1 | /**************************************************************** |
2 | * |
3 | * The author of this software is David M. Gay. |
4 | * |
5 | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
6 | * Copyright (C) 2002, 2005, 2006, 2007, 2008 Apple Inc. All rights reserved. |
7 | * |
8 | * Permission to use, copy, modify, and distribute this software for any |
9 | * purpose without fee is hereby granted, provided that this entire notice |
10 | * is included in all copies of any software which is or includes a copy |
11 | * or modification of this software and in all copies of the supporting |
12 | * documentation for such software. |
13 | * |
14 | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
15 | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
16 | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
17 | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
18 | * |
19 | ***************************************************************/ |
20 | |
21 | /* Please send bug reports to |
22 | David M. Gay |
23 | Bell Laboratories, Room 2C-463 |
24 | 600 Mountain Avenue |
25 | Murray Hill, NJ 07974-0636 |
26 | U.S.A. |
27 | dmg@bell-labs.com |
28 | */ |
29 | |
30 | /* On a machine with IEEE extended-precision registers, it is |
31 | * necessary to specify double-precision (53-bit) rounding precision |
32 | * before invoking strtod or dtoa. If the machine uses (the equivalent |
33 | * of) Intel 80x87 arithmetic, the call |
34 | * _control87(PC_53, MCW_PC); |
35 | * does this with many compilers. Whether this or another call is |
36 | * appropriate depends on the compiler; for this to work, it may be |
37 | * necessary to #include "float.h" or another system-dependent header |
38 | * file. |
39 | */ |
40 | |
41 | /* strtod for IEEE-arithmetic machines. |
42 | * |
43 | * This strtod returns a nearest machine number to the input decimal |
44 | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
45 | * broken by the IEEE round-even rule. Otherwise ties are broken by |
46 | * biased rounding (add half and chop). |
47 | * |
48 | * Inspired loosely by William D. Clinger's paper "How to Read Floating |
49 | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
50 | * |
51 | * Modifications: |
52 | * |
53 | * 1. We only require IEEE. |
54 | * 2. We get by with floating-point arithmetic in a case that |
55 | * Clinger missed -- when we're computing d * 10^n |
56 | * for a small integer d and the integer n is not too |
57 | * much larger than 22 (the maximum integer k for which |
58 | * we can represent 10^k exactly), we may be able to |
59 | * compute (d*10^k) * 10^(e-k) with just one roundoff. |
60 | * 3. Rather than a bit-at-a-time adjustment of the binary |
61 | * result in the hard case, we use floating-point |
62 | * arithmetic to determine the adjustment to within |
63 | * one bit; only in really hard cases do we need to |
64 | * compute a second residual. |
65 | * 4. Because of 3., we don't need a large table of powers of 10 |
66 | * for ten-to-e (just some small tables, e.g. of 10^k |
67 | * for 0 <= k <= 22). |
68 | */ |
69 | |
70 | /* |
71 | * #define IEEE_8087 for IEEE-arithmetic machines where the least |
72 | * significant byte has the lowest address. |
73 | * #define IEEE_MC68k for IEEE-arithmetic machines where the most |
74 | * significant byte has the lowest address. |
75 | * #define No_leftright to omit left-right logic in fast floating-point |
76 | * computation of dtoa. |
77 | * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
78 | * and Honor_FLT_ROUNDS is not #defined. |
79 | * #define Inaccurate_Divide for IEEE-format with correctly rounded |
80 | * products but inaccurate quotients, e.g., for Intel i860. |
81 | * #define USE_LONG_LONG on machines that have a "long long" |
82 | * integer type (of >= 64 bits), and performance testing shows that |
83 | * it is faster than 32-bit fallback (which is often not the case |
84 | * on 32-bit machines). On such machines, you can #define Just_16 |
85 | * to store 16 bits per 32-bit int32_t when doing high-precision integer |
86 | * arithmetic. Whether this speeds things up or slows things down |
87 | * depends on the machine and the number being converted. |
88 | * #define Bad_float_h if your system lacks a float.h or if it does not |
89 | * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, |
90 | * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. |
91 | * #define INFNAN_CHECK on IEEE systems to cause strtod to check for |
92 | * Infinity and NaN (case insensitively). On some systems (e.g., |
93 | * some HP systems), it may be necessary to #define NAN_WORD0 |
94 | * appropriately -- to the most significant word of a quiet NaN. |
95 | * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) |
96 | * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, |
97 | * strtod also accepts (case insensitively) strings of the form |
98 | * NaN(x), where x is a string of hexadecimal digits and spaces; |
99 | * if there is only one string of hexadecimal digits, it is taken |
100 | * for the 52 fraction bits of the resulting NaN; if there are two |
101 | * or more strings of hex digits, the first is for the high 20 bits, |
102 | * the second and subsequent for the low 32 bits, with intervening |
103 | * white space ignored; but if this results in none of the 52 |
104 | * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 |
105 | * and NAN_WORD1 are used instead. |
106 | * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that |
107 | * avoids underflows on inputs whose result does not underflow. |
108 | * If you #define NO_IEEE_Scale on a machine that uses IEEE-format |
109 | * floating-point numbers and flushes underflows to zero rather |
110 | * than implementing gradual underflow, then you must also #define |
111 | * Sudden_Underflow. |
112 | * #define YES_ALIAS to permit aliasing certain double values with |
113 | * arrays of ULongs. This leads to slightly better code with |
114 | * some compilers and was always used prior to 19990916, but it |
115 | * is not strictly legal and can cause trouble with aggressively |
116 | * optimizing compilers (e.g., gcc 2.95.1 under -O2). |
117 | * #define SET_INEXACT if IEEE arithmetic is being used and extra |
118 | * computation should be done to set the inexact flag when the |
119 | * result is inexact and avoid setting inexact when the result |
120 | * is exact. In this case, dtoa.c must be compiled in |
121 | * an environment, perhaps provided by #include "dtoa.c" in a |
122 | * suitable wrapper, that defines two functions, |
123 | * int get_inexact(void); |
124 | * void clear_inexact(void); |
125 | * such that get_inexact() returns a nonzero value if the |
126 | * inexact bit is already set, and clear_inexact() sets the |
127 | * inexact bit to 0. When SET_INEXACT is #defined, strtod |
128 | * also does extra computations to set the underflow and overflow |
129 | * flags when appropriate (i.e., when the result is tiny and |
130 | * inexact or when it is a numeric value rounded to +-infinity). |
131 | * #define NO_ERRNO if strtod should not assign errno = ERANGE when |
132 | * the result overflows to +-Infinity or underflows to 0. |
133 | */ |
134 | |
135 | #include "config.h" |
136 | #include "dtoa.h" |
137 | |
138 | #if HAVE(ERRNO_H) |
139 | #include <errno.h> |
140 | #else |
141 | #define NO_ERRNO |
142 | #endif |
143 | #include <math.h> |
144 | #include <stdint.h> |
145 | #include <stdlib.h> |
146 | #include <string.h> |
147 | #include <wtf/AlwaysInline.h> |
148 | #include <wtf/Assertions.h> |
149 | #include <wtf/FastMalloc.h> |
150 | #include <wtf/Vector.h> |
151 | #include <wtf/Threading.h> |
152 | |
153 | #include <stdio.h> |
154 | |
155 | #include <wtf/MathExtras.h> |
156 | |
157 | #if COMPILER(MSVC) |
158 | #pragma warning(disable: 4244) |
159 | #pragma warning(disable: 4245) |
160 | #pragma warning(disable: 4554) |
161 | #endif |
162 | |
163 | #if CPU(BIG_ENDIAN) |
164 | #define IEEE_MC68k |
165 | #elif CPU(MIDDLE_ENDIAN) |
166 | #define IEEE_ARM |
167 | #else |
168 | #define IEEE_8087 |
169 | #endif |
170 | |
171 | #define INFNAN_CHECK |
172 | |
173 | #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_ARM) != 1 |
174 | Exactly one of IEEE_8087, IEEE_ARM or IEEE_MC68k should be defined. |
175 | #endif |
176 | |
177 | namespace WTF { |
178 | |
179 | #if ENABLE(JSC_MULTIPLE_THREADS) |
180 | Mutex* s_dtoaP5Mutex; |
181 | #endif |
182 | |
183 | typedef union { double d; uint32_t L[2]; } U; |
184 | |
185 | #ifdef YES_ALIAS |
186 | #define dval(x) x |
187 | #ifdef IEEE_8087 |
188 | #define word0(x) ((uint32_t*)&x)[1] |
189 | #define word1(x) ((uint32_t*)&x)[0] |
190 | #else |
191 | #define word0(x) ((uint32_t*)&x)[0] |
192 | #define word1(x) ((uint32_t*)&x)[1] |
193 | #endif |
194 | #else |
195 | #ifdef IEEE_8087 |
196 | #define word0(x) (x)->L[1] |
197 | #define word1(x) (x)->L[0] |
198 | #else |
199 | #define word0(x) (x)->L[0] |
200 | #define word1(x) (x)->L[1] |
201 | #endif |
202 | #define dval(x) (x)->d |
203 | #endif |
204 | |
205 | /* The following definition of Storeinc is appropriate for MIPS processors. |
206 | * An alternative that might be better on some machines is |
207 | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
208 | */ |
209 | #if defined(IEEE_8087) || defined(IEEE_ARM) |
210 | #define Storeinc(a,b,c) (((unsigned short*)a)[1] = (unsigned short)b, ((unsigned short*)a)[0] = (unsigned short)c, a++) |
211 | #else |
212 | #define Storeinc(a,b,c) (((unsigned short*)a)[0] = (unsigned short)b, ((unsigned short*)a)[1] = (unsigned short)c, a++) |
213 | #endif |
214 | |
215 | #define Exp_shift 20 |
216 | #define Exp_shift1 20 |
217 | #define Exp_msk1 0x100000 |
218 | #define Exp_msk11 0x100000 |
219 | #define Exp_mask 0x7ff00000 |
220 | #define P 53 |
221 | #define Bias 1023 |
222 | #define Emin (-1022) |
223 | #define Exp_1 0x3ff00000 |
224 | #define Exp_11 0x3ff00000 |
225 | #define Ebits 11 |
226 | #define Frac_mask 0xfffff |
227 | #define Frac_mask1 0xfffff |
228 | #define Ten_pmax 22 |
229 | #define Bletch 0x10 |
230 | #define Bndry_mask 0xfffff |
231 | #define Bndry_mask1 0xfffff |
232 | #define LSB 1 |
233 | #define Sign_bit 0x80000000 |
234 | #define Log2P 1 |
235 | #define Tiny0 0 |
236 | #define Tiny1 1 |
237 | #define Quick_max 14 |
238 | #define Int_max 14 |
239 | |
240 | #if !defined(NO_IEEE_Scale) |
241 | #undef Avoid_Underflow |
242 | #define Avoid_Underflow |
243 | #endif |
244 | |
245 | #if !defined(Flt_Rounds) |
246 | #if defined(FLT_ROUNDS) |
247 | #define Flt_Rounds FLT_ROUNDS |
248 | #else |
249 | #define Flt_Rounds 1 |
250 | #endif |
251 | #endif /*Flt_Rounds*/ |
252 | |
253 | |
254 | #define rounded_product(a,b) a *= b |
255 | #define rounded_quotient(a,b) a /= b |
256 | |
257 | #define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) |
258 | #define Big1 0xffffffff |
259 | |
260 | |
261 | // FIXME: we should remove non-Pack_32 mode since it is unused and unmaintained |
262 | #ifndef Pack_32 |
263 | #define Pack_32 |
264 | #endif |
265 | |
266 | #if CPU(PPC64) || CPU(X86_64) |
267 | // FIXME: should we enable this on all 64-bit CPUs? |
268 | // 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware. |
269 | #define USE_LONG_LONG |
270 | #endif |
271 | |
272 | #ifndef USE_LONG_LONG |
273 | #ifdef Just_16 |
274 | #undef Pack_32 |
275 | /* When Pack_32 is not defined, we store 16 bits per 32-bit int32_t. |
276 | * This makes some inner loops simpler and sometimes saves work |
277 | * during multiplications, but it often seems to make things slightly |
278 | * slower. Hence the default is now to store 32 bits per int32_t. |
279 | */ |
280 | #endif |
281 | #endif |
282 | |
283 | #define Kmax 15 |
284 | |
285 | struct BigInt { |
286 | BigInt() : sign(0) { } |
287 | int sign; |
288 | |
289 | void clear() |
290 | { |
291 | sign = 0; |
292 | m_words.clear(); |
293 | } |
294 | |
295 | size_t size() const |
296 | { |
297 | return m_words.size(); |
298 | } |
299 | |
300 | void resize(size_t s) |
301 | { |
302 | m_words.resize(size: s); |
303 | } |
304 | |
305 | uint32_t* words() |
306 | { |
307 | return m_words.data(); |
308 | } |
309 | |
310 | const uint32_t* words() const |
311 | { |
312 | return m_words.data(); |
313 | } |
314 | |
315 | void append(uint32_t w) |
316 | { |
317 | m_words.append(val: w); |
318 | } |
319 | |
320 | Vector<uint32_t, 16> m_words; |
321 | }; |
322 | |
323 | static void multadd(BigInt& b, int m, int a) /* multiply by m and add a */ |
324 | { |
325 | #ifdef USE_LONG_LONG |
326 | unsigned long long carry; |
327 | #else |
328 | uint32_t carry; |
329 | #endif |
330 | |
331 | int wds = b.size(); |
332 | uint32_t* x = b.words(); |
333 | int i = 0; |
334 | carry = a; |
335 | do { |
336 | #ifdef USE_LONG_LONG |
337 | unsigned long long y = *x * (unsigned long long)m + carry; |
338 | carry = y >> 32; |
339 | *x++ = (uint32_t)y & 0xffffffffUL; |
340 | #else |
341 | #ifdef Pack_32 |
342 | uint32_t xi = *x; |
343 | uint32_t y = (xi & 0xffff) * m + carry; |
344 | uint32_t z = (xi >> 16) * m + (y >> 16); |
345 | carry = z >> 16; |
346 | *x++ = (z << 16) + (y & 0xffff); |
347 | #else |
348 | uint32_t y = *x * m + carry; |
349 | carry = y >> 16; |
350 | *x++ = y & 0xffff; |
351 | #endif |
352 | #endif |
353 | } while (++i < wds); |
354 | |
355 | if (carry) |
356 | b.append(w: (uint32_t)carry); |
357 | } |
358 | |
359 | static void s2b(BigInt& b, const char* s, int nd0, int nd, uint32_t y9) |
360 | { |
361 | int k; |
362 | int32_t y; |
363 | int32_t x = (nd + 8) / 9; |
364 | |
365 | for (k = 0, y = 1; x > y; y <<= 1, k++) { } |
366 | #ifdef Pack_32 |
367 | b.sign = 0; |
368 | b.resize(s: 1); |
369 | b.words()[0] = y9; |
370 | #else |
371 | b.sign = 0; |
372 | b.resize((b->x[1] = y9 >> 16) ? 2 : 1); |
373 | b.words()[0] = y9 & 0xffff; |
374 | #endif |
375 | |
376 | int i = 9; |
377 | if (9 < nd0) { |
378 | s += 9; |
379 | do { |
380 | multadd(b, m: 10, a: *s++ - '0'); |
381 | } while (++i < nd0); |
382 | s++; |
383 | } else |
384 | s += 10; |
385 | for (; i < nd; i++) |
386 | multadd(b, m: 10, a: *s++ - '0'); |
387 | } |
388 | |
389 | static int hi0bits(uint32_t x) |
390 | { |
391 | int k = 0; |
392 | |
393 | if (!(x & 0xffff0000)) { |
394 | k = 16; |
395 | x <<= 16; |
396 | } |
397 | if (!(x & 0xff000000)) { |
398 | k += 8; |
399 | x <<= 8; |
400 | } |
401 | if (!(x & 0xf0000000)) { |
402 | k += 4; |
403 | x <<= 4; |
404 | } |
405 | if (!(x & 0xc0000000)) { |
406 | k += 2; |
407 | x <<= 2; |
408 | } |
409 | if (!(x & 0x80000000)) { |
410 | k++; |
411 | if (!(x & 0x40000000)) |
412 | return 32; |
413 | } |
414 | return k; |
415 | } |
416 | |
417 | static int lo0bits (uint32_t* y) |
418 | { |
419 | int k; |
420 | uint32_t x = *y; |
421 | |
422 | if (x & 7) { |
423 | if (x & 1) |
424 | return 0; |
425 | if (x & 2) { |
426 | *y = x >> 1; |
427 | return 1; |
428 | } |
429 | *y = x >> 2; |
430 | return 2; |
431 | } |
432 | k = 0; |
433 | if (!(x & 0xffff)) { |
434 | k = 16; |
435 | x >>= 16; |
436 | } |
437 | if (!(x & 0xff)) { |
438 | k += 8; |
439 | x >>= 8; |
440 | } |
441 | if (!(x & 0xf)) { |
442 | k += 4; |
443 | x >>= 4; |
444 | } |
445 | if (!(x & 0x3)) { |
446 | k += 2; |
447 | x >>= 2; |
448 | } |
449 | if (!(x & 1)) { |
450 | k++; |
451 | x >>= 1; |
452 | if (!x & 1) |
453 | return 32; |
454 | } |
455 | *y = x; |
456 | return k; |
457 | } |
458 | |
459 | static void i2b(BigInt& b, int i) |
460 | { |
461 | b.sign = 0; |
462 | b.resize(s: 1); |
463 | b.words()[0] = i; |
464 | } |
465 | |
466 | static void mult(BigInt& aRef, const BigInt& bRef) |
467 | { |
468 | const BigInt* a = &aRef; |
469 | const BigInt* b = &bRef; |
470 | BigInt c; |
471 | int wa, wb, wc; |
472 | const uint32_t *x = 0, *xa, *xb, *xae, *xbe; |
473 | uint32_t *xc, *xc0; |
474 | uint32_t y; |
475 | #ifdef USE_LONG_LONG |
476 | unsigned long long carry, z; |
477 | #else |
478 | uint32_t carry, z; |
479 | #endif |
480 | |
481 | if (a->size() < b->size()) { |
482 | const BigInt* tmp = a; |
483 | a = b; |
484 | b = tmp; |
485 | } |
486 | |
487 | wa = a->size(); |
488 | wb = b->size(); |
489 | wc = wa + wb; |
490 | c.resize(s: wc); |
491 | |
492 | for (xc = c.words(), xa = xc + wc; xc < xa; xc++) |
493 | *xc = 0; |
494 | xa = a->words(); |
495 | xae = xa + wa; |
496 | xb = b->words(); |
497 | xbe = xb + wb; |
498 | xc0 = c.words(); |
499 | #ifdef USE_LONG_LONG |
500 | for (; xb < xbe; xc0++) { |
501 | if ((y = *xb++)) { |
502 | x = xa; |
503 | xc = xc0; |
504 | carry = 0; |
505 | do { |
506 | z = *x++ * (unsigned long long)y + *xc + carry; |
507 | carry = z >> 32; |
508 | *xc++ = (uint32_t)z & 0xffffffffUL; |
509 | } while (x < xae); |
510 | *xc = (uint32_t)carry; |
511 | } |
512 | } |
513 | #else |
514 | #ifdef Pack_32 |
515 | for (; xb < xbe; xb++, xc0++) { |
516 | if ((y = *xb & 0xffff)) { |
517 | x = xa; |
518 | xc = xc0; |
519 | carry = 0; |
520 | do { |
521 | z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; |
522 | carry = z >> 16; |
523 | uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; |
524 | carry = z2 >> 16; |
525 | Storeinc(xc, z2, z); |
526 | } while (x < xae); |
527 | *xc = carry; |
528 | } |
529 | if ((y = *xb >> 16)) { |
530 | x = xa; |
531 | xc = xc0; |
532 | carry = 0; |
533 | uint32_t z2 = *xc; |
534 | do { |
535 | z = (*x & 0xffff) * y + (*xc >> 16) + carry; |
536 | carry = z >> 16; |
537 | Storeinc(xc, z, z2); |
538 | z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
539 | carry = z2 >> 16; |
540 | } while (x < xae); |
541 | *xc = z2; |
542 | } |
543 | } |
544 | #else |
545 | for(; xb < xbe; xc0++) { |
546 | if ((y = *xb++)) { |
547 | x = xa; |
548 | xc = xc0; |
549 | carry = 0; |
550 | do { |
551 | z = *x++ * y + *xc + carry; |
552 | carry = z >> 16; |
553 | *xc++ = z & 0xffff; |
554 | } while (x < xae); |
555 | *xc = carry; |
556 | } |
557 | } |
558 | #endif |
559 | #endif |
560 | for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { } |
561 | c.resize(s: wc); |
562 | aRef = c; |
563 | } |
564 | |
565 | struct P5Node : Noncopyable { |
566 | BigInt val; |
567 | P5Node* next; |
568 | }; |
569 | |
570 | static P5Node* p5s; |
571 | static int p5s_count; |
572 | |
573 | static ALWAYS_INLINE void pow5mult(BigInt& b, int k) |
574 | { |
575 | static int p05[3] = { 5, 25, 125 }; |
576 | |
577 | if (int i = k & 3) |
578 | multadd(b, m: p05[i - 1], a: 0); |
579 | |
580 | if (!(k >>= 2)) |
581 | return; |
582 | |
583 | #if ENABLE(JSC_MULTIPLE_THREADS) |
584 | s_dtoaP5Mutex->lock(); |
585 | #endif |
586 | P5Node* p5 = p5s; |
587 | |
588 | if (!p5) { |
589 | /* first time */ |
590 | p5 = new P5Node; |
591 | i2b(b&: p5->val, i: 625); |
592 | p5->next = 0; |
593 | p5s = p5; |
594 | p5s_count = 1; |
595 | } |
596 | |
597 | int p5s_count_local = p5s_count; |
598 | #if ENABLE(JSC_MULTIPLE_THREADS) |
599 | s_dtoaP5Mutex->unlock(); |
600 | #endif |
601 | int p5s_used = 0; |
602 | |
603 | for (;;) { |
604 | if (k & 1) |
605 | mult(aRef&: b, bRef: p5->val); |
606 | |
607 | if (!(k >>= 1)) |
608 | break; |
609 | |
610 | if (++p5s_used == p5s_count_local) { |
611 | #if ENABLE(JSC_MULTIPLE_THREADS) |
612 | s_dtoaP5Mutex->lock(); |
613 | #endif |
614 | if (p5s_used == p5s_count) { |
615 | ASSERT(!p5->next); |
616 | p5->next = new P5Node; |
617 | p5->next->next = 0; |
618 | p5->next->val = p5->val; |
619 | mult(aRef&: p5->next->val, bRef: p5->next->val); |
620 | ++p5s_count; |
621 | } |
622 | |
623 | p5s_count_local = p5s_count; |
624 | #if ENABLE(JSC_MULTIPLE_THREADS) |
625 | s_dtoaP5Mutex->unlock(); |
626 | #endif |
627 | } |
628 | p5 = p5->next; |
629 | } |
630 | } |
631 | |
632 | static ALWAYS_INLINE void lshift(BigInt& b, int k) |
633 | { |
634 | #ifdef Pack_32 |
635 | int n = k >> 5; |
636 | #else |
637 | int n = k >> 4; |
638 | #endif |
639 | |
640 | int origSize = b.size(); |
641 | int n1 = n + origSize + 1; |
642 | |
643 | if (k &= 0x1f) |
644 | b.resize(s: b.size() + n + 1); |
645 | else |
646 | b.resize(s: b.size() + n); |
647 | |
648 | const uint32_t* srcStart = b.words(); |
649 | uint32_t* dstStart = b.words(); |
650 | const uint32_t* src = srcStart + origSize - 1; |
651 | uint32_t* dst = dstStart + n1 - 1; |
652 | #ifdef Pack_32 |
653 | if (k) { |
654 | uint32_t hiSubword = 0; |
655 | int s = 32 - k; |
656 | for (; src >= srcStart; --src) { |
657 | *dst-- = hiSubword | *src >> s; |
658 | hiSubword = *src << k; |
659 | } |
660 | *dst = hiSubword; |
661 | ASSERT(dst == dstStart + n); |
662 | |
663 | b.resize(s: origSize + n + (b.words()[n1 - 1] != 0)); |
664 | } |
665 | #else |
666 | if (k &= 0xf) { |
667 | uint32_t hiSubword = 0; |
668 | int s = 16 - k; |
669 | for (; src >= srcStart; --src) { |
670 | *dst-- = hiSubword | *src >> s; |
671 | hiSubword = (*src << k) & 0xffff; |
672 | } |
673 | *dst = hiSubword; |
674 | ASSERT(dst == dstStart + n); |
675 | result->wds = b->wds + n + (result->x[n1 - 1] != 0); |
676 | } |
677 | #endif |
678 | else { |
679 | do { |
680 | *--dst = *src--; |
681 | } while (src >= srcStart); |
682 | } |
683 | for (dst = dstStart + n; dst != dstStart; ) |
684 | *--dst = 0; |
685 | |
686 | ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); |
687 | } |
688 | |
689 | static int cmp(const BigInt& a, const BigInt& b) |
690 | { |
691 | const uint32_t *xa, *xa0, *xb, *xb0; |
692 | int i, j; |
693 | |
694 | i = a.size(); |
695 | j = b.size(); |
696 | ASSERT(i <= 1 || a.words()[i - 1]); |
697 | ASSERT(j <= 1 || b.words()[j - 1]); |
698 | if (i -= j) |
699 | return i; |
700 | xa0 = a.words(); |
701 | xa = xa0 + j; |
702 | xb0 = b.words(); |
703 | xb = xb0 + j; |
704 | for (;;) { |
705 | if (*--xa != *--xb) |
706 | return *xa < *xb ? -1 : 1; |
707 | if (xa <= xa0) |
708 | break; |
709 | } |
710 | return 0; |
711 | } |
712 | |
713 | static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef) |
714 | { |
715 | const BigInt* a = &aRef; |
716 | const BigInt* b = &bRef; |
717 | int i, wa, wb; |
718 | uint32_t *xc; |
719 | |
720 | i = cmp(a: *a, b: *b); |
721 | if (!i) { |
722 | c.sign = 0; |
723 | c.resize(s: 1); |
724 | c.words()[0] = 0; |
725 | return; |
726 | } |
727 | if (i < 0) { |
728 | const BigInt* tmp = a; |
729 | a = b; |
730 | b = tmp; |
731 | i = 1; |
732 | } else |
733 | i = 0; |
734 | |
735 | wa = a->size(); |
736 | const uint32_t* xa = a->words(); |
737 | const uint32_t* xae = xa + wa; |
738 | wb = b->size(); |
739 | const uint32_t* xb = b->words(); |
740 | const uint32_t* xbe = xb + wb; |
741 | |
742 | c.resize(s: wa); |
743 | c.sign = i; |
744 | xc = c.words(); |
745 | #ifdef USE_LONG_LONG |
746 | unsigned long long borrow = 0; |
747 | do { |
748 | unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow; |
749 | borrow = y >> 32 & (uint32_t)1; |
750 | *xc++ = (uint32_t)y & 0xffffffffUL; |
751 | } while (xb < xbe); |
752 | while (xa < xae) { |
753 | unsigned long long y = *xa++ - borrow; |
754 | borrow = y >> 32 & (uint32_t)1; |
755 | *xc++ = (uint32_t)y & 0xffffffffUL; |
756 | } |
757 | #else |
758 | uint32_t borrow = 0; |
759 | #ifdef Pack_32 |
760 | do { |
761 | uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; |
762 | borrow = (y & 0x10000) >> 16; |
763 | uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; |
764 | borrow = (z & 0x10000) >> 16; |
765 | Storeinc(xc, z, y); |
766 | } while (xb < xbe); |
767 | while (xa < xae) { |
768 | uint32_t y = (*xa & 0xffff) - borrow; |
769 | borrow = (y & 0x10000) >> 16; |
770 | uint32_t z = (*xa++ >> 16) - borrow; |
771 | borrow = (z & 0x10000) >> 16; |
772 | Storeinc(xc, z, y); |
773 | } |
774 | #else |
775 | do { |
776 | uint32_t y = *xa++ - *xb++ - borrow; |
777 | borrow = (y & 0x10000) >> 16; |
778 | *xc++ = y & 0xffff; |
779 | } while (xb < xbe); |
780 | while (xa < xae) { |
781 | uint32_t y = *xa++ - borrow; |
782 | borrow = (y & 0x10000) >> 16; |
783 | *xc++ = y & 0xffff; |
784 | } |
785 | #endif |
786 | #endif |
787 | while (!*--xc) |
788 | wa--; |
789 | c.resize(s: wa); |
790 | } |
791 | |
792 | static double ulp(U *x) |
793 | { |
794 | int32_t L; |
795 | U u; |
796 | |
797 | L = (word0(x) & Exp_mask) - (P - 1) * Exp_msk1; |
798 | #ifndef Avoid_Underflow |
799 | #ifndef Sudden_Underflow |
800 | if (L > 0) { |
801 | #endif |
802 | #endif |
803 | word0(&u) = L; |
804 | word1(&u) = 0; |
805 | #ifndef Avoid_Underflow |
806 | #ifndef Sudden_Underflow |
807 | } else { |
808 | L = -L >> Exp_shift; |
809 | if (L < Exp_shift) { |
810 | word0(&u) = 0x80000 >> L; |
811 | word1(&u) = 0; |
812 | } else { |
813 | word0(&u) = 0; |
814 | L -= Exp_shift; |
815 | word1(&u) = L >= 31 ? 1 : 1 << 31 - L; |
816 | } |
817 | } |
818 | #endif |
819 | #endif |
820 | return dval(&u); |
821 | } |
822 | |
823 | static double b2d(const BigInt& a, int* e) |
824 | { |
825 | const uint32_t* xa; |
826 | const uint32_t* xa0; |
827 | uint32_t w; |
828 | uint32_t y; |
829 | uint32_t z; |
830 | int k; |
831 | U d; |
832 | |
833 | #define d0 word0(&d) |
834 | #define d1 word1(&d) |
835 | |
836 | xa0 = a.words(); |
837 | xa = xa0 + a.size(); |
838 | y = *--xa; |
839 | ASSERT(y); |
840 | k = hi0bits(x: y); |
841 | *e = 32 - k; |
842 | #ifdef Pack_32 |
843 | if (k < Ebits) { |
844 | d0 = Exp_1 | (y >> (Ebits - k)); |
845 | w = xa > xa0 ? *--xa : 0; |
846 | d1 = (y << (32 - Ebits + k)) | (w >> (Ebits - k)); |
847 | goto ret_d; |
848 | } |
849 | z = xa > xa0 ? *--xa : 0; |
850 | if (k -= Ebits) { |
851 | d0 = Exp_1 | (y << k) | (z >> (32 - k)); |
852 | y = xa > xa0 ? *--xa : 0; |
853 | d1 = (z << k) | (y >> (32 - k)); |
854 | } else { |
855 | d0 = Exp_1 | y; |
856 | d1 = z; |
857 | } |
858 | #else |
859 | if (k < Ebits + 16) { |
860 | z = xa > xa0 ? *--xa : 0; |
861 | d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; |
862 | w = xa > xa0 ? *--xa : 0; |
863 | y = xa > xa0 ? *--xa : 0; |
864 | d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; |
865 | goto ret_d; |
866 | } |
867 | z = xa > xa0 ? *--xa : 0; |
868 | w = xa > xa0 ? *--xa : 0; |
869 | k -= Ebits + 16; |
870 | d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; |
871 | y = xa > xa0 ? *--xa : 0; |
872 | d1 = w << k + 16 | y << k; |
873 | #endif |
874 | ret_d: |
875 | #undef d0 |
876 | #undef d1 |
877 | return dval(&d); |
878 | } |
879 | |
880 | static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits) |
881 | { |
882 | int de, k; |
883 | uint32_t *x, y, z; |
884 | #ifndef Sudden_Underflow |
885 | int i; |
886 | #endif |
887 | #define d0 word0(d) |
888 | #define d1 word1(d) |
889 | |
890 | b.sign = 0; |
891 | #ifdef Pack_32 |
892 | b.resize(s: 1); |
893 | #else |
894 | b.resize(2); |
895 | #endif |
896 | x = b.words(); |
897 | |
898 | z = d0 & Frac_mask; |
899 | d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ |
900 | #ifdef Sudden_Underflow |
901 | de = (int)(d0 >> Exp_shift); |
902 | #else |
903 | if ((de = (int)(d0 >> Exp_shift))) |
904 | z |= Exp_msk1; |
905 | #endif |
906 | #ifdef Pack_32 |
907 | if ((y = d1)) { |
908 | if ((k = lo0bits(y: &y))) { |
909 | x[0] = y | (z << (32 - k)); |
910 | z >>= k; |
911 | } else |
912 | x[0] = y; |
913 | if (z) { |
914 | b.resize(s: 2); |
915 | x[1] = z; |
916 | } |
917 | |
918 | #ifndef Sudden_Underflow |
919 | i = b.size(); |
920 | #endif |
921 | } else { |
922 | k = lo0bits(y: &z); |
923 | x[0] = z; |
924 | #ifndef Sudden_Underflow |
925 | i = 1; |
926 | #endif |
927 | b.resize(s: 1); |
928 | k += 32; |
929 | } |
930 | #else |
931 | if ((y = d1)) { |
932 | if ((k = lo0bits(&y))) { |
933 | if (k >= 16) { |
934 | x[0] = y | z << 32 - k & 0xffff; |
935 | x[1] = z >> k - 16 & 0xffff; |
936 | x[2] = z >> k; |
937 | i = 2; |
938 | } else { |
939 | x[0] = y & 0xffff; |
940 | x[1] = y >> 16 | z << 16 - k & 0xffff; |
941 | x[2] = z >> k & 0xffff; |
942 | x[3] = z >> k + 16; |
943 | i = 3; |
944 | } |
945 | } else { |
946 | x[0] = y & 0xffff; |
947 | x[1] = y >> 16; |
948 | x[2] = z & 0xffff; |
949 | x[3] = z >> 16; |
950 | i = 3; |
951 | } |
952 | } else { |
953 | k = lo0bits(&z); |
954 | if (k >= 16) { |
955 | x[0] = z; |
956 | i = 0; |
957 | } else { |
958 | x[0] = z & 0xffff; |
959 | x[1] = z >> 16; |
960 | i = 1; |
961 | } |
962 | k += 32; |
963 | } while (!x[i]) |
964 | --i; |
965 | b->resize(i + 1); |
966 | #endif |
967 | #ifndef Sudden_Underflow |
968 | if (de) { |
969 | #endif |
970 | *e = de - Bias - (P - 1) + k; |
971 | *bits = P - k; |
972 | #ifndef Sudden_Underflow |
973 | } else { |
974 | *e = de - Bias - (P - 1) + 1 + k; |
975 | #ifdef Pack_32 |
976 | *bits = (32 * i) - hi0bits(x: x[i - 1]); |
977 | #else |
978 | *bits = (i + 2) * 16 - hi0bits(x[i]); |
979 | #endif |
980 | } |
981 | #endif |
982 | } |
983 | #undef d0 |
984 | #undef d1 |
985 | |
986 | static double ratio(const BigInt& a, const BigInt& b) |
987 | { |
988 | U da, db; |
989 | int k, ka, kb; |
990 | |
991 | dval(&da) = b2d(a, e: &ka); |
992 | dval(&db) = b2d(a: b, e: &kb); |
993 | #ifdef Pack_32 |
994 | k = ka - kb + 32 * (a.size() - b.size()); |
995 | #else |
996 | k = ka - kb + 16 * (a.size() - b.size()); |
997 | #endif |
998 | if (k > 0) |
999 | word0(&da) += k * Exp_msk1; |
1000 | else { |
1001 | k = -k; |
1002 | word0(&db) += k * Exp_msk1; |
1003 | } |
1004 | return dval(&da) / dval(&db); |
1005 | } |
1006 | |
1007 | static const double tens[] = { |
1008 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
1009 | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
1010 | 1e20, 1e21, 1e22 |
1011 | }; |
1012 | |
1013 | static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
1014 | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, |
1015 | #ifdef Avoid_Underflow |
1016 | 9007199254740992. * 9007199254740992.e-256 |
1017 | /* = 2^106 * 1e-53 */ |
1018 | #else |
1019 | 1e-256 |
1020 | #endif |
1021 | }; |
1022 | |
1023 | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
1024 | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
1025 | #define Scale_Bit 0x10 |
1026 | #define n_bigtens 5 |
1027 | |
1028 | #if defined(INFNAN_CHECK) |
1029 | |
1030 | #ifndef NAN_WORD0 |
1031 | #define NAN_WORD0 0x7ff80000 |
1032 | #endif |
1033 | |
1034 | #ifndef NAN_WORD1 |
1035 | #define NAN_WORD1 0 |
1036 | #endif |
1037 | |
1038 | static int match(const char** sp, const char* t) |
1039 | { |
1040 | int c, d; |
1041 | const char* s = *sp; |
1042 | |
1043 | while ((d = *t++)) { |
1044 | if ((c = *++s) >= 'A' && c <= 'Z') |
1045 | c += 'a' - 'A'; |
1046 | if (c != d) |
1047 | return 0; |
1048 | } |
1049 | *sp = s + 1; |
1050 | return 1; |
1051 | } |
1052 | |
1053 | #ifndef No_Hex_NaN |
1054 | static void hexnan(U* rvp, const char** sp) |
1055 | { |
1056 | uint32_t c, x[2]; |
1057 | const char* s; |
1058 | int havedig, udx0, xshift; |
1059 | |
1060 | x[0] = x[1] = 0; |
1061 | havedig = xshift = 0; |
1062 | udx0 = 1; |
1063 | s = *sp; |
1064 | while ((c = *(const unsigned char*)++s)) { |
1065 | if (c >= '0' && c <= '9') |
1066 | c -= '0'; |
1067 | else if (c >= 'a' && c <= 'f') |
1068 | c += 10 - 'a'; |
1069 | else if (c >= 'A' && c <= 'F') |
1070 | c += 10 - 'A'; |
1071 | else if (c <= ' ') { |
1072 | if (udx0 && havedig) { |
1073 | udx0 = 0; |
1074 | xshift = 1; |
1075 | } |
1076 | continue; |
1077 | } else if (/*(*/ c == ')' && havedig) { |
1078 | *sp = s + 1; |
1079 | break; |
1080 | } else |
1081 | return; /* invalid form: don't change *sp */ |
1082 | havedig = 1; |
1083 | if (xshift) { |
1084 | xshift = 0; |
1085 | x[0] = x[1]; |
1086 | x[1] = 0; |
1087 | } |
1088 | if (udx0) |
1089 | x[0] = (x[0] << 4) | (x[1] >> 28); |
1090 | x[1] = (x[1] << 4) | c; |
1091 | } |
1092 | if ((x[0] &= 0xfffff) || x[1]) { |
1093 | word0(rvp) = Exp_mask | x[0]; |
1094 | word1(rvp) = x[1]; |
1095 | } |
1096 | } |
1097 | #endif /*No_Hex_NaN*/ |
1098 | #endif /* INFNAN_CHECK */ |
1099 | |
1100 | double strtod(const char* s00, char** se) |
1101 | { |
1102 | #ifdef Avoid_Underflow |
1103 | int scale; |
1104 | #endif |
1105 | int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, |
1106 | e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; |
1107 | const char *s, *s0, *s1; |
1108 | double aadj, aadj1; |
1109 | U aadj2, adj, rv, rv0; |
1110 | int32_t L; |
1111 | uint32_t y, z; |
1112 | BigInt bb, bb1, bd, bd0, bs, delta; |
1113 | #ifdef SET_INEXACT |
1114 | int inexact, oldinexact; |
1115 | #endif |
1116 | |
1117 | sign = nz0 = nz = 0; |
1118 | dval(&rv) = 0; |
1119 | for (s = s00; ; s++) |
1120 | switch (*s) { |
1121 | case '-': |
1122 | sign = 1; |
1123 | /* no break */ |
1124 | case '+': |
1125 | if (*++s) |
1126 | goto break2; |
1127 | /* no break */ |
1128 | case 0: |
1129 | goto ret0; |
1130 | case '\t': |
1131 | case '\n': |
1132 | case '\v': |
1133 | case '\f': |
1134 | case '\r': |
1135 | case ' ': |
1136 | continue; |
1137 | default: |
1138 | goto break2; |
1139 | } |
1140 | break2: |
1141 | if (*s == '0') { |
1142 | nz0 = 1; |
1143 | while (*++s == '0') { } |
1144 | if (!*s) |
1145 | goto ret; |
1146 | } |
1147 | s0 = s; |
1148 | y = z = 0; |
1149 | for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) |
1150 | if (nd < 9) |
1151 | y = (10 * y) + c - '0'; |
1152 | else if (nd < 16) |
1153 | z = (10 * z) + c - '0'; |
1154 | nd0 = nd; |
1155 | if (c == '.') { |
1156 | c = *++s; |
1157 | if (!nd) { |
1158 | for (; c == '0'; c = *++s) |
1159 | nz++; |
1160 | if (c > '0' && c <= '9') { |
1161 | s0 = s; |
1162 | nf += nz; |
1163 | nz = 0; |
1164 | goto have_dig; |
1165 | } |
1166 | goto dig_done; |
1167 | } |
1168 | for (; c >= '0' && c <= '9'; c = *++s) { |
1169 | have_dig: |
1170 | nz++; |
1171 | if (c -= '0') { |
1172 | nf += nz; |
1173 | for (i = 1; i < nz; i++) |
1174 | if (nd++ < 9) |
1175 | y *= 10; |
1176 | else if (nd <= DBL_DIG + 1) |
1177 | z *= 10; |
1178 | if (nd++ < 9) |
1179 | y = (10 * y) + c; |
1180 | else if (nd <= DBL_DIG + 1) |
1181 | z = (10 * z) + c; |
1182 | nz = 0; |
1183 | } |
1184 | } |
1185 | } |
1186 | dig_done: |
1187 | e = 0; |
1188 | if (c == 'e' || c == 'E') { |
1189 | if (!nd && !nz && !nz0) { |
1190 | goto ret0; |
1191 | } |
1192 | s00 = s; |
1193 | esign = 0; |
1194 | switch (c = *++s) { |
1195 | case '-': |
1196 | esign = 1; |
1197 | case '+': |
1198 | c = *++s; |
1199 | } |
1200 | if (c >= '0' && c <= '9') { |
1201 | while (c == '0') |
1202 | c = *++s; |
1203 | if (c > '0' && c <= '9') { |
1204 | L = c - '0'; |
1205 | s1 = s; |
1206 | while ((c = *++s) >= '0' && c <= '9') |
1207 | L = (10 * L) + c - '0'; |
1208 | if (s - s1 > 8 || L > 19999) |
1209 | /* Avoid confusion from exponents |
1210 | * so large that e might overflow. |
1211 | */ |
1212 | e = 19999; /* safe for 16 bit ints */ |
1213 | else |
1214 | e = (int)L; |
1215 | if (esign) |
1216 | e = -e; |
1217 | } else |
1218 | e = 0; |
1219 | } else |
1220 | s = s00; |
1221 | } |
1222 | if (!nd) { |
1223 | if (!nz && !nz0) { |
1224 | #ifdef INFNAN_CHECK |
1225 | /* Check for Nan and Infinity */ |
1226 | switch(c) { |
1227 | case 'i': |
1228 | case 'I': |
1229 | if (match(sp: &s,t: "nf" )) { |
1230 | --s; |
1231 | if (!match(sp: &s,t: "inity" )) |
1232 | ++s; |
1233 | word0(&rv) = 0x7ff00000; |
1234 | word1(&rv) = 0; |
1235 | goto ret; |
1236 | } |
1237 | break; |
1238 | case 'n': |
1239 | case 'N': |
1240 | if (match(sp: &s, t: "an" )) { |
1241 | word0(&rv) = NAN_WORD0; |
1242 | word1(&rv) = NAN_WORD1; |
1243 | #ifndef No_Hex_NaN |
1244 | if (*s == '(') /*)*/ |
1245 | hexnan(rvp: &rv, sp: &s); |
1246 | #endif |
1247 | goto ret; |
1248 | } |
1249 | } |
1250 | #endif /* INFNAN_CHECK */ |
1251 | ret0: |
1252 | s = s00; |
1253 | sign = 0; |
1254 | } |
1255 | goto ret; |
1256 | } |
1257 | e1 = e -= nf; |
1258 | |
1259 | /* Now we have nd0 digits, starting at s0, followed by a |
1260 | * decimal point, followed by nd-nd0 digits. The number we're |
1261 | * after is the integer represented by those digits times |
1262 | * 10**e */ |
1263 | |
1264 | if (!nd0) |
1265 | nd0 = nd; |
1266 | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
1267 | dval(&rv) = y; |
1268 | if (k > 9) { |
1269 | #ifdef SET_INEXACT |
1270 | if (k > DBL_DIG) |
1271 | oldinexact = get_inexact(); |
1272 | #endif |
1273 | dval(&rv) = tens[k - 9] * dval(&rv) + z; |
1274 | } |
1275 | if (nd <= DBL_DIG && Flt_Rounds == 1) { |
1276 | if (!e) |
1277 | goto ret; |
1278 | if (e > 0) { |
1279 | if (e <= Ten_pmax) { |
1280 | /* rv = */ rounded_product(dval(&rv), tens[e]); |
1281 | goto ret; |
1282 | } |
1283 | i = DBL_DIG - nd; |
1284 | if (e <= Ten_pmax + i) { |
1285 | /* A fancier test would sometimes let us do |
1286 | * this for larger i values. |
1287 | */ |
1288 | e -= i; |
1289 | dval(&rv) *= tens[i]; |
1290 | /* rv = */ rounded_product(dval(&rv), tens[e]); |
1291 | goto ret; |
1292 | } |
1293 | } |
1294 | #ifndef Inaccurate_Divide |
1295 | else if (e >= -Ten_pmax) { |
1296 | /* rv = */ rounded_quotient(dval(&rv), tens[-e]); |
1297 | goto ret; |
1298 | } |
1299 | #endif |
1300 | } |
1301 | e1 += nd - k; |
1302 | |
1303 | #ifdef SET_INEXACT |
1304 | inexact = 1; |
1305 | if (k <= DBL_DIG) |
1306 | oldinexact = get_inexact(); |
1307 | #endif |
1308 | #ifdef Avoid_Underflow |
1309 | scale = 0; |
1310 | #endif |
1311 | |
1312 | /* Get starting approximation = rv * 10**e1 */ |
1313 | |
1314 | if (e1 > 0) { |
1315 | if ((i = e1 & 15)) |
1316 | dval(&rv) *= tens[i]; |
1317 | if (e1 &= ~15) { |
1318 | if (e1 > DBL_MAX_10_EXP) { |
1319 | ovfl: |
1320 | #ifndef NO_ERRNO |
1321 | errno = ERANGE; |
1322 | #endif |
1323 | /* Can't trust HUGE_VAL */ |
1324 | word0(&rv) = Exp_mask; |
1325 | word1(&rv) = 0; |
1326 | #ifdef SET_INEXACT |
1327 | /* set overflow bit */ |
1328 | dval(&rv0) = 1e300; |
1329 | dval(&rv0) *= dval(&rv0); |
1330 | #endif |
1331 | goto ret; |
1332 | } |
1333 | e1 >>= 4; |
1334 | for (j = 0; e1 > 1; j++, e1 >>= 1) |
1335 | if (e1 & 1) |
1336 | dval(&rv) *= bigtens[j]; |
1337 | /* The last multiplication could overflow. */ |
1338 | word0(&rv) -= P * Exp_msk1; |
1339 | dval(&rv) *= bigtens[j]; |
1340 | if ((z = word0(&rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P)) |
1341 | goto ovfl; |
1342 | if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) { |
1343 | /* set to largest number */ |
1344 | /* (Can't trust DBL_MAX) */ |
1345 | word0(&rv) = Big0; |
1346 | word1(&rv) = Big1; |
1347 | } else |
1348 | word0(&rv) += P * Exp_msk1; |
1349 | } |
1350 | } else if (e1 < 0) { |
1351 | e1 = -e1; |
1352 | if ((i = e1 & 15)) |
1353 | dval(&rv) /= tens[i]; |
1354 | if (e1 >>= 4) { |
1355 | if (e1 >= 1 << n_bigtens) |
1356 | goto undfl; |
1357 | #ifdef Avoid_Underflow |
1358 | if (e1 & Scale_Bit) |
1359 | scale = 2 * P; |
1360 | for (j = 0; e1 > 0; j++, e1 >>= 1) |
1361 | if (e1 & 1) |
1362 | dval(&rv) *= tinytens[j]; |
1363 | if (scale && (j = (2 * P) + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0) { |
1364 | /* scaled rv is denormal; zap j low bits */ |
1365 | if (j >= 32) { |
1366 | word1(&rv) = 0; |
1367 | if (j >= 53) |
1368 | word0(&rv) = (P + 2) * Exp_msk1; |
1369 | else |
1370 | word0(&rv) &= 0xffffffff << (j - 32); |
1371 | } else |
1372 | word1(&rv) &= 0xffffffff << j; |
1373 | } |
1374 | #else |
1375 | for (j = 0; e1 > 1; j++, e1 >>= 1) |
1376 | if (e1 & 1) |
1377 | dval(&rv) *= tinytens[j]; |
1378 | /* The last multiplication could underflow. */ |
1379 | dval(&rv0) = dval(&rv); |
1380 | dval(&rv) *= tinytens[j]; |
1381 | if (!dval(&rv)) { |
1382 | dval(&rv) = 2. * dval(&rv0); |
1383 | dval(&rv) *= tinytens[j]; |
1384 | #endif |
1385 | if (!dval(&rv)) { |
1386 | undfl: |
1387 | dval(&rv) = 0.; |
1388 | #ifndef NO_ERRNO |
1389 | errno = ERANGE; |
1390 | #endif |
1391 | goto ret; |
1392 | } |
1393 | #ifndef Avoid_Underflow |
1394 | word0(&rv) = Tiny0; |
1395 | word1(&rv) = Tiny1; |
1396 | /* The refinement below will clean |
1397 | * this approximation up. |
1398 | */ |
1399 | } |
1400 | #endif |
1401 | } |
1402 | } |
1403 | |
1404 | /* Now the hard part -- adjusting rv to the correct value.*/ |
1405 | |
1406 | /* Put digits into bd: true value = bd * 10^e */ |
1407 | |
1408 | s2b(b&: bd0, s: s0, nd0, nd, y9: y); |
1409 | |
1410 | for (;;) { |
1411 | bd = bd0; |
1412 | d2b(b&: bb, d: &rv, e: &bbe, bits: &bbbits); /* rv = bb * 2^bbe */ |
1413 | i2b(b&: bs, i: 1); |
1414 | |
1415 | if (e >= 0) { |
1416 | bb2 = bb5 = 0; |
1417 | bd2 = bd5 = e; |
1418 | } else { |
1419 | bb2 = bb5 = -e; |
1420 | bd2 = bd5 = 0; |
1421 | } |
1422 | if (bbe >= 0) |
1423 | bb2 += bbe; |
1424 | else |
1425 | bd2 -= bbe; |
1426 | bs2 = bb2; |
1427 | #ifdef Avoid_Underflow |
1428 | j = bbe - scale; |
1429 | i = j + bbbits - 1; /* logb(rv) */ |
1430 | if (i < Emin) /* denormal */ |
1431 | j += P - Emin; |
1432 | else |
1433 | j = P + 1 - bbbits; |
1434 | #else /*Avoid_Underflow*/ |
1435 | #ifdef Sudden_Underflow |
1436 | j = P + 1 - bbbits; |
1437 | #else /*Sudden_Underflow*/ |
1438 | j = bbe; |
1439 | i = j + bbbits - 1; /* logb(rv) */ |
1440 | if (i < Emin) /* denormal */ |
1441 | j += P - Emin; |
1442 | else |
1443 | j = P + 1 - bbbits; |
1444 | #endif /*Sudden_Underflow*/ |
1445 | #endif /*Avoid_Underflow*/ |
1446 | bb2 += j; |
1447 | bd2 += j; |
1448 | #ifdef Avoid_Underflow |
1449 | bd2 += scale; |
1450 | #endif |
1451 | i = bb2 < bd2 ? bb2 : bd2; |
1452 | if (i > bs2) |
1453 | i = bs2; |
1454 | if (i > 0) { |
1455 | bb2 -= i; |
1456 | bd2 -= i; |
1457 | bs2 -= i; |
1458 | } |
1459 | if (bb5 > 0) { |
1460 | pow5mult(b&: bs, k: bb5); |
1461 | mult(aRef&: bb, bRef: bs); |
1462 | } |
1463 | if (bb2 > 0) |
1464 | lshift(b&: bb, k: bb2); |
1465 | if (bd5 > 0) |
1466 | pow5mult(b&: bd, k: bd5); |
1467 | if (bd2 > 0) |
1468 | lshift(b&: bd, k: bd2); |
1469 | if (bs2 > 0) |
1470 | lshift(b&: bs, k: bs2); |
1471 | diff(c&: delta, aRef: bb, bRef: bd); |
1472 | dsign = delta.sign; |
1473 | delta.sign = 0; |
1474 | i = cmp(a: delta, b: bs); |
1475 | |
1476 | if (i < 0) { |
1477 | /* Error is less than half an ulp -- check for |
1478 | * special case of mantissa a power of two. |
1479 | */ |
1480 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask |
1481 | #ifdef Avoid_Underflow |
1482 | || (word0(&rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1 |
1483 | #else |
1484 | || (word0(&rv) & Exp_mask) <= Exp_msk1 |
1485 | #endif |
1486 | ) { |
1487 | #ifdef SET_INEXACT |
1488 | if (!delta->words()[0] && delta->size() <= 1) |
1489 | inexact = 0; |
1490 | #endif |
1491 | break; |
1492 | } |
1493 | if (!delta.words()[0] && delta.size() <= 1) { |
1494 | /* exact result */ |
1495 | #ifdef SET_INEXACT |
1496 | inexact = 0; |
1497 | #endif |
1498 | break; |
1499 | } |
1500 | lshift(b&: delta, Log2P); |
1501 | if (cmp(a: delta, b: bs) > 0) |
1502 | goto drop_down; |
1503 | break; |
1504 | } |
1505 | if (i == 0) { |
1506 | /* exactly half-way between */ |
1507 | if (dsign) { |
1508 | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 |
1509 | && word1(&rv) == ( |
1510 | #ifdef Avoid_Underflow |
1511 | (scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) |
1512 | ? (0xffffffff & (0xffffffff << (2 * P + 1 - (y >> Exp_shift)))) : |
1513 | #endif |
1514 | 0xffffffff)) { |
1515 | /*boundary case -- increment exponent*/ |
1516 | word0(&rv) = (word0(&rv) & Exp_mask) + Exp_msk1; |
1517 | word1(&rv) = 0; |
1518 | #ifdef Avoid_Underflow |
1519 | dsign = 0; |
1520 | #endif |
1521 | break; |
1522 | } |
1523 | } else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { |
1524 | drop_down: |
1525 | /* boundary case -- decrement exponent */ |
1526 | #ifdef Sudden_Underflow /*{{*/ |
1527 | L = word0(&rv) & Exp_mask; |
1528 | #ifdef Avoid_Underflow |
1529 | if (L <= (scale ? (2 * P + 1) * Exp_msk1 : Exp_msk1)) |
1530 | #else |
1531 | if (L <= Exp_msk1) |
1532 | #endif /*Avoid_Underflow*/ |
1533 | goto undfl; |
1534 | L -= Exp_msk1; |
1535 | #else /*Sudden_Underflow}{*/ |
1536 | #ifdef Avoid_Underflow |
1537 | if (scale) { |
1538 | L = word0(&rv) & Exp_mask; |
1539 | if (L <= (2 * P + 1) * Exp_msk1) { |
1540 | if (L > (P + 2) * Exp_msk1) |
1541 | /* round even ==> */ |
1542 | /* accept rv */ |
1543 | break; |
1544 | /* rv = smallest denormal */ |
1545 | goto undfl; |
1546 | } |
1547 | } |
1548 | #endif /*Avoid_Underflow*/ |
1549 | L = (word0(&rv) & Exp_mask) - Exp_msk1; |
1550 | #endif /*Sudden_Underflow}}*/ |
1551 | word0(&rv) = L | Bndry_mask1; |
1552 | word1(&rv) = 0xffffffff; |
1553 | break; |
1554 | } |
1555 | if (!(word1(&rv) & LSB)) |
1556 | break; |
1557 | if (dsign) |
1558 | dval(&rv) += ulp(x: &rv); |
1559 | else { |
1560 | dval(&rv) -= ulp(x: &rv); |
1561 | #ifndef Sudden_Underflow |
1562 | if (!dval(&rv)) |
1563 | goto undfl; |
1564 | #endif |
1565 | } |
1566 | #ifdef Avoid_Underflow |
1567 | dsign = 1 - dsign; |
1568 | #endif |
1569 | break; |
1570 | } |
1571 | if ((aadj = ratio(a: delta, b: bs)) <= 2.) { |
1572 | if (dsign) |
1573 | aadj = aadj1 = 1.; |
1574 | else if (word1(&rv) || word0(&rv) & Bndry_mask) { |
1575 | #ifndef Sudden_Underflow |
1576 | if (word1(&rv) == Tiny1 && !word0(&rv)) |
1577 | goto undfl; |
1578 | #endif |
1579 | aadj = 1.; |
1580 | aadj1 = -1.; |
1581 | } else { |
1582 | /* special case -- power of FLT_RADIX to be */ |
1583 | /* rounded down... */ |
1584 | |
1585 | if (aadj < 2. / FLT_RADIX) |
1586 | aadj = 1. / FLT_RADIX; |
1587 | else |
1588 | aadj *= 0.5; |
1589 | aadj1 = -aadj; |
1590 | } |
1591 | } else { |
1592 | aadj *= 0.5; |
1593 | aadj1 = dsign ? aadj : -aadj; |
1594 | #ifdef Check_FLT_ROUNDS |
1595 | switch (Rounding) { |
1596 | case 2: /* towards +infinity */ |
1597 | aadj1 -= 0.5; |
1598 | break; |
1599 | case 0: /* towards 0 */ |
1600 | case 3: /* towards -infinity */ |
1601 | aadj1 += 0.5; |
1602 | } |
1603 | #else |
1604 | if (Flt_Rounds == 0) |
1605 | aadj1 += 0.5; |
1606 | #endif /*Check_FLT_ROUNDS*/ |
1607 | } |
1608 | y = word0(&rv) & Exp_mask; |
1609 | |
1610 | /* Check for overflow */ |
1611 | |
1612 | if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) { |
1613 | dval(&rv0) = dval(&rv); |
1614 | word0(&rv) -= P * Exp_msk1; |
1615 | adj.d = aadj1 * ulp(x: &rv); |
1616 | dval(&rv) += adj.d; |
1617 | if ((word0(&rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P)) { |
1618 | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) |
1619 | goto ovfl; |
1620 | word0(&rv) = Big0; |
1621 | word1(&rv) = Big1; |
1622 | goto cont; |
1623 | } else |
1624 | word0(&rv) += P * Exp_msk1; |
1625 | } else { |
1626 | #ifdef Avoid_Underflow |
1627 | if (scale && y <= 2 * P * Exp_msk1) { |
1628 | if (aadj <= 0x7fffffff) { |
1629 | if ((z = (uint32_t)aadj) <= 0) |
1630 | z = 1; |
1631 | aadj = z; |
1632 | aadj1 = dsign ? aadj : -aadj; |
1633 | } |
1634 | dval(&aadj2) = aadj1; |
1635 | word0(&aadj2) += (2 * P + 1) * Exp_msk1 - y; |
1636 | aadj1 = dval(&aadj2); |
1637 | } |
1638 | adj.d = aadj1 * ulp(x: &rv); |
1639 | dval(&rv) += adj.d; |
1640 | #else |
1641 | #ifdef Sudden_Underflow |
1642 | if ((word0(&rv) & Exp_mask) <= P * Exp_msk1) { |
1643 | dval(&rv0) = dval(&rv); |
1644 | word0(&rv) += P * Exp_msk1; |
1645 | adj.d = aadj1 * ulp(&rv); |
1646 | dval(&rv) += adj.d; |
1647 | if ((word0(&rv) & Exp_mask) <= P * Exp_msk1) |
1648 | { |
1649 | if (word0(&rv0) == Tiny0 && word1(&rv0) == Tiny1) |
1650 | goto undfl; |
1651 | word0(&rv) = Tiny0; |
1652 | word1(&rv) = Tiny1; |
1653 | goto cont; |
1654 | } |
1655 | else |
1656 | word0(&rv) -= P * Exp_msk1; |
1657 | } else { |
1658 | adj.d = aadj1 * ulp(&rv); |
1659 | dval(&rv) += adj.d; |
1660 | } |
1661 | #else /*Sudden_Underflow*/ |
1662 | /* Compute adj so that the IEEE rounding rules will |
1663 | * correctly round rv + adj in some half-way cases. |
1664 | * If rv * ulp(rv) is denormalized (i.e., |
1665 | * y <= (P - 1) * Exp_msk1), we must adjust aadj to avoid |
1666 | * trouble from bits lost to denormalization; |
1667 | * example: 1.2e-307 . |
1668 | */ |
1669 | if (y <= (P - 1) * Exp_msk1 && aadj > 1.) { |
1670 | aadj1 = (double)(int)(aadj + 0.5); |
1671 | if (!dsign) |
1672 | aadj1 = -aadj1; |
1673 | } |
1674 | adj.d = aadj1 * ulp(&rv); |
1675 | dval(&rv) += adj.d; |
1676 | #endif /*Sudden_Underflow*/ |
1677 | #endif /*Avoid_Underflow*/ |
1678 | } |
1679 | z = word0(&rv) & Exp_mask; |
1680 | #ifndef SET_INEXACT |
1681 | #ifdef Avoid_Underflow |
1682 | if (!scale) |
1683 | #endif |
1684 | if (y == z) { |
1685 | /* Can we stop now? */ |
1686 | L = (int32_t)aadj; |
1687 | aadj -= L; |
1688 | /* The tolerances below are conservative. */ |
1689 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { |
1690 | if (aadj < .4999999 || aadj > .5000001) |
1691 | break; |
1692 | } else if (aadj < .4999999 / FLT_RADIX) |
1693 | break; |
1694 | } |
1695 | #endif |
1696 | cont: |
1697 | ; |
1698 | } |
1699 | #ifdef SET_INEXACT |
1700 | if (inexact) { |
1701 | if (!oldinexact) { |
1702 | word0(&rv0) = Exp_1 + (70 << Exp_shift); |
1703 | word1(&rv0) = 0; |
1704 | dval(&rv0) += 1.; |
1705 | } |
1706 | } else if (!oldinexact) |
1707 | clear_inexact(); |
1708 | #endif |
1709 | #ifdef Avoid_Underflow |
1710 | if (scale) { |
1711 | word0(&rv0) = Exp_1 - 2 * P * Exp_msk1; |
1712 | word1(&rv0) = 0; |
1713 | dval(&rv) *= dval(&rv0); |
1714 | #ifndef NO_ERRNO |
1715 | /* try to avoid the bug of testing an 8087 register value */ |
1716 | if (word0(&rv) == 0 && word1(&rv) == 0) |
1717 | errno = ERANGE; |
1718 | #endif |
1719 | } |
1720 | #endif /* Avoid_Underflow */ |
1721 | #ifdef SET_INEXACT |
1722 | if (inexact && !(word0(&rv) & Exp_mask)) { |
1723 | /* set underflow bit */ |
1724 | dval(&rv0) = 1e-300; |
1725 | dval(&rv0) *= dval(&rv0); |
1726 | } |
1727 | #endif |
1728 | ret: |
1729 | if (se) |
1730 | *se = const_cast<char*>(s); |
1731 | return sign ? -dval(&rv) : dval(&rv); |
1732 | } |
1733 | |
1734 | static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S) |
1735 | { |
1736 | size_t n; |
1737 | uint32_t *bx, *bxe, q, *sx, *sxe; |
1738 | #ifdef USE_LONG_LONG |
1739 | unsigned long long borrow, carry, y, ys; |
1740 | #else |
1741 | uint32_t borrow, carry, y, ys; |
1742 | #ifdef Pack_32 |
1743 | uint32_t si, z, zs; |
1744 | #endif |
1745 | #endif |
1746 | ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); |
1747 | ASSERT(S.size() <= 1 || S.words()[S.size() - 1]); |
1748 | |
1749 | n = S.size(); |
1750 | ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem" ); |
1751 | if (b.size() < n) |
1752 | return 0; |
1753 | sx = S.words(); |
1754 | sxe = sx + --n; |
1755 | bx = b.words(); |
1756 | bxe = bx + n; |
1757 | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
1758 | ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem" ); |
1759 | if (q) { |
1760 | borrow = 0; |
1761 | carry = 0; |
1762 | do { |
1763 | #ifdef USE_LONG_LONG |
1764 | ys = *sx++ * (unsigned long long)q + carry; |
1765 | carry = ys >> 32; |
1766 | y = *bx - (ys & 0xffffffffUL) - borrow; |
1767 | borrow = y >> 32 & (uint32_t)1; |
1768 | *bx++ = (uint32_t)y & 0xffffffffUL; |
1769 | #else |
1770 | #ifdef Pack_32 |
1771 | si = *sx++; |
1772 | ys = (si & 0xffff) * q + carry; |
1773 | zs = (si >> 16) * q + (ys >> 16); |
1774 | carry = zs >> 16; |
1775 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
1776 | borrow = (y & 0x10000) >> 16; |
1777 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
1778 | borrow = (z & 0x10000) >> 16; |
1779 | Storeinc(bx, z, y); |
1780 | #else |
1781 | ys = *sx++ * q + carry; |
1782 | carry = ys >> 16; |
1783 | y = *bx - (ys & 0xffff) - borrow; |
1784 | borrow = (y & 0x10000) >> 16; |
1785 | *bx++ = y & 0xffff; |
1786 | #endif |
1787 | #endif |
1788 | } while (sx <= sxe); |
1789 | if (!*bxe) { |
1790 | bx = b.words(); |
1791 | while (--bxe > bx && !*bxe) |
1792 | --n; |
1793 | b.resize(s: n); |
1794 | } |
1795 | } |
1796 | if (cmp(a: b, b: S) >= 0) { |
1797 | q++; |
1798 | borrow = 0; |
1799 | carry = 0; |
1800 | bx = b.words(); |
1801 | sx = S.words(); |
1802 | do { |
1803 | #ifdef USE_LONG_LONG |
1804 | ys = *sx++ + carry; |
1805 | carry = ys >> 32; |
1806 | y = *bx - (ys & 0xffffffffUL) - borrow; |
1807 | borrow = y >> 32 & (uint32_t)1; |
1808 | *bx++ = (uint32_t)y & 0xffffffffUL; |
1809 | #else |
1810 | #ifdef Pack_32 |
1811 | si = *sx++; |
1812 | ys = (si & 0xffff) + carry; |
1813 | zs = (si >> 16) + (ys >> 16); |
1814 | carry = zs >> 16; |
1815 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
1816 | borrow = (y & 0x10000) >> 16; |
1817 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
1818 | borrow = (z & 0x10000) >> 16; |
1819 | Storeinc(bx, z, y); |
1820 | #else |
1821 | ys = *sx++ + carry; |
1822 | carry = ys >> 16; |
1823 | y = *bx - (ys & 0xffff) - borrow; |
1824 | borrow = (y & 0x10000) >> 16; |
1825 | *bx++ = y & 0xffff; |
1826 | #endif |
1827 | #endif |
1828 | } while (sx <= sxe); |
1829 | bx = b.words(); |
1830 | bxe = bx + n; |
1831 | if (!*bxe) { |
1832 | while (--bxe > bx && !*bxe) |
1833 | --n; |
1834 | b.resize(s: n); |
1835 | } |
1836 | } |
1837 | return q; |
1838 | } |
1839 | |
1840 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
1841 | * |
1842 | * Inspired by "How to Print Floating-Point Numbers Accurately" by |
1843 | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. |
1844 | * |
1845 | * Modifications: |
1846 | * 1. Rather than iterating, we use a simple numeric overestimate |
1847 | * to determine k = floor(log10(d)). We scale relevant |
1848 | * quantities using O(log2(k)) rather than O(k) multiplications. |
1849 | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
1850 | * try to generate digits strictly left to right. Instead, we |
1851 | * compute with fewer bits and propagate the carry if necessary |
1852 | * when rounding the final digit up. This is often faster. |
1853 | * 3. Under the assumption that input will be rounded nearest, |
1854 | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
1855 | * That is, we allow equality in stopping tests when the |
1856 | * round-nearest rule will give the same floating-point value |
1857 | * as would satisfaction of the stopping test with strict |
1858 | * inequality. |
1859 | * 4. We remove common factors of powers of 2 from relevant |
1860 | * quantities. |
1861 | * 5. When converting floating-point integers less than 1e16, |
1862 | * we use floating-point arithmetic rather than resorting |
1863 | * to multiple-precision integers. |
1864 | * 6. When asked to produce fewer than 15 digits, we first try |
1865 | * to get by with floating-point arithmetic; we resort to |
1866 | * multiple-precision integer arithmetic only if we cannot |
1867 | * guarantee that the floating-point calculation has given |
1868 | * the correctly rounded result. For k requested digits and |
1869 | * "uniformly" distributed input, the probability is |
1870 | * something like 10^(k-15) that we must resort to the int32_t |
1871 | * calculation. |
1872 | */ |
1873 | |
1874 | void dtoa(DtoaBuffer result, double dd, int ndigits, int* decpt, int* sign, char** rve) |
1875 | { |
1876 | /* |
1877 | Arguments ndigits, decpt, sign are similar to those |
1878 | of ecvt and fcvt; trailing zeros are suppressed from |
1879 | the returned string. If not null, *rve is set to point |
1880 | to the end of the return value. If d is +-Infinity or NaN, |
1881 | then *decpt is set to 9999. |
1882 | |
1883 | */ |
1884 | |
1885 | int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, |
1886 | j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
1887 | spec_case, try_quick; |
1888 | int32_t L; |
1889 | #ifndef Sudden_Underflow |
1890 | int denorm; |
1891 | uint32_t x; |
1892 | #endif |
1893 | BigInt b, b1, delta, mlo, mhi, S; |
1894 | U d2, eps, u; |
1895 | double ds; |
1896 | char *s, *s0; |
1897 | #ifdef SET_INEXACT |
1898 | int inexact, oldinexact; |
1899 | #endif |
1900 | |
1901 | u.d = dd; |
1902 | if (word0(&u) & Sign_bit) { |
1903 | /* set sign for everything, including 0's and NaNs */ |
1904 | *sign = 1; |
1905 | word0(&u) &= ~Sign_bit; /* clear sign bit */ |
1906 | } else |
1907 | *sign = 0; |
1908 | |
1909 | if ((word0(&u) & Exp_mask) == Exp_mask) |
1910 | { |
1911 | /* Infinity or NaN */ |
1912 | *decpt = 9999; |
1913 | if (!word1(&u) && !(word0(&u) & 0xfffff)) { |
1914 | strcpy(dest: result, src: "Infinity" ); |
1915 | if (rve) |
1916 | *rve = result + 8; |
1917 | } else { |
1918 | strcpy(dest: result, src: "NaN" ); |
1919 | if (rve) |
1920 | *rve = result + 3; |
1921 | } |
1922 | return; |
1923 | } |
1924 | if (!dval(&u)) { |
1925 | *decpt = 1; |
1926 | result[0] = '0'; |
1927 | result[1] = '\0'; |
1928 | if (rve) |
1929 | *rve = result + 1; |
1930 | return; |
1931 | } |
1932 | |
1933 | #ifdef SET_INEXACT |
1934 | try_quick = oldinexact = get_inexact(); |
1935 | inexact = 1; |
1936 | #endif |
1937 | |
1938 | d2b(b, d: &u, e: &be, bits: &bbits); |
1939 | #ifdef Sudden_Underflow |
1940 | i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)); |
1941 | #else |
1942 | if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) { |
1943 | #endif |
1944 | dval(&d2) = dval(&u); |
1945 | word0(&d2) &= Frac_mask1; |
1946 | word0(&d2) |= Exp_11; |
1947 | |
1948 | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
1949 | * log10(x) = log(x) / log(10) |
1950 | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
1951 | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
1952 | * |
1953 | * This suggests computing an approximation k to log10(d) by |
1954 | * |
1955 | * k = (i - Bias)*0.301029995663981 |
1956 | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
1957 | * |
1958 | * We want k to be too large rather than too small. |
1959 | * The error in the first-order Taylor series approximation |
1960 | * is in our favor, so we just round up the constant enough |
1961 | * to compensate for any error in the multiplication of |
1962 | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
1963 | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
1964 | * adding 1e-13 to the constant term more than suffices. |
1965 | * Hence we adjust the constant term to 0.1760912590558. |
1966 | * (We could get a more accurate k by invoking log10, |
1967 | * but this is probably not worthwhile.) |
1968 | */ |
1969 | |
1970 | i -= Bias; |
1971 | #ifndef Sudden_Underflow |
1972 | denorm = 0; |
1973 | } else { |
1974 | /* d is denormalized */ |
1975 | |
1976 | i = bbits + be + (Bias + (P - 1) - 1); |
1977 | x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32)) |
1978 | : word1(&u) << (32 - i); |
1979 | dval(&d2) = x; |
1980 | word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */ |
1981 | i -= (Bias + (P - 1) - 1) + 1; |
1982 | denorm = 1; |
1983 | } |
1984 | #endif |
1985 | ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981); |
1986 | k = (int)ds; |
1987 | if (ds < 0. && ds != k) |
1988 | k--; /* want k = floor(ds) */ |
1989 | k_check = 1; |
1990 | if (k >= 0 && k <= Ten_pmax) { |
1991 | if (dval(&u) < tens[k]) |
1992 | k--; |
1993 | k_check = 0; |
1994 | } |
1995 | j = bbits - i - 1; |
1996 | if (j >= 0) { |
1997 | b2 = 0; |
1998 | s2 = j; |
1999 | } else { |
2000 | b2 = -j; |
2001 | s2 = 0; |
2002 | } |
2003 | if (k >= 0) { |
2004 | b5 = 0; |
2005 | s5 = k; |
2006 | s2 += k; |
2007 | } else { |
2008 | b2 -= k; |
2009 | b5 = -k; |
2010 | s5 = 0; |
2011 | } |
2012 | |
2013 | #ifndef SET_INEXACT |
2014 | #ifdef Check_FLT_ROUNDS |
2015 | try_quick = Rounding == 1; |
2016 | #else |
2017 | try_quick = 1; |
2018 | #endif |
2019 | #endif /*SET_INEXACT*/ |
2020 | |
2021 | leftright = 1; |
2022 | ilim = ilim1 = -1; |
2023 | i = 18; |
2024 | ndigits = 0; |
2025 | s = s0 = result; |
2026 | |
2027 | if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
2028 | |
2029 | /* Try to get by with floating-point arithmetic. */ |
2030 | |
2031 | i = 0; |
2032 | dval(&d2) = dval(&u); |
2033 | k0 = k; |
2034 | ilim0 = ilim; |
2035 | ieps = 2; /* conservative */ |
2036 | if (k > 0) { |
2037 | ds = tens[k & 0xf]; |
2038 | j = k >> 4; |
2039 | if (j & Bletch) { |
2040 | /* prevent overflows */ |
2041 | j &= Bletch - 1; |
2042 | dval(&u) /= bigtens[n_bigtens - 1]; |
2043 | ieps++; |
2044 | } |
2045 | for (; j; j >>= 1, i++) { |
2046 | if (j & 1) { |
2047 | ieps++; |
2048 | ds *= bigtens[i]; |
2049 | } |
2050 | } |
2051 | dval(&u) /= ds; |
2052 | } else if ((j1 = -k)) { |
2053 | dval(&u) *= tens[j1 & 0xf]; |
2054 | for (j = j1 >> 4; j; j >>= 1, i++) { |
2055 | if (j & 1) { |
2056 | ieps++; |
2057 | dval(&u) *= bigtens[i]; |
2058 | } |
2059 | } |
2060 | } |
2061 | if (k_check && dval(&u) < 1. && ilim > 0) { |
2062 | if (ilim1 <= 0) |
2063 | goto fast_failed; |
2064 | ilim = ilim1; |
2065 | k--; |
2066 | dval(&u) *= 10.; |
2067 | ieps++; |
2068 | } |
2069 | dval(&eps) = (ieps * dval(&u)) + 7.; |
2070 | word0(&eps) -= (P - 1) * Exp_msk1; |
2071 | if (ilim == 0) { |
2072 | S.clear(); |
2073 | mhi.clear(); |
2074 | dval(&u) -= 5.; |
2075 | if (dval(&u) > dval(&eps)) |
2076 | goto one_digit; |
2077 | if (dval(&u) < -dval(&eps)) |
2078 | goto no_digits; |
2079 | goto fast_failed; |
2080 | } |
2081 | #ifndef No_leftright |
2082 | if (leftright) { |
2083 | /* Use Steele & White method of only |
2084 | * generating digits needed. |
2085 | */ |
2086 | dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps); |
2087 | for (i = 0;;) { |
2088 | L = (long int)dval(&u); |
2089 | dval(&u) -= L; |
2090 | *s++ = '0' + (int)L; |
2091 | if (dval(&u) < dval(&eps)) |
2092 | goto ret; |
2093 | if (1. - dval(&u) < dval(&eps)) |
2094 | goto bump_up; |
2095 | if (++i >= ilim) |
2096 | break; |
2097 | dval(&eps) *= 10.; |
2098 | dval(&u) *= 10.; |
2099 | } |
2100 | } else { |
2101 | #endif |
2102 | /* Generate ilim digits, then fix them up. */ |
2103 | dval(&eps) *= tens[ilim - 1]; |
2104 | for (i = 1;; i++, dval(&u) *= 10.) { |
2105 | L = (int32_t)(dval(&u)); |
2106 | if (!(dval(&u) -= L)) |
2107 | ilim = i; |
2108 | *s++ = '0' + (int)L; |
2109 | if (i == ilim) { |
2110 | if (dval(&u) > 0.5 + dval(&eps)) |
2111 | goto bump_up; |
2112 | else if (dval(&u) < 0.5 - dval(&eps)) { |
2113 | while (*--s == '0') { } |
2114 | s++; |
2115 | goto ret; |
2116 | } |
2117 | break; |
2118 | } |
2119 | } |
2120 | #ifndef No_leftright |
2121 | } |
2122 | #endif |
2123 | fast_failed: |
2124 | s = s0; |
2125 | dval(&u) = dval(&d2); |
2126 | k = k0; |
2127 | ilim = ilim0; |
2128 | } |
2129 | |
2130 | /* Do we have a "small" integer? */ |
2131 | |
2132 | if (be >= 0 && k <= Int_max) { |
2133 | /* Yes. */ |
2134 | ds = tens[k]; |
2135 | if (ndigits < 0 && ilim <= 0) { |
2136 | S.clear(); |
2137 | mhi.clear(); |
2138 | if (ilim < 0 || dval(&u) <= 5 * ds) |
2139 | goto no_digits; |
2140 | goto one_digit; |
2141 | } |
2142 | for (i = 1;; i++, dval(&u) *= 10.) { |
2143 | L = (int32_t)(dval(&u) / ds); |
2144 | dval(&u) -= L * ds; |
2145 | #ifdef Check_FLT_ROUNDS |
2146 | /* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
2147 | if (dval(&u) < 0) { |
2148 | L--; |
2149 | dval(&u) += ds; |
2150 | } |
2151 | #endif |
2152 | *s++ = '0' + (int)L; |
2153 | if (!dval(&u)) { |
2154 | #ifdef SET_INEXACT |
2155 | inexact = 0; |
2156 | #endif |
2157 | break; |
2158 | } |
2159 | if (i == ilim) { |
2160 | dval(&u) += dval(&u); |
2161 | if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) { |
2162 | bump_up: |
2163 | while (*--s == '9') |
2164 | if (s == s0) { |
2165 | k++; |
2166 | *s = '0'; |
2167 | break; |
2168 | } |
2169 | ++*s++; |
2170 | } |
2171 | break; |
2172 | } |
2173 | } |
2174 | goto ret; |
2175 | } |
2176 | |
2177 | m2 = b2; |
2178 | m5 = b5; |
2179 | mhi.clear(); |
2180 | mlo.clear(); |
2181 | if (leftright) { |
2182 | i = |
2183 | #ifndef Sudden_Underflow |
2184 | denorm ? be + (Bias + (P - 1) - 1 + 1) : |
2185 | #endif |
2186 | 1 + P - bbits; |
2187 | b2 += i; |
2188 | s2 += i; |
2189 | i2b(b&: mhi, i: 1); |
2190 | } |
2191 | if (m2 > 0 && s2 > 0) { |
2192 | i = m2 < s2 ? m2 : s2; |
2193 | b2 -= i; |
2194 | m2 -= i; |
2195 | s2 -= i; |
2196 | } |
2197 | if (b5 > 0) { |
2198 | if (leftright) { |
2199 | if (m5 > 0) { |
2200 | pow5mult(b&: mhi, k: m5); |
2201 | mult(aRef&: b, bRef: mhi); |
2202 | } |
2203 | if ((j = b5 - m5)) |
2204 | pow5mult(b, k: j); |
2205 | } else |
2206 | pow5mult(b, k: b5); |
2207 | } |
2208 | i2b(b&: S, i: 1); |
2209 | if (s5 > 0) |
2210 | pow5mult(b&: S, k: s5); |
2211 | |
2212 | /* Check for special case that d is a normalized power of 2. */ |
2213 | |
2214 | spec_case = 0; |
2215 | if (!word1(&u) && !(word0(&u) & Bndry_mask) |
2216 | #ifndef Sudden_Underflow |
2217 | && word0(&u) & (Exp_mask & ~Exp_msk1) |
2218 | #endif |
2219 | ) { |
2220 | /* The special case */ |
2221 | b2 += Log2P; |
2222 | s2 += Log2P; |
2223 | spec_case = 1; |
2224 | } |
2225 | |
2226 | /* Arrange for convenient computation of quotients: |
2227 | * shift left if necessary so divisor has 4 leading 0 bits. |
2228 | * |
2229 | * Perhaps we should just compute leading 28 bits of S once |
2230 | * and for all and pass them and a shift to quorem, so it |
2231 | * can do shifts and ors to compute the numerator for q. |
2232 | */ |
2233 | #ifdef Pack_32 |
2234 | if ((i = ((s5 ? 32 - hi0bits(x: S.words()[S.size() - 1]) : 1) + s2) & 0x1f)) |
2235 | i = 32 - i; |
2236 | #else |
2237 | if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0xf)) |
2238 | i = 16 - i; |
2239 | #endif |
2240 | if (i > 4) { |
2241 | i -= 4; |
2242 | b2 += i; |
2243 | m2 += i; |
2244 | s2 += i; |
2245 | } else if (i < 4) { |
2246 | i += 28; |
2247 | b2 += i; |
2248 | m2 += i; |
2249 | s2 += i; |
2250 | } |
2251 | if (b2 > 0) |
2252 | lshift(b, k: b2); |
2253 | if (s2 > 0) |
2254 | lshift(b&: S, k: s2); |
2255 | if (k_check) { |
2256 | if (cmp(a: b,b: S) < 0) { |
2257 | k--; |
2258 | multadd(b, m: 10, a: 0); /* we botched the k estimate */ |
2259 | if (leftright) |
2260 | multadd(b&: mhi, m: 10, a: 0); |
2261 | ilim = ilim1; |
2262 | } |
2263 | } |
2264 | |
2265 | if (leftright) { |
2266 | if (m2 > 0) |
2267 | lshift(b&: mhi, k: m2); |
2268 | |
2269 | /* Compute mlo -- check for special case |
2270 | * that d is a normalized power of 2. |
2271 | */ |
2272 | |
2273 | mlo = mhi; |
2274 | if (spec_case) { |
2275 | mhi = mlo; |
2276 | lshift(b&: mhi, Log2P); |
2277 | } |
2278 | |
2279 | for (i = 1;;i++) { |
2280 | dig = quorem(b,S) + '0'; |
2281 | /* Do we yet have the shortest decimal string |
2282 | * that will round to d? |
2283 | */ |
2284 | j = cmp(a: b, b: mlo); |
2285 | diff(c&: delta, aRef: S, bRef: mhi); |
2286 | j1 = delta.sign ? 1 : cmp(a: b, b: delta); |
2287 | if (j1 == 0 && !(word1(&u) & 1)) { |
2288 | if (dig == '9') |
2289 | goto round_9_up; |
2290 | if (j > 0) |
2291 | dig++; |
2292 | #ifdef SET_INEXACT |
2293 | else if (!b->x[0] && b->wds <= 1) |
2294 | inexact = 0; |
2295 | #endif |
2296 | *s++ = dig; |
2297 | goto ret; |
2298 | } |
2299 | if (j < 0 || (j == 0 && !(word1(&u) & 1))) { |
2300 | if (!b.words()[0] && b.size() <= 1) { |
2301 | #ifdef SET_INEXACT |
2302 | inexact = 0; |
2303 | #endif |
2304 | goto accept_dig; |
2305 | } |
2306 | if (j1 > 0) { |
2307 | lshift(b, k: 1); |
2308 | j1 = cmp(a: b, b: S); |
2309 | if ((j1 > 0 || (j1 == 0 && (dig & 1))) && dig++ == '9') |
2310 | goto round_9_up; |
2311 | } |
2312 | accept_dig: |
2313 | *s++ = dig; |
2314 | goto ret; |
2315 | } |
2316 | if (j1 > 0) { |
2317 | if (dig == '9') { /* possible if i == 1 */ |
2318 | round_9_up: |
2319 | *s++ = '9'; |
2320 | goto roundoff; |
2321 | } |
2322 | *s++ = dig + 1; |
2323 | goto ret; |
2324 | } |
2325 | *s++ = dig; |
2326 | if (i == ilim) |
2327 | break; |
2328 | multadd(b, m: 10, a: 0); |
2329 | multadd(b&: mlo, m: 10, a: 0); |
2330 | multadd(b&: mhi, m: 10, a: 0); |
2331 | } |
2332 | } else |
2333 | for (i = 1;; i++) { |
2334 | *s++ = dig = quorem(b,S) + '0'; |
2335 | if (!b.words()[0] && b.size() <= 1) { |
2336 | #ifdef SET_INEXACT |
2337 | inexact = 0; |
2338 | #endif |
2339 | goto ret; |
2340 | } |
2341 | if (i >= ilim) |
2342 | break; |
2343 | multadd(b, m: 10, a: 0); |
2344 | } |
2345 | |
2346 | /* Round off last digit */ |
2347 | |
2348 | lshift(b, k: 1); |
2349 | j = cmp(a: b, b: S); |
2350 | if (j > 0 || (j == 0 && (dig & 1))) { |
2351 | roundoff: |
2352 | while (*--s == '9') |
2353 | if (s == s0) { |
2354 | k++; |
2355 | *s++ = '1'; |
2356 | goto ret; |
2357 | } |
2358 | ++*s++; |
2359 | } else { |
2360 | while (*--s == '0') { } |
2361 | s++; |
2362 | } |
2363 | goto ret; |
2364 | no_digits: |
2365 | k = -1 - ndigits; |
2366 | goto ret; |
2367 | one_digit: |
2368 | *s++ = '1'; |
2369 | k++; |
2370 | goto ret; |
2371 | ret: |
2372 | #ifdef SET_INEXACT |
2373 | if (inexact) { |
2374 | if (!oldinexact) { |
2375 | word0(&u) = Exp_1 + (70 << Exp_shift); |
2376 | word1(&u) = 0; |
2377 | dval(&u) += 1.; |
2378 | } |
2379 | } else if (!oldinexact) |
2380 | clear_inexact(); |
2381 | #endif |
2382 | *s = 0; |
2383 | *decpt = k + 1; |
2384 | if (rve) |
2385 | *rve = s; |
2386 | } |
2387 | |
2388 | static ALWAYS_INLINE void append(char*& next, const char* src, unsigned size) |
2389 | { |
2390 | for (unsigned i = 0; i < size; ++i) |
2391 | *next++ = *src++; |
2392 | } |
2393 | |
2394 | void doubleToStringInJavaScriptFormat(double d, DtoaBuffer buffer, unsigned* resultLength) |
2395 | { |
2396 | ASSERT(buffer); |
2397 | |
2398 | // avoid ever printing -NaN, in JS conceptually there is only one NaN value |
2399 | if (std::isnan(x: d)) { |
2400 | append(next&: buffer, src: "NaN" , size: 3); |
2401 | if (resultLength) |
2402 | *resultLength = 3; |
2403 | return; |
2404 | } |
2405 | // -0 -> "0" |
2406 | if (!d) { |
2407 | buffer[0] = '0'; |
2408 | if (resultLength) |
2409 | *resultLength = 1; |
2410 | return; |
2411 | } |
2412 | |
2413 | int decimalPoint; |
2414 | int sign; |
2415 | |
2416 | DtoaBuffer result; |
2417 | char* resultEnd = 0; |
2418 | WTF::dtoa(result, dd: d, ndigits: 0, decpt: &decimalPoint, sign: &sign, rve: &resultEnd); |
2419 | int length = resultEnd - result; |
2420 | |
2421 | char* next = buffer; |
2422 | if (sign) |
2423 | *next++ = '-'; |
2424 | |
2425 | if (decimalPoint <= 0 && decimalPoint > -6) { |
2426 | *next++ = '0'; |
2427 | *next++ = '.'; |
2428 | for (int j = decimalPoint; j < 0; j++) |
2429 | *next++ = '0'; |
2430 | append(next, src: result, size: length); |
2431 | } else if (decimalPoint <= 21 && decimalPoint > 0) { |
2432 | if (length <= decimalPoint) { |
2433 | append(next, src: result, size: length); |
2434 | for (int j = 0; j < decimalPoint - length; j++) |
2435 | *next++ = '0'; |
2436 | } else { |
2437 | append(next, src: result, size: decimalPoint); |
2438 | *next++ = '.'; |
2439 | append(next, src: result + decimalPoint, size: length - decimalPoint); |
2440 | } |
2441 | } else if (result[0] < '0' || result[0] > '9') |
2442 | append(next, src: result, size: length); |
2443 | else { |
2444 | *next++ = result[0]; |
2445 | if (length > 1) { |
2446 | *next++ = '.'; |
2447 | append(next, src: result + 1, size: length - 1); |
2448 | } |
2449 | |
2450 | *next++ = 'e'; |
2451 | *next++ = (decimalPoint >= 0) ? '+' : '-'; |
2452 | // decimalPoint can't be more than 3 digits decimal given the |
2453 | // nature of float representation |
2454 | int exponential = decimalPoint - 1; |
2455 | if (exponential < 0) |
2456 | exponential = -exponential; |
2457 | if (exponential >= 100) |
2458 | *next++ = static_cast<char>('0' + exponential / 100); |
2459 | if (exponential >= 10) |
2460 | *next++ = static_cast<char>('0' + (exponential % 100) / 10); |
2461 | *next++ = static_cast<char>('0' + exponential % 10); |
2462 | } |
2463 | if (resultLength) |
2464 | *resultLength = next - buffer; |
2465 | } |
2466 | |
2467 | } // namespace WTF |
2468 | |