1 | // random number generation -*- C++ -*- |
2 | |
3 | // Copyright (C) 2009-2021 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** |
26 | * @file bits/random.h |
27 | * This is an internal header file, included by other library headers. |
28 | * Do not attempt to use it directly. @headername{random} |
29 | */ |
30 | |
31 | #ifndef _RANDOM_H |
32 | #define _RANDOM_H 1 |
33 | |
34 | #include <vector> |
35 | #include <bits/uniform_int_dist.h> |
36 | |
37 | namespace std _GLIBCXX_VISIBILITY(default) |
38 | { |
39 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
40 | |
41 | // [26.4] Random number generation |
42 | |
43 | /** |
44 | * @defgroup random Random Number Generation |
45 | * @ingroup numerics |
46 | * |
47 | * A facility for generating random numbers on selected distributions. |
48 | * @{ |
49 | */ |
50 | |
51 | // std::uniform_random_bit_generator is defined in <bits/uniform_int_dist.h> |
52 | |
53 | /** |
54 | * @brief A function template for converting the output of a (integral) |
55 | * uniform random number generator to a floatng point result in the range |
56 | * [0-1). |
57 | */ |
58 | template<typename _RealType, size_t __bits, |
59 | typename _UniformRandomNumberGenerator> |
60 | _RealType |
61 | generate_canonical(_UniformRandomNumberGenerator& __g); |
62 | |
63 | /// @cond undocumented |
64 | // Implementation-space details. |
65 | namespace __detail |
66 | { |
67 | template<typename _UIntType, size_t __w, |
68 | bool = __w < static_cast<size_t> |
69 | (std::numeric_limits<_UIntType>::digits)> |
70 | struct _Shift |
71 | { static const _UIntType __value = 0; }; |
72 | |
73 | template<typename _UIntType, size_t __w> |
74 | struct _Shift<_UIntType, __w, true> |
75 | { static const _UIntType __value = _UIntType(1) << __w; }; |
76 | |
77 | template<int __s, |
78 | int __which = ((__s <= __CHAR_BIT__ * sizeof (int)) |
79 | + (__s <= __CHAR_BIT__ * sizeof (long)) |
80 | + (__s <= __CHAR_BIT__ * sizeof (long long)) |
81 | /* assume long long no bigger than __int128 */ |
82 | + (__s <= 128))> |
83 | struct _Select_uint_least_t |
84 | { |
85 | static_assert(__which < 0, /* needs to be dependent */ |
86 | "sorry, would be too much trouble for a slow result" ); |
87 | }; |
88 | |
89 | template<int __s> |
90 | struct _Select_uint_least_t<__s, 4> |
91 | { typedef unsigned int type; }; |
92 | |
93 | template<int __s> |
94 | struct _Select_uint_least_t<__s, 3> |
95 | { typedef unsigned long type; }; |
96 | |
97 | template<int __s> |
98 | struct _Select_uint_least_t<__s, 2> |
99 | { typedef unsigned long long type; }; |
100 | |
101 | #ifdef _GLIBCXX_USE_INT128 |
102 | template<int __s> |
103 | struct _Select_uint_least_t<__s, 1> |
104 | { typedef unsigned __int128 type; }; |
105 | #endif |
106 | |
107 | // Assume a != 0, a < m, c < m, x < m. |
108 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, |
109 | bool __big_enough = (!(__m & (__m - 1)) |
110 | || (_Tp(-1) - __c) / __a >= __m - 1), |
111 | bool __schrage_ok = __m % __a < __m / __a> |
112 | struct _Mod |
113 | { |
114 | typedef typename _Select_uint_least_t<std::__lg(__a) |
115 | + std::__lg(__m) + 2>::type _Tp2; |
116 | static _Tp |
117 | __calc(_Tp __x) |
118 | { return static_cast<_Tp>((_Tp2(__a) * __x + __c) % __m); } |
119 | }; |
120 | |
121 | // Schrage. |
122 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> |
123 | struct _Mod<_Tp, __m, __a, __c, false, true> |
124 | { |
125 | static _Tp |
126 | __calc(_Tp __x); |
127 | }; |
128 | |
129 | // Special cases: |
130 | // - for m == 2^n or m == 0, unsigned integer overflow is safe. |
131 | // - a * (m - 1) + c fits in _Tp, there is no overflow. |
132 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, bool __s> |
133 | struct _Mod<_Tp, __m, __a, __c, true, __s> |
134 | { |
135 | static _Tp |
136 | __calc(_Tp __x) |
137 | { |
138 | _Tp __res = __a * __x + __c; |
139 | if (__m) |
140 | __res %= __m; |
141 | return __res; |
142 | } |
143 | }; |
144 | |
145 | template<typename _Tp, _Tp __m, _Tp __a = 1, _Tp __c = 0> |
146 | inline _Tp |
147 | __mod(_Tp __x) |
148 | { |
149 | if _GLIBCXX17_CONSTEXPR (__a == 0) |
150 | return __c; |
151 | else |
152 | { |
153 | // _Mod must not be instantiated with a == 0 |
154 | constexpr _Tp __a1 = __a ? __a : 1; |
155 | return _Mod<_Tp, __m, __a1, __c>::__calc(__x); |
156 | } |
157 | } |
158 | |
159 | /* |
160 | * An adaptor class for converting the output of any Generator into |
161 | * the input for a specific Distribution. |
162 | */ |
163 | template<typename _Engine, typename _DInputType> |
164 | struct _Adaptor |
165 | { |
166 | static_assert(std::is_floating_point<_DInputType>::value, |
167 | "template argument must be a floating point type" ); |
168 | |
169 | public: |
170 | _Adaptor(_Engine& __g) |
171 | : _M_g(__g) { } |
172 | |
173 | _DInputType |
174 | min() const |
175 | { return _DInputType(0); } |
176 | |
177 | _DInputType |
178 | max() const |
179 | { return _DInputType(1); } |
180 | |
181 | /* |
182 | * Converts a value generated by the adapted random number generator |
183 | * into a value in the input domain for the dependent random number |
184 | * distribution. |
185 | */ |
186 | _DInputType |
187 | operator()() |
188 | { |
189 | return std::generate_canonical<_DInputType, |
190 | std::numeric_limits<_DInputType>::digits, |
191 | _Engine>(_M_g); |
192 | } |
193 | |
194 | private: |
195 | _Engine& _M_g; |
196 | }; |
197 | |
198 | template<typename _Sseq> |
199 | using __seed_seq_generate_t = decltype( |
200 | std::declval<_Sseq&>().generate(std::declval<uint_least32_t*>(), |
201 | std::declval<uint_least32_t*>())); |
202 | |
203 | // Detect whether _Sseq is a valid seed sequence for |
204 | // a random number engine _Engine with result type _Res. |
205 | template<typename _Sseq, typename _Engine, typename _Res, |
206 | typename _GenerateCheck = __seed_seq_generate_t<_Sseq>> |
207 | using __is_seed_seq = __and_< |
208 | __not_<is_same<__remove_cvref_t<_Sseq>, _Engine>>, |
209 | is_unsigned<typename _Sseq::result_type>, |
210 | __not_<is_convertible<_Sseq, _Res>> |
211 | >; |
212 | |
213 | } // namespace __detail |
214 | /// @endcond |
215 | |
216 | /** |
217 | * @addtogroup random_generators Random Number Generators |
218 | * @ingroup random |
219 | * |
220 | * These classes define objects which provide random or pseudorandom |
221 | * numbers, either from a discrete or a continuous interval. The |
222 | * random number generator supplied as a part of this library are |
223 | * all uniform random number generators which provide a sequence of |
224 | * random number uniformly distributed over their range. |
225 | * |
226 | * A number generator is a function object with an operator() that |
227 | * takes zero arguments and returns a number. |
228 | * |
229 | * A compliant random number generator must satisfy the following |
230 | * requirements. <table border=1 cellpadding=10 cellspacing=0> |
231 | * <caption align=top>Random Number Generator Requirements</caption> |
232 | * <tr><td>To be documented.</td></tr> </table> |
233 | * |
234 | * @{ |
235 | */ |
236 | |
237 | /** |
238 | * @brief A model of a linear congruential random number generator. |
239 | * |
240 | * A random number generator that produces pseudorandom numbers via |
241 | * linear function: |
242 | * @f[ |
243 | * x_{i+1}\leftarrow(ax_{i} + c) \bmod m |
244 | * @f] |
245 | * |
246 | * The template parameter @p _UIntType must be an unsigned integral type |
247 | * large enough to store values up to (__m-1). If the template parameter |
248 | * @p __m is 0, the modulus @p __m used is |
249 | * std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template |
250 | * parameters @p __a and @p __c must be less than @p __m. |
251 | * |
252 | * The size of the state is @f$1@f$. |
253 | */ |
254 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
255 | class linear_congruential_engine |
256 | { |
257 | static_assert(std::is_unsigned<_UIntType>::value, |
258 | "result_type must be an unsigned integral type" ); |
259 | static_assert(__m == 0u || (__a < __m && __c < __m), |
260 | "template argument substituting __m out of bounds" ); |
261 | |
262 | template<typename _Sseq> |
263 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
264 | _Sseq, linear_congruential_engine, _UIntType>::value>::type; |
265 | |
266 | public: |
267 | /** The type of the generated random value. */ |
268 | typedef _UIntType result_type; |
269 | |
270 | /** The multiplier. */ |
271 | static constexpr result_type multiplier = __a; |
272 | /** An increment. */ |
273 | static constexpr result_type increment = __c; |
274 | /** The modulus. */ |
275 | static constexpr result_type modulus = __m; |
276 | static constexpr result_type default_seed = 1u; |
277 | |
278 | /** |
279 | * @brief Constructs a %linear_congruential_engine random number |
280 | * generator engine with seed 1. |
281 | */ |
282 | linear_congruential_engine() : linear_congruential_engine(default_seed) |
283 | { } |
284 | |
285 | /** |
286 | * @brief Constructs a %linear_congruential_engine random number |
287 | * generator engine with seed @p __s. The default seed value |
288 | * is 1. |
289 | * |
290 | * @param __s The initial seed value. |
291 | */ |
292 | explicit |
293 | linear_congruential_engine(result_type __s) |
294 | { seed(__s); } |
295 | |
296 | /** |
297 | * @brief Constructs a %linear_congruential_engine random number |
298 | * generator engine seeded from the seed sequence @p __q. |
299 | * |
300 | * @param __q the seed sequence. |
301 | */ |
302 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
303 | explicit |
304 | linear_congruential_engine(_Sseq& __q) |
305 | { seed(__q); } |
306 | |
307 | /** |
308 | * @brief Reseeds the %linear_congruential_engine random number generator |
309 | * engine sequence to the seed @p __s. |
310 | * |
311 | * @param __s The new seed. |
312 | */ |
313 | void |
314 | seed(result_type __s = default_seed); |
315 | |
316 | /** |
317 | * @brief Reseeds the %linear_congruential_engine random number generator |
318 | * engine |
319 | * sequence using values from the seed sequence @p __q. |
320 | * |
321 | * @param __q the seed sequence. |
322 | */ |
323 | template<typename _Sseq> |
324 | _If_seed_seq<_Sseq> |
325 | seed(_Sseq& __q); |
326 | |
327 | /** |
328 | * @brief Gets the smallest possible value in the output range. |
329 | * |
330 | * The minimum depends on the @p __c parameter: if it is zero, the |
331 | * minimum generated must be > 0, otherwise 0 is allowed. |
332 | */ |
333 | static constexpr result_type |
334 | min() |
335 | { return __c == 0u ? 1u : 0u; } |
336 | |
337 | /** |
338 | * @brief Gets the largest possible value in the output range. |
339 | */ |
340 | static constexpr result_type |
341 | max() |
342 | { return __m - 1u; } |
343 | |
344 | /** |
345 | * @brief Discard a sequence of random numbers. |
346 | */ |
347 | void |
348 | discard(unsigned long long __z) |
349 | { |
350 | for (; __z != 0ULL; --__z) |
351 | (*this)(); |
352 | } |
353 | |
354 | /** |
355 | * @brief Gets the next random number in the sequence. |
356 | */ |
357 | result_type |
358 | operator()() |
359 | { |
360 | _M_x = __detail::__mod<_UIntType, __m, __a, __c>(_M_x); |
361 | return _M_x; |
362 | } |
363 | |
364 | /** |
365 | * @brief Compares two linear congruential random number generator |
366 | * objects of the same type for equality. |
367 | * |
368 | * @param __lhs A linear congruential random number generator object. |
369 | * @param __rhs Another linear congruential random number generator |
370 | * object. |
371 | * |
372 | * @returns true if the infinite sequences of generated values |
373 | * would be equal, false otherwise. |
374 | */ |
375 | friend bool |
376 | operator==(const linear_congruential_engine& __lhs, |
377 | const linear_congruential_engine& __rhs) |
378 | { return __lhs._M_x == __rhs._M_x; } |
379 | |
380 | /** |
381 | * @brief Writes the textual representation of the state x(i) of x to |
382 | * @p __os. |
383 | * |
384 | * @param __os The output stream. |
385 | * @param __lcr A % linear_congruential_engine random number generator. |
386 | * @returns __os. |
387 | */ |
388 | template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1, |
389 | _UIntType1 __m1, typename _CharT, typename _Traits> |
390 | friend std::basic_ostream<_CharT, _Traits>& |
391 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
392 | const std::linear_congruential_engine<_UIntType1, |
393 | __a1, __c1, __m1>& __lcr); |
394 | |
395 | /** |
396 | * @brief Sets the state of the engine by reading its textual |
397 | * representation from @p __is. |
398 | * |
399 | * The textual representation must have been previously written using |
400 | * an output stream whose imbued locale and whose type's template |
401 | * specialization arguments _CharT and _Traits were the same as those |
402 | * of @p __is. |
403 | * |
404 | * @param __is The input stream. |
405 | * @param __lcr A % linear_congruential_engine random number generator. |
406 | * @returns __is. |
407 | */ |
408 | template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1, |
409 | _UIntType1 __m1, typename _CharT, typename _Traits> |
410 | friend std::basic_istream<_CharT, _Traits>& |
411 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
412 | std::linear_congruential_engine<_UIntType1, __a1, |
413 | __c1, __m1>& __lcr); |
414 | |
415 | private: |
416 | _UIntType _M_x; |
417 | }; |
418 | |
419 | /** |
420 | * @brief Compares two linear congruential random number generator |
421 | * objects of the same type for inequality. |
422 | * |
423 | * @param __lhs A linear congruential random number generator object. |
424 | * @param __rhs Another linear congruential random number generator |
425 | * object. |
426 | * |
427 | * @returns true if the infinite sequences of generated values |
428 | * would be different, false otherwise. |
429 | */ |
430 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
431 | inline bool |
432 | operator!=(const std::linear_congruential_engine<_UIntType, __a, |
433 | __c, __m>& __lhs, |
434 | const std::linear_congruential_engine<_UIntType, __a, |
435 | __c, __m>& __rhs) |
436 | { return !(__lhs == __rhs); } |
437 | |
438 | |
439 | /** |
440 | * A generalized feedback shift register discrete random number generator. |
441 | * |
442 | * This algorithm avoids multiplication and division and is designed to be |
443 | * friendly to a pipelined architecture. If the parameters are chosen |
444 | * correctly, this generator will produce numbers with a very long period and |
445 | * fairly good apparent entropy, although still not cryptographically strong. |
446 | * |
447 | * The best way to use this generator is with the predefined mt19937 class. |
448 | * |
449 | * This algorithm was originally invented by Makoto Matsumoto and |
450 | * Takuji Nishimura. |
451 | * |
452 | * @tparam __w Word size, the number of bits in each element of |
453 | * the state vector. |
454 | * @tparam __n The degree of recursion. |
455 | * @tparam __m The period parameter. |
456 | * @tparam __r The separation point bit index. |
457 | * @tparam __a The last row of the twist matrix. |
458 | * @tparam __u The first right-shift tempering matrix parameter. |
459 | * @tparam __d The first right-shift tempering matrix mask. |
460 | * @tparam __s The first left-shift tempering matrix parameter. |
461 | * @tparam __b The first left-shift tempering matrix mask. |
462 | * @tparam __t The second left-shift tempering matrix parameter. |
463 | * @tparam __c The second left-shift tempering matrix mask. |
464 | * @tparam __l The second right-shift tempering matrix parameter. |
465 | * @tparam __f Initialization multiplier. |
466 | */ |
467 | template<typename _UIntType, size_t __w, |
468 | size_t __n, size_t __m, size_t __r, |
469 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
470 | _UIntType __b, size_t __t, |
471 | _UIntType __c, size_t __l, _UIntType __f> |
472 | class mersenne_twister_engine |
473 | { |
474 | static_assert(std::is_unsigned<_UIntType>::value, |
475 | "result_type must be an unsigned integral type" ); |
476 | static_assert(1u <= __m && __m <= __n, |
477 | "template argument substituting __m out of bounds" ); |
478 | static_assert(__r <= __w, "template argument substituting " |
479 | "__r out of bound" ); |
480 | static_assert(__u <= __w, "template argument substituting " |
481 | "__u out of bound" ); |
482 | static_assert(__s <= __w, "template argument substituting " |
483 | "__s out of bound" ); |
484 | static_assert(__t <= __w, "template argument substituting " |
485 | "__t out of bound" ); |
486 | static_assert(__l <= __w, "template argument substituting " |
487 | "__l out of bound" ); |
488 | static_assert(__w <= std::numeric_limits<_UIntType>::digits, |
489 | "template argument substituting __w out of bound" ); |
490 | static_assert(__a <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
491 | "template argument substituting __a out of bound" ); |
492 | static_assert(__b <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
493 | "template argument substituting __b out of bound" ); |
494 | static_assert(__c <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
495 | "template argument substituting __c out of bound" ); |
496 | static_assert(__d <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
497 | "template argument substituting __d out of bound" ); |
498 | static_assert(__f <= (__detail::_Shift<_UIntType, __w>::__value - 1), |
499 | "template argument substituting __f out of bound" ); |
500 | |
501 | template<typename _Sseq> |
502 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
503 | _Sseq, mersenne_twister_engine, _UIntType>::value>::type; |
504 | |
505 | public: |
506 | /** The type of the generated random value. */ |
507 | typedef _UIntType result_type; |
508 | |
509 | // parameter values |
510 | static constexpr size_t word_size = __w; |
511 | static constexpr size_t state_size = __n; |
512 | static constexpr size_t shift_size = __m; |
513 | static constexpr size_t mask_bits = __r; |
514 | static constexpr result_type xor_mask = __a; |
515 | static constexpr size_t tempering_u = __u; |
516 | static constexpr result_type tempering_d = __d; |
517 | static constexpr size_t tempering_s = __s; |
518 | static constexpr result_type tempering_b = __b; |
519 | static constexpr size_t tempering_t = __t; |
520 | static constexpr result_type tempering_c = __c; |
521 | static constexpr size_t tempering_l = __l; |
522 | static constexpr result_type initialization_multiplier = __f; |
523 | static constexpr result_type default_seed = 5489u; |
524 | |
525 | // constructors and member functions |
526 | |
527 | mersenne_twister_engine() : mersenne_twister_engine(default_seed) { } |
528 | |
529 | explicit |
530 | mersenne_twister_engine(result_type __sd) |
531 | { seed(__sd); } |
532 | |
533 | /** |
534 | * @brief Constructs a %mersenne_twister_engine random number generator |
535 | * engine seeded from the seed sequence @p __q. |
536 | * |
537 | * @param __q the seed sequence. |
538 | */ |
539 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
540 | explicit |
541 | mersenne_twister_engine(_Sseq& __q) |
542 | { seed(__q); } |
543 | |
544 | void |
545 | seed(result_type __sd = default_seed); |
546 | |
547 | template<typename _Sseq> |
548 | _If_seed_seq<_Sseq> |
549 | seed(_Sseq& __q); |
550 | |
551 | /** |
552 | * @brief Gets the smallest possible value in the output range. |
553 | */ |
554 | static constexpr result_type |
555 | min() |
556 | { return 0; } |
557 | |
558 | /** |
559 | * @brief Gets the largest possible value in the output range. |
560 | */ |
561 | static constexpr result_type |
562 | max() |
563 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
564 | |
565 | /** |
566 | * @brief Discard a sequence of random numbers. |
567 | */ |
568 | void |
569 | discard(unsigned long long __z); |
570 | |
571 | result_type |
572 | operator()(); |
573 | |
574 | /** |
575 | * @brief Compares two % mersenne_twister_engine random number generator |
576 | * objects of the same type for equality. |
577 | * |
578 | * @param __lhs A % mersenne_twister_engine random number generator |
579 | * object. |
580 | * @param __rhs Another % mersenne_twister_engine random number |
581 | * generator object. |
582 | * |
583 | * @returns true if the infinite sequences of generated values |
584 | * would be equal, false otherwise. |
585 | */ |
586 | friend bool |
587 | operator==(const mersenne_twister_engine& __lhs, |
588 | const mersenne_twister_engine& __rhs) |
589 | { return (std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x) |
590 | && __lhs._M_p == __rhs._M_p); } |
591 | |
592 | /** |
593 | * @brief Inserts the current state of a % mersenne_twister_engine |
594 | * random number generator engine @p __x into the output stream |
595 | * @p __os. |
596 | * |
597 | * @param __os An output stream. |
598 | * @param __x A % mersenne_twister_engine random number generator |
599 | * engine. |
600 | * |
601 | * @returns The output stream with the state of @p __x inserted or in |
602 | * an error state. |
603 | */ |
604 | template<typename _UIntType1, |
605 | size_t __w1, size_t __n1, |
606 | size_t __m1, size_t __r1, |
607 | _UIntType1 __a1, size_t __u1, |
608 | _UIntType1 __d1, size_t __s1, |
609 | _UIntType1 __b1, size_t __t1, |
610 | _UIntType1 __c1, size_t __l1, _UIntType1 __f1, |
611 | typename _CharT, typename _Traits> |
612 | friend std::basic_ostream<_CharT, _Traits>& |
613 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
614 | const std::mersenne_twister_engine<_UIntType1, __w1, __n1, |
615 | __m1, __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1, |
616 | __l1, __f1>& __x); |
617 | |
618 | /** |
619 | * @brief Extracts the current state of a % mersenne_twister_engine |
620 | * random number generator engine @p __x from the input stream |
621 | * @p __is. |
622 | * |
623 | * @param __is An input stream. |
624 | * @param __x A % mersenne_twister_engine random number generator |
625 | * engine. |
626 | * |
627 | * @returns The input stream with the state of @p __x extracted or in |
628 | * an error state. |
629 | */ |
630 | template<typename _UIntType1, |
631 | size_t __w1, size_t __n1, |
632 | size_t __m1, size_t __r1, |
633 | _UIntType1 __a1, size_t __u1, |
634 | _UIntType1 __d1, size_t __s1, |
635 | _UIntType1 __b1, size_t __t1, |
636 | _UIntType1 __c1, size_t __l1, _UIntType1 __f1, |
637 | typename _CharT, typename _Traits> |
638 | friend std::basic_istream<_CharT, _Traits>& |
639 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
640 | std::mersenne_twister_engine<_UIntType1, __w1, __n1, __m1, |
641 | __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1, |
642 | __l1, __f1>& __x); |
643 | |
644 | private: |
645 | void _M_gen_rand(); |
646 | |
647 | _UIntType _M_x[state_size]; |
648 | size_t _M_p; |
649 | }; |
650 | |
651 | /** |
652 | * @brief Compares two % mersenne_twister_engine random number generator |
653 | * objects of the same type for inequality. |
654 | * |
655 | * @param __lhs A % mersenne_twister_engine random number generator |
656 | * object. |
657 | * @param __rhs Another % mersenne_twister_engine random number |
658 | * generator object. |
659 | * |
660 | * @returns true if the infinite sequences of generated values |
661 | * would be different, false otherwise. |
662 | */ |
663 | template<typename _UIntType, size_t __w, |
664 | size_t __n, size_t __m, size_t __r, |
665 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
666 | _UIntType __b, size_t __t, |
667 | _UIntType __c, size_t __l, _UIntType __f> |
668 | inline bool |
669 | operator!=(const std::mersenne_twister_engine<_UIntType, __w, __n, __m, |
670 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __lhs, |
671 | const std::mersenne_twister_engine<_UIntType, __w, __n, __m, |
672 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __rhs) |
673 | { return !(__lhs == __rhs); } |
674 | |
675 | |
676 | /** |
677 | * @brief The Marsaglia-Zaman generator. |
678 | * |
679 | * This is a model of a Generalized Fibonacci discrete random number |
680 | * generator, sometimes referred to as the SWC generator. |
681 | * |
682 | * A discrete random number generator that produces pseudorandom |
683 | * numbers using: |
684 | * @f[ |
685 | * x_{i}\leftarrow(x_{i - s} - x_{i - r} - carry_{i-1}) \bmod m |
686 | * @f] |
687 | * |
688 | * The size of the state is @f$r@f$ |
689 | * and the maximum period of the generator is @f$(m^r - m^s - 1)@f$. |
690 | */ |
691 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
692 | class subtract_with_carry_engine |
693 | { |
694 | static_assert(std::is_unsigned<_UIntType>::value, |
695 | "result_type must be an unsigned integral type" ); |
696 | static_assert(0u < __s && __s < __r, |
697 | "0 < s < r" ); |
698 | static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits, |
699 | "template argument substituting __w out of bounds" ); |
700 | |
701 | template<typename _Sseq> |
702 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
703 | _Sseq, subtract_with_carry_engine, _UIntType>::value>::type; |
704 | |
705 | public: |
706 | /** The type of the generated random value. */ |
707 | typedef _UIntType result_type; |
708 | |
709 | // parameter values |
710 | static constexpr size_t word_size = __w; |
711 | static constexpr size_t short_lag = __s; |
712 | static constexpr size_t long_lag = __r; |
713 | static constexpr result_type default_seed = 19780503u; |
714 | |
715 | subtract_with_carry_engine() : subtract_with_carry_engine(default_seed) |
716 | { } |
717 | |
718 | /** |
719 | * @brief Constructs an explicitly seeded %subtract_with_carry_engine |
720 | * random number generator. |
721 | */ |
722 | explicit |
723 | subtract_with_carry_engine(result_type __sd) |
724 | { seed(__sd); } |
725 | |
726 | /** |
727 | * @brief Constructs a %subtract_with_carry_engine random number engine |
728 | * seeded from the seed sequence @p __q. |
729 | * |
730 | * @param __q the seed sequence. |
731 | */ |
732 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
733 | explicit |
734 | subtract_with_carry_engine(_Sseq& __q) |
735 | { seed(__q); } |
736 | |
737 | /** |
738 | * @brief Seeds the initial state @f$x_0@f$ of the random number |
739 | * generator. |
740 | * |
741 | * N1688[4.19] modifies this as follows. If @p __value == 0, |
742 | * sets value to 19780503. In any case, with a linear |
743 | * congruential generator lcg(i) having parameters @f$ m_{lcg} = |
744 | * 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value |
745 | * @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m |
746 | * \dots lcg(r) \bmod m @f$ respectively. If @f$ x_{-1} = 0 @f$ |
747 | * set carry to 1, otherwise sets carry to 0. |
748 | */ |
749 | void |
750 | seed(result_type __sd = default_seed); |
751 | |
752 | /** |
753 | * @brief Seeds the initial state @f$x_0@f$ of the |
754 | * % subtract_with_carry_engine random number generator. |
755 | */ |
756 | template<typename _Sseq> |
757 | _If_seed_seq<_Sseq> |
758 | seed(_Sseq& __q); |
759 | |
760 | /** |
761 | * @brief Gets the inclusive minimum value of the range of random |
762 | * integers returned by this generator. |
763 | */ |
764 | static constexpr result_type |
765 | min() |
766 | { return 0; } |
767 | |
768 | /** |
769 | * @brief Gets the inclusive maximum value of the range of random |
770 | * integers returned by this generator. |
771 | */ |
772 | static constexpr result_type |
773 | max() |
774 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
775 | |
776 | /** |
777 | * @brief Discard a sequence of random numbers. |
778 | */ |
779 | void |
780 | discard(unsigned long long __z) |
781 | { |
782 | for (; __z != 0ULL; --__z) |
783 | (*this)(); |
784 | } |
785 | |
786 | /** |
787 | * @brief Gets the next random number in the sequence. |
788 | */ |
789 | result_type |
790 | operator()(); |
791 | |
792 | /** |
793 | * @brief Compares two % subtract_with_carry_engine random number |
794 | * generator objects of the same type for equality. |
795 | * |
796 | * @param __lhs A % subtract_with_carry_engine random number generator |
797 | * object. |
798 | * @param __rhs Another % subtract_with_carry_engine random number |
799 | * generator object. |
800 | * |
801 | * @returns true if the infinite sequences of generated values |
802 | * would be equal, false otherwise. |
803 | */ |
804 | friend bool |
805 | operator==(const subtract_with_carry_engine& __lhs, |
806 | const subtract_with_carry_engine& __rhs) |
807 | { return (std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x) |
808 | && __lhs._M_carry == __rhs._M_carry |
809 | && __lhs._M_p == __rhs._M_p); } |
810 | |
811 | /** |
812 | * @brief Inserts the current state of a % subtract_with_carry_engine |
813 | * random number generator engine @p __x into the output stream |
814 | * @p __os. |
815 | * |
816 | * @param __os An output stream. |
817 | * @param __x A % subtract_with_carry_engine random number generator |
818 | * engine. |
819 | * |
820 | * @returns The output stream with the state of @p __x inserted or in |
821 | * an error state. |
822 | */ |
823 | template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1, |
824 | typename _CharT, typename _Traits> |
825 | friend std::basic_ostream<_CharT, _Traits>& |
826 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
827 | const std::subtract_with_carry_engine<_UIntType1, __w1, |
828 | __s1, __r1>& __x); |
829 | |
830 | /** |
831 | * @brief Extracts the current state of a % subtract_with_carry_engine |
832 | * random number generator engine @p __x from the input stream |
833 | * @p __is. |
834 | * |
835 | * @param __is An input stream. |
836 | * @param __x A % subtract_with_carry_engine random number generator |
837 | * engine. |
838 | * |
839 | * @returns The input stream with the state of @p __x extracted or in |
840 | * an error state. |
841 | */ |
842 | template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1, |
843 | typename _CharT, typename _Traits> |
844 | friend std::basic_istream<_CharT, _Traits>& |
845 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
846 | std::subtract_with_carry_engine<_UIntType1, __w1, |
847 | __s1, __r1>& __x); |
848 | |
849 | private: |
850 | /// The state of the generator. This is a ring buffer. |
851 | _UIntType _M_x[long_lag]; |
852 | _UIntType _M_carry; ///< The carry |
853 | size_t _M_p; ///< Current index of x(i - r). |
854 | }; |
855 | |
856 | /** |
857 | * @brief Compares two % subtract_with_carry_engine random number |
858 | * generator objects of the same type for inequality. |
859 | * |
860 | * @param __lhs A % subtract_with_carry_engine random number generator |
861 | * object. |
862 | * @param __rhs Another % subtract_with_carry_engine random number |
863 | * generator object. |
864 | * |
865 | * @returns true if the infinite sequences of generated values |
866 | * would be different, false otherwise. |
867 | */ |
868 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
869 | inline bool |
870 | operator!=(const std::subtract_with_carry_engine<_UIntType, __w, |
871 | __s, __r>& __lhs, |
872 | const std::subtract_with_carry_engine<_UIntType, __w, |
873 | __s, __r>& __rhs) |
874 | { return !(__lhs == __rhs); } |
875 | |
876 | |
877 | /** |
878 | * Produces random numbers from some base engine by discarding blocks of |
879 | * data. |
880 | * |
881 | * 0 <= @p __r <= @p __p |
882 | */ |
883 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
884 | class discard_block_engine |
885 | { |
886 | static_assert(1 <= __r && __r <= __p, |
887 | "template argument substituting __r out of bounds" ); |
888 | |
889 | public: |
890 | /** The type of the generated random value. */ |
891 | typedef typename _RandomNumberEngine::result_type result_type; |
892 | |
893 | template<typename _Sseq> |
894 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
895 | _Sseq, discard_block_engine, result_type>::value>::type; |
896 | |
897 | // parameter values |
898 | static constexpr size_t block_size = __p; |
899 | static constexpr size_t used_block = __r; |
900 | |
901 | /** |
902 | * @brief Constructs a default %discard_block_engine engine. |
903 | * |
904 | * The underlying engine is default constructed as well. |
905 | */ |
906 | discard_block_engine() |
907 | : _M_b(), _M_n(0) { } |
908 | |
909 | /** |
910 | * @brief Copy constructs a %discard_block_engine engine. |
911 | * |
912 | * Copies an existing base class random number generator. |
913 | * @param __rng An existing (base class) engine object. |
914 | */ |
915 | explicit |
916 | discard_block_engine(const _RandomNumberEngine& __rng) |
917 | : _M_b(__rng), _M_n(0) { } |
918 | |
919 | /** |
920 | * @brief Move constructs a %discard_block_engine engine. |
921 | * |
922 | * Copies an existing base class random number generator. |
923 | * @param __rng An existing (base class) engine object. |
924 | */ |
925 | explicit |
926 | discard_block_engine(_RandomNumberEngine&& __rng) |
927 | : _M_b(std::move(__rng)), _M_n(0) { } |
928 | |
929 | /** |
930 | * @brief Seed constructs a %discard_block_engine engine. |
931 | * |
932 | * Constructs the underlying generator engine seeded with @p __s. |
933 | * @param __s A seed value for the base class engine. |
934 | */ |
935 | explicit |
936 | discard_block_engine(result_type __s) |
937 | : _M_b(__s), _M_n(0) { } |
938 | |
939 | /** |
940 | * @brief Generator construct a %discard_block_engine engine. |
941 | * |
942 | * @param __q A seed sequence. |
943 | */ |
944 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
945 | explicit |
946 | discard_block_engine(_Sseq& __q) |
947 | : _M_b(__q), _M_n(0) |
948 | { } |
949 | |
950 | /** |
951 | * @brief Reseeds the %discard_block_engine object with the default |
952 | * seed for the underlying base class generator engine. |
953 | */ |
954 | void |
955 | seed() |
956 | { |
957 | _M_b.seed(); |
958 | _M_n = 0; |
959 | } |
960 | |
961 | /** |
962 | * @brief Reseeds the %discard_block_engine object with the default |
963 | * seed for the underlying base class generator engine. |
964 | */ |
965 | void |
966 | seed(result_type __s) |
967 | { |
968 | _M_b.seed(__s); |
969 | _M_n = 0; |
970 | } |
971 | |
972 | /** |
973 | * @brief Reseeds the %discard_block_engine object with the given seed |
974 | * sequence. |
975 | * @param __q A seed generator function. |
976 | */ |
977 | template<typename _Sseq> |
978 | _If_seed_seq<_Sseq> |
979 | seed(_Sseq& __q) |
980 | { |
981 | _M_b.seed(__q); |
982 | _M_n = 0; |
983 | } |
984 | |
985 | /** |
986 | * @brief Gets a const reference to the underlying generator engine |
987 | * object. |
988 | */ |
989 | const _RandomNumberEngine& |
990 | base() const noexcept |
991 | { return _M_b; } |
992 | |
993 | /** |
994 | * @brief Gets the minimum value in the generated random number range. |
995 | */ |
996 | static constexpr result_type |
997 | min() |
998 | { return _RandomNumberEngine::min(); } |
999 | |
1000 | /** |
1001 | * @brief Gets the maximum value in the generated random number range. |
1002 | */ |
1003 | static constexpr result_type |
1004 | max() |
1005 | { return _RandomNumberEngine::max(); } |
1006 | |
1007 | /** |
1008 | * @brief Discard a sequence of random numbers. |
1009 | */ |
1010 | void |
1011 | discard(unsigned long long __z) |
1012 | { |
1013 | for (; __z != 0ULL; --__z) |
1014 | (*this)(); |
1015 | } |
1016 | |
1017 | /** |
1018 | * @brief Gets the next value in the generated random number sequence. |
1019 | */ |
1020 | result_type |
1021 | operator()(); |
1022 | |
1023 | /** |
1024 | * @brief Compares two %discard_block_engine random number generator |
1025 | * objects of the same type for equality. |
1026 | * |
1027 | * @param __lhs A %discard_block_engine random number generator object. |
1028 | * @param __rhs Another %discard_block_engine random number generator |
1029 | * object. |
1030 | * |
1031 | * @returns true if the infinite sequences of generated values |
1032 | * would be equal, false otherwise. |
1033 | */ |
1034 | friend bool |
1035 | operator==(const discard_block_engine& __lhs, |
1036 | const discard_block_engine& __rhs) |
1037 | { return __lhs._M_b == __rhs._M_b && __lhs._M_n == __rhs._M_n; } |
1038 | |
1039 | /** |
1040 | * @brief Inserts the current state of a %discard_block_engine random |
1041 | * number generator engine @p __x into the output stream |
1042 | * @p __os. |
1043 | * |
1044 | * @param __os An output stream. |
1045 | * @param __x A %discard_block_engine random number generator engine. |
1046 | * |
1047 | * @returns The output stream with the state of @p __x inserted or in |
1048 | * an error state. |
1049 | */ |
1050 | template<typename _RandomNumberEngine1, size_t __p1, size_t __r1, |
1051 | typename _CharT, typename _Traits> |
1052 | friend std::basic_ostream<_CharT, _Traits>& |
1053 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1054 | const std::discard_block_engine<_RandomNumberEngine1, |
1055 | __p1, __r1>& __x); |
1056 | |
1057 | /** |
1058 | * @brief Extracts the current state of a % subtract_with_carry_engine |
1059 | * random number generator engine @p __x from the input stream |
1060 | * @p __is. |
1061 | * |
1062 | * @param __is An input stream. |
1063 | * @param __x A %discard_block_engine random number generator engine. |
1064 | * |
1065 | * @returns The input stream with the state of @p __x extracted or in |
1066 | * an error state. |
1067 | */ |
1068 | template<typename _RandomNumberEngine1, size_t __p1, size_t __r1, |
1069 | typename _CharT, typename _Traits> |
1070 | friend std::basic_istream<_CharT, _Traits>& |
1071 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1072 | std::discard_block_engine<_RandomNumberEngine1, |
1073 | __p1, __r1>& __x); |
1074 | |
1075 | private: |
1076 | _RandomNumberEngine _M_b; |
1077 | size_t _M_n; |
1078 | }; |
1079 | |
1080 | /** |
1081 | * @brief Compares two %discard_block_engine random number generator |
1082 | * objects of the same type for inequality. |
1083 | * |
1084 | * @param __lhs A %discard_block_engine random number generator object. |
1085 | * @param __rhs Another %discard_block_engine random number generator |
1086 | * object. |
1087 | * |
1088 | * @returns true if the infinite sequences of generated values |
1089 | * would be different, false otherwise. |
1090 | */ |
1091 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
1092 | inline bool |
1093 | operator!=(const std::discard_block_engine<_RandomNumberEngine, __p, |
1094 | __r>& __lhs, |
1095 | const std::discard_block_engine<_RandomNumberEngine, __p, |
1096 | __r>& __rhs) |
1097 | { return !(__lhs == __rhs); } |
1098 | |
1099 | |
1100 | /** |
1101 | * Produces random numbers by combining random numbers from some base |
1102 | * engine to produce random numbers with a specified number of bits @p __w. |
1103 | */ |
1104 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
1105 | class independent_bits_engine |
1106 | { |
1107 | static_assert(std::is_unsigned<_UIntType>::value, |
1108 | "result_type must be an unsigned integral type" ); |
1109 | static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits, |
1110 | "template argument substituting __w out of bounds" ); |
1111 | |
1112 | template<typename _Sseq> |
1113 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
1114 | _Sseq, independent_bits_engine, _UIntType>::value>::type; |
1115 | |
1116 | public: |
1117 | /** The type of the generated random value. */ |
1118 | typedef _UIntType result_type; |
1119 | |
1120 | /** |
1121 | * @brief Constructs a default %independent_bits_engine engine. |
1122 | * |
1123 | * The underlying engine is default constructed as well. |
1124 | */ |
1125 | independent_bits_engine() |
1126 | : _M_b() { } |
1127 | |
1128 | /** |
1129 | * @brief Copy constructs a %independent_bits_engine engine. |
1130 | * |
1131 | * Copies an existing base class random number generator. |
1132 | * @param __rng An existing (base class) engine object. |
1133 | */ |
1134 | explicit |
1135 | independent_bits_engine(const _RandomNumberEngine& __rng) |
1136 | : _M_b(__rng) { } |
1137 | |
1138 | /** |
1139 | * @brief Move constructs a %independent_bits_engine engine. |
1140 | * |
1141 | * Copies an existing base class random number generator. |
1142 | * @param __rng An existing (base class) engine object. |
1143 | */ |
1144 | explicit |
1145 | independent_bits_engine(_RandomNumberEngine&& __rng) |
1146 | : _M_b(std::move(__rng)) { } |
1147 | |
1148 | /** |
1149 | * @brief Seed constructs a %independent_bits_engine engine. |
1150 | * |
1151 | * Constructs the underlying generator engine seeded with @p __s. |
1152 | * @param __s A seed value for the base class engine. |
1153 | */ |
1154 | explicit |
1155 | independent_bits_engine(result_type __s) |
1156 | : _M_b(__s) { } |
1157 | |
1158 | /** |
1159 | * @brief Generator construct a %independent_bits_engine engine. |
1160 | * |
1161 | * @param __q A seed sequence. |
1162 | */ |
1163 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
1164 | explicit |
1165 | independent_bits_engine(_Sseq& __q) |
1166 | : _M_b(__q) |
1167 | { } |
1168 | |
1169 | /** |
1170 | * @brief Reseeds the %independent_bits_engine object with the default |
1171 | * seed for the underlying base class generator engine. |
1172 | */ |
1173 | void |
1174 | seed() |
1175 | { _M_b.seed(); } |
1176 | |
1177 | /** |
1178 | * @brief Reseeds the %independent_bits_engine object with the default |
1179 | * seed for the underlying base class generator engine. |
1180 | */ |
1181 | void |
1182 | seed(result_type __s) |
1183 | { _M_b.seed(__s); } |
1184 | |
1185 | /** |
1186 | * @brief Reseeds the %independent_bits_engine object with the given |
1187 | * seed sequence. |
1188 | * @param __q A seed generator function. |
1189 | */ |
1190 | template<typename _Sseq> |
1191 | _If_seed_seq<_Sseq> |
1192 | seed(_Sseq& __q) |
1193 | { _M_b.seed(__q); } |
1194 | |
1195 | /** |
1196 | * @brief Gets a const reference to the underlying generator engine |
1197 | * object. |
1198 | */ |
1199 | const _RandomNumberEngine& |
1200 | base() const noexcept |
1201 | { return _M_b; } |
1202 | |
1203 | /** |
1204 | * @brief Gets the minimum value in the generated random number range. |
1205 | */ |
1206 | static constexpr result_type |
1207 | min() |
1208 | { return 0U; } |
1209 | |
1210 | /** |
1211 | * @brief Gets the maximum value in the generated random number range. |
1212 | */ |
1213 | static constexpr result_type |
1214 | max() |
1215 | { return __detail::_Shift<_UIntType, __w>::__value - 1; } |
1216 | |
1217 | /** |
1218 | * @brief Discard a sequence of random numbers. |
1219 | */ |
1220 | void |
1221 | discard(unsigned long long __z) |
1222 | { |
1223 | for (; __z != 0ULL; --__z) |
1224 | (*this)(); |
1225 | } |
1226 | |
1227 | /** |
1228 | * @brief Gets the next value in the generated random number sequence. |
1229 | */ |
1230 | result_type |
1231 | operator()(); |
1232 | |
1233 | /** |
1234 | * @brief Compares two %independent_bits_engine random number generator |
1235 | * objects of the same type for equality. |
1236 | * |
1237 | * @param __lhs A %independent_bits_engine random number generator |
1238 | * object. |
1239 | * @param __rhs Another %independent_bits_engine random number generator |
1240 | * object. |
1241 | * |
1242 | * @returns true if the infinite sequences of generated values |
1243 | * would be equal, false otherwise. |
1244 | */ |
1245 | friend bool |
1246 | operator==(const independent_bits_engine& __lhs, |
1247 | const independent_bits_engine& __rhs) |
1248 | { return __lhs._M_b == __rhs._M_b; } |
1249 | |
1250 | /** |
1251 | * @brief Extracts the current state of a % subtract_with_carry_engine |
1252 | * random number generator engine @p __x from the input stream |
1253 | * @p __is. |
1254 | * |
1255 | * @param __is An input stream. |
1256 | * @param __x A %independent_bits_engine random number generator |
1257 | * engine. |
1258 | * |
1259 | * @returns The input stream with the state of @p __x extracted or in |
1260 | * an error state. |
1261 | */ |
1262 | template<typename _CharT, typename _Traits> |
1263 | friend std::basic_istream<_CharT, _Traits>& |
1264 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1265 | std::independent_bits_engine<_RandomNumberEngine, |
1266 | __w, _UIntType>& __x) |
1267 | { |
1268 | __is >> __x._M_b; |
1269 | return __is; |
1270 | } |
1271 | |
1272 | private: |
1273 | _RandomNumberEngine _M_b; |
1274 | }; |
1275 | |
1276 | /** |
1277 | * @brief Compares two %independent_bits_engine random number generator |
1278 | * objects of the same type for inequality. |
1279 | * |
1280 | * @param __lhs A %independent_bits_engine random number generator |
1281 | * object. |
1282 | * @param __rhs Another %independent_bits_engine random number generator |
1283 | * object. |
1284 | * |
1285 | * @returns true if the infinite sequences of generated values |
1286 | * would be different, false otherwise. |
1287 | */ |
1288 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
1289 | inline bool |
1290 | operator!=(const std::independent_bits_engine<_RandomNumberEngine, __w, |
1291 | _UIntType>& __lhs, |
1292 | const std::independent_bits_engine<_RandomNumberEngine, __w, |
1293 | _UIntType>& __rhs) |
1294 | { return !(__lhs == __rhs); } |
1295 | |
1296 | /** |
1297 | * @brief Inserts the current state of a %independent_bits_engine random |
1298 | * number generator engine @p __x into the output stream @p __os. |
1299 | * |
1300 | * @param __os An output stream. |
1301 | * @param __x A %independent_bits_engine random number generator engine. |
1302 | * |
1303 | * @returns The output stream with the state of @p __x inserted or in |
1304 | * an error state. |
1305 | */ |
1306 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType, |
1307 | typename _CharT, typename _Traits> |
1308 | std::basic_ostream<_CharT, _Traits>& |
1309 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1310 | const std::independent_bits_engine<_RandomNumberEngine, |
1311 | __w, _UIntType>& __x) |
1312 | { |
1313 | __os << __x.base(); |
1314 | return __os; |
1315 | } |
1316 | |
1317 | |
1318 | /** |
1319 | * @brief Produces random numbers by reordering random numbers from some |
1320 | * base engine. |
1321 | * |
1322 | * The values from the base engine are stored in a sequence of size @p __k |
1323 | * and shuffled by an algorithm that depends on those values. |
1324 | */ |
1325 | template<typename _RandomNumberEngine, size_t __k> |
1326 | class shuffle_order_engine |
1327 | { |
1328 | static_assert(1u <= __k, "template argument substituting " |
1329 | "__k out of bound" ); |
1330 | |
1331 | public: |
1332 | /** The type of the generated random value. */ |
1333 | typedef typename _RandomNumberEngine::result_type result_type; |
1334 | |
1335 | template<typename _Sseq> |
1336 | using _If_seed_seq = typename enable_if<__detail::__is_seed_seq< |
1337 | _Sseq, shuffle_order_engine, result_type>::value>::type; |
1338 | |
1339 | static constexpr size_t table_size = __k; |
1340 | |
1341 | /** |
1342 | * @brief Constructs a default %shuffle_order_engine engine. |
1343 | * |
1344 | * The underlying engine is default constructed as well. |
1345 | */ |
1346 | shuffle_order_engine() |
1347 | : _M_b() |
1348 | { _M_initialize(); } |
1349 | |
1350 | /** |
1351 | * @brief Copy constructs a %shuffle_order_engine engine. |
1352 | * |
1353 | * Copies an existing base class random number generator. |
1354 | * @param __rng An existing (base class) engine object. |
1355 | */ |
1356 | explicit |
1357 | shuffle_order_engine(const _RandomNumberEngine& __rng) |
1358 | : _M_b(__rng) |
1359 | { _M_initialize(); } |
1360 | |
1361 | /** |
1362 | * @brief Move constructs a %shuffle_order_engine engine. |
1363 | * |
1364 | * Copies an existing base class random number generator. |
1365 | * @param __rng An existing (base class) engine object. |
1366 | */ |
1367 | explicit |
1368 | shuffle_order_engine(_RandomNumberEngine&& __rng) |
1369 | : _M_b(std::move(__rng)) |
1370 | { _M_initialize(); } |
1371 | |
1372 | /** |
1373 | * @brief Seed constructs a %shuffle_order_engine engine. |
1374 | * |
1375 | * Constructs the underlying generator engine seeded with @p __s. |
1376 | * @param __s A seed value for the base class engine. |
1377 | */ |
1378 | explicit |
1379 | shuffle_order_engine(result_type __s) |
1380 | : _M_b(__s) |
1381 | { _M_initialize(); } |
1382 | |
1383 | /** |
1384 | * @brief Generator construct a %shuffle_order_engine engine. |
1385 | * |
1386 | * @param __q A seed sequence. |
1387 | */ |
1388 | template<typename _Sseq, typename = _If_seed_seq<_Sseq>> |
1389 | explicit |
1390 | shuffle_order_engine(_Sseq& __q) |
1391 | : _M_b(__q) |
1392 | { _M_initialize(); } |
1393 | |
1394 | /** |
1395 | * @brief Reseeds the %shuffle_order_engine object with the default seed |
1396 | for the underlying base class generator engine. |
1397 | */ |
1398 | void |
1399 | seed() |
1400 | { |
1401 | _M_b.seed(); |
1402 | _M_initialize(); |
1403 | } |
1404 | |
1405 | /** |
1406 | * @brief Reseeds the %shuffle_order_engine object with the default seed |
1407 | * for the underlying base class generator engine. |
1408 | */ |
1409 | void |
1410 | seed(result_type __s) |
1411 | { |
1412 | _M_b.seed(__s); |
1413 | _M_initialize(); |
1414 | } |
1415 | |
1416 | /** |
1417 | * @brief Reseeds the %shuffle_order_engine object with the given seed |
1418 | * sequence. |
1419 | * @param __q A seed generator function. |
1420 | */ |
1421 | template<typename _Sseq> |
1422 | _If_seed_seq<_Sseq> |
1423 | seed(_Sseq& __q) |
1424 | { |
1425 | _M_b.seed(__q); |
1426 | _M_initialize(); |
1427 | } |
1428 | |
1429 | /** |
1430 | * Gets a const reference to the underlying generator engine object. |
1431 | */ |
1432 | const _RandomNumberEngine& |
1433 | base() const noexcept |
1434 | { return _M_b; } |
1435 | |
1436 | /** |
1437 | * Gets the minimum value in the generated random number range. |
1438 | */ |
1439 | static constexpr result_type |
1440 | min() |
1441 | { return _RandomNumberEngine::min(); } |
1442 | |
1443 | /** |
1444 | * Gets the maximum value in the generated random number range. |
1445 | */ |
1446 | static constexpr result_type |
1447 | max() |
1448 | { return _RandomNumberEngine::max(); } |
1449 | |
1450 | /** |
1451 | * Discard a sequence of random numbers. |
1452 | */ |
1453 | void |
1454 | discard(unsigned long long __z) |
1455 | { |
1456 | for (; __z != 0ULL; --__z) |
1457 | (*this)(); |
1458 | } |
1459 | |
1460 | /** |
1461 | * Gets the next value in the generated random number sequence. |
1462 | */ |
1463 | result_type |
1464 | operator()(); |
1465 | |
1466 | /** |
1467 | * Compares two %shuffle_order_engine random number generator objects |
1468 | * of the same type for equality. |
1469 | * |
1470 | * @param __lhs A %shuffle_order_engine random number generator object. |
1471 | * @param __rhs Another %shuffle_order_engine random number generator |
1472 | * object. |
1473 | * |
1474 | * @returns true if the infinite sequences of generated values |
1475 | * would be equal, false otherwise. |
1476 | */ |
1477 | friend bool |
1478 | operator==(const shuffle_order_engine& __lhs, |
1479 | const shuffle_order_engine& __rhs) |
1480 | { return (__lhs._M_b == __rhs._M_b |
1481 | && std::equal(__lhs._M_v, __lhs._M_v + __k, __rhs._M_v) |
1482 | && __lhs._M_y == __rhs._M_y); } |
1483 | |
1484 | /** |
1485 | * @brief Inserts the current state of a %shuffle_order_engine random |
1486 | * number generator engine @p __x into the output stream |
1487 | @p __os. |
1488 | * |
1489 | * @param __os An output stream. |
1490 | * @param __x A %shuffle_order_engine random number generator engine. |
1491 | * |
1492 | * @returns The output stream with the state of @p __x inserted or in |
1493 | * an error state. |
1494 | */ |
1495 | template<typename _RandomNumberEngine1, size_t __k1, |
1496 | typename _CharT, typename _Traits> |
1497 | friend std::basic_ostream<_CharT, _Traits>& |
1498 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1499 | const std::shuffle_order_engine<_RandomNumberEngine1, |
1500 | __k1>& __x); |
1501 | |
1502 | /** |
1503 | * @brief Extracts the current state of a % subtract_with_carry_engine |
1504 | * random number generator engine @p __x from the input stream |
1505 | * @p __is. |
1506 | * |
1507 | * @param __is An input stream. |
1508 | * @param __x A %shuffle_order_engine random number generator engine. |
1509 | * |
1510 | * @returns The input stream with the state of @p __x extracted or in |
1511 | * an error state. |
1512 | */ |
1513 | template<typename _RandomNumberEngine1, size_t __k1, |
1514 | typename _CharT, typename _Traits> |
1515 | friend std::basic_istream<_CharT, _Traits>& |
1516 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1517 | std::shuffle_order_engine<_RandomNumberEngine1, __k1>& __x); |
1518 | |
1519 | private: |
1520 | void _M_initialize() |
1521 | { |
1522 | for (size_t __i = 0; __i < __k; ++__i) |
1523 | _M_v[__i] = _M_b(); |
1524 | _M_y = _M_b(); |
1525 | } |
1526 | |
1527 | _RandomNumberEngine _M_b; |
1528 | result_type _M_v[__k]; |
1529 | result_type _M_y; |
1530 | }; |
1531 | |
1532 | /** |
1533 | * Compares two %shuffle_order_engine random number generator objects |
1534 | * of the same type for inequality. |
1535 | * |
1536 | * @param __lhs A %shuffle_order_engine random number generator object. |
1537 | * @param __rhs Another %shuffle_order_engine random number generator |
1538 | * object. |
1539 | * |
1540 | * @returns true if the infinite sequences of generated values |
1541 | * would be different, false otherwise. |
1542 | */ |
1543 | template<typename _RandomNumberEngine, size_t __k> |
1544 | inline bool |
1545 | operator!=(const std::shuffle_order_engine<_RandomNumberEngine, |
1546 | __k>& __lhs, |
1547 | const std::shuffle_order_engine<_RandomNumberEngine, |
1548 | __k>& __rhs) |
1549 | { return !(__lhs == __rhs); } |
1550 | |
1551 | |
1552 | /** |
1553 | * The classic Minimum Standard rand0 of Lewis, Goodman, and Miller. |
1554 | */ |
1555 | typedef linear_congruential_engine<uint_fast32_t, 16807UL, 0UL, 2147483647UL> |
1556 | minstd_rand0; |
1557 | |
1558 | /** |
1559 | * An alternative LCR (Lehmer Generator function). |
1560 | */ |
1561 | typedef linear_congruential_engine<uint_fast32_t, 48271UL, 0UL, 2147483647UL> |
1562 | minstd_rand; |
1563 | |
1564 | /** |
1565 | * The classic Mersenne Twister. |
1566 | * |
1567 | * Reference: |
1568 | * M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally |
1569 | * Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions |
1570 | * on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30. |
1571 | */ |
1572 | typedef mersenne_twister_engine< |
1573 | uint_fast32_t, |
1574 | 32, 624, 397, 31, |
1575 | 0x9908b0dfUL, 11, |
1576 | 0xffffffffUL, 7, |
1577 | 0x9d2c5680UL, 15, |
1578 | 0xefc60000UL, 18, 1812433253UL> mt19937; |
1579 | |
1580 | /** |
1581 | * An alternative Mersenne Twister. |
1582 | */ |
1583 | typedef mersenne_twister_engine< |
1584 | uint_fast64_t, |
1585 | 64, 312, 156, 31, |
1586 | 0xb5026f5aa96619e9ULL, 29, |
1587 | 0x5555555555555555ULL, 17, |
1588 | 0x71d67fffeda60000ULL, 37, |
1589 | 0xfff7eee000000000ULL, 43, |
1590 | 6364136223846793005ULL> mt19937_64; |
1591 | |
1592 | typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24> |
1593 | ranlux24_base; |
1594 | |
1595 | typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12> |
1596 | ranlux48_base; |
1597 | |
1598 | typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24; |
1599 | |
1600 | typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48; |
1601 | |
1602 | typedef shuffle_order_engine<minstd_rand0, 256> knuth_b; |
1603 | |
1604 | typedef minstd_rand0 default_random_engine; |
1605 | |
1606 | /** |
1607 | * A standard interface to a platform-specific non-deterministic |
1608 | * random number generator (if any are available). |
1609 | */ |
1610 | class random_device |
1611 | { |
1612 | public: |
1613 | /** The type of the generated random value. */ |
1614 | typedef unsigned int result_type; |
1615 | |
1616 | // constructors, destructors and member functions |
1617 | |
1618 | random_device() { _M_init(token: "default" ); } |
1619 | |
1620 | explicit |
1621 | random_device(const std::string& __token) { _M_init(__token); } |
1622 | |
1623 | #if defined _GLIBCXX_USE_DEV_RANDOM |
1624 | ~random_device() |
1625 | { _M_fini(); } |
1626 | #endif |
1627 | |
1628 | static constexpr result_type |
1629 | min() |
1630 | { return std::numeric_limits<result_type>::min(); } |
1631 | |
1632 | static constexpr result_type |
1633 | max() |
1634 | { return std::numeric_limits<result_type>::max(); } |
1635 | |
1636 | double |
1637 | entropy() const noexcept |
1638 | { |
1639 | #ifdef _GLIBCXX_USE_DEV_RANDOM |
1640 | return this->_M_getentropy(); |
1641 | #else |
1642 | return 0.0; |
1643 | #endif |
1644 | } |
1645 | |
1646 | result_type |
1647 | operator()() |
1648 | { return this->_M_getval(); } |
1649 | |
1650 | // No copy functions. |
1651 | random_device(const random_device&) = delete; |
1652 | void operator=(const random_device&) = delete; |
1653 | |
1654 | private: |
1655 | |
1656 | void _M_init(const std::string& __token); |
1657 | void _M_init_pretr1(const std::string& __token); |
1658 | void _M_fini(); |
1659 | |
1660 | result_type _M_getval(); |
1661 | result_type _M_getval_pretr1(); |
1662 | double _M_getentropy() const noexcept; |
1663 | |
1664 | void _M_init(const char*, size_t); // not exported from the shared library |
1665 | |
1666 | union |
1667 | { |
1668 | struct |
1669 | { |
1670 | void* _M_file; |
1671 | result_type (*_M_func)(void*); |
1672 | int _M_fd; |
1673 | }; |
1674 | mt19937 _M_mt; |
1675 | }; |
1676 | }; |
1677 | |
1678 | /// @} group random_generators |
1679 | |
1680 | /** |
1681 | * @addtogroup random_distributions Random Number Distributions |
1682 | * @ingroup random |
1683 | * @{ |
1684 | */ |
1685 | |
1686 | /** |
1687 | * @addtogroup random_distributions_uniform Uniform Distributions |
1688 | * @ingroup random_distributions |
1689 | * @{ |
1690 | */ |
1691 | |
1692 | // std::uniform_int_distribution is defined in <bits/uniform_int_dist.h> |
1693 | |
1694 | /** |
1695 | * @brief Return true if two uniform integer distributions have |
1696 | * different parameters. |
1697 | */ |
1698 | template<typename _IntType> |
1699 | inline bool |
1700 | operator!=(const std::uniform_int_distribution<_IntType>& __d1, |
1701 | const std::uniform_int_distribution<_IntType>& __d2) |
1702 | { return !(__d1 == __d2); } |
1703 | |
1704 | /** |
1705 | * @brief Inserts a %uniform_int_distribution random number |
1706 | * distribution @p __x into the output stream @p os. |
1707 | * |
1708 | * @param __os An output stream. |
1709 | * @param __x A %uniform_int_distribution random number distribution. |
1710 | * |
1711 | * @returns The output stream with the state of @p __x inserted or in |
1712 | * an error state. |
1713 | */ |
1714 | template<typename _IntType, typename _CharT, typename _Traits> |
1715 | std::basic_ostream<_CharT, _Traits>& |
1716 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
1717 | const std::uniform_int_distribution<_IntType>&); |
1718 | |
1719 | /** |
1720 | * @brief Extracts a %uniform_int_distribution random number distribution |
1721 | * @p __x from the input stream @p __is. |
1722 | * |
1723 | * @param __is An input stream. |
1724 | * @param __x A %uniform_int_distribution random number generator engine. |
1725 | * |
1726 | * @returns The input stream with @p __x extracted or in an error state. |
1727 | */ |
1728 | template<typename _IntType, typename _CharT, typename _Traits> |
1729 | std::basic_istream<_CharT, _Traits>& |
1730 | operator>>(std::basic_istream<_CharT, _Traits>&, |
1731 | std::uniform_int_distribution<_IntType>&); |
1732 | |
1733 | |
1734 | /** |
1735 | * @brief Uniform continuous distribution for random numbers. |
1736 | * |
1737 | * A continuous random distribution on the range [min, max) with equal |
1738 | * probability throughout the range. The URNG should be real-valued and |
1739 | * deliver number in the range [0, 1). |
1740 | */ |
1741 | template<typename _RealType = double> |
1742 | class uniform_real_distribution |
1743 | { |
1744 | static_assert(std::is_floating_point<_RealType>::value, |
1745 | "result_type must be a floating point type" ); |
1746 | |
1747 | public: |
1748 | /** The type of the range of the distribution. */ |
1749 | typedef _RealType result_type; |
1750 | |
1751 | /** Parameter type. */ |
1752 | struct param_type |
1753 | { |
1754 | typedef uniform_real_distribution<_RealType> distribution_type; |
1755 | |
1756 | param_type() : param_type(0) { } |
1757 | |
1758 | explicit |
1759 | param_type(_RealType __a, _RealType __b = _RealType(1)) |
1760 | : _M_a(__a), _M_b(__b) |
1761 | { |
1762 | __glibcxx_assert(_M_a <= _M_b); |
1763 | } |
1764 | |
1765 | result_type |
1766 | a() const |
1767 | { return _M_a; } |
1768 | |
1769 | result_type |
1770 | b() const |
1771 | { return _M_b; } |
1772 | |
1773 | friend bool |
1774 | operator==(const param_type& __p1, const param_type& __p2) |
1775 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
1776 | |
1777 | friend bool |
1778 | operator!=(const param_type& __p1, const param_type& __p2) |
1779 | { return !(__p1 == __p2); } |
1780 | |
1781 | private: |
1782 | _RealType _M_a; |
1783 | _RealType _M_b; |
1784 | }; |
1785 | |
1786 | public: |
1787 | /** |
1788 | * @brief Constructs a uniform_real_distribution object. |
1789 | * |
1790 | * The lower bound is set to 0.0 and the upper bound to 1.0 |
1791 | */ |
1792 | uniform_real_distribution() : uniform_real_distribution(0.0) { } |
1793 | |
1794 | /** |
1795 | * @brief Constructs a uniform_real_distribution object. |
1796 | * |
1797 | * @param __a [IN] The lower bound of the distribution. |
1798 | * @param __b [IN] The upper bound of the distribution. |
1799 | */ |
1800 | explicit |
1801 | uniform_real_distribution(_RealType __a, _RealType __b = _RealType(1)) |
1802 | : _M_param(__a, __b) |
1803 | { } |
1804 | |
1805 | explicit |
1806 | uniform_real_distribution(const param_type& __p) |
1807 | : _M_param(__p) |
1808 | { } |
1809 | |
1810 | /** |
1811 | * @brief Resets the distribution state. |
1812 | * |
1813 | * Does nothing for the uniform real distribution. |
1814 | */ |
1815 | void |
1816 | reset() { } |
1817 | |
1818 | result_type |
1819 | a() const |
1820 | { return _M_param.a(); } |
1821 | |
1822 | result_type |
1823 | b() const |
1824 | { return _M_param.b(); } |
1825 | |
1826 | /** |
1827 | * @brief Returns the parameter set of the distribution. |
1828 | */ |
1829 | param_type |
1830 | param() const |
1831 | { return _M_param; } |
1832 | |
1833 | /** |
1834 | * @brief Sets the parameter set of the distribution. |
1835 | * @param __param The new parameter set of the distribution. |
1836 | */ |
1837 | void |
1838 | param(const param_type& __param) |
1839 | { _M_param = __param; } |
1840 | |
1841 | /** |
1842 | * @brief Returns the inclusive lower bound of the distribution range. |
1843 | */ |
1844 | result_type |
1845 | min() const |
1846 | { return this->a(); } |
1847 | |
1848 | /** |
1849 | * @brief Returns the inclusive upper bound of the distribution range. |
1850 | */ |
1851 | result_type |
1852 | max() const |
1853 | { return this->b(); } |
1854 | |
1855 | /** |
1856 | * @brief Generating functions. |
1857 | */ |
1858 | template<typename _UniformRandomNumberGenerator> |
1859 | result_type |
1860 | operator()(_UniformRandomNumberGenerator& __urng) |
1861 | { return this->operator()(__urng, _M_param); } |
1862 | |
1863 | template<typename _UniformRandomNumberGenerator> |
1864 | result_type |
1865 | operator()(_UniformRandomNumberGenerator& __urng, |
1866 | const param_type& __p) |
1867 | { |
1868 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
1869 | __aurng(__urng); |
1870 | return (__aurng() * (__p.b() - __p.a())) + __p.a(); |
1871 | } |
1872 | |
1873 | template<typename _ForwardIterator, |
1874 | typename _UniformRandomNumberGenerator> |
1875 | void |
1876 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
1877 | _UniformRandomNumberGenerator& __urng) |
1878 | { this->__generate(__f, __t, __urng, _M_param); } |
1879 | |
1880 | template<typename _ForwardIterator, |
1881 | typename _UniformRandomNumberGenerator> |
1882 | void |
1883 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
1884 | _UniformRandomNumberGenerator& __urng, |
1885 | const param_type& __p) |
1886 | { this->__generate_impl(__f, __t, __urng, __p); } |
1887 | |
1888 | template<typename _UniformRandomNumberGenerator> |
1889 | void |
1890 | __generate(result_type* __f, result_type* __t, |
1891 | _UniformRandomNumberGenerator& __urng, |
1892 | const param_type& __p) |
1893 | { this->__generate_impl(__f, __t, __urng, __p); } |
1894 | |
1895 | /** |
1896 | * @brief Return true if two uniform real distributions have |
1897 | * the same parameters. |
1898 | */ |
1899 | friend bool |
1900 | operator==(const uniform_real_distribution& __d1, |
1901 | const uniform_real_distribution& __d2) |
1902 | { return __d1._M_param == __d2._M_param; } |
1903 | |
1904 | private: |
1905 | template<typename _ForwardIterator, |
1906 | typename _UniformRandomNumberGenerator> |
1907 | void |
1908 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1909 | _UniformRandomNumberGenerator& __urng, |
1910 | const param_type& __p); |
1911 | |
1912 | param_type _M_param; |
1913 | }; |
1914 | |
1915 | /** |
1916 | * @brief Return true if two uniform real distributions have |
1917 | * different parameters. |
1918 | */ |
1919 | template<typename _IntType> |
1920 | inline bool |
1921 | operator!=(const std::uniform_real_distribution<_IntType>& __d1, |
1922 | const std::uniform_real_distribution<_IntType>& __d2) |
1923 | { return !(__d1 == __d2); } |
1924 | |
1925 | /** |
1926 | * @brief Inserts a %uniform_real_distribution random number |
1927 | * distribution @p __x into the output stream @p __os. |
1928 | * |
1929 | * @param __os An output stream. |
1930 | * @param __x A %uniform_real_distribution random number distribution. |
1931 | * |
1932 | * @returns The output stream with the state of @p __x inserted or in |
1933 | * an error state. |
1934 | */ |
1935 | template<typename _RealType, typename _CharT, typename _Traits> |
1936 | std::basic_ostream<_CharT, _Traits>& |
1937 | operator<<(std::basic_ostream<_CharT, _Traits>&, |
1938 | const std::uniform_real_distribution<_RealType>&); |
1939 | |
1940 | /** |
1941 | * @brief Extracts a %uniform_real_distribution random number distribution |
1942 | * @p __x from the input stream @p __is. |
1943 | * |
1944 | * @param __is An input stream. |
1945 | * @param __x A %uniform_real_distribution random number generator engine. |
1946 | * |
1947 | * @returns The input stream with @p __x extracted or in an error state. |
1948 | */ |
1949 | template<typename _RealType, typename _CharT, typename _Traits> |
1950 | std::basic_istream<_CharT, _Traits>& |
1951 | operator>>(std::basic_istream<_CharT, _Traits>&, |
1952 | std::uniform_real_distribution<_RealType>&); |
1953 | |
1954 | /// @} group random_distributions_uniform |
1955 | |
1956 | /** |
1957 | * @addtogroup random_distributions_normal Normal Distributions |
1958 | * @ingroup random_distributions |
1959 | * @{ |
1960 | */ |
1961 | |
1962 | /** |
1963 | * @brief A normal continuous distribution for random numbers. |
1964 | * |
1965 | * The formula for the normal probability density function is |
1966 | * @f[ |
1967 | * p(x|\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}} |
1968 | * e^{- \frac{{x - \mu}^ {2}}{2 \sigma ^ {2}} } |
1969 | * @f] |
1970 | */ |
1971 | template<typename _RealType = double> |
1972 | class normal_distribution |
1973 | { |
1974 | static_assert(std::is_floating_point<_RealType>::value, |
1975 | "result_type must be a floating point type" ); |
1976 | |
1977 | public: |
1978 | /** The type of the range of the distribution. */ |
1979 | typedef _RealType result_type; |
1980 | |
1981 | /** Parameter type. */ |
1982 | struct param_type |
1983 | { |
1984 | typedef normal_distribution<_RealType> distribution_type; |
1985 | |
1986 | param_type() : param_type(0.0) { } |
1987 | |
1988 | explicit |
1989 | param_type(_RealType __mean, _RealType __stddev = _RealType(1)) |
1990 | : _M_mean(__mean), _M_stddev(__stddev) |
1991 | { |
1992 | __glibcxx_assert(_M_stddev > _RealType(0)); |
1993 | } |
1994 | |
1995 | _RealType |
1996 | mean() const |
1997 | { return _M_mean; } |
1998 | |
1999 | _RealType |
2000 | stddev() const |
2001 | { return _M_stddev; } |
2002 | |
2003 | friend bool |
2004 | operator==(const param_type& __p1, const param_type& __p2) |
2005 | { return (__p1._M_mean == __p2._M_mean |
2006 | && __p1._M_stddev == __p2._M_stddev); } |
2007 | |
2008 | friend bool |
2009 | operator!=(const param_type& __p1, const param_type& __p2) |
2010 | { return !(__p1 == __p2); } |
2011 | |
2012 | private: |
2013 | _RealType _M_mean; |
2014 | _RealType _M_stddev; |
2015 | }; |
2016 | |
2017 | public: |
2018 | normal_distribution() : normal_distribution(0.0) { } |
2019 | |
2020 | /** |
2021 | * Constructs a normal distribution with parameters @f$mean@f$ and |
2022 | * standard deviation. |
2023 | */ |
2024 | explicit |
2025 | normal_distribution(result_type __mean, |
2026 | result_type __stddev = result_type(1)) |
2027 | : _M_param(__mean, __stddev) |
2028 | { } |
2029 | |
2030 | explicit |
2031 | normal_distribution(const param_type& __p) |
2032 | : _M_param(__p) |
2033 | { } |
2034 | |
2035 | /** |
2036 | * @brief Resets the distribution state. |
2037 | */ |
2038 | void |
2039 | reset() |
2040 | { _M_saved_available = false; } |
2041 | |
2042 | /** |
2043 | * @brief Returns the mean of the distribution. |
2044 | */ |
2045 | _RealType |
2046 | mean() const |
2047 | { return _M_param.mean(); } |
2048 | |
2049 | /** |
2050 | * @brief Returns the standard deviation of the distribution. |
2051 | */ |
2052 | _RealType |
2053 | stddev() const |
2054 | { return _M_param.stddev(); } |
2055 | |
2056 | /** |
2057 | * @brief Returns the parameter set of the distribution. |
2058 | */ |
2059 | param_type |
2060 | param() const |
2061 | { return _M_param; } |
2062 | |
2063 | /** |
2064 | * @brief Sets the parameter set of the distribution. |
2065 | * @param __param The new parameter set of the distribution. |
2066 | */ |
2067 | void |
2068 | param(const param_type& __param) |
2069 | { _M_param = __param; } |
2070 | |
2071 | /** |
2072 | * @brief Returns the greatest lower bound value of the distribution. |
2073 | */ |
2074 | result_type |
2075 | min() const |
2076 | { return std::numeric_limits<result_type>::lowest(); } |
2077 | |
2078 | /** |
2079 | * @brief Returns the least upper bound value of the distribution. |
2080 | */ |
2081 | result_type |
2082 | max() const |
2083 | { return std::numeric_limits<result_type>::max(); } |
2084 | |
2085 | /** |
2086 | * @brief Generating functions. |
2087 | */ |
2088 | template<typename _UniformRandomNumberGenerator> |
2089 | result_type |
2090 | operator()(_UniformRandomNumberGenerator& __urng) |
2091 | { return this->operator()(__urng, _M_param); } |
2092 | |
2093 | template<typename _UniformRandomNumberGenerator> |
2094 | result_type |
2095 | operator()(_UniformRandomNumberGenerator& __urng, |
2096 | const param_type& __p); |
2097 | |
2098 | template<typename _ForwardIterator, |
2099 | typename _UniformRandomNumberGenerator> |
2100 | void |
2101 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2102 | _UniformRandomNumberGenerator& __urng) |
2103 | { this->__generate(__f, __t, __urng, _M_param); } |
2104 | |
2105 | template<typename _ForwardIterator, |
2106 | typename _UniformRandomNumberGenerator> |
2107 | void |
2108 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2109 | _UniformRandomNumberGenerator& __urng, |
2110 | const param_type& __p) |
2111 | { this->__generate_impl(__f, __t, __urng, __p); } |
2112 | |
2113 | template<typename _UniformRandomNumberGenerator> |
2114 | void |
2115 | __generate(result_type* __f, result_type* __t, |
2116 | _UniformRandomNumberGenerator& __urng, |
2117 | const param_type& __p) |
2118 | { this->__generate_impl(__f, __t, __urng, __p); } |
2119 | |
2120 | /** |
2121 | * @brief Return true if two normal distributions have |
2122 | * the same parameters and the sequences that would |
2123 | * be generated are equal. |
2124 | */ |
2125 | template<typename _RealType1> |
2126 | friend bool |
2127 | operator==(const std::normal_distribution<_RealType1>& __d1, |
2128 | const std::normal_distribution<_RealType1>& __d2); |
2129 | |
2130 | /** |
2131 | * @brief Inserts a %normal_distribution random number distribution |
2132 | * @p __x into the output stream @p __os. |
2133 | * |
2134 | * @param __os An output stream. |
2135 | * @param __x A %normal_distribution random number distribution. |
2136 | * |
2137 | * @returns The output stream with the state of @p __x inserted or in |
2138 | * an error state. |
2139 | */ |
2140 | template<typename _RealType1, typename _CharT, typename _Traits> |
2141 | friend std::basic_ostream<_CharT, _Traits>& |
2142 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2143 | const std::normal_distribution<_RealType1>& __x); |
2144 | |
2145 | /** |
2146 | * @brief Extracts a %normal_distribution random number distribution |
2147 | * @p __x from the input stream @p __is. |
2148 | * |
2149 | * @param __is An input stream. |
2150 | * @param __x A %normal_distribution random number generator engine. |
2151 | * |
2152 | * @returns The input stream with @p __x extracted or in an error |
2153 | * state. |
2154 | */ |
2155 | template<typename _RealType1, typename _CharT, typename _Traits> |
2156 | friend std::basic_istream<_CharT, _Traits>& |
2157 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2158 | std::normal_distribution<_RealType1>& __x); |
2159 | |
2160 | private: |
2161 | template<typename _ForwardIterator, |
2162 | typename _UniformRandomNumberGenerator> |
2163 | void |
2164 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2165 | _UniformRandomNumberGenerator& __urng, |
2166 | const param_type& __p); |
2167 | |
2168 | param_type _M_param; |
2169 | result_type _M_saved = 0; |
2170 | bool _M_saved_available = false; |
2171 | }; |
2172 | |
2173 | /** |
2174 | * @brief Return true if two normal distributions are different. |
2175 | */ |
2176 | template<typename _RealType> |
2177 | inline bool |
2178 | operator!=(const std::normal_distribution<_RealType>& __d1, |
2179 | const std::normal_distribution<_RealType>& __d2) |
2180 | { return !(__d1 == __d2); } |
2181 | |
2182 | |
2183 | /** |
2184 | * @brief A lognormal_distribution random number distribution. |
2185 | * |
2186 | * The formula for the normal probability mass function is |
2187 | * @f[ |
2188 | * p(x|m,s) = \frac{1}{sx\sqrt{2\pi}} |
2189 | * \exp{-\frac{(\ln{x} - m)^2}{2s^2}} |
2190 | * @f] |
2191 | */ |
2192 | template<typename _RealType = double> |
2193 | class lognormal_distribution |
2194 | { |
2195 | static_assert(std::is_floating_point<_RealType>::value, |
2196 | "result_type must be a floating point type" ); |
2197 | |
2198 | public: |
2199 | /** The type of the range of the distribution. */ |
2200 | typedef _RealType result_type; |
2201 | |
2202 | /** Parameter type. */ |
2203 | struct param_type |
2204 | { |
2205 | typedef lognormal_distribution<_RealType> distribution_type; |
2206 | |
2207 | param_type() : param_type(0.0) { } |
2208 | |
2209 | explicit |
2210 | param_type(_RealType __m, _RealType __s = _RealType(1)) |
2211 | : _M_m(__m), _M_s(__s) |
2212 | { } |
2213 | |
2214 | _RealType |
2215 | m() const |
2216 | { return _M_m; } |
2217 | |
2218 | _RealType |
2219 | s() const |
2220 | { return _M_s; } |
2221 | |
2222 | friend bool |
2223 | operator==(const param_type& __p1, const param_type& __p2) |
2224 | { return __p1._M_m == __p2._M_m && __p1._M_s == __p2._M_s; } |
2225 | |
2226 | friend bool |
2227 | operator!=(const param_type& __p1, const param_type& __p2) |
2228 | { return !(__p1 == __p2); } |
2229 | |
2230 | private: |
2231 | _RealType _M_m; |
2232 | _RealType _M_s; |
2233 | }; |
2234 | |
2235 | lognormal_distribution() : lognormal_distribution(0.0) { } |
2236 | |
2237 | explicit |
2238 | lognormal_distribution(_RealType __m, _RealType __s = _RealType(1)) |
2239 | : _M_param(__m, __s), _M_nd() |
2240 | { } |
2241 | |
2242 | explicit |
2243 | lognormal_distribution(const param_type& __p) |
2244 | : _M_param(__p), _M_nd() |
2245 | { } |
2246 | |
2247 | /** |
2248 | * Resets the distribution state. |
2249 | */ |
2250 | void |
2251 | reset() |
2252 | { _M_nd.reset(); } |
2253 | |
2254 | /** |
2255 | * |
2256 | */ |
2257 | _RealType |
2258 | m() const |
2259 | { return _M_param.m(); } |
2260 | |
2261 | _RealType |
2262 | s() const |
2263 | { return _M_param.s(); } |
2264 | |
2265 | /** |
2266 | * @brief Returns the parameter set of the distribution. |
2267 | */ |
2268 | param_type |
2269 | param() const |
2270 | { return _M_param; } |
2271 | |
2272 | /** |
2273 | * @brief Sets the parameter set of the distribution. |
2274 | * @param __param The new parameter set of the distribution. |
2275 | */ |
2276 | void |
2277 | param(const param_type& __param) |
2278 | { _M_param = __param; } |
2279 | |
2280 | /** |
2281 | * @brief Returns the greatest lower bound value of the distribution. |
2282 | */ |
2283 | result_type |
2284 | min() const |
2285 | { return result_type(0); } |
2286 | |
2287 | /** |
2288 | * @brief Returns the least upper bound value of the distribution. |
2289 | */ |
2290 | result_type |
2291 | max() const |
2292 | { return std::numeric_limits<result_type>::max(); } |
2293 | |
2294 | /** |
2295 | * @brief Generating functions. |
2296 | */ |
2297 | template<typename _UniformRandomNumberGenerator> |
2298 | result_type |
2299 | operator()(_UniformRandomNumberGenerator& __urng) |
2300 | { return this->operator()(__urng, _M_param); } |
2301 | |
2302 | template<typename _UniformRandomNumberGenerator> |
2303 | result_type |
2304 | operator()(_UniformRandomNumberGenerator& __urng, |
2305 | const param_type& __p) |
2306 | { return std::exp(__p.s() * _M_nd(__urng) + __p.m()); } |
2307 | |
2308 | template<typename _ForwardIterator, |
2309 | typename _UniformRandomNumberGenerator> |
2310 | void |
2311 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2312 | _UniformRandomNumberGenerator& __urng) |
2313 | { this->__generate(__f, __t, __urng, _M_param); } |
2314 | |
2315 | template<typename _ForwardIterator, |
2316 | typename _UniformRandomNumberGenerator> |
2317 | void |
2318 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2319 | _UniformRandomNumberGenerator& __urng, |
2320 | const param_type& __p) |
2321 | { this->__generate_impl(__f, __t, __urng, __p); } |
2322 | |
2323 | template<typename _UniformRandomNumberGenerator> |
2324 | void |
2325 | __generate(result_type* __f, result_type* __t, |
2326 | _UniformRandomNumberGenerator& __urng, |
2327 | const param_type& __p) |
2328 | { this->__generate_impl(__f, __t, __urng, __p); } |
2329 | |
2330 | /** |
2331 | * @brief Return true if two lognormal distributions have |
2332 | * the same parameters and the sequences that would |
2333 | * be generated are equal. |
2334 | */ |
2335 | friend bool |
2336 | operator==(const lognormal_distribution& __d1, |
2337 | const lognormal_distribution& __d2) |
2338 | { return (__d1._M_param == __d2._M_param |
2339 | && __d1._M_nd == __d2._M_nd); } |
2340 | |
2341 | /** |
2342 | * @brief Inserts a %lognormal_distribution random number distribution |
2343 | * @p __x into the output stream @p __os. |
2344 | * |
2345 | * @param __os An output stream. |
2346 | * @param __x A %lognormal_distribution random number distribution. |
2347 | * |
2348 | * @returns The output stream with the state of @p __x inserted or in |
2349 | * an error state. |
2350 | */ |
2351 | template<typename _RealType1, typename _CharT, typename _Traits> |
2352 | friend std::basic_ostream<_CharT, _Traits>& |
2353 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2354 | const std::lognormal_distribution<_RealType1>& __x); |
2355 | |
2356 | /** |
2357 | * @brief Extracts a %lognormal_distribution random number distribution |
2358 | * @p __x from the input stream @p __is. |
2359 | * |
2360 | * @param __is An input stream. |
2361 | * @param __x A %lognormal_distribution random number |
2362 | * generator engine. |
2363 | * |
2364 | * @returns The input stream with @p __x extracted or in an error state. |
2365 | */ |
2366 | template<typename _RealType1, typename _CharT, typename _Traits> |
2367 | friend std::basic_istream<_CharT, _Traits>& |
2368 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2369 | std::lognormal_distribution<_RealType1>& __x); |
2370 | |
2371 | private: |
2372 | template<typename _ForwardIterator, |
2373 | typename _UniformRandomNumberGenerator> |
2374 | void |
2375 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2376 | _UniformRandomNumberGenerator& __urng, |
2377 | const param_type& __p); |
2378 | |
2379 | param_type _M_param; |
2380 | |
2381 | std::normal_distribution<result_type> _M_nd; |
2382 | }; |
2383 | |
2384 | /** |
2385 | * @brief Return true if two lognormal distributions are different. |
2386 | */ |
2387 | template<typename _RealType> |
2388 | inline bool |
2389 | operator!=(const std::lognormal_distribution<_RealType>& __d1, |
2390 | const std::lognormal_distribution<_RealType>& __d2) |
2391 | { return !(__d1 == __d2); } |
2392 | |
2393 | |
2394 | /** |
2395 | * @brief A gamma continuous distribution for random numbers. |
2396 | * |
2397 | * The formula for the gamma probability density function is: |
2398 | * @f[ |
2399 | * p(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)} |
2400 | * (x/\beta)^{\alpha - 1} e^{-x/\beta} |
2401 | * @f] |
2402 | */ |
2403 | template<typename _RealType = double> |
2404 | class gamma_distribution |
2405 | { |
2406 | static_assert(std::is_floating_point<_RealType>::value, |
2407 | "result_type must be a floating point type" ); |
2408 | |
2409 | public: |
2410 | /** The type of the range of the distribution. */ |
2411 | typedef _RealType result_type; |
2412 | |
2413 | /** Parameter type. */ |
2414 | struct param_type |
2415 | { |
2416 | typedef gamma_distribution<_RealType> distribution_type; |
2417 | friend class gamma_distribution<_RealType>; |
2418 | |
2419 | param_type() : param_type(1.0) { } |
2420 | |
2421 | explicit |
2422 | param_type(_RealType __alpha_val, _RealType __beta_val = _RealType(1)) |
2423 | : _M_alpha(__alpha_val), _M_beta(__beta_val) |
2424 | { |
2425 | __glibcxx_assert(_M_alpha > _RealType(0)); |
2426 | _M_initialize(); |
2427 | } |
2428 | |
2429 | _RealType |
2430 | alpha() const |
2431 | { return _M_alpha; } |
2432 | |
2433 | _RealType |
2434 | beta() const |
2435 | { return _M_beta; } |
2436 | |
2437 | friend bool |
2438 | operator==(const param_type& __p1, const param_type& __p2) |
2439 | { return (__p1._M_alpha == __p2._M_alpha |
2440 | && __p1._M_beta == __p2._M_beta); } |
2441 | |
2442 | friend bool |
2443 | operator!=(const param_type& __p1, const param_type& __p2) |
2444 | { return !(__p1 == __p2); } |
2445 | |
2446 | private: |
2447 | void |
2448 | _M_initialize(); |
2449 | |
2450 | _RealType _M_alpha; |
2451 | _RealType _M_beta; |
2452 | |
2453 | _RealType _M_malpha, _M_a2; |
2454 | }; |
2455 | |
2456 | public: |
2457 | /** |
2458 | * @brief Constructs a gamma distribution with parameters 1 and 1. |
2459 | */ |
2460 | gamma_distribution() : gamma_distribution(1.0) { } |
2461 | |
2462 | /** |
2463 | * @brief Constructs a gamma distribution with parameters |
2464 | * @f$\alpha@f$ and @f$\beta@f$. |
2465 | */ |
2466 | explicit |
2467 | gamma_distribution(_RealType __alpha_val, |
2468 | _RealType __beta_val = _RealType(1)) |
2469 | : _M_param(__alpha_val, __beta_val), _M_nd() |
2470 | { } |
2471 | |
2472 | explicit |
2473 | gamma_distribution(const param_type& __p) |
2474 | : _M_param(__p), _M_nd() |
2475 | { } |
2476 | |
2477 | /** |
2478 | * @brief Resets the distribution state. |
2479 | */ |
2480 | void |
2481 | reset() |
2482 | { _M_nd.reset(); } |
2483 | |
2484 | /** |
2485 | * @brief Returns the @f$\alpha@f$ of the distribution. |
2486 | */ |
2487 | _RealType |
2488 | alpha() const |
2489 | { return _M_param.alpha(); } |
2490 | |
2491 | /** |
2492 | * @brief Returns the @f$\beta@f$ of the distribution. |
2493 | */ |
2494 | _RealType |
2495 | beta() const |
2496 | { return _M_param.beta(); } |
2497 | |
2498 | /** |
2499 | * @brief Returns the parameter set of the distribution. |
2500 | */ |
2501 | param_type |
2502 | param() const |
2503 | { return _M_param; } |
2504 | |
2505 | /** |
2506 | * @brief Sets the parameter set of the distribution. |
2507 | * @param __param The new parameter set of the distribution. |
2508 | */ |
2509 | void |
2510 | param(const param_type& __param) |
2511 | { _M_param = __param; } |
2512 | |
2513 | /** |
2514 | * @brief Returns the greatest lower bound value of the distribution. |
2515 | */ |
2516 | result_type |
2517 | min() const |
2518 | { return result_type(0); } |
2519 | |
2520 | /** |
2521 | * @brief Returns the least upper bound value of the distribution. |
2522 | */ |
2523 | result_type |
2524 | max() const |
2525 | { return std::numeric_limits<result_type>::max(); } |
2526 | |
2527 | /** |
2528 | * @brief Generating functions. |
2529 | */ |
2530 | template<typename _UniformRandomNumberGenerator> |
2531 | result_type |
2532 | operator()(_UniformRandomNumberGenerator& __urng) |
2533 | { return this->operator()(__urng, _M_param); } |
2534 | |
2535 | template<typename _UniformRandomNumberGenerator> |
2536 | result_type |
2537 | operator()(_UniformRandomNumberGenerator& __urng, |
2538 | const param_type& __p); |
2539 | |
2540 | template<typename _ForwardIterator, |
2541 | typename _UniformRandomNumberGenerator> |
2542 | void |
2543 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2544 | _UniformRandomNumberGenerator& __urng) |
2545 | { this->__generate(__f, __t, __urng, _M_param); } |
2546 | |
2547 | template<typename _ForwardIterator, |
2548 | typename _UniformRandomNumberGenerator> |
2549 | void |
2550 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2551 | _UniformRandomNumberGenerator& __urng, |
2552 | const param_type& __p) |
2553 | { this->__generate_impl(__f, __t, __urng, __p); } |
2554 | |
2555 | template<typename _UniformRandomNumberGenerator> |
2556 | void |
2557 | __generate(result_type* __f, result_type* __t, |
2558 | _UniformRandomNumberGenerator& __urng, |
2559 | const param_type& __p) |
2560 | { this->__generate_impl(__f, __t, __urng, __p); } |
2561 | |
2562 | /** |
2563 | * @brief Return true if two gamma distributions have the same |
2564 | * parameters and the sequences that would be generated |
2565 | * are equal. |
2566 | */ |
2567 | friend bool |
2568 | operator==(const gamma_distribution& __d1, |
2569 | const gamma_distribution& __d2) |
2570 | { return (__d1._M_param == __d2._M_param |
2571 | && __d1._M_nd == __d2._M_nd); } |
2572 | |
2573 | /** |
2574 | * @brief Inserts a %gamma_distribution random number distribution |
2575 | * @p __x into the output stream @p __os. |
2576 | * |
2577 | * @param __os An output stream. |
2578 | * @param __x A %gamma_distribution random number distribution. |
2579 | * |
2580 | * @returns The output stream with the state of @p __x inserted or in |
2581 | * an error state. |
2582 | */ |
2583 | template<typename _RealType1, typename _CharT, typename _Traits> |
2584 | friend std::basic_ostream<_CharT, _Traits>& |
2585 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2586 | const std::gamma_distribution<_RealType1>& __x); |
2587 | |
2588 | /** |
2589 | * @brief Extracts a %gamma_distribution random number distribution |
2590 | * @p __x from the input stream @p __is. |
2591 | * |
2592 | * @param __is An input stream. |
2593 | * @param __x A %gamma_distribution random number generator engine. |
2594 | * |
2595 | * @returns The input stream with @p __x extracted or in an error state. |
2596 | */ |
2597 | template<typename _RealType1, typename _CharT, typename _Traits> |
2598 | friend std::basic_istream<_CharT, _Traits>& |
2599 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2600 | std::gamma_distribution<_RealType1>& __x); |
2601 | |
2602 | private: |
2603 | template<typename _ForwardIterator, |
2604 | typename _UniformRandomNumberGenerator> |
2605 | void |
2606 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2607 | _UniformRandomNumberGenerator& __urng, |
2608 | const param_type& __p); |
2609 | |
2610 | param_type _M_param; |
2611 | |
2612 | std::normal_distribution<result_type> _M_nd; |
2613 | }; |
2614 | |
2615 | /** |
2616 | * @brief Return true if two gamma distributions are different. |
2617 | */ |
2618 | template<typename _RealType> |
2619 | inline bool |
2620 | operator!=(const std::gamma_distribution<_RealType>& __d1, |
2621 | const std::gamma_distribution<_RealType>& __d2) |
2622 | { return !(__d1 == __d2); } |
2623 | |
2624 | |
2625 | /** |
2626 | * @brief A chi_squared_distribution random number distribution. |
2627 | * |
2628 | * The formula for the normal probability mass function is |
2629 | * @f$p(x|n) = \frac{x^{(n/2) - 1}e^{-x/2}}{\Gamma(n/2) 2^{n/2}}@f$ |
2630 | */ |
2631 | template<typename _RealType = double> |
2632 | class chi_squared_distribution |
2633 | { |
2634 | static_assert(std::is_floating_point<_RealType>::value, |
2635 | "result_type must be a floating point type" ); |
2636 | |
2637 | public: |
2638 | /** The type of the range of the distribution. */ |
2639 | typedef _RealType result_type; |
2640 | |
2641 | /** Parameter type. */ |
2642 | struct param_type |
2643 | { |
2644 | typedef chi_squared_distribution<_RealType> distribution_type; |
2645 | |
2646 | param_type() : param_type(1) { } |
2647 | |
2648 | explicit |
2649 | param_type(_RealType __n) |
2650 | : _M_n(__n) |
2651 | { } |
2652 | |
2653 | _RealType |
2654 | n() const |
2655 | { return _M_n; } |
2656 | |
2657 | friend bool |
2658 | operator==(const param_type& __p1, const param_type& __p2) |
2659 | { return __p1._M_n == __p2._M_n; } |
2660 | |
2661 | friend bool |
2662 | operator!=(const param_type& __p1, const param_type& __p2) |
2663 | { return !(__p1 == __p2); } |
2664 | |
2665 | private: |
2666 | _RealType _M_n; |
2667 | }; |
2668 | |
2669 | chi_squared_distribution() : chi_squared_distribution(1) { } |
2670 | |
2671 | explicit |
2672 | chi_squared_distribution(_RealType __n) |
2673 | : _M_param(__n), _M_gd(__n / 2) |
2674 | { } |
2675 | |
2676 | explicit |
2677 | chi_squared_distribution(const param_type& __p) |
2678 | : _M_param(__p), _M_gd(__p.n() / 2) |
2679 | { } |
2680 | |
2681 | /** |
2682 | * @brief Resets the distribution state. |
2683 | */ |
2684 | void |
2685 | reset() |
2686 | { _M_gd.reset(); } |
2687 | |
2688 | /** |
2689 | * |
2690 | */ |
2691 | _RealType |
2692 | n() const |
2693 | { return _M_param.n(); } |
2694 | |
2695 | /** |
2696 | * @brief Returns the parameter set of the distribution. |
2697 | */ |
2698 | param_type |
2699 | param() const |
2700 | { return _M_param; } |
2701 | |
2702 | /** |
2703 | * @brief Sets the parameter set of the distribution. |
2704 | * @param __param The new parameter set of the distribution. |
2705 | */ |
2706 | void |
2707 | param(const param_type& __param) |
2708 | { |
2709 | _M_param = __param; |
2710 | typedef typename std::gamma_distribution<result_type>::param_type |
2711 | param_type; |
2712 | _M_gd.param(param_type{__param.n() / 2}); |
2713 | } |
2714 | |
2715 | /** |
2716 | * @brief Returns the greatest lower bound value of the distribution. |
2717 | */ |
2718 | result_type |
2719 | min() const |
2720 | { return result_type(0); } |
2721 | |
2722 | /** |
2723 | * @brief Returns the least upper bound value of the distribution. |
2724 | */ |
2725 | result_type |
2726 | max() const |
2727 | { return std::numeric_limits<result_type>::max(); } |
2728 | |
2729 | /** |
2730 | * @brief Generating functions. |
2731 | */ |
2732 | template<typename _UniformRandomNumberGenerator> |
2733 | result_type |
2734 | operator()(_UniformRandomNumberGenerator& __urng) |
2735 | { return 2 * _M_gd(__urng); } |
2736 | |
2737 | template<typename _UniformRandomNumberGenerator> |
2738 | result_type |
2739 | operator()(_UniformRandomNumberGenerator& __urng, |
2740 | const param_type& __p) |
2741 | { |
2742 | typedef typename std::gamma_distribution<result_type>::param_type |
2743 | param_type; |
2744 | return 2 * _M_gd(__urng, param_type(__p.n() / 2)); |
2745 | } |
2746 | |
2747 | template<typename _ForwardIterator, |
2748 | typename _UniformRandomNumberGenerator> |
2749 | void |
2750 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2751 | _UniformRandomNumberGenerator& __urng) |
2752 | { this->__generate_impl(__f, __t, __urng); } |
2753 | |
2754 | template<typename _ForwardIterator, |
2755 | typename _UniformRandomNumberGenerator> |
2756 | void |
2757 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2758 | _UniformRandomNumberGenerator& __urng, |
2759 | const param_type& __p) |
2760 | { typename std::gamma_distribution<result_type>::param_type |
2761 | __p2(__p.n() / 2); |
2762 | this->__generate_impl(__f, __t, __urng, __p2); } |
2763 | |
2764 | template<typename _UniformRandomNumberGenerator> |
2765 | void |
2766 | __generate(result_type* __f, result_type* __t, |
2767 | _UniformRandomNumberGenerator& __urng) |
2768 | { this->__generate_impl(__f, __t, __urng); } |
2769 | |
2770 | template<typename _UniformRandomNumberGenerator> |
2771 | void |
2772 | __generate(result_type* __f, result_type* __t, |
2773 | _UniformRandomNumberGenerator& __urng, |
2774 | const param_type& __p) |
2775 | { typename std::gamma_distribution<result_type>::param_type |
2776 | __p2(__p.n() / 2); |
2777 | this->__generate_impl(__f, __t, __urng, __p2); } |
2778 | |
2779 | /** |
2780 | * @brief Return true if two Chi-squared distributions have |
2781 | * the same parameters and the sequences that would be |
2782 | * generated are equal. |
2783 | */ |
2784 | friend bool |
2785 | operator==(const chi_squared_distribution& __d1, |
2786 | const chi_squared_distribution& __d2) |
2787 | { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; } |
2788 | |
2789 | /** |
2790 | * @brief Inserts a %chi_squared_distribution random number distribution |
2791 | * @p __x into the output stream @p __os. |
2792 | * |
2793 | * @param __os An output stream. |
2794 | * @param __x A %chi_squared_distribution random number distribution. |
2795 | * |
2796 | * @returns The output stream with the state of @p __x inserted or in |
2797 | * an error state. |
2798 | */ |
2799 | template<typename _RealType1, typename _CharT, typename _Traits> |
2800 | friend std::basic_ostream<_CharT, _Traits>& |
2801 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2802 | const std::chi_squared_distribution<_RealType1>& __x); |
2803 | |
2804 | /** |
2805 | * @brief Extracts a %chi_squared_distribution random number distribution |
2806 | * @p __x from the input stream @p __is. |
2807 | * |
2808 | * @param __is An input stream. |
2809 | * @param __x A %chi_squared_distribution random number |
2810 | * generator engine. |
2811 | * |
2812 | * @returns The input stream with @p __x extracted or in an error state. |
2813 | */ |
2814 | template<typename _RealType1, typename _CharT, typename _Traits> |
2815 | friend std::basic_istream<_CharT, _Traits>& |
2816 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2817 | std::chi_squared_distribution<_RealType1>& __x); |
2818 | |
2819 | private: |
2820 | template<typename _ForwardIterator, |
2821 | typename _UniformRandomNumberGenerator> |
2822 | void |
2823 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2824 | _UniformRandomNumberGenerator& __urng); |
2825 | |
2826 | template<typename _ForwardIterator, |
2827 | typename _UniformRandomNumberGenerator> |
2828 | void |
2829 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2830 | _UniformRandomNumberGenerator& __urng, |
2831 | const typename |
2832 | std::gamma_distribution<result_type>::param_type& __p); |
2833 | |
2834 | param_type _M_param; |
2835 | |
2836 | std::gamma_distribution<result_type> _M_gd; |
2837 | }; |
2838 | |
2839 | /** |
2840 | * @brief Return true if two Chi-squared distributions are different. |
2841 | */ |
2842 | template<typename _RealType> |
2843 | inline bool |
2844 | operator!=(const std::chi_squared_distribution<_RealType>& __d1, |
2845 | const std::chi_squared_distribution<_RealType>& __d2) |
2846 | { return !(__d1 == __d2); } |
2847 | |
2848 | |
2849 | /** |
2850 | * @brief A cauchy_distribution random number distribution. |
2851 | * |
2852 | * The formula for the normal probability mass function is |
2853 | * @f$p(x|a,b) = (\pi b (1 + (\frac{x-a}{b})^2))^{-1}@f$ |
2854 | */ |
2855 | template<typename _RealType = double> |
2856 | class cauchy_distribution |
2857 | { |
2858 | static_assert(std::is_floating_point<_RealType>::value, |
2859 | "result_type must be a floating point type" ); |
2860 | |
2861 | public: |
2862 | /** The type of the range of the distribution. */ |
2863 | typedef _RealType result_type; |
2864 | |
2865 | /** Parameter type. */ |
2866 | struct param_type |
2867 | { |
2868 | typedef cauchy_distribution<_RealType> distribution_type; |
2869 | |
2870 | param_type() : param_type(0) { } |
2871 | |
2872 | explicit |
2873 | param_type(_RealType __a, _RealType __b = _RealType(1)) |
2874 | : _M_a(__a), _M_b(__b) |
2875 | { } |
2876 | |
2877 | _RealType |
2878 | a() const |
2879 | { return _M_a; } |
2880 | |
2881 | _RealType |
2882 | b() const |
2883 | { return _M_b; } |
2884 | |
2885 | friend bool |
2886 | operator==(const param_type& __p1, const param_type& __p2) |
2887 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
2888 | |
2889 | friend bool |
2890 | operator!=(const param_type& __p1, const param_type& __p2) |
2891 | { return !(__p1 == __p2); } |
2892 | |
2893 | private: |
2894 | _RealType _M_a; |
2895 | _RealType _M_b; |
2896 | }; |
2897 | |
2898 | cauchy_distribution() : cauchy_distribution(0.0) { } |
2899 | |
2900 | explicit |
2901 | cauchy_distribution(_RealType __a, _RealType __b = 1.0) |
2902 | : _M_param(__a, __b) |
2903 | { } |
2904 | |
2905 | explicit |
2906 | cauchy_distribution(const param_type& __p) |
2907 | : _M_param(__p) |
2908 | { } |
2909 | |
2910 | /** |
2911 | * @brief Resets the distribution state. |
2912 | */ |
2913 | void |
2914 | reset() |
2915 | { } |
2916 | |
2917 | /** |
2918 | * |
2919 | */ |
2920 | _RealType |
2921 | a() const |
2922 | { return _M_param.a(); } |
2923 | |
2924 | _RealType |
2925 | b() const |
2926 | { return _M_param.b(); } |
2927 | |
2928 | /** |
2929 | * @brief Returns the parameter set of the distribution. |
2930 | */ |
2931 | param_type |
2932 | param() const |
2933 | { return _M_param; } |
2934 | |
2935 | /** |
2936 | * @brief Sets the parameter set of the distribution. |
2937 | * @param __param The new parameter set of the distribution. |
2938 | */ |
2939 | void |
2940 | param(const param_type& __param) |
2941 | { _M_param = __param; } |
2942 | |
2943 | /** |
2944 | * @brief Returns the greatest lower bound value of the distribution. |
2945 | */ |
2946 | result_type |
2947 | min() const |
2948 | { return std::numeric_limits<result_type>::lowest(); } |
2949 | |
2950 | /** |
2951 | * @brief Returns the least upper bound value of the distribution. |
2952 | */ |
2953 | result_type |
2954 | max() const |
2955 | { return std::numeric_limits<result_type>::max(); } |
2956 | |
2957 | /** |
2958 | * @brief Generating functions. |
2959 | */ |
2960 | template<typename _UniformRandomNumberGenerator> |
2961 | result_type |
2962 | operator()(_UniformRandomNumberGenerator& __urng) |
2963 | { return this->operator()(__urng, _M_param); } |
2964 | |
2965 | template<typename _UniformRandomNumberGenerator> |
2966 | result_type |
2967 | operator()(_UniformRandomNumberGenerator& __urng, |
2968 | const param_type& __p); |
2969 | |
2970 | template<typename _ForwardIterator, |
2971 | typename _UniformRandomNumberGenerator> |
2972 | void |
2973 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2974 | _UniformRandomNumberGenerator& __urng) |
2975 | { this->__generate(__f, __t, __urng, _M_param); } |
2976 | |
2977 | template<typename _ForwardIterator, |
2978 | typename _UniformRandomNumberGenerator> |
2979 | void |
2980 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
2981 | _UniformRandomNumberGenerator& __urng, |
2982 | const param_type& __p) |
2983 | { this->__generate_impl(__f, __t, __urng, __p); } |
2984 | |
2985 | template<typename _UniformRandomNumberGenerator> |
2986 | void |
2987 | __generate(result_type* __f, result_type* __t, |
2988 | _UniformRandomNumberGenerator& __urng, |
2989 | const param_type& __p) |
2990 | { this->__generate_impl(__f, __t, __urng, __p); } |
2991 | |
2992 | /** |
2993 | * @brief Return true if two Cauchy distributions have |
2994 | * the same parameters. |
2995 | */ |
2996 | friend bool |
2997 | operator==(const cauchy_distribution& __d1, |
2998 | const cauchy_distribution& __d2) |
2999 | { return __d1._M_param == __d2._M_param; } |
3000 | |
3001 | private: |
3002 | template<typename _ForwardIterator, |
3003 | typename _UniformRandomNumberGenerator> |
3004 | void |
3005 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3006 | _UniformRandomNumberGenerator& __urng, |
3007 | const param_type& __p); |
3008 | |
3009 | param_type _M_param; |
3010 | }; |
3011 | |
3012 | /** |
3013 | * @brief Return true if two Cauchy distributions have |
3014 | * different parameters. |
3015 | */ |
3016 | template<typename _RealType> |
3017 | inline bool |
3018 | operator!=(const std::cauchy_distribution<_RealType>& __d1, |
3019 | const std::cauchy_distribution<_RealType>& __d2) |
3020 | { return !(__d1 == __d2); } |
3021 | |
3022 | /** |
3023 | * @brief Inserts a %cauchy_distribution random number distribution |
3024 | * @p __x into the output stream @p __os. |
3025 | * |
3026 | * @param __os An output stream. |
3027 | * @param __x A %cauchy_distribution random number distribution. |
3028 | * |
3029 | * @returns The output stream with the state of @p __x inserted or in |
3030 | * an error state. |
3031 | */ |
3032 | template<typename _RealType, typename _CharT, typename _Traits> |
3033 | std::basic_ostream<_CharT, _Traits>& |
3034 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3035 | const std::cauchy_distribution<_RealType>& __x); |
3036 | |
3037 | /** |
3038 | * @brief Extracts a %cauchy_distribution random number distribution |
3039 | * @p __x from the input stream @p __is. |
3040 | * |
3041 | * @param __is An input stream. |
3042 | * @param __x A %cauchy_distribution random number |
3043 | * generator engine. |
3044 | * |
3045 | * @returns The input stream with @p __x extracted or in an error state. |
3046 | */ |
3047 | template<typename _RealType, typename _CharT, typename _Traits> |
3048 | std::basic_istream<_CharT, _Traits>& |
3049 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3050 | std::cauchy_distribution<_RealType>& __x); |
3051 | |
3052 | |
3053 | /** |
3054 | * @brief A fisher_f_distribution random number distribution. |
3055 | * |
3056 | * The formula for the normal probability mass function is |
3057 | * @f[ |
3058 | * p(x|m,n) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} |
3059 | * (\frac{m}{n})^{m/2} x^{(m/2)-1} |
3060 | * (1 + \frac{mx}{n})^{-(m+n)/2} |
3061 | * @f] |
3062 | */ |
3063 | template<typename _RealType = double> |
3064 | class fisher_f_distribution |
3065 | { |
3066 | static_assert(std::is_floating_point<_RealType>::value, |
3067 | "result_type must be a floating point type" ); |
3068 | |
3069 | public: |
3070 | /** The type of the range of the distribution. */ |
3071 | typedef _RealType result_type; |
3072 | |
3073 | /** Parameter type. */ |
3074 | struct param_type |
3075 | { |
3076 | typedef fisher_f_distribution<_RealType> distribution_type; |
3077 | |
3078 | param_type() : param_type(1) { } |
3079 | |
3080 | explicit |
3081 | param_type(_RealType __m, _RealType __n = _RealType(1)) |
3082 | : _M_m(__m), _M_n(__n) |
3083 | { } |
3084 | |
3085 | _RealType |
3086 | m() const |
3087 | { return _M_m; } |
3088 | |
3089 | _RealType |
3090 | n() const |
3091 | { return _M_n; } |
3092 | |
3093 | friend bool |
3094 | operator==(const param_type& __p1, const param_type& __p2) |
3095 | { return __p1._M_m == __p2._M_m && __p1._M_n == __p2._M_n; } |
3096 | |
3097 | friend bool |
3098 | operator!=(const param_type& __p1, const param_type& __p2) |
3099 | { return !(__p1 == __p2); } |
3100 | |
3101 | private: |
3102 | _RealType _M_m; |
3103 | _RealType _M_n; |
3104 | }; |
3105 | |
3106 | fisher_f_distribution() : fisher_f_distribution(1.0) { } |
3107 | |
3108 | explicit |
3109 | fisher_f_distribution(_RealType __m, |
3110 | _RealType __n = _RealType(1)) |
3111 | : _M_param(__m, __n), _M_gd_x(__m / 2), _M_gd_y(__n / 2) |
3112 | { } |
3113 | |
3114 | explicit |
3115 | fisher_f_distribution(const param_type& __p) |
3116 | : _M_param(__p), _M_gd_x(__p.m() / 2), _M_gd_y(__p.n() / 2) |
3117 | { } |
3118 | |
3119 | /** |
3120 | * @brief Resets the distribution state. |
3121 | */ |
3122 | void |
3123 | reset() |
3124 | { |
3125 | _M_gd_x.reset(); |
3126 | _M_gd_y.reset(); |
3127 | } |
3128 | |
3129 | /** |
3130 | * |
3131 | */ |
3132 | _RealType |
3133 | m() const |
3134 | { return _M_param.m(); } |
3135 | |
3136 | _RealType |
3137 | n() const |
3138 | { return _M_param.n(); } |
3139 | |
3140 | /** |
3141 | * @brief Returns the parameter set of the distribution. |
3142 | */ |
3143 | param_type |
3144 | param() const |
3145 | { return _M_param; } |
3146 | |
3147 | /** |
3148 | * @brief Sets the parameter set of the distribution. |
3149 | * @param __param The new parameter set of the distribution. |
3150 | */ |
3151 | void |
3152 | param(const param_type& __param) |
3153 | { _M_param = __param; } |
3154 | |
3155 | /** |
3156 | * @brief Returns the greatest lower bound value of the distribution. |
3157 | */ |
3158 | result_type |
3159 | min() const |
3160 | { return result_type(0); } |
3161 | |
3162 | /** |
3163 | * @brief Returns the least upper bound value of the distribution. |
3164 | */ |
3165 | result_type |
3166 | max() const |
3167 | { return std::numeric_limits<result_type>::max(); } |
3168 | |
3169 | /** |
3170 | * @brief Generating functions. |
3171 | */ |
3172 | template<typename _UniformRandomNumberGenerator> |
3173 | result_type |
3174 | operator()(_UniformRandomNumberGenerator& __urng) |
3175 | { return (_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()); } |
3176 | |
3177 | template<typename _UniformRandomNumberGenerator> |
3178 | result_type |
3179 | operator()(_UniformRandomNumberGenerator& __urng, |
3180 | const param_type& __p) |
3181 | { |
3182 | typedef typename std::gamma_distribution<result_type>::param_type |
3183 | param_type; |
3184 | return ((_M_gd_x(__urng, param_type(__p.m() / 2)) * n()) |
3185 | / (_M_gd_y(__urng, param_type(__p.n() / 2)) * m())); |
3186 | } |
3187 | |
3188 | template<typename _ForwardIterator, |
3189 | typename _UniformRandomNumberGenerator> |
3190 | void |
3191 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3192 | _UniformRandomNumberGenerator& __urng) |
3193 | { this->__generate_impl(__f, __t, __urng); } |
3194 | |
3195 | template<typename _ForwardIterator, |
3196 | typename _UniformRandomNumberGenerator> |
3197 | void |
3198 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3199 | _UniformRandomNumberGenerator& __urng, |
3200 | const param_type& __p) |
3201 | { this->__generate_impl(__f, __t, __urng, __p); } |
3202 | |
3203 | template<typename _UniformRandomNumberGenerator> |
3204 | void |
3205 | __generate(result_type* __f, result_type* __t, |
3206 | _UniformRandomNumberGenerator& __urng) |
3207 | { this->__generate_impl(__f, __t, __urng); } |
3208 | |
3209 | template<typename _UniformRandomNumberGenerator> |
3210 | void |
3211 | __generate(result_type* __f, result_type* __t, |
3212 | _UniformRandomNumberGenerator& __urng, |
3213 | const param_type& __p) |
3214 | { this->__generate_impl(__f, __t, __urng, __p); } |
3215 | |
3216 | /** |
3217 | * @brief Return true if two Fisher f distributions have |
3218 | * the same parameters and the sequences that would |
3219 | * be generated are equal. |
3220 | */ |
3221 | friend bool |
3222 | operator==(const fisher_f_distribution& __d1, |
3223 | const fisher_f_distribution& __d2) |
3224 | { return (__d1._M_param == __d2._M_param |
3225 | && __d1._M_gd_x == __d2._M_gd_x |
3226 | && __d1._M_gd_y == __d2._M_gd_y); } |
3227 | |
3228 | /** |
3229 | * @brief Inserts a %fisher_f_distribution random number distribution |
3230 | * @p __x into the output stream @p __os. |
3231 | * |
3232 | * @param __os An output stream. |
3233 | * @param __x A %fisher_f_distribution random number distribution. |
3234 | * |
3235 | * @returns The output stream with the state of @p __x inserted or in |
3236 | * an error state. |
3237 | */ |
3238 | template<typename _RealType1, typename _CharT, typename _Traits> |
3239 | friend std::basic_ostream<_CharT, _Traits>& |
3240 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3241 | const std::fisher_f_distribution<_RealType1>& __x); |
3242 | |
3243 | /** |
3244 | * @brief Extracts a %fisher_f_distribution random number distribution |
3245 | * @p __x from the input stream @p __is. |
3246 | * |
3247 | * @param __is An input stream. |
3248 | * @param __x A %fisher_f_distribution random number |
3249 | * generator engine. |
3250 | * |
3251 | * @returns The input stream with @p __x extracted or in an error state. |
3252 | */ |
3253 | template<typename _RealType1, typename _CharT, typename _Traits> |
3254 | friend std::basic_istream<_CharT, _Traits>& |
3255 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3256 | std::fisher_f_distribution<_RealType1>& __x); |
3257 | |
3258 | private: |
3259 | template<typename _ForwardIterator, |
3260 | typename _UniformRandomNumberGenerator> |
3261 | void |
3262 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3263 | _UniformRandomNumberGenerator& __urng); |
3264 | |
3265 | template<typename _ForwardIterator, |
3266 | typename _UniformRandomNumberGenerator> |
3267 | void |
3268 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3269 | _UniformRandomNumberGenerator& __urng, |
3270 | const param_type& __p); |
3271 | |
3272 | param_type _M_param; |
3273 | |
3274 | std::gamma_distribution<result_type> _M_gd_x, _M_gd_y; |
3275 | }; |
3276 | |
3277 | /** |
3278 | * @brief Return true if two Fisher f distributions are different. |
3279 | */ |
3280 | template<typename _RealType> |
3281 | inline bool |
3282 | operator!=(const std::fisher_f_distribution<_RealType>& __d1, |
3283 | const std::fisher_f_distribution<_RealType>& __d2) |
3284 | { return !(__d1 == __d2); } |
3285 | |
3286 | /** |
3287 | * @brief A student_t_distribution random number distribution. |
3288 | * |
3289 | * The formula for the normal probability mass function is: |
3290 | * @f[ |
3291 | * p(x|n) = \frac{1}{\sqrt(n\pi)} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)} |
3292 | * (1 + \frac{x^2}{n}) ^{-(n+1)/2} |
3293 | * @f] |
3294 | */ |
3295 | template<typename _RealType = double> |
3296 | class student_t_distribution |
3297 | { |
3298 | static_assert(std::is_floating_point<_RealType>::value, |
3299 | "result_type must be a floating point type" ); |
3300 | |
3301 | public: |
3302 | /** The type of the range of the distribution. */ |
3303 | typedef _RealType result_type; |
3304 | |
3305 | /** Parameter type. */ |
3306 | struct param_type |
3307 | { |
3308 | typedef student_t_distribution<_RealType> distribution_type; |
3309 | |
3310 | param_type() : param_type(1) { } |
3311 | |
3312 | explicit |
3313 | param_type(_RealType __n) |
3314 | : _M_n(__n) |
3315 | { } |
3316 | |
3317 | _RealType |
3318 | n() const |
3319 | { return _M_n; } |
3320 | |
3321 | friend bool |
3322 | operator==(const param_type& __p1, const param_type& __p2) |
3323 | { return __p1._M_n == __p2._M_n; } |
3324 | |
3325 | friend bool |
3326 | operator!=(const param_type& __p1, const param_type& __p2) |
3327 | { return !(__p1 == __p2); } |
3328 | |
3329 | private: |
3330 | _RealType _M_n; |
3331 | }; |
3332 | |
3333 | student_t_distribution() : student_t_distribution(1.0) { } |
3334 | |
3335 | explicit |
3336 | student_t_distribution(_RealType __n) |
3337 | : _M_param(__n), _M_nd(), _M_gd(__n / 2, 2) |
3338 | { } |
3339 | |
3340 | explicit |
3341 | student_t_distribution(const param_type& __p) |
3342 | : _M_param(__p), _M_nd(), _M_gd(__p.n() / 2, 2) |
3343 | { } |
3344 | |
3345 | /** |
3346 | * @brief Resets the distribution state. |
3347 | */ |
3348 | void |
3349 | reset() |
3350 | { |
3351 | _M_nd.reset(); |
3352 | _M_gd.reset(); |
3353 | } |
3354 | |
3355 | /** |
3356 | * |
3357 | */ |
3358 | _RealType |
3359 | n() const |
3360 | { return _M_param.n(); } |
3361 | |
3362 | /** |
3363 | * @brief Returns the parameter set of the distribution. |
3364 | */ |
3365 | param_type |
3366 | param() const |
3367 | { return _M_param; } |
3368 | |
3369 | /** |
3370 | * @brief Sets the parameter set of the distribution. |
3371 | * @param __param The new parameter set of the distribution. |
3372 | */ |
3373 | void |
3374 | param(const param_type& __param) |
3375 | { _M_param = __param; } |
3376 | |
3377 | /** |
3378 | * @brief Returns the greatest lower bound value of the distribution. |
3379 | */ |
3380 | result_type |
3381 | min() const |
3382 | { return std::numeric_limits<result_type>::lowest(); } |
3383 | |
3384 | /** |
3385 | * @brief Returns the least upper bound value of the distribution. |
3386 | */ |
3387 | result_type |
3388 | max() const |
3389 | { return std::numeric_limits<result_type>::max(); } |
3390 | |
3391 | /** |
3392 | * @brief Generating functions. |
3393 | */ |
3394 | template<typename _UniformRandomNumberGenerator> |
3395 | result_type |
3396 | operator()(_UniformRandomNumberGenerator& __urng) |
3397 | { return _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); } |
3398 | |
3399 | template<typename _UniformRandomNumberGenerator> |
3400 | result_type |
3401 | operator()(_UniformRandomNumberGenerator& __urng, |
3402 | const param_type& __p) |
3403 | { |
3404 | typedef typename std::gamma_distribution<result_type>::param_type |
3405 | param_type; |
3406 | |
3407 | const result_type __g = _M_gd(__urng, param_type(__p.n() / 2, 2)); |
3408 | return _M_nd(__urng) * std::sqrt(__p.n() / __g); |
3409 | } |
3410 | |
3411 | template<typename _ForwardIterator, |
3412 | typename _UniformRandomNumberGenerator> |
3413 | void |
3414 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3415 | _UniformRandomNumberGenerator& __urng) |
3416 | { this->__generate_impl(__f, __t, __urng); } |
3417 | |
3418 | template<typename _ForwardIterator, |
3419 | typename _UniformRandomNumberGenerator> |
3420 | void |
3421 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3422 | _UniformRandomNumberGenerator& __urng, |
3423 | const param_type& __p) |
3424 | { this->__generate_impl(__f, __t, __urng, __p); } |
3425 | |
3426 | template<typename _UniformRandomNumberGenerator> |
3427 | void |
3428 | __generate(result_type* __f, result_type* __t, |
3429 | _UniformRandomNumberGenerator& __urng) |
3430 | { this->__generate_impl(__f, __t, __urng); } |
3431 | |
3432 | template<typename _UniformRandomNumberGenerator> |
3433 | void |
3434 | __generate(result_type* __f, result_type* __t, |
3435 | _UniformRandomNumberGenerator& __urng, |
3436 | const param_type& __p) |
3437 | { this->__generate_impl(__f, __t, __urng, __p); } |
3438 | |
3439 | /** |
3440 | * @brief Return true if two Student t distributions have |
3441 | * the same parameters and the sequences that would |
3442 | * be generated are equal. |
3443 | */ |
3444 | friend bool |
3445 | operator==(const student_t_distribution& __d1, |
3446 | const student_t_distribution& __d2) |
3447 | { return (__d1._M_param == __d2._M_param |
3448 | && __d1._M_nd == __d2._M_nd && __d1._M_gd == __d2._M_gd); } |
3449 | |
3450 | /** |
3451 | * @brief Inserts a %student_t_distribution random number distribution |
3452 | * @p __x into the output stream @p __os. |
3453 | * |
3454 | * @param __os An output stream. |
3455 | * @param __x A %student_t_distribution random number distribution. |
3456 | * |
3457 | * @returns The output stream with the state of @p __x inserted or in |
3458 | * an error state. |
3459 | */ |
3460 | template<typename _RealType1, typename _CharT, typename _Traits> |
3461 | friend std::basic_ostream<_CharT, _Traits>& |
3462 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3463 | const std::student_t_distribution<_RealType1>& __x); |
3464 | |
3465 | /** |
3466 | * @brief Extracts a %student_t_distribution random number distribution |
3467 | * @p __x from the input stream @p __is. |
3468 | * |
3469 | * @param __is An input stream. |
3470 | * @param __x A %student_t_distribution random number |
3471 | * generator engine. |
3472 | * |
3473 | * @returns The input stream with @p __x extracted or in an error state. |
3474 | */ |
3475 | template<typename _RealType1, typename _CharT, typename _Traits> |
3476 | friend std::basic_istream<_CharT, _Traits>& |
3477 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3478 | std::student_t_distribution<_RealType1>& __x); |
3479 | |
3480 | private: |
3481 | template<typename _ForwardIterator, |
3482 | typename _UniformRandomNumberGenerator> |
3483 | void |
3484 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3485 | _UniformRandomNumberGenerator& __urng); |
3486 | template<typename _ForwardIterator, |
3487 | typename _UniformRandomNumberGenerator> |
3488 | void |
3489 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3490 | _UniformRandomNumberGenerator& __urng, |
3491 | const param_type& __p); |
3492 | |
3493 | param_type _M_param; |
3494 | |
3495 | std::normal_distribution<result_type> _M_nd; |
3496 | std::gamma_distribution<result_type> _M_gd; |
3497 | }; |
3498 | |
3499 | /** |
3500 | * @brief Return true if two Student t distributions are different. |
3501 | */ |
3502 | template<typename _RealType> |
3503 | inline bool |
3504 | operator!=(const std::student_t_distribution<_RealType>& __d1, |
3505 | const std::student_t_distribution<_RealType>& __d2) |
3506 | { return !(__d1 == __d2); } |
3507 | |
3508 | |
3509 | /// @} group random_distributions_normal |
3510 | |
3511 | /** |
3512 | * @addtogroup random_distributions_bernoulli Bernoulli Distributions |
3513 | * @ingroup random_distributions |
3514 | * @{ |
3515 | */ |
3516 | |
3517 | /** |
3518 | * @brief A Bernoulli random number distribution. |
3519 | * |
3520 | * Generates a sequence of true and false values with likelihood @f$p@f$ |
3521 | * that true will come up and @f$(1 - p)@f$ that false will appear. |
3522 | */ |
3523 | class bernoulli_distribution |
3524 | { |
3525 | public: |
3526 | /** The type of the range of the distribution. */ |
3527 | typedef bool result_type; |
3528 | |
3529 | /** Parameter type. */ |
3530 | struct param_type |
3531 | { |
3532 | typedef bernoulli_distribution distribution_type; |
3533 | |
3534 | param_type() : param_type(0.5) { } |
3535 | |
3536 | explicit |
3537 | param_type(double __p) |
3538 | : _M_p(__p) |
3539 | { |
3540 | __glibcxx_assert((_M_p >= 0.0) && (_M_p <= 1.0)); |
3541 | } |
3542 | |
3543 | double |
3544 | p() const |
3545 | { return _M_p; } |
3546 | |
3547 | friend bool |
3548 | operator==(const param_type& __p1, const param_type& __p2) |
3549 | { return __p1._M_p == __p2._M_p; } |
3550 | |
3551 | friend bool |
3552 | operator!=(const param_type& __p1, const param_type& __p2) |
3553 | { return !(__p1 == __p2); } |
3554 | |
3555 | private: |
3556 | double _M_p; |
3557 | }; |
3558 | |
3559 | public: |
3560 | /** |
3561 | * @brief Constructs a Bernoulli distribution with likelihood 0.5. |
3562 | */ |
3563 | bernoulli_distribution() : bernoulli_distribution(0.5) { } |
3564 | |
3565 | /** |
3566 | * @brief Constructs a Bernoulli distribution with likelihood @p p. |
3567 | * |
3568 | * @param __p [IN] The likelihood of a true result being returned. |
3569 | * Must be in the interval @f$[0, 1]@f$. |
3570 | */ |
3571 | explicit |
3572 | bernoulli_distribution(double __p) |
3573 | : _M_param(__p) |
3574 | { } |
3575 | |
3576 | explicit |
3577 | bernoulli_distribution(const param_type& __p) |
3578 | : _M_param(__p) |
3579 | { } |
3580 | |
3581 | /** |
3582 | * @brief Resets the distribution state. |
3583 | * |
3584 | * Does nothing for a Bernoulli distribution. |
3585 | */ |
3586 | void |
3587 | reset() { } |
3588 | |
3589 | /** |
3590 | * @brief Returns the @p p parameter of the distribution. |
3591 | */ |
3592 | double |
3593 | p() const |
3594 | { return _M_param.p(); } |
3595 | |
3596 | /** |
3597 | * @brief Returns the parameter set of the distribution. |
3598 | */ |
3599 | param_type |
3600 | param() const |
3601 | { return _M_param; } |
3602 | |
3603 | /** |
3604 | * @brief Sets the parameter set of the distribution. |
3605 | * @param __param The new parameter set of the distribution. |
3606 | */ |
3607 | void |
3608 | param(const param_type& __param) |
3609 | { _M_param = __param; } |
3610 | |
3611 | /** |
3612 | * @brief Returns the greatest lower bound value of the distribution. |
3613 | */ |
3614 | result_type |
3615 | min() const |
3616 | { return std::numeric_limits<result_type>::min(); } |
3617 | |
3618 | /** |
3619 | * @brief Returns the least upper bound value of the distribution. |
3620 | */ |
3621 | result_type |
3622 | max() const |
3623 | { return std::numeric_limits<result_type>::max(); } |
3624 | |
3625 | /** |
3626 | * @brief Generating functions. |
3627 | */ |
3628 | template<typename _UniformRandomNumberGenerator> |
3629 | result_type |
3630 | operator()(_UniformRandomNumberGenerator& __urng) |
3631 | { return this->operator()(__urng, _M_param); } |
3632 | |
3633 | template<typename _UniformRandomNumberGenerator> |
3634 | result_type |
3635 | operator()(_UniformRandomNumberGenerator& __urng, |
3636 | const param_type& __p) |
3637 | { |
3638 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
3639 | __aurng(__urng); |
3640 | if ((__aurng() - __aurng.min()) |
3641 | < __p.p() * (__aurng.max() - __aurng.min())) |
3642 | return true; |
3643 | return false; |
3644 | } |
3645 | |
3646 | template<typename _ForwardIterator, |
3647 | typename _UniformRandomNumberGenerator> |
3648 | void |
3649 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3650 | _UniformRandomNumberGenerator& __urng) |
3651 | { this->__generate(__f, __t, __urng, _M_param); } |
3652 | |
3653 | template<typename _ForwardIterator, |
3654 | typename _UniformRandomNumberGenerator> |
3655 | void |
3656 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3657 | _UniformRandomNumberGenerator& __urng, const param_type& __p) |
3658 | { this->__generate_impl(__f, __t, __urng, __p); } |
3659 | |
3660 | template<typename _UniformRandomNumberGenerator> |
3661 | void |
3662 | __generate(result_type* __f, result_type* __t, |
3663 | _UniformRandomNumberGenerator& __urng, |
3664 | const param_type& __p) |
3665 | { this->__generate_impl(__f, __t, __urng, __p); } |
3666 | |
3667 | /** |
3668 | * @brief Return true if two Bernoulli distributions have |
3669 | * the same parameters. |
3670 | */ |
3671 | friend bool |
3672 | operator==(const bernoulli_distribution& __d1, |
3673 | const bernoulli_distribution& __d2) |
3674 | { return __d1._M_param == __d2._M_param; } |
3675 | |
3676 | private: |
3677 | template<typename _ForwardIterator, |
3678 | typename _UniformRandomNumberGenerator> |
3679 | void |
3680 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3681 | _UniformRandomNumberGenerator& __urng, |
3682 | const param_type& __p); |
3683 | |
3684 | param_type _M_param; |
3685 | }; |
3686 | |
3687 | /** |
3688 | * @brief Return true if two Bernoulli distributions have |
3689 | * different parameters. |
3690 | */ |
3691 | inline bool |
3692 | operator!=(const std::bernoulli_distribution& __d1, |
3693 | const std::bernoulli_distribution& __d2) |
3694 | { return !(__d1 == __d2); } |
3695 | |
3696 | /** |
3697 | * @brief Inserts a %bernoulli_distribution random number distribution |
3698 | * @p __x into the output stream @p __os. |
3699 | * |
3700 | * @param __os An output stream. |
3701 | * @param __x A %bernoulli_distribution random number distribution. |
3702 | * |
3703 | * @returns The output stream with the state of @p __x inserted or in |
3704 | * an error state. |
3705 | */ |
3706 | template<typename _CharT, typename _Traits> |
3707 | std::basic_ostream<_CharT, _Traits>& |
3708 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3709 | const std::bernoulli_distribution& __x); |
3710 | |
3711 | /** |
3712 | * @brief Extracts a %bernoulli_distribution random number distribution |
3713 | * @p __x from the input stream @p __is. |
3714 | * |
3715 | * @param __is An input stream. |
3716 | * @param __x A %bernoulli_distribution random number generator engine. |
3717 | * |
3718 | * @returns The input stream with @p __x extracted or in an error state. |
3719 | */ |
3720 | template<typename _CharT, typename _Traits> |
3721 | inline std::basic_istream<_CharT, _Traits>& |
3722 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3723 | std::bernoulli_distribution& __x) |
3724 | { |
3725 | double __p; |
3726 | if (__is >> __p) |
3727 | __x.param(param: bernoulli_distribution::param_type(__p)); |
3728 | return __is; |
3729 | } |
3730 | |
3731 | |
3732 | /** |
3733 | * @brief A discrete binomial random number distribution. |
3734 | * |
3735 | * The formula for the binomial probability density function is |
3736 | * @f$p(i|t,p) = \binom{t}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$ |
3737 | * and @f$p@f$ are the parameters of the distribution. |
3738 | */ |
3739 | template<typename _IntType = int> |
3740 | class binomial_distribution |
3741 | { |
3742 | static_assert(std::is_integral<_IntType>::value, |
3743 | "result_type must be an integral type" ); |
3744 | |
3745 | public: |
3746 | /** The type of the range of the distribution. */ |
3747 | typedef _IntType result_type; |
3748 | |
3749 | /** Parameter type. */ |
3750 | struct param_type |
3751 | { |
3752 | typedef binomial_distribution<_IntType> distribution_type; |
3753 | friend class binomial_distribution<_IntType>; |
3754 | |
3755 | param_type() : param_type(1) { } |
3756 | |
3757 | explicit |
3758 | param_type(_IntType __t, double __p = 0.5) |
3759 | : _M_t(__t), _M_p(__p) |
3760 | { |
3761 | __glibcxx_assert((_M_t >= _IntType(0)) |
3762 | && (_M_p >= 0.0) |
3763 | && (_M_p <= 1.0)); |
3764 | _M_initialize(); |
3765 | } |
3766 | |
3767 | _IntType |
3768 | t() const |
3769 | { return _M_t; } |
3770 | |
3771 | double |
3772 | p() const |
3773 | { return _M_p; } |
3774 | |
3775 | friend bool |
3776 | operator==(const param_type& __p1, const param_type& __p2) |
3777 | { return __p1._M_t == __p2._M_t && __p1._M_p == __p2._M_p; } |
3778 | |
3779 | friend bool |
3780 | operator!=(const param_type& __p1, const param_type& __p2) |
3781 | { return !(__p1 == __p2); } |
3782 | |
3783 | private: |
3784 | void |
3785 | _M_initialize(); |
3786 | |
3787 | _IntType _M_t; |
3788 | double _M_p; |
3789 | |
3790 | double _M_q; |
3791 | #if _GLIBCXX_USE_C99_MATH_TR1 |
3792 | double _M_d1, _M_d2, _M_s1, _M_s2, _M_c, |
3793 | _M_a1, _M_a123, _M_s, _M_lf, _M_lp1p; |
3794 | #endif |
3795 | bool _M_easy; |
3796 | }; |
3797 | |
3798 | // constructors and member functions |
3799 | |
3800 | binomial_distribution() : binomial_distribution(1) { } |
3801 | |
3802 | explicit |
3803 | binomial_distribution(_IntType __t, double __p = 0.5) |
3804 | : _M_param(__t, __p), _M_nd() |
3805 | { } |
3806 | |
3807 | explicit |
3808 | binomial_distribution(const param_type& __p) |
3809 | : _M_param(__p), _M_nd() |
3810 | { } |
3811 | |
3812 | /** |
3813 | * @brief Resets the distribution state. |
3814 | */ |
3815 | void |
3816 | reset() |
3817 | { _M_nd.reset(); } |
3818 | |
3819 | /** |
3820 | * @brief Returns the distribution @p t parameter. |
3821 | */ |
3822 | _IntType |
3823 | t() const |
3824 | { return _M_param.t(); } |
3825 | |
3826 | /** |
3827 | * @brief Returns the distribution @p p parameter. |
3828 | */ |
3829 | double |
3830 | p() const |
3831 | { return _M_param.p(); } |
3832 | |
3833 | /** |
3834 | * @brief Returns the parameter set of the distribution. |
3835 | */ |
3836 | param_type |
3837 | param() const |
3838 | { return _M_param; } |
3839 | |
3840 | /** |
3841 | * @brief Sets the parameter set of the distribution. |
3842 | * @param __param The new parameter set of the distribution. |
3843 | */ |
3844 | void |
3845 | param(const param_type& __param) |
3846 | { _M_param = __param; } |
3847 | |
3848 | /** |
3849 | * @brief Returns the greatest lower bound value of the distribution. |
3850 | */ |
3851 | result_type |
3852 | min() const |
3853 | { return 0; } |
3854 | |
3855 | /** |
3856 | * @brief Returns the least upper bound value of the distribution. |
3857 | */ |
3858 | result_type |
3859 | max() const |
3860 | { return _M_param.t(); } |
3861 | |
3862 | /** |
3863 | * @brief Generating functions. |
3864 | */ |
3865 | template<typename _UniformRandomNumberGenerator> |
3866 | result_type |
3867 | operator()(_UniformRandomNumberGenerator& __urng) |
3868 | { return this->operator()(__urng, _M_param); } |
3869 | |
3870 | template<typename _UniformRandomNumberGenerator> |
3871 | result_type |
3872 | operator()(_UniformRandomNumberGenerator& __urng, |
3873 | const param_type& __p); |
3874 | |
3875 | template<typename _ForwardIterator, |
3876 | typename _UniformRandomNumberGenerator> |
3877 | void |
3878 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3879 | _UniformRandomNumberGenerator& __urng) |
3880 | { this->__generate(__f, __t, __urng, _M_param); } |
3881 | |
3882 | template<typename _ForwardIterator, |
3883 | typename _UniformRandomNumberGenerator> |
3884 | void |
3885 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
3886 | _UniformRandomNumberGenerator& __urng, |
3887 | const param_type& __p) |
3888 | { this->__generate_impl(__f, __t, __urng, __p); } |
3889 | |
3890 | template<typename _UniformRandomNumberGenerator> |
3891 | void |
3892 | __generate(result_type* __f, result_type* __t, |
3893 | _UniformRandomNumberGenerator& __urng, |
3894 | const param_type& __p) |
3895 | { this->__generate_impl(__f, __t, __urng, __p); } |
3896 | |
3897 | /** |
3898 | * @brief Return true if two binomial distributions have |
3899 | * the same parameters and the sequences that would |
3900 | * be generated are equal. |
3901 | */ |
3902 | friend bool |
3903 | operator==(const binomial_distribution& __d1, |
3904 | const binomial_distribution& __d2) |
3905 | #ifdef _GLIBCXX_USE_C99_MATH_TR1 |
3906 | { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; } |
3907 | #else |
3908 | { return __d1._M_param == __d2._M_param; } |
3909 | #endif |
3910 | |
3911 | /** |
3912 | * @brief Inserts a %binomial_distribution random number distribution |
3913 | * @p __x into the output stream @p __os. |
3914 | * |
3915 | * @param __os An output stream. |
3916 | * @param __x A %binomial_distribution random number distribution. |
3917 | * |
3918 | * @returns The output stream with the state of @p __x inserted or in |
3919 | * an error state. |
3920 | */ |
3921 | template<typename _IntType1, |
3922 | typename _CharT, typename _Traits> |
3923 | friend std::basic_ostream<_CharT, _Traits>& |
3924 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3925 | const std::binomial_distribution<_IntType1>& __x); |
3926 | |
3927 | /** |
3928 | * @brief Extracts a %binomial_distribution random number distribution |
3929 | * @p __x from the input stream @p __is. |
3930 | * |
3931 | * @param __is An input stream. |
3932 | * @param __x A %binomial_distribution random number generator engine. |
3933 | * |
3934 | * @returns The input stream with @p __x extracted or in an error |
3935 | * state. |
3936 | */ |
3937 | template<typename _IntType1, |
3938 | typename _CharT, typename _Traits> |
3939 | friend std::basic_istream<_CharT, _Traits>& |
3940 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3941 | std::binomial_distribution<_IntType1>& __x); |
3942 | |
3943 | private: |
3944 | template<typename _ForwardIterator, |
3945 | typename _UniformRandomNumberGenerator> |
3946 | void |
3947 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3948 | _UniformRandomNumberGenerator& __urng, |
3949 | const param_type& __p); |
3950 | |
3951 | template<typename _UniformRandomNumberGenerator> |
3952 | result_type |
3953 | _M_waiting(_UniformRandomNumberGenerator& __urng, |
3954 | _IntType __t, double __q); |
3955 | |
3956 | param_type _M_param; |
3957 | |
3958 | // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined. |
3959 | std::normal_distribution<double> _M_nd; |
3960 | }; |
3961 | |
3962 | /** |
3963 | * @brief Return true if two binomial distributions are different. |
3964 | */ |
3965 | template<typename _IntType> |
3966 | inline bool |
3967 | operator!=(const std::binomial_distribution<_IntType>& __d1, |
3968 | const std::binomial_distribution<_IntType>& __d2) |
3969 | { return !(__d1 == __d2); } |
3970 | |
3971 | |
3972 | /** |
3973 | * @brief A discrete geometric random number distribution. |
3974 | * |
3975 | * The formula for the geometric probability density function is |
3976 | * @f$p(i|p) = p(1 - p)^{i}@f$ where @f$p@f$ is the parameter of the |
3977 | * distribution. |
3978 | */ |
3979 | template<typename _IntType = int> |
3980 | class geometric_distribution |
3981 | { |
3982 | static_assert(std::is_integral<_IntType>::value, |
3983 | "result_type must be an integral type" ); |
3984 | |
3985 | public: |
3986 | /** The type of the range of the distribution. */ |
3987 | typedef _IntType result_type; |
3988 | |
3989 | /** Parameter type. */ |
3990 | struct param_type |
3991 | { |
3992 | typedef geometric_distribution<_IntType> distribution_type; |
3993 | friend class geometric_distribution<_IntType>; |
3994 | |
3995 | param_type() : param_type(0.5) { } |
3996 | |
3997 | explicit |
3998 | param_type(double __p) |
3999 | : _M_p(__p) |
4000 | { |
4001 | __glibcxx_assert((_M_p > 0.0) && (_M_p < 1.0)); |
4002 | _M_initialize(); |
4003 | } |
4004 | |
4005 | double |
4006 | p() const |
4007 | { return _M_p; } |
4008 | |
4009 | friend bool |
4010 | operator==(const param_type& __p1, const param_type& __p2) |
4011 | { return __p1._M_p == __p2._M_p; } |
4012 | |
4013 | friend bool |
4014 | operator!=(const param_type& __p1, const param_type& __p2) |
4015 | { return !(__p1 == __p2); } |
4016 | |
4017 | private: |
4018 | void |
4019 | _M_initialize() |
4020 | { _M_log_1_p = std::log(x: 1.0 - _M_p); } |
4021 | |
4022 | double _M_p; |
4023 | |
4024 | double _M_log_1_p; |
4025 | }; |
4026 | |
4027 | // constructors and member functions |
4028 | |
4029 | geometric_distribution() : geometric_distribution(0.5) { } |
4030 | |
4031 | explicit |
4032 | geometric_distribution(double __p) |
4033 | : _M_param(__p) |
4034 | { } |
4035 | |
4036 | explicit |
4037 | geometric_distribution(const param_type& __p) |
4038 | : _M_param(__p) |
4039 | { } |
4040 | |
4041 | /** |
4042 | * @brief Resets the distribution state. |
4043 | * |
4044 | * Does nothing for the geometric distribution. |
4045 | */ |
4046 | void |
4047 | reset() { } |
4048 | |
4049 | /** |
4050 | * @brief Returns the distribution parameter @p p. |
4051 | */ |
4052 | double |
4053 | p() const |
4054 | { return _M_param.p(); } |
4055 | |
4056 | /** |
4057 | * @brief Returns the parameter set of the distribution. |
4058 | */ |
4059 | param_type |
4060 | param() const |
4061 | { return _M_param; } |
4062 | |
4063 | /** |
4064 | * @brief Sets the parameter set of the distribution. |
4065 | * @param __param The new parameter set of the distribution. |
4066 | */ |
4067 | void |
4068 | param(const param_type& __param) |
4069 | { _M_param = __param; } |
4070 | |
4071 | /** |
4072 | * @brief Returns the greatest lower bound value of the distribution. |
4073 | */ |
4074 | result_type |
4075 | min() const |
4076 | { return 0; } |
4077 | |
4078 | /** |
4079 | * @brief Returns the least upper bound value of the distribution. |
4080 | */ |
4081 | result_type |
4082 | max() const |
4083 | { return std::numeric_limits<result_type>::max(); } |
4084 | |
4085 | /** |
4086 | * @brief Generating functions. |
4087 | */ |
4088 | template<typename _UniformRandomNumberGenerator> |
4089 | result_type |
4090 | operator()(_UniformRandomNumberGenerator& __urng) |
4091 | { return this->operator()(__urng, _M_param); } |
4092 | |
4093 | template<typename _UniformRandomNumberGenerator> |
4094 | result_type |
4095 | operator()(_UniformRandomNumberGenerator& __urng, |
4096 | const param_type& __p); |
4097 | |
4098 | template<typename _ForwardIterator, |
4099 | typename _UniformRandomNumberGenerator> |
4100 | void |
4101 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4102 | _UniformRandomNumberGenerator& __urng) |
4103 | { this->__generate(__f, __t, __urng, _M_param); } |
4104 | |
4105 | template<typename _ForwardIterator, |
4106 | typename _UniformRandomNumberGenerator> |
4107 | void |
4108 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4109 | _UniformRandomNumberGenerator& __urng, |
4110 | const param_type& __p) |
4111 | { this->__generate_impl(__f, __t, __urng, __p); } |
4112 | |
4113 | template<typename _UniformRandomNumberGenerator> |
4114 | void |
4115 | __generate(result_type* __f, result_type* __t, |
4116 | _UniformRandomNumberGenerator& __urng, |
4117 | const param_type& __p) |
4118 | { this->__generate_impl(__f, __t, __urng, __p); } |
4119 | |
4120 | /** |
4121 | * @brief Return true if two geometric distributions have |
4122 | * the same parameters. |
4123 | */ |
4124 | friend bool |
4125 | operator==(const geometric_distribution& __d1, |
4126 | const geometric_distribution& __d2) |
4127 | { return __d1._M_param == __d2._M_param; } |
4128 | |
4129 | private: |
4130 | template<typename _ForwardIterator, |
4131 | typename _UniformRandomNumberGenerator> |
4132 | void |
4133 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4134 | _UniformRandomNumberGenerator& __urng, |
4135 | const param_type& __p); |
4136 | |
4137 | param_type _M_param; |
4138 | }; |
4139 | |
4140 | /** |
4141 | * @brief Return true if two geometric distributions have |
4142 | * different parameters. |
4143 | */ |
4144 | template<typename _IntType> |
4145 | inline bool |
4146 | operator!=(const std::geometric_distribution<_IntType>& __d1, |
4147 | const std::geometric_distribution<_IntType>& __d2) |
4148 | { return !(__d1 == __d2); } |
4149 | |
4150 | /** |
4151 | * @brief Inserts a %geometric_distribution random number distribution |
4152 | * @p __x into the output stream @p __os. |
4153 | * |
4154 | * @param __os An output stream. |
4155 | * @param __x A %geometric_distribution random number distribution. |
4156 | * |
4157 | * @returns The output stream with the state of @p __x inserted or in |
4158 | * an error state. |
4159 | */ |
4160 | template<typename _IntType, |
4161 | typename _CharT, typename _Traits> |
4162 | std::basic_ostream<_CharT, _Traits>& |
4163 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
4164 | const std::geometric_distribution<_IntType>& __x); |
4165 | |
4166 | /** |
4167 | * @brief Extracts a %geometric_distribution random number distribution |
4168 | * @p __x from the input stream @p __is. |
4169 | * |
4170 | * @param __is An input stream. |
4171 | * @param __x A %geometric_distribution random number generator engine. |
4172 | * |
4173 | * @returns The input stream with @p __x extracted or in an error state. |
4174 | */ |
4175 | template<typename _IntType, |
4176 | typename _CharT, typename _Traits> |
4177 | std::basic_istream<_CharT, _Traits>& |
4178 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
4179 | std::geometric_distribution<_IntType>& __x); |
4180 | |
4181 | |
4182 | /** |
4183 | * @brief A negative_binomial_distribution random number distribution. |
4184 | * |
4185 | * The formula for the negative binomial probability mass function is |
4186 | * @f$p(i) = \binom{n}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$ |
4187 | * and @f$p@f$ are the parameters of the distribution. |
4188 | */ |
4189 | template<typename _IntType = int> |
4190 | class negative_binomial_distribution |
4191 | { |
4192 | static_assert(std::is_integral<_IntType>::value, |
4193 | "result_type must be an integral type" ); |
4194 | |
4195 | public: |
4196 | /** The type of the range of the distribution. */ |
4197 | typedef _IntType result_type; |
4198 | |
4199 | /** Parameter type. */ |
4200 | struct param_type |
4201 | { |
4202 | typedef negative_binomial_distribution<_IntType> distribution_type; |
4203 | |
4204 | param_type() : param_type(1) { } |
4205 | |
4206 | explicit |
4207 | param_type(_IntType __k, double __p = 0.5) |
4208 | : _M_k(__k), _M_p(__p) |
4209 | { |
4210 | __glibcxx_assert((_M_k > 0) && (_M_p > 0.0) && (_M_p <= 1.0)); |
4211 | } |
4212 | |
4213 | _IntType |
4214 | k() const |
4215 | { return _M_k; } |
4216 | |
4217 | double |
4218 | p() const |
4219 | { return _M_p; } |
4220 | |
4221 | friend bool |
4222 | operator==(const param_type& __p1, const param_type& __p2) |
4223 | { return __p1._M_k == __p2._M_k && __p1._M_p == __p2._M_p; } |
4224 | |
4225 | friend bool |
4226 | operator!=(const param_type& __p1, const param_type& __p2) |
4227 | { return !(__p1 == __p2); } |
4228 | |
4229 | private: |
4230 | _IntType _M_k; |
4231 | double _M_p; |
4232 | }; |
4233 | |
4234 | negative_binomial_distribution() : negative_binomial_distribution(1) { } |
4235 | |
4236 | explicit |
4237 | negative_binomial_distribution(_IntType __k, double __p = 0.5) |
4238 | : _M_param(__k, __p), _M_gd(__k, (1.0 - __p) / __p) |
4239 | { } |
4240 | |
4241 | explicit |
4242 | negative_binomial_distribution(const param_type& __p) |
4243 | : _M_param(__p), _M_gd(__p.k(), (1.0 - __p.p()) / __p.p()) |
4244 | { } |
4245 | |
4246 | /** |
4247 | * @brief Resets the distribution state. |
4248 | */ |
4249 | void |
4250 | reset() |
4251 | { _M_gd.reset(); } |
4252 | |
4253 | /** |
4254 | * @brief Return the @f$k@f$ parameter of the distribution. |
4255 | */ |
4256 | _IntType |
4257 | k() const |
4258 | { return _M_param.k(); } |
4259 | |
4260 | /** |
4261 | * @brief Return the @f$p@f$ parameter of the distribution. |
4262 | */ |
4263 | double |
4264 | p() const |
4265 | { return _M_param.p(); } |
4266 | |
4267 | /** |
4268 | * @brief Returns the parameter set of the distribution. |
4269 | */ |
4270 | param_type |
4271 | param() const |
4272 | { return _M_param; } |
4273 | |
4274 | /** |
4275 | * @brief Sets the parameter set of the distribution. |
4276 | * @param __param The new parameter set of the distribution. |
4277 | */ |
4278 | void |
4279 | param(const param_type& __param) |
4280 | { _M_param = __param; } |
4281 | |
4282 | /** |
4283 | * @brief Returns the greatest lower bound value of the distribution. |
4284 | */ |
4285 | result_type |
4286 | min() const |
4287 | { return result_type(0); } |
4288 | |
4289 | /** |
4290 | * @brief Returns the least upper bound value of the distribution. |
4291 | */ |
4292 | result_type |
4293 | max() const |
4294 | { return std::numeric_limits<result_type>::max(); } |
4295 | |
4296 | /** |
4297 | * @brief Generating functions. |
4298 | */ |
4299 | template<typename _UniformRandomNumberGenerator> |
4300 | result_type |
4301 | operator()(_UniformRandomNumberGenerator& __urng); |
4302 | |
4303 | template<typename _UniformRandomNumberGenerator> |
4304 | result_type |
4305 | operator()(_UniformRandomNumberGenerator& __urng, |
4306 | const param_type& __p); |
4307 | |
4308 | template<typename _ForwardIterator, |
4309 | typename _UniformRandomNumberGenerator> |
4310 | void |
4311 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4312 | _UniformRandomNumberGenerator& __urng) |
4313 | { this->__generate_impl(__f, __t, __urng); } |
4314 | |
4315 | template<typename _ForwardIterator, |
4316 | typename _UniformRandomNumberGenerator> |
4317 | void |
4318 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4319 | _UniformRandomNumberGenerator& __urng, |
4320 | const param_type& __p) |
4321 | { this->__generate_impl(__f, __t, __urng, __p); } |
4322 | |
4323 | template<typename _UniformRandomNumberGenerator> |
4324 | void |
4325 | __generate(result_type* __f, result_type* __t, |
4326 | _UniformRandomNumberGenerator& __urng) |
4327 | { this->__generate_impl(__f, __t, __urng); } |
4328 | |
4329 | template<typename _UniformRandomNumberGenerator> |
4330 | void |
4331 | __generate(result_type* __f, result_type* __t, |
4332 | _UniformRandomNumberGenerator& __urng, |
4333 | const param_type& __p) |
4334 | { this->__generate_impl(__f, __t, __urng, __p); } |
4335 | |
4336 | /** |
4337 | * @brief Return true if two negative binomial distributions have |
4338 | * the same parameters and the sequences that would be |
4339 | * generated are equal. |
4340 | */ |
4341 | friend bool |
4342 | operator==(const negative_binomial_distribution& __d1, |
4343 | const negative_binomial_distribution& __d2) |
4344 | { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; } |
4345 | |
4346 | /** |
4347 | * @brief Inserts a %negative_binomial_distribution random |
4348 | * number distribution @p __x into the output stream @p __os. |
4349 | * |
4350 | * @param __os An output stream. |
4351 | * @param __x A %negative_binomial_distribution random number |
4352 | * distribution. |
4353 | * |
4354 | * @returns The output stream with the state of @p __x inserted or in |
4355 | * an error state. |
4356 | */ |
4357 | template<typename _IntType1, typename _CharT, typename _Traits> |
4358 | friend std::basic_ostream<_CharT, _Traits>& |
4359 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
4360 | const std::negative_binomial_distribution<_IntType1>& __x); |
4361 | |
4362 | /** |
4363 | * @brief Extracts a %negative_binomial_distribution random number |
4364 | * distribution @p __x from the input stream @p __is. |
4365 | * |
4366 | * @param __is An input stream. |
4367 | * @param __x A %negative_binomial_distribution random number |
4368 | * generator engine. |
4369 | * |
4370 | * @returns The input stream with @p __x extracted or in an error state. |
4371 | */ |
4372 | template<typename _IntType1, typename _CharT, typename _Traits> |
4373 | friend std::basic_istream<_CharT, _Traits>& |
4374 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
4375 | std::negative_binomial_distribution<_IntType1>& __x); |
4376 | |
4377 | private: |
4378 | template<typename _ForwardIterator, |
4379 | typename _UniformRandomNumberGenerator> |
4380 | void |
4381 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4382 | _UniformRandomNumberGenerator& __urng); |
4383 | template<typename _ForwardIterator, |
4384 | typename _UniformRandomNumberGenerator> |
4385 | void |
4386 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4387 | _UniformRandomNumberGenerator& __urng, |
4388 | const param_type& __p); |
4389 | |
4390 | param_type _M_param; |
4391 | |
4392 | std::gamma_distribution<double> _M_gd; |
4393 | }; |
4394 | |
4395 | /** |
4396 | * @brief Return true if two negative binomial distributions are different. |
4397 | */ |
4398 | template<typename _IntType> |
4399 | inline bool |
4400 | operator!=(const std::negative_binomial_distribution<_IntType>& __d1, |
4401 | const std::negative_binomial_distribution<_IntType>& __d2) |
4402 | { return !(__d1 == __d2); } |
4403 | |
4404 | |
4405 | /// @} group random_distributions_bernoulli |
4406 | |
4407 | /** |
4408 | * @addtogroup random_distributions_poisson Poisson Distributions |
4409 | * @ingroup random_distributions |
4410 | * @{ |
4411 | */ |
4412 | |
4413 | /** |
4414 | * @brief A discrete Poisson random number distribution. |
4415 | * |
4416 | * The formula for the Poisson probability density function is |
4417 | * @f$p(i|\mu) = \frac{\mu^i}{i!} e^{-\mu}@f$ where @f$\mu@f$ is the |
4418 | * parameter of the distribution. |
4419 | */ |
4420 | template<typename _IntType = int> |
4421 | class poisson_distribution |
4422 | { |
4423 | static_assert(std::is_integral<_IntType>::value, |
4424 | "result_type must be an integral type" ); |
4425 | |
4426 | public: |
4427 | /** The type of the range of the distribution. */ |
4428 | typedef _IntType result_type; |
4429 | |
4430 | /** Parameter type. */ |
4431 | struct param_type |
4432 | { |
4433 | typedef poisson_distribution<_IntType> distribution_type; |
4434 | friend class poisson_distribution<_IntType>; |
4435 | |
4436 | param_type() : param_type(1.0) { } |
4437 | |
4438 | explicit |
4439 | param_type(double __mean) |
4440 | : _M_mean(__mean) |
4441 | { |
4442 | __glibcxx_assert(_M_mean > 0.0); |
4443 | _M_initialize(); |
4444 | } |
4445 | |
4446 | double |
4447 | mean() const |
4448 | { return _M_mean; } |
4449 | |
4450 | friend bool |
4451 | operator==(const param_type& __p1, const param_type& __p2) |
4452 | { return __p1._M_mean == __p2._M_mean; } |
4453 | |
4454 | friend bool |
4455 | operator!=(const param_type& __p1, const param_type& __p2) |
4456 | { return !(__p1 == __p2); } |
4457 | |
4458 | private: |
4459 | // Hosts either log(mean) or the threshold of the simple method. |
4460 | void |
4461 | _M_initialize(); |
4462 | |
4463 | double _M_mean; |
4464 | |
4465 | double _M_lm_thr; |
4466 | #if _GLIBCXX_USE_C99_MATH_TR1 |
4467 | double _M_lfm, _M_sm, _M_d, _M_scx, _M_1cx, _M_c2b, _M_cb; |
4468 | #endif |
4469 | }; |
4470 | |
4471 | // constructors and member functions |
4472 | |
4473 | poisson_distribution() : poisson_distribution(1.0) { } |
4474 | |
4475 | explicit |
4476 | poisson_distribution(double __mean) |
4477 | : _M_param(__mean), _M_nd() |
4478 | { } |
4479 | |
4480 | explicit |
4481 | poisson_distribution(const param_type& __p) |
4482 | : _M_param(__p), _M_nd() |
4483 | { } |
4484 | |
4485 | /** |
4486 | * @brief Resets the distribution state. |
4487 | */ |
4488 | void |
4489 | reset() |
4490 | { _M_nd.reset(); } |
4491 | |
4492 | /** |
4493 | * @brief Returns the distribution parameter @p mean. |
4494 | */ |
4495 | double |
4496 | mean() const |
4497 | { return _M_param.mean(); } |
4498 | |
4499 | /** |
4500 | * @brief Returns the parameter set of the distribution. |
4501 | */ |
4502 | param_type |
4503 | param() const |
4504 | { return _M_param; } |
4505 | |
4506 | /** |
4507 | * @brief Sets the parameter set of the distribution. |
4508 | * @param __param The new parameter set of the distribution. |
4509 | */ |
4510 | void |
4511 | param(const param_type& __param) |
4512 | { _M_param = __param; } |
4513 | |
4514 | /** |
4515 | * @brief Returns the greatest lower bound value of the distribution. |
4516 | */ |
4517 | result_type |
4518 | min() const |
4519 | { return 0; } |
4520 | |
4521 | /** |
4522 | * @brief Returns the least upper bound value of the distribution. |
4523 | */ |
4524 | result_type |
4525 | max() const |
4526 | { return std::numeric_limits<result_type>::max(); } |
4527 | |
4528 | /** |
4529 | * @brief Generating functions. |
4530 | */ |
4531 | template<typename _UniformRandomNumberGenerator> |
4532 | result_type |
4533 | operator()(_UniformRandomNumberGenerator& __urng) |
4534 | { return this->operator()(__urng, _M_param); } |
4535 | |
4536 | template<typename _UniformRandomNumberGenerator> |
4537 | result_type |
4538 | operator()(_UniformRandomNumberGenerator& __urng, |
4539 | const param_type& __p); |
4540 | |
4541 | template<typename _ForwardIterator, |
4542 | typename _UniformRandomNumberGenerator> |
4543 | void |
4544 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4545 | _UniformRandomNumberGenerator& __urng) |
4546 | { this->__generate(__f, __t, __urng, _M_param); } |
4547 | |
4548 | template<typename _ForwardIterator, |
4549 | typename _UniformRandomNumberGenerator> |
4550 | void |
4551 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4552 | _UniformRandomNumberGenerator& __urng, |
4553 | const param_type& __p) |
4554 | { this->__generate_impl(__f, __t, __urng, __p); } |
4555 | |
4556 | template<typename _UniformRandomNumberGenerator> |
4557 | void |
4558 | __generate(result_type* __f, result_type* __t, |
4559 | _UniformRandomNumberGenerator& __urng, |
4560 | const param_type& __p) |
4561 | { this->__generate_impl(__f, __t, __urng, __p); } |
4562 | |
4563 | /** |
4564 | * @brief Return true if two Poisson distributions have the same |
4565 | * parameters and the sequences that would be generated |
4566 | * are equal. |
4567 | */ |
4568 | friend bool |
4569 | operator==(const poisson_distribution& __d1, |
4570 | const poisson_distribution& __d2) |
4571 | #ifdef _GLIBCXX_USE_C99_MATH_TR1 |
4572 | { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; } |
4573 | #else |
4574 | { return __d1._M_param == __d2._M_param; } |
4575 | #endif |
4576 | |
4577 | /** |
4578 | * @brief Inserts a %poisson_distribution random number distribution |
4579 | * @p __x into the output stream @p __os. |
4580 | * |
4581 | * @param __os An output stream. |
4582 | * @param __x A %poisson_distribution random number distribution. |
4583 | * |
4584 | * @returns The output stream with the state of @p __x inserted or in |
4585 | * an error state. |
4586 | */ |
4587 | template<typename _IntType1, typename _CharT, typename _Traits> |
4588 | friend std::basic_ostream<_CharT, _Traits>& |
4589 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
4590 | const std::poisson_distribution<_IntType1>& __x); |
4591 | |
4592 | /** |
4593 | * @brief Extracts a %poisson_distribution random number distribution |
4594 | * @p __x from the input stream @p __is. |
4595 | * |
4596 | * @param __is An input stream. |
4597 | * @param __x A %poisson_distribution random number generator engine. |
4598 | * |
4599 | * @returns The input stream with @p __x extracted or in an error |
4600 | * state. |
4601 | */ |
4602 | template<typename _IntType1, typename _CharT, typename _Traits> |
4603 | friend std::basic_istream<_CharT, _Traits>& |
4604 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
4605 | std::poisson_distribution<_IntType1>& __x); |
4606 | |
4607 | private: |
4608 | template<typename _ForwardIterator, |
4609 | typename _UniformRandomNumberGenerator> |
4610 | void |
4611 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4612 | _UniformRandomNumberGenerator& __urng, |
4613 | const param_type& __p); |
4614 | |
4615 | param_type _M_param; |
4616 | |
4617 | // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined. |
4618 | std::normal_distribution<double> _M_nd; |
4619 | }; |
4620 | |
4621 | /** |
4622 | * @brief Return true if two Poisson distributions are different. |
4623 | */ |
4624 | template<typename _IntType> |
4625 | inline bool |
4626 | operator!=(const std::poisson_distribution<_IntType>& __d1, |
4627 | const std::poisson_distribution<_IntType>& __d2) |
4628 | { return !(__d1 == __d2); } |
4629 | |
4630 | |
4631 | /** |
4632 | * @brief An exponential continuous distribution for random numbers. |
4633 | * |
4634 | * The formula for the exponential probability density function is |
4635 | * @f$p(x|\lambda) = \lambda e^{-\lambda x}@f$. |
4636 | * |
4637 | * <table border=1 cellpadding=10 cellspacing=0> |
4638 | * <caption align=top>Distribution Statistics</caption> |
4639 | * <tr><td>Mean</td><td>@f$\frac{1}{\lambda}@f$</td></tr> |
4640 | * <tr><td>Median</td><td>@f$\frac{\ln 2}{\lambda}@f$</td></tr> |
4641 | * <tr><td>Mode</td><td>@f$zero@f$</td></tr> |
4642 | * <tr><td>Range</td><td>@f$[0, \infty]@f$</td></tr> |
4643 | * <tr><td>Standard Deviation</td><td>@f$\frac{1}{\lambda}@f$</td></tr> |
4644 | * </table> |
4645 | */ |
4646 | template<typename _RealType = double> |
4647 | class exponential_distribution |
4648 | { |
4649 | static_assert(std::is_floating_point<_RealType>::value, |
4650 | "result_type must be a floating point type" ); |
4651 | |
4652 | public: |
4653 | /** The type of the range of the distribution. */ |
4654 | typedef _RealType result_type; |
4655 | |
4656 | /** Parameter type. */ |
4657 | struct param_type |
4658 | { |
4659 | typedef exponential_distribution<_RealType> distribution_type; |
4660 | |
4661 | param_type() : param_type(1.0) { } |
4662 | |
4663 | explicit |
4664 | param_type(_RealType __lambda) |
4665 | : _M_lambda(__lambda) |
4666 | { |
4667 | __glibcxx_assert(_M_lambda > _RealType(0)); |
4668 | } |
4669 | |
4670 | _RealType |
4671 | lambda() const |
4672 | { return _M_lambda; } |
4673 | |
4674 | friend bool |
4675 | operator==(const param_type& __p1, const param_type& __p2) |
4676 | { return __p1._M_lambda == __p2._M_lambda; } |
4677 | |
4678 | friend bool |
4679 | operator!=(const param_type& __p1, const param_type& __p2) |
4680 | { return !(__p1 == __p2); } |
4681 | |
4682 | private: |
4683 | _RealType _M_lambda; |
4684 | }; |
4685 | |
4686 | public: |
4687 | /** |
4688 | * @brief Constructs an exponential distribution with inverse scale |
4689 | * parameter 1.0 |
4690 | */ |
4691 | exponential_distribution() : exponential_distribution(1.0) { } |
4692 | |
4693 | /** |
4694 | * @brief Constructs an exponential distribution with inverse scale |
4695 | * parameter @f$\lambda@f$. |
4696 | */ |
4697 | explicit |
4698 | exponential_distribution(_RealType __lambda) |
4699 | : _M_param(__lambda) |
4700 | { } |
4701 | |
4702 | explicit |
4703 | exponential_distribution(const param_type& __p) |
4704 | : _M_param(__p) |
4705 | { } |
4706 | |
4707 | /** |
4708 | * @brief Resets the distribution state. |
4709 | * |
4710 | * Has no effect on exponential distributions. |
4711 | */ |
4712 | void |
4713 | reset() { } |
4714 | |
4715 | /** |
4716 | * @brief Returns the inverse scale parameter of the distribution. |
4717 | */ |
4718 | _RealType |
4719 | lambda() const |
4720 | { return _M_param.lambda(); } |
4721 | |
4722 | /** |
4723 | * @brief Returns the parameter set of the distribution. |
4724 | */ |
4725 | param_type |
4726 | param() const |
4727 | { return _M_param; } |
4728 | |
4729 | /** |
4730 | * @brief Sets the parameter set of the distribution. |
4731 | * @param __param The new parameter set of the distribution. |
4732 | */ |
4733 | void |
4734 | param(const param_type& __param) |
4735 | { _M_param = __param; } |
4736 | |
4737 | /** |
4738 | * @brief Returns the greatest lower bound value of the distribution. |
4739 | */ |
4740 | result_type |
4741 | min() const |
4742 | { return result_type(0); } |
4743 | |
4744 | /** |
4745 | * @brief Returns the least upper bound value of the distribution. |
4746 | */ |
4747 | result_type |
4748 | max() const |
4749 | { return std::numeric_limits<result_type>::max(); } |
4750 | |
4751 | /** |
4752 | * @brief Generating functions. |
4753 | */ |
4754 | template<typename _UniformRandomNumberGenerator> |
4755 | result_type |
4756 | operator()(_UniformRandomNumberGenerator& __urng) |
4757 | { return this->operator()(__urng, _M_param); } |
4758 | |
4759 | template<typename _UniformRandomNumberGenerator> |
4760 | result_type |
4761 | operator()(_UniformRandomNumberGenerator& __urng, |
4762 | const param_type& __p) |
4763 | { |
4764 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
4765 | __aurng(__urng); |
4766 | return -std::log(result_type(1) - __aurng()) / __p.lambda(); |
4767 | } |
4768 | |
4769 | template<typename _ForwardIterator, |
4770 | typename _UniformRandomNumberGenerator> |
4771 | void |
4772 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4773 | _UniformRandomNumberGenerator& __urng) |
4774 | { this->__generate(__f, __t, __urng, _M_param); } |
4775 | |
4776 | template<typename _ForwardIterator, |
4777 | typename _UniformRandomNumberGenerator> |
4778 | void |
4779 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4780 | _UniformRandomNumberGenerator& __urng, |
4781 | const param_type& __p) |
4782 | { this->__generate_impl(__f, __t, __urng, __p); } |
4783 | |
4784 | template<typename _UniformRandomNumberGenerator> |
4785 | void |
4786 | __generate(result_type* __f, result_type* __t, |
4787 | _UniformRandomNumberGenerator& __urng, |
4788 | const param_type& __p) |
4789 | { this->__generate_impl(__f, __t, __urng, __p); } |
4790 | |
4791 | /** |
4792 | * @brief Return true if two exponential distributions have the same |
4793 | * parameters. |
4794 | */ |
4795 | friend bool |
4796 | operator==(const exponential_distribution& __d1, |
4797 | const exponential_distribution& __d2) |
4798 | { return __d1._M_param == __d2._M_param; } |
4799 | |
4800 | private: |
4801 | template<typename _ForwardIterator, |
4802 | typename _UniformRandomNumberGenerator> |
4803 | void |
4804 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
4805 | _UniformRandomNumberGenerator& __urng, |
4806 | const param_type& __p); |
4807 | |
4808 | param_type _M_param; |
4809 | }; |
4810 | |
4811 | /** |
4812 | * @brief Return true if two exponential distributions have different |
4813 | * parameters. |
4814 | */ |
4815 | template<typename _RealType> |
4816 | inline bool |
4817 | operator!=(const std::exponential_distribution<_RealType>& __d1, |
4818 | const std::exponential_distribution<_RealType>& __d2) |
4819 | { return !(__d1 == __d2); } |
4820 | |
4821 | /** |
4822 | * @brief Inserts a %exponential_distribution random number distribution |
4823 | * @p __x into the output stream @p __os. |
4824 | * |
4825 | * @param __os An output stream. |
4826 | * @param __x A %exponential_distribution random number distribution. |
4827 | * |
4828 | * @returns The output stream with the state of @p __x inserted or in |
4829 | * an error state. |
4830 | */ |
4831 | template<typename _RealType, typename _CharT, typename _Traits> |
4832 | std::basic_ostream<_CharT, _Traits>& |
4833 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
4834 | const std::exponential_distribution<_RealType>& __x); |
4835 | |
4836 | /** |
4837 | * @brief Extracts a %exponential_distribution random number distribution |
4838 | * @p __x from the input stream @p __is. |
4839 | * |
4840 | * @param __is An input stream. |
4841 | * @param __x A %exponential_distribution random number |
4842 | * generator engine. |
4843 | * |
4844 | * @returns The input stream with @p __x extracted or in an error state. |
4845 | */ |
4846 | template<typename _RealType, typename _CharT, typename _Traits> |
4847 | std::basic_istream<_CharT, _Traits>& |
4848 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
4849 | std::exponential_distribution<_RealType>& __x); |
4850 | |
4851 | |
4852 | /** |
4853 | * @brief A weibull_distribution random number distribution. |
4854 | * |
4855 | * The formula for the normal probability density function is: |
4856 | * @f[ |
4857 | * p(x|\alpha,\beta) = \frac{\alpha}{\beta} (\frac{x}{\beta})^{\alpha-1} |
4858 | * \exp{(-(\frac{x}{\beta})^\alpha)} |
4859 | * @f] |
4860 | */ |
4861 | template<typename _RealType = double> |
4862 | class weibull_distribution |
4863 | { |
4864 | static_assert(std::is_floating_point<_RealType>::value, |
4865 | "result_type must be a floating point type" ); |
4866 | |
4867 | public: |
4868 | /** The type of the range of the distribution. */ |
4869 | typedef _RealType result_type; |
4870 | |
4871 | /** Parameter type. */ |
4872 | struct param_type |
4873 | { |
4874 | typedef weibull_distribution<_RealType> distribution_type; |
4875 | |
4876 | param_type() : param_type(1.0) { } |
4877 | |
4878 | explicit |
4879 | param_type(_RealType __a, _RealType __b = _RealType(1.0)) |
4880 | : _M_a(__a), _M_b(__b) |
4881 | { } |
4882 | |
4883 | _RealType |
4884 | a() const |
4885 | { return _M_a; } |
4886 | |
4887 | _RealType |
4888 | b() const |
4889 | { return _M_b; } |
4890 | |
4891 | friend bool |
4892 | operator==(const param_type& __p1, const param_type& __p2) |
4893 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
4894 | |
4895 | friend bool |
4896 | operator!=(const param_type& __p1, const param_type& __p2) |
4897 | { return !(__p1 == __p2); } |
4898 | |
4899 | private: |
4900 | _RealType _M_a; |
4901 | _RealType _M_b; |
4902 | }; |
4903 | |
4904 | weibull_distribution() : weibull_distribution(1.0) { } |
4905 | |
4906 | explicit |
4907 | weibull_distribution(_RealType __a, _RealType __b = _RealType(1)) |
4908 | : _M_param(__a, __b) |
4909 | { } |
4910 | |
4911 | explicit |
4912 | weibull_distribution(const param_type& __p) |
4913 | : _M_param(__p) |
4914 | { } |
4915 | |
4916 | /** |
4917 | * @brief Resets the distribution state. |
4918 | */ |
4919 | void |
4920 | reset() |
4921 | { } |
4922 | |
4923 | /** |
4924 | * @brief Return the @f$a@f$ parameter of the distribution. |
4925 | */ |
4926 | _RealType |
4927 | a() const |
4928 | { return _M_param.a(); } |
4929 | |
4930 | /** |
4931 | * @brief Return the @f$b@f$ parameter of the distribution. |
4932 | */ |
4933 | _RealType |
4934 | b() const |
4935 | { return _M_param.b(); } |
4936 | |
4937 | /** |
4938 | * @brief Returns the parameter set of the distribution. |
4939 | */ |
4940 | param_type |
4941 | param() const |
4942 | { return _M_param; } |
4943 | |
4944 | /** |
4945 | * @brief Sets the parameter set of the distribution. |
4946 | * @param __param The new parameter set of the distribution. |
4947 | */ |
4948 | void |
4949 | param(const param_type& __param) |
4950 | { _M_param = __param; } |
4951 | |
4952 | /** |
4953 | * @brief Returns the greatest lower bound value of the distribution. |
4954 | */ |
4955 | result_type |
4956 | min() const |
4957 | { return result_type(0); } |
4958 | |
4959 | /** |
4960 | * @brief Returns the least upper bound value of the distribution. |
4961 | */ |
4962 | result_type |
4963 | max() const |
4964 | { return std::numeric_limits<result_type>::max(); } |
4965 | |
4966 | /** |
4967 | * @brief Generating functions. |
4968 | */ |
4969 | template<typename _UniformRandomNumberGenerator> |
4970 | result_type |
4971 | operator()(_UniformRandomNumberGenerator& __urng) |
4972 | { return this->operator()(__urng, _M_param); } |
4973 | |
4974 | template<typename _UniformRandomNumberGenerator> |
4975 | result_type |
4976 | operator()(_UniformRandomNumberGenerator& __urng, |
4977 | const param_type& __p); |
4978 | |
4979 | template<typename _ForwardIterator, |
4980 | typename _UniformRandomNumberGenerator> |
4981 | void |
4982 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4983 | _UniformRandomNumberGenerator& __urng) |
4984 | { this->__generate(__f, __t, __urng, _M_param); } |
4985 | |
4986 | template<typename _ForwardIterator, |
4987 | typename _UniformRandomNumberGenerator> |
4988 | void |
4989 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
4990 | _UniformRandomNumberGenerator& __urng, |
4991 | const param_type& __p) |
4992 | { this->__generate_impl(__f, __t, __urng, __p); } |
4993 | |
4994 | template<typename _UniformRandomNumberGenerator> |
4995 | void |
4996 | __generate(result_type* __f, result_type* __t, |
4997 | _UniformRandomNumberGenerator& __urng, |
4998 | const param_type& __p) |
4999 | { this->__generate_impl(__f, __t, __urng, __p); } |
5000 | |
5001 | /** |
5002 | * @brief Return true if two Weibull distributions have the same |
5003 | * parameters. |
5004 | */ |
5005 | friend bool |
5006 | operator==(const weibull_distribution& __d1, |
5007 | const weibull_distribution& __d2) |
5008 | { return __d1._M_param == __d2._M_param; } |
5009 | |
5010 | private: |
5011 | template<typename _ForwardIterator, |
5012 | typename _UniformRandomNumberGenerator> |
5013 | void |
5014 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
5015 | _UniformRandomNumberGenerator& __urng, |
5016 | const param_type& __p); |
5017 | |
5018 | param_type _M_param; |
5019 | }; |
5020 | |
5021 | /** |
5022 | * @brief Return true if two Weibull distributions have different |
5023 | * parameters. |
5024 | */ |
5025 | template<typename _RealType> |
5026 | inline bool |
5027 | operator!=(const std::weibull_distribution<_RealType>& __d1, |
5028 | const std::weibull_distribution<_RealType>& __d2) |
5029 | { return !(__d1 == __d2); } |
5030 | |
5031 | /** |
5032 | * @brief Inserts a %weibull_distribution random number distribution |
5033 | * @p __x into the output stream @p __os. |
5034 | * |
5035 | * @param __os An output stream. |
5036 | * @param __x A %weibull_distribution random number distribution. |
5037 | * |
5038 | * @returns The output stream with the state of @p __x inserted or in |
5039 | * an error state. |
5040 | */ |
5041 | template<typename _RealType, typename _CharT, typename _Traits> |
5042 | std::basic_ostream<_CharT, _Traits>& |
5043 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
5044 | const std::weibull_distribution<_RealType>& __x); |
5045 | |
5046 | /** |
5047 | * @brief Extracts a %weibull_distribution random number distribution |
5048 | * @p __x from the input stream @p __is. |
5049 | * |
5050 | * @param __is An input stream. |
5051 | * @param __x A %weibull_distribution random number |
5052 | * generator engine. |
5053 | * |
5054 | * @returns The input stream with @p __x extracted or in an error state. |
5055 | */ |
5056 | template<typename _RealType, typename _CharT, typename _Traits> |
5057 | std::basic_istream<_CharT, _Traits>& |
5058 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
5059 | std::weibull_distribution<_RealType>& __x); |
5060 | |
5061 | |
5062 | /** |
5063 | * @brief A extreme_value_distribution random number distribution. |
5064 | * |
5065 | * The formula for the normal probability mass function is |
5066 | * @f[ |
5067 | * p(x|a,b) = \frac{1}{b} |
5068 | * \exp( \frac{a-x}{b} - \exp(\frac{a-x}{b})) |
5069 | * @f] |
5070 | */ |
5071 | template<typename _RealType = double> |
5072 | class extreme_value_distribution |
5073 | { |
5074 | static_assert(std::is_floating_point<_RealType>::value, |
5075 | "result_type must be a floating point type" ); |
5076 | |
5077 | public: |
5078 | /** The type of the range of the distribution. */ |
5079 | typedef _RealType result_type; |
5080 | |
5081 | /** Parameter type. */ |
5082 | struct param_type |
5083 | { |
5084 | typedef extreme_value_distribution<_RealType> distribution_type; |
5085 | |
5086 | param_type() : param_type(0.0) { } |
5087 | |
5088 | explicit |
5089 | param_type(_RealType __a, _RealType __b = _RealType(1.0)) |
5090 | : _M_a(__a), _M_b(__b) |
5091 | { } |
5092 | |
5093 | _RealType |
5094 | a() const |
5095 | { return _M_a; } |
5096 | |
5097 | _RealType |
5098 | b() const |
5099 | { return _M_b; } |
5100 | |
5101 | friend bool |
5102 | operator==(const param_type& __p1, const param_type& __p2) |
5103 | { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } |
5104 | |
5105 | friend bool |
5106 | operator!=(const param_type& __p1, const param_type& __p2) |
5107 | { return !(__p1 == __p2); } |
5108 | |
5109 | private: |
5110 | _RealType _M_a; |
5111 | _RealType _M_b; |
5112 | }; |
5113 | |
5114 | extreme_value_distribution() : extreme_value_distribution(0.0) { } |
5115 | |
5116 | explicit |
5117 | extreme_value_distribution(_RealType __a, _RealType __b = _RealType(1)) |
5118 | : _M_param(__a, __b) |
5119 | { } |
5120 | |
5121 | explicit |
5122 | extreme_value_distribution(const param_type& __p) |
5123 | : _M_param(__p) |
5124 | { } |
5125 | |
5126 | /** |
5127 | * @brief Resets the distribution state. |
5128 | */ |
5129 | void |
5130 | reset() |
5131 | { } |
5132 | |
5133 | /** |
5134 | * @brief Return the @f$a@f$ parameter of the distribution. |
5135 | */ |
5136 | _RealType |
5137 | a() const |
5138 | { return _M_param.a(); } |
5139 | |
5140 | /** |
5141 | * @brief Return the @f$b@f$ parameter of the distribution. |
5142 | */ |
5143 | _RealType |
5144 | b() const |
5145 | { return _M_param.b(); } |
5146 | |
5147 | /** |
5148 | * @brief Returns the parameter set of the distribution. |
5149 | */ |
5150 | param_type |
5151 | param() const |
5152 | { return _M_param; } |
5153 | |
5154 | /** |
5155 | * @brief Sets the parameter set of the distribution. |
5156 | * @param __param The new parameter set of the distribution. |
5157 | */ |
5158 | void |
5159 | param(const param_type& __param) |
5160 | { _M_param = __param; } |
5161 | |
5162 | /** |
5163 | * @brief Returns the greatest lower bound value of the distribution. |
5164 | */ |
5165 | result_type |
5166 | min() const |
5167 | { return std::numeric_limits<result_type>::lowest(); } |
5168 | |
5169 | /** |
5170 | * @brief Returns the least upper bound value of the distribution. |
5171 | */ |
5172 | result_type |
5173 | max() const |
5174 | { return std::numeric_limits<result_type>::max(); } |
5175 | |
5176 | /** |
5177 | * @brief Generating functions. |
5178 | */ |
5179 | template<typename _UniformRandomNumberGenerator> |
5180 | result_type |
5181 | operator()(_UniformRandomNumberGenerator& __urng) |
5182 | { return this->operator()(__urng, _M_param); } |
5183 | |
5184 | template<typename _UniformRandomNumberGenerator> |
5185 | result_type |
5186 | operator()(_UniformRandomNumberGenerator& __urng, |
5187 | const param_type& __p); |
5188 | |
5189 | template<typename _ForwardIterator, |
5190 | typename _UniformRandomNumberGenerator> |
5191 | void |
5192 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5193 | _UniformRandomNumberGenerator& __urng) |
5194 | { this->__generate(__f, __t, __urng, _M_param); } |
5195 | |
5196 | template<typename _ForwardIterator, |
5197 | typename _UniformRandomNumberGenerator> |
5198 | void |
5199 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5200 | _UniformRandomNumberGenerator& __urng, |
5201 | const param_type& __p) |
5202 | { this->__generate_impl(__f, __t, __urng, __p); } |
5203 | |
5204 | template<typename _UniformRandomNumberGenerator> |
5205 | void |
5206 | __generate(result_type* __f, result_type* __t, |
5207 | _UniformRandomNumberGenerator& __urng, |
5208 | const param_type& __p) |
5209 | { this->__generate_impl(__f, __t, __urng, __p); } |
5210 | |
5211 | /** |
5212 | * @brief Return true if two extreme value distributions have the same |
5213 | * parameters. |
5214 | */ |
5215 | friend bool |
5216 | operator==(const extreme_value_distribution& __d1, |
5217 | const extreme_value_distribution& __d2) |
5218 | { return __d1._M_param == __d2._M_param; } |
5219 | |
5220 | private: |
5221 | template<typename _ForwardIterator, |
5222 | typename _UniformRandomNumberGenerator> |
5223 | void |
5224 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
5225 | _UniformRandomNumberGenerator& __urng, |
5226 | const param_type& __p); |
5227 | |
5228 | param_type _M_param; |
5229 | }; |
5230 | |
5231 | /** |
5232 | * @brief Return true if two extreme value distributions have different |
5233 | * parameters. |
5234 | */ |
5235 | template<typename _RealType> |
5236 | inline bool |
5237 | operator!=(const std::extreme_value_distribution<_RealType>& __d1, |
5238 | const std::extreme_value_distribution<_RealType>& __d2) |
5239 | { return !(__d1 == __d2); } |
5240 | |
5241 | /** |
5242 | * @brief Inserts a %extreme_value_distribution random number distribution |
5243 | * @p __x into the output stream @p __os. |
5244 | * |
5245 | * @param __os An output stream. |
5246 | * @param __x A %extreme_value_distribution random number distribution. |
5247 | * |
5248 | * @returns The output stream with the state of @p __x inserted or in |
5249 | * an error state. |
5250 | */ |
5251 | template<typename _RealType, typename _CharT, typename _Traits> |
5252 | std::basic_ostream<_CharT, _Traits>& |
5253 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
5254 | const std::extreme_value_distribution<_RealType>& __x); |
5255 | |
5256 | /** |
5257 | * @brief Extracts a %extreme_value_distribution random number |
5258 | * distribution @p __x from the input stream @p __is. |
5259 | * |
5260 | * @param __is An input stream. |
5261 | * @param __x A %extreme_value_distribution random number |
5262 | * generator engine. |
5263 | * |
5264 | * @returns The input stream with @p __x extracted or in an error state. |
5265 | */ |
5266 | template<typename _RealType, typename _CharT, typename _Traits> |
5267 | std::basic_istream<_CharT, _Traits>& |
5268 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
5269 | std::extreme_value_distribution<_RealType>& __x); |
5270 | |
5271 | |
5272 | /** |
5273 | * @brief A discrete_distribution random number distribution. |
5274 | * |
5275 | * The formula for the discrete probability mass function is |
5276 | * |
5277 | */ |
5278 | template<typename _IntType = int> |
5279 | class discrete_distribution |
5280 | { |
5281 | static_assert(std::is_integral<_IntType>::value, |
5282 | "result_type must be an integral type" ); |
5283 | |
5284 | public: |
5285 | /** The type of the range of the distribution. */ |
5286 | typedef _IntType result_type; |
5287 | |
5288 | /** Parameter type. */ |
5289 | struct param_type |
5290 | { |
5291 | typedef discrete_distribution<_IntType> distribution_type; |
5292 | friend class discrete_distribution<_IntType>; |
5293 | |
5294 | param_type() |
5295 | : _M_prob(), _M_cp() |
5296 | { } |
5297 | |
5298 | template<typename _InputIterator> |
5299 | param_type(_InputIterator __wbegin, |
5300 | _InputIterator __wend) |
5301 | : _M_prob(__wbegin, __wend), _M_cp() |
5302 | { _M_initialize(); } |
5303 | |
5304 | param_type(initializer_list<double> __wil) |
5305 | : _M_prob(__wil.begin(), __wil.end()), _M_cp() |
5306 | { _M_initialize(); } |
5307 | |
5308 | template<typename _Func> |
5309 | param_type(size_t __nw, double __xmin, double __xmax, |
5310 | _Func __fw); |
5311 | |
5312 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
5313 | param_type(const param_type&) = default; |
5314 | param_type& operator=(const param_type&) = default; |
5315 | |
5316 | std::vector<double> |
5317 | probabilities() const |
5318 | { return _M_prob.empty() ? std::vector<double>(1, 1.0) : _M_prob; } |
5319 | |
5320 | friend bool |
5321 | operator==(const param_type& __p1, const param_type& __p2) |
5322 | { return __p1._M_prob == __p2._M_prob; } |
5323 | |
5324 | friend bool |
5325 | operator!=(const param_type& __p1, const param_type& __p2) |
5326 | { return !(__p1 == __p2); } |
5327 | |
5328 | private: |
5329 | void |
5330 | _M_initialize(); |
5331 | |
5332 | std::vector<double> _M_prob; |
5333 | std::vector<double> _M_cp; |
5334 | }; |
5335 | |
5336 | discrete_distribution() |
5337 | : _M_param() |
5338 | { } |
5339 | |
5340 | template<typename _InputIterator> |
5341 | discrete_distribution(_InputIterator __wbegin, |
5342 | _InputIterator __wend) |
5343 | : _M_param(__wbegin, __wend) |
5344 | { } |
5345 | |
5346 | discrete_distribution(initializer_list<double> __wl) |
5347 | : _M_param(__wl) |
5348 | { } |
5349 | |
5350 | template<typename _Func> |
5351 | discrete_distribution(size_t __nw, double __xmin, double __xmax, |
5352 | _Func __fw) |
5353 | : _M_param(__nw, __xmin, __xmax, __fw) |
5354 | { } |
5355 | |
5356 | explicit |
5357 | discrete_distribution(const param_type& __p) |
5358 | : _M_param(__p) |
5359 | { } |
5360 | |
5361 | /** |
5362 | * @brief Resets the distribution state. |
5363 | */ |
5364 | void |
5365 | reset() |
5366 | { } |
5367 | |
5368 | /** |
5369 | * @brief Returns the probabilities of the distribution. |
5370 | */ |
5371 | std::vector<double> |
5372 | probabilities() const |
5373 | { |
5374 | return _M_param._M_prob.empty() |
5375 | ? std::vector<double>(1, 1.0) : _M_param._M_prob; |
5376 | } |
5377 | |
5378 | /** |
5379 | * @brief Returns the parameter set of the distribution. |
5380 | */ |
5381 | param_type |
5382 | param() const |
5383 | { return _M_param; } |
5384 | |
5385 | /** |
5386 | * @brief Sets the parameter set of the distribution. |
5387 | * @param __param The new parameter set of the distribution. |
5388 | */ |
5389 | void |
5390 | param(const param_type& __param) |
5391 | { _M_param = __param; } |
5392 | |
5393 | /** |
5394 | * @brief Returns the greatest lower bound value of the distribution. |
5395 | */ |
5396 | result_type |
5397 | min() const |
5398 | { return result_type(0); } |
5399 | |
5400 | /** |
5401 | * @brief Returns the least upper bound value of the distribution. |
5402 | */ |
5403 | result_type |
5404 | max() const |
5405 | { |
5406 | return _M_param._M_prob.empty() |
5407 | ? result_type(0) : result_type(_M_param._M_prob.size() - 1); |
5408 | } |
5409 | |
5410 | /** |
5411 | * @brief Generating functions. |
5412 | */ |
5413 | template<typename _UniformRandomNumberGenerator> |
5414 | result_type |
5415 | operator()(_UniformRandomNumberGenerator& __urng) |
5416 | { return this->operator()(__urng, _M_param); } |
5417 | |
5418 | template<typename _UniformRandomNumberGenerator> |
5419 | result_type |
5420 | operator()(_UniformRandomNumberGenerator& __urng, |
5421 | const param_type& __p); |
5422 | |
5423 | template<typename _ForwardIterator, |
5424 | typename _UniformRandomNumberGenerator> |
5425 | void |
5426 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5427 | _UniformRandomNumberGenerator& __urng) |
5428 | { this->__generate(__f, __t, __urng, _M_param); } |
5429 | |
5430 | template<typename _ForwardIterator, |
5431 | typename _UniformRandomNumberGenerator> |
5432 | void |
5433 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5434 | _UniformRandomNumberGenerator& __urng, |
5435 | const param_type& __p) |
5436 | { this->__generate_impl(__f, __t, __urng, __p); } |
5437 | |
5438 | template<typename _UniformRandomNumberGenerator> |
5439 | void |
5440 | __generate(result_type* __f, result_type* __t, |
5441 | _UniformRandomNumberGenerator& __urng, |
5442 | const param_type& __p) |
5443 | { this->__generate_impl(__f, __t, __urng, __p); } |
5444 | |
5445 | /** |
5446 | * @brief Return true if two discrete distributions have the same |
5447 | * parameters. |
5448 | */ |
5449 | friend bool |
5450 | operator==(const discrete_distribution& __d1, |
5451 | const discrete_distribution& __d2) |
5452 | { return __d1._M_param == __d2._M_param; } |
5453 | |
5454 | /** |
5455 | * @brief Inserts a %discrete_distribution random number distribution |
5456 | * @p __x into the output stream @p __os. |
5457 | * |
5458 | * @param __os An output stream. |
5459 | * @param __x A %discrete_distribution random number distribution. |
5460 | * |
5461 | * @returns The output stream with the state of @p __x inserted or in |
5462 | * an error state. |
5463 | */ |
5464 | template<typename _IntType1, typename _CharT, typename _Traits> |
5465 | friend std::basic_ostream<_CharT, _Traits>& |
5466 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
5467 | const std::discrete_distribution<_IntType1>& __x); |
5468 | |
5469 | /** |
5470 | * @brief Extracts a %discrete_distribution random number distribution |
5471 | * @p __x from the input stream @p __is. |
5472 | * |
5473 | * @param __is An input stream. |
5474 | * @param __x A %discrete_distribution random number |
5475 | * generator engine. |
5476 | * |
5477 | * @returns The input stream with @p __x extracted or in an error |
5478 | * state. |
5479 | */ |
5480 | template<typename _IntType1, typename _CharT, typename _Traits> |
5481 | friend std::basic_istream<_CharT, _Traits>& |
5482 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
5483 | std::discrete_distribution<_IntType1>& __x); |
5484 | |
5485 | private: |
5486 | template<typename _ForwardIterator, |
5487 | typename _UniformRandomNumberGenerator> |
5488 | void |
5489 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
5490 | _UniformRandomNumberGenerator& __urng, |
5491 | const param_type& __p); |
5492 | |
5493 | param_type _M_param; |
5494 | }; |
5495 | |
5496 | /** |
5497 | * @brief Return true if two discrete distributions have different |
5498 | * parameters. |
5499 | */ |
5500 | template<typename _IntType> |
5501 | inline bool |
5502 | operator!=(const std::discrete_distribution<_IntType>& __d1, |
5503 | const std::discrete_distribution<_IntType>& __d2) |
5504 | { return !(__d1 == __d2); } |
5505 | |
5506 | |
5507 | /** |
5508 | * @brief A piecewise_constant_distribution random number distribution. |
5509 | * |
5510 | * The formula for the piecewise constant probability mass function is |
5511 | * |
5512 | */ |
5513 | template<typename _RealType = double> |
5514 | class piecewise_constant_distribution |
5515 | { |
5516 | static_assert(std::is_floating_point<_RealType>::value, |
5517 | "result_type must be a floating point type" ); |
5518 | |
5519 | public: |
5520 | /** The type of the range of the distribution. */ |
5521 | typedef _RealType result_type; |
5522 | |
5523 | /** Parameter type. */ |
5524 | struct param_type |
5525 | { |
5526 | typedef piecewise_constant_distribution<_RealType> distribution_type; |
5527 | friend class piecewise_constant_distribution<_RealType>; |
5528 | |
5529 | param_type() |
5530 | : _M_int(), _M_den(), _M_cp() |
5531 | { } |
5532 | |
5533 | template<typename _InputIteratorB, typename _InputIteratorW> |
5534 | param_type(_InputIteratorB __bfirst, |
5535 | _InputIteratorB __bend, |
5536 | _InputIteratorW __wbegin); |
5537 | |
5538 | template<typename _Func> |
5539 | param_type(initializer_list<_RealType> __bi, _Func __fw); |
5540 | |
5541 | template<typename _Func> |
5542 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, |
5543 | _Func __fw); |
5544 | |
5545 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
5546 | param_type(const param_type&) = default; |
5547 | param_type& operator=(const param_type&) = default; |
5548 | |
5549 | std::vector<_RealType> |
5550 | intervals() const |
5551 | { |
5552 | if (_M_int.empty()) |
5553 | { |
5554 | std::vector<_RealType> __tmp(2); |
5555 | __tmp[1] = _RealType(1); |
5556 | return __tmp; |
5557 | } |
5558 | else |
5559 | return _M_int; |
5560 | } |
5561 | |
5562 | std::vector<double> |
5563 | densities() const |
5564 | { return _M_den.empty() ? std::vector<double>(1, 1.0) : _M_den; } |
5565 | |
5566 | friend bool |
5567 | operator==(const param_type& __p1, const param_type& __p2) |
5568 | { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; } |
5569 | |
5570 | friend bool |
5571 | operator!=(const param_type& __p1, const param_type& __p2) |
5572 | { return !(__p1 == __p2); } |
5573 | |
5574 | private: |
5575 | void |
5576 | _M_initialize(); |
5577 | |
5578 | std::vector<_RealType> _M_int; |
5579 | std::vector<double> _M_den; |
5580 | std::vector<double> _M_cp; |
5581 | }; |
5582 | |
5583 | piecewise_constant_distribution() |
5584 | : _M_param() |
5585 | { } |
5586 | |
5587 | template<typename _InputIteratorB, typename _InputIteratorW> |
5588 | piecewise_constant_distribution(_InputIteratorB __bfirst, |
5589 | _InputIteratorB __bend, |
5590 | _InputIteratorW __wbegin) |
5591 | : _M_param(__bfirst, __bend, __wbegin) |
5592 | { } |
5593 | |
5594 | template<typename _Func> |
5595 | piecewise_constant_distribution(initializer_list<_RealType> __bl, |
5596 | _Func __fw) |
5597 | : _M_param(__bl, __fw) |
5598 | { } |
5599 | |
5600 | template<typename _Func> |
5601 | piecewise_constant_distribution(size_t __nw, |
5602 | _RealType __xmin, _RealType __xmax, |
5603 | _Func __fw) |
5604 | : _M_param(__nw, __xmin, __xmax, __fw) |
5605 | { } |
5606 | |
5607 | explicit |
5608 | piecewise_constant_distribution(const param_type& __p) |
5609 | : _M_param(__p) |
5610 | { } |
5611 | |
5612 | /** |
5613 | * @brief Resets the distribution state. |
5614 | */ |
5615 | void |
5616 | reset() |
5617 | { } |
5618 | |
5619 | /** |
5620 | * @brief Returns a vector of the intervals. |
5621 | */ |
5622 | std::vector<_RealType> |
5623 | intervals() const |
5624 | { |
5625 | if (_M_param._M_int.empty()) |
5626 | { |
5627 | std::vector<_RealType> __tmp(2); |
5628 | __tmp[1] = _RealType(1); |
5629 | return __tmp; |
5630 | } |
5631 | else |
5632 | return _M_param._M_int; |
5633 | } |
5634 | |
5635 | /** |
5636 | * @brief Returns a vector of the probability densities. |
5637 | */ |
5638 | std::vector<double> |
5639 | densities() const |
5640 | { |
5641 | return _M_param._M_den.empty() |
5642 | ? std::vector<double>(1, 1.0) : _M_param._M_den; |
5643 | } |
5644 | |
5645 | /** |
5646 | * @brief Returns the parameter set of the distribution. |
5647 | */ |
5648 | param_type |
5649 | param() const |
5650 | { return _M_param; } |
5651 | |
5652 | /** |
5653 | * @brief Sets the parameter set of the distribution. |
5654 | * @param __param The new parameter set of the distribution. |
5655 | */ |
5656 | void |
5657 | param(const param_type& __param) |
5658 | { _M_param = __param; } |
5659 | |
5660 | /** |
5661 | * @brief Returns the greatest lower bound value of the distribution. |
5662 | */ |
5663 | result_type |
5664 | min() const |
5665 | { |
5666 | return _M_param._M_int.empty() |
5667 | ? result_type(0) : _M_param._M_int.front(); |
5668 | } |
5669 | |
5670 | /** |
5671 | * @brief Returns the least upper bound value of the distribution. |
5672 | */ |
5673 | result_type |
5674 | max() const |
5675 | { |
5676 | return _M_param._M_int.empty() |
5677 | ? result_type(1) : _M_param._M_int.back(); |
5678 | } |
5679 | |
5680 | /** |
5681 | * @brief Generating functions. |
5682 | */ |
5683 | template<typename _UniformRandomNumberGenerator> |
5684 | result_type |
5685 | operator()(_UniformRandomNumberGenerator& __urng) |
5686 | { return this->operator()(__urng, _M_param); } |
5687 | |
5688 | template<typename _UniformRandomNumberGenerator> |
5689 | result_type |
5690 | operator()(_UniformRandomNumberGenerator& __urng, |
5691 | const param_type& __p); |
5692 | |
5693 | template<typename _ForwardIterator, |
5694 | typename _UniformRandomNumberGenerator> |
5695 | void |
5696 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5697 | _UniformRandomNumberGenerator& __urng) |
5698 | { this->__generate(__f, __t, __urng, _M_param); } |
5699 | |
5700 | template<typename _ForwardIterator, |
5701 | typename _UniformRandomNumberGenerator> |
5702 | void |
5703 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5704 | _UniformRandomNumberGenerator& __urng, |
5705 | const param_type& __p) |
5706 | { this->__generate_impl(__f, __t, __urng, __p); } |
5707 | |
5708 | template<typename _UniformRandomNumberGenerator> |
5709 | void |
5710 | __generate(result_type* __f, result_type* __t, |
5711 | _UniformRandomNumberGenerator& __urng, |
5712 | const param_type& __p) |
5713 | { this->__generate_impl(__f, __t, __urng, __p); } |
5714 | |
5715 | /** |
5716 | * @brief Return true if two piecewise constant distributions have the |
5717 | * same parameters. |
5718 | */ |
5719 | friend bool |
5720 | operator==(const piecewise_constant_distribution& __d1, |
5721 | const piecewise_constant_distribution& __d2) |
5722 | { return __d1._M_param == __d2._M_param; } |
5723 | |
5724 | /** |
5725 | * @brief Inserts a %piecewise_constant_distribution random |
5726 | * number distribution @p __x into the output stream @p __os. |
5727 | * |
5728 | * @param __os An output stream. |
5729 | * @param __x A %piecewise_constant_distribution random number |
5730 | * distribution. |
5731 | * |
5732 | * @returns The output stream with the state of @p __x inserted or in |
5733 | * an error state. |
5734 | */ |
5735 | template<typename _RealType1, typename _CharT, typename _Traits> |
5736 | friend std::basic_ostream<_CharT, _Traits>& |
5737 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
5738 | const std::piecewise_constant_distribution<_RealType1>& __x); |
5739 | |
5740 | /** |
5741 | * @brief Extracts a %piecewise_constant_distribution random |
5742 | * number distribution @p __x from the input stream @p __is. |
5743 | * |
5744 | * @param __is An input stream. |
5745 | * @param __x A %piecewise_constant_distribution random number |
5746 | * generator engine. |
5747 | * |
5748 | * @returns The input stream with @p __x extracted or in an error |
5749 | * state. |
5750 | */ |
5751 | template<typename _RealType1, typename _CharT, typename _Traits> |
5752 | friend std::basic_istream<_CharT, _Traits>& |
5753 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
5754 | std::piecewise_constant_distribution<_RealType1>& __x); |
5755 | |
5756 | private: |
5757 | template<typename _ForwardIterator, |
5758 | typename _UniformRandomNumberGenerator> |
5759 | void |
5760 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
5761 | _UniformRandomNumberGenerator& __urng, |
5762 | const param_type& __p); |
5763 | |
5764 | param_type _M_param; |
5765 | }; |
5766 | |
5767 | /** |
5768 | * @brief Return true if two piecewise constant distributions have |
5769 | * different parameters. |
5770 | */ |
5771 | template<typename _RealType> |
5772 | inline bool |
5773 | operator!=(const std::piecewise_constant_distribution<_RealType>& __d1, |
5774 | const std::piecewise_constant_distribution<_RealType>& __d2) |
5775 | { return !(__d1 == __d2); } |
5776 | |
5777 | |
5778 | /** |
5779 | * @brief A piecewise_linear_distribution random number distribution. |
5780 | * |
5781 | * The formula for the piecewise linear probability mass function is |
5782 | * |
5783 | */ |
5784 | template<typename _RealType = double> |
5785 | class piecewise_linear_distribution |
5786 | { |
5787 | static_assert(std::is_floating_point<_RealType>::value, |
5788 | "result_type must be a floating point type" ); |
5789 | |
5790 | public: |
5791 | /** The type of the range of the distribution. */ |
5792 | typedef _RealType result_type; |
5793 | |
5794 | /** Parameter type. */ |
5795 | struct param_type |
5796 | { |
5797 | typedef piecewise_linear_distribution<_RealType> distribution_type; |
5798 | friend class piecewise_linear_distribution<_RealType>; |
5799 | |
5800 | param_type() |
5801 | : _M_int(), _M_den(), _M_cp(), _M_m() |
5802 | { } |
5803 | |
5804 | template<typename _InputIteratorB, typename _InputIteratorW> |
5805 | param_type(_InputIteratorB __bfirst, |
5806 | _InputIteratorB __bend, |
5807 | _InputIteratorW __wbegin); |
5808 | |
5809 | template<typename _Func> |
5810 | param_type(initializer_list<_RealType> __bl, _Func __fw); |
5811 | |
5812 | template<typename _Func> |
5813 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, |
5814 | _Func __fw); |
5815 | |
5816 | // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/ |
5817 | param_type(const param_type&) = default; |
5818 | param_type& operator=(const param_type&) = default; |
5819 | |
5820 | std::vector<_RealType> |
5821 | intervals() const |
5822 | { |
5823 | if (_M_int.empty()) |
5824 | { |
5825 | std::vector<_RealType> __tmp(2); |
5826 | __tmp[1] = _RealType(1); |
5827 | return __tmp; |
5828 | } |
5829 | else |
5830 | return _M_int; |
5831 | } |
5832 | |
5833 | std::vector<double> |
5834 | densities() const |
5835 | { return _M_den.empty() ? std::vector<double>(2, 1.0) : _M_den; } |
5836 | |
5837 | friend bool |
5838 | operator==(const param_type& __p1, const param_type& __p2) |
5839 | { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; } |
5840 | |
5841 | friend bool |
5842 | operator!=(const param_type& __p1, const param_type& __p2) |
5843 | { return !(__p1 == __p2); } |
5844 | |
5845 | private: |
5846 | void |
5847 | _M_initialize(); |
5848 | |
5849 | std::vector<_RealType> _M_int; |
5850 | std::vector<double> _M_den; |
5851 | std::vector<double> _M_cp; |
5852 | std::vector<double> _M_m; |
5853 | }; |
5854 | |
5855 | piecewise_linear_distribution() |
5856 | : _M_param() |
5857 | { } |
5858 | |
5859 | template<typename _InputIteratorB, typename _InputIteratorW> |
5860 | piecewise_linear_distribution(_InputIteratorB __bfirst, |
5861 | _InputIteratorB __bend, |
5862 | _InputIteratorW __wbegin) |
5863 | : _M_param(__bfirst, __bend, __wbegin) |
5864 | { } |
5865 | |
5866 | template<typename _Func> |
5867 | piecewise_linear_distribution(initializer_list<_RealType> __bl, |
5868 | _Func __fw) |
5869 | : _M_param(__bl, __fw) |
5870 | { } |
5871 | |
5872 | template<typename _Func> |
5873 | piecewise_linear_distribution(size_t __nw, |
5874 | _RealType __xmin, _RealType __xmax, |
5875 | _Func __fw) |
5876 | : _M_param(__nw, __xmin, __xmax, __fw) |
5877 | { } |
5878 | |
5879 | explicit |
5880 | piecewise_linear_distribution(const param_type& __p) |
5881 | : _M_param(__p) |
5882 | { } |
5883 | |
5884 | /** |
5885 | * Resets the distribution state. |
5886 | */ |
5887 | void |
5888 | reset() |
5889 | { } |
5890 | |
5891 | /** |
5892 | * @brief Return the intervals of the distribution. |
5893 | */ |
5894 | std::vector<_RealType> |
5895 | intervals() const |
5896 | { |
5897 | if (_M_param._M_int.empty()) |
5898 | { |
5899 | std::vector<_RealType> __tmp(2); |
5900 | __tmp[1] = _RealType(1); |
5901 | return __tmp; |
5902 | } |
5903 | else |
5904 | return _M_param._M_int; |
5905 | } |
5906 | |
5907 | /** |
5908 | * @brief Return a vector of the probability densities of the |
5909 | * distribution. |
5910 | */ |
5911 | std::vector<double> |
5912 | densities() const |
5913 | { |
5914 | return _M_param._M_den.empty() |
5915 | ? std::vector<double>(2, 1.0) : _M_param._M_den; |
5916 | } |
5917 | |
5918 | /** |
5919 | * @brief Returns the parameter set of the distribution. |
5920 | */ |
5921 | param_type |
5922 | param() const |
5923 | { return _M_param; } |
5924 | |
5925 | /** |
5926 | * @brief Sets the parameter set of the distribution. |
5927 | * @param __param The new parameter set of the distribution. |
5928 | */ |
5929 | void |
5930 | param(const param_type& __param) |
5931 | { _M_param = __param; } |
5932 | |
5933 | /** |
5934 | * @brief Returns the greatest lower bound value of the distribution. |
5935 | */ |
5936 | result_type |
5937 | min() const |
5938 | { |
5939 | return _M_param._M_int.empty() |
5940 | ? result_type(0) : _M_param._M_int.front(); |
5941 | } |
5942 | |
5943 | /** |
5944 | * @brief Returns the least upper bound value of the distribution. |
5945 | */ |
5946 | result_type |
5947 | max() const |
5948 | { |
5949 | return _M_param._M_int.empty() |
5950 | ? result_type(1) : _M_param._M_int.back(); |
5951 | } |
5952 | |
5953 | /** |
5954 | * @brief Generating functions. |
5955 | */ |
5956 | template<typename _UniformRandomNumberGenerator> |
5957 | result_type |
5958 | operator()(_UniformRandomNumberGenerator& __urng) |
5959 | { return this->operator()(__urng, _M_param); } |
5960 | |
5961 | template<typename _UniformRandomNumberGenerator> |
5962 | result_type |
5963 | operator()(_UniformRandomNumberGenerator& __urng, |
5964 | const param_type& __p); |
5965 | |
5966 | template<typename _ForwardIterator, |
5967 | typename _UniformRandomNumberGenerator> |
5968 | void |
5969 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5970 | _UniformRandomNumberGenerator& __urng) |
5971 | { this->__generate(__f, __t, __urng, _M_param); } |
5972 | |
5973 | template<typename _ForwardIterator, |
5974 | typename _UniformRandomNumberGenerator> |
5975 | void |
5976 | __generate(_ForwardIterator __f, _ForwardIterator __t, |
5977 | _UniformRandomNumberGenerator& __urng, |
5978 | const param_type& __p) |
5979 | { this->__generate_impl(__f, __t, __urng, __p); } |
5980 | |
5981 | template<typename _UniformRandomNumberGenerator> |
5982 | void |
5983 | __generate(result_type* __f, result_type* __t, |
5984 | _UniformRandomNumberGenerator& __urng, |
5985 | const param_type& __p) |
5986 | { this->__generate_impl(__f, __t, __urng, __p); } |
5987 | |
5988 | /** |
5989 | * @brief Return true if two piecewise linear distributions have the |
5990 | * same parameters. |
5991 | */ |
5992 | friend bool |
5993 | operator==(const piecewise_linear_distribution& __d1, |
5994 | const piecewise_linear_distribution& __d2) |
5995 | { return __d1._M_param == __d2._M_param; } |
5996 | |
5997 | /** |
5998 | * @brief Inserts a %piecewise_linear_distribution random number |
5999 | * distribution @p __x into the output stream @p __os. |
6000 | * |
6001 | * @param __os An output stream. |
6002 | * @param __x A %piecewise_linear_distribution random number |
6003 | * distribution. |
6004 | * |
6005 | * @returns The output stream with the state of @p __x inserted or in |
6006 | * an error state. |
6007 | */ |
6008 | template<typename _RealType1, typename _CharT, typename _Traits> |
6009 | friend std::basic_ostream<_CharT, _Traits>& |
6010 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
6011 | const std::piecewise_linear_distribution<_RealType1>& __x); |
6012 | |
6013 | /** |
6014 | * @brief Extracts a %piecewise_linear_distribution random number |
6015 | * distribution @p __x from the input stream @p __is. |
6016 | * |
6017 | * @param __is An input stream. |
6018 | * @param __x A %piecewise_linear_distribution random number |
6019 | * generator engine. |
6020 | * |
6021 | * @returns The input stream with @p __x extracted or in an error |
6022 | * state. |
6023 | */ |
6024 | template<typename _RealType1, typename _CharT, typename _Traits> |
6025 | friend std::basic_istream<_CharT, _Traits>& |
6026 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
6027 | std::piecewise_linear_distribution<_RealType1>& __x); |
6028 | |
6029 | private: |
6030 | template<typename _ForwardIterator, |
6031 | typename _UniformRandomNumberGenerator> |
6032 | void |
6033 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
6034 | _UniformRandomNumberGenerator& __urng, |
6035 | const param_type& __p); |
6036 | |
6037 | param_type _M_param; |
6038 | }; |
6039 | |
6040 | /** |
6041 | * @brief Return true if two piecewise linear distributions have |
6042 | * different parameters. |
6043 | */ |
6044 | template<typename _RealType> |
6045 | inline bool |
6046 | operator!=(const std::piecewise_linear_distribution<_RealType>& __d1, |
6047 | const std::piecewise_linear_distribution<_RealType>& __d2) |
6048 | { return !(__d1 == __d2); } |
6049 | |
6050 | |
6051 | /// @} group random_distributions_poisson |
6052 | |
6053 | /// @} *group random_distributions |
6054 | |
6055 | /** |
6056 | * @addtogroup random_utilities Random Number Utilities |
6057 | * @ingroup random |
6058 | * @{ |
6059 | */ |
6060 | |
6061 | /** |
6062 | * @brief The seed_seq class generates sequences of seeds for random |
6063 | * number generators. |
6064 | */ |
6065 | class seed_seq |
6066 | { |
6067 | public: |
6068 | /** The type of the seed vales. */ |
6069 | typedef uint_least32_t result_type; |
6070 | |
6071 | /** Default constructor. */ |
6072 | seed_seq() noexcept |
6073 | : _M_v() |
6074 | { } |
6075 | |
6076 | template<typename _IntType, typename = _Require<is_integral<_IntType>>> |
6077 | seed_seq(std::initializer_list<_IntType> __il); |
6078 | |
6079 | template<typename _InputIterator> |
6080 | seed_seq(_InputIterator __begin, _InputIterator __end); |
6081 | |
6082 | // generating functions |
6083 | template<typename _RandomAccessIterator> |
6084 | void |
6085 | generate(_RandomAccessIterator __begin, _RandomAccessIterator __end); |
6086 | |
6087 | // property functions |
6088 | size_t size() const noexcept |
6089 | { return _M_v.size(); } |
6090 | |
6091 | template<typename _OutputIterator> |
6092 | void |
6093 | param(_OutputIterator __dest) const |
6094 | { std::copy(_M_v.begin(), _M_v.end(), __dest); } |
6095 | |
6096 | // no copy functions |
6097 | seed_seq(const seed_seq&) = delete; |
6098 | seed_seq& operator=(const seed_seq&) = delete; |
6099 | |
6100 | private: |
6101 | std::vector<result_type> _M_v; |
6102 | }; |
6103 | |
6104 | /// @} group random_utilities |
6105 | |
6106 | /// @} group random |
6107 | |
6108 | _GLIBCXX_END_NAMESPACE_VERSION |
6109 | } // namespace std |
6110 | |
6111 | #endif |
6112 | |