimalPoint) { |
| 2433 | append(next, src: result, size: length); |
| 2434 | for (int j = 0; j < decimalPoint - length; j++) |
| 2435 | *next++ = '0'; |
| 2436 | } else { |
| 2437 | append(next, src: result, size: decimalPoint); |
| 2438 | *next++ = '.'; |
| 2439 | append(next, src: result + decimalPoint, size: length - decimalPoint); |
| 2440 | } |
| 2441 | } else if (result[0] < '0' || result[0] > '9') |
| 2442 | append(next, src: result, size: length); |
| 2443 | else { |
| 2444 | *next++ = result[0]; |
| 2445 | if (length > 1) { |
| 2446 | *next++ = '.'; |
| 2447 | append(next, src: result + 1, size: length - 1); |
| 2448 | } |
| 2449 | |
| 2450 | *next++ = 'e'; |
| 2451 | *next++ = (decimalPoint >= 0) ? '+' : '-'; |
| 2452 | // decimalPoint can't be more than 3 digits decimal given the |
| 2453 | // nature of float representation |
| 2454 | int exponential = decimalPoint - 1; |
| 2455 | if (exponential < 0) |
| 2456 | exponential = -exponential; |
| 2457 | if (exponential >= 100) |
| 2458 | *next++ = static_cast<char>('0' + exponential / 100); |
| 2459 | if (exponential >= 10) |
| 2460 | *next++ = static_cast<char>('0' + (exponential % 100) / 10); |
| 2461 | *next++ = static_cast<char>('0' + exponential % 10); |
| 2462 | } |
| 2463 | if (resultLength) |
| 2464 | *resultLength = next - buffer; |
| 2465 | } |
| 2466 | |
| 2467 | } // namespace WTF |
| 2468 | |