| 1 | // Internal policy header for unordered_set and unordered_map -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2010-2023 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** @file bits/hashtable_policy.h |
| 26 | * This is an internal header file, included by other library headers. |
| 27 | * Do not attempt to use it directly. |
| 28 | * @headername{unordered_map,unordered_set} |
| 29 | */ |
| 30 | |
| 31 | #ifndef _HASHTABLE_POLICY_H |
| 32 | #define _HASHTABLE_POLICY_H 1 |
| 33 | |
| 34 | #include <tuple> // for std::tuple, std::forward_as_tuple |
| 35 | #include <bits/functional_hash.h> // for __is_fast_hash |
| 36 | #include <bits/stl_algobase.h> // for std::min, std::is_permutation. |
| 37 | #include <bits/stl_pair.h> // for std::pair |
| 38 | #include <ext/aligned_buffer.h> // for __gnu_cxx::__aligned_buffer |
| 39 | #include <ext/alloc_traits.h> // for std::__alloc_rebind |
| 40 | #include <ext/numeric_traits.h> // for __gnu_cxx::__int_traits |
| 41 | |
| 42 | namespace std _GLIBCXX_VISIBILITY(default) |
| 43 | { |
| 44 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 45 | /// @cond undocumented |
| 46 | |
| 47 | template<typename _Key, typename _Value, typename _Alloc, |
| 48 | typename _ExtractKey, typename _Equal, |
| 49 | typename _Hash, typename _RangeHash, typename _Unused, |
| 50 | typename _RehashPolicy, typename _Traits> |
| 51 | class _Hashtable; |
| 52 | |
| 53 | namespace __detail |
| 54 | { |
| 55 | /** |
| 56 | * @defgroup hashtable-detail Base and Implementation Classes |
| 57 | * @ingroup unordered_associative_containers |
| 58 | * @{ |
| 59 | */ |
| 60 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 61 | typename _Equal, typename _Hash, typename _RangeHash, |
| 62 | typename _Unused, typename _Traits> |
| 63 | struct _Hashtable_base; |
| 64 | |
| 65 | // Helper function: return distance(first, last) for forward |
| 66 | // iterators, or 0/1 for input iterators. |
| 67 | template<typename _Iterator> |
| 68 | inline typename std::iterator_traits<_Iterator>::difference_type |
| 69 | __distance_fw(_Iterator __first, _Iterator __last, |
| 70 | std::input_iterator_tag) |
| 71 | { return __first != __last ? 1 : 0; } |
| 72 | |
| 73 | template<typename _Iterator> |
| 74 | inline typename std::iterator_traits<_Iterator>::difference_type |
| 75 | __distance_fw(_Iterator __first, _Iterator __last, |
| 76 | std::forward_iterator_tag) |
| 77 | { return std::distance(__first, __last); } |
| 78 | |
| 79 | template<typename _Iterator> |
| 80 | inline typename std::iterator_traits<_Iterator>::difference_type |
| 81 | __distance_fw(_Iterator __first, _Iterator __last) |
| 82 | { return __distance_fw(__first, __last, |
| 83 | std::__iterator_category(__first)); } |
| 84 | |
| 85 | struct _Identity |
| 86 | { |
| 87 | template<typename _Tp> |
| 88 | _Tp&& |
| 89 | operator()(_Tp&& __x) const noexcept |
| 90 | { return std::forward<_Tp>(__x); } |
| 91 | }; |
| 92 | |
| 93 | struct _Select1st |
| 94 | { |
| 95 | template<typename _Pair> |
| 96 | struct __1st_type; |
| 97 | |
| 98 | template<typename _Tp, typename _Up> |
| 99 | struct __1st_type<pair<_Tp, _Up>> |
| 100 | { using type = _Tp; }; |
| 101 | |
| 102 | template<typename _Tp, typename _Up> |
| 103 | struct __1st_type<const pair<_Tp, _Up>> |
| 104 | { using type = const _Tp; }; |
| 105 | |
| 106 | template<typename _Pair> |
| 107 | struct __1st_type<_Pair&> |
| 108 | { using type = typename __1st_type<_Pair>::type&; }; |
| 109 | |
| 110 | template<typename _Tp> |
| 111 | typename __1st_type<_Tp>::type&& |
| 112 | operator()(_Tp&& __x) const noexcept |
| 113 | { return std::forward<_Tp>(__x).first; } |
| 114 | }; |
| 115 | |
| 116 | template<typename _ExKey, typename _Value> |
| 117 | struct _ConvertToValueType; |
| 118 | |
| 119 | template<typename _Value> |
| 120 | struct _ConvertToValueType<_Identity, _Value> |
| 121 | { |
| 122 | template<typename _Kt> |
| 123 | constexpr _Kt&& |
| 124 | operator()(_Kt&& __k) const noexcept |
| 125 | { return std::forward<_Kt>(__k); } |
| 126 | }; |
| 127 | |
| 128 | template<typename _Value> |
| 129 | struct _ConvertToValueType<_Select1st, _Value> |
| 130 | { |
| 131 | constexpr _Value&& |
| 132 | operator()(_Value&& __x) const noexcept |
| 133 | { return std::move(__x); } |
| 134 | |
| 135 | constexpr const _Value& |
| 136 | operator()(const _Value& __x) const noexcept |
| 137 | { return __x; } |
| 138 | |
| 139 | template<typename _Kt, typename _Val> |
| 140 | constexpr std::pair<_Kt, _Val>&& |
| 141 | operator()(std::pair<_Kt, _Val>&& __x) const noexcept |
| 142 | { return std::move(__x); } |
| 143 | |
| 144 | template<typename _Kt, typename _Val> |
| 145 | constexpr const std::pair<_Kt, _Val>& |
| 146 | operator()(const std::pair<_Kt, _Val>& __x) const noexcept |
| 147 | { return __x; } |
| 148 | }; |
| 149 | |
| 150 | template<typename _ExKey> |
| 151 | struct _NodeBuilder; |
| 152 | |
| 153 | template<> |
| 154 | struct _NodeBuilder<_Select1st> |
| 155 | { |
| 156 | template<typename _Kt, typename _Arg, typename _NodeGenerator> |
| 157 | static auto |
| 158 | _S_build(_Kt&& __k, _Arg&& __arg, const _NodeGenerator& __node_gen) |
| 159 | -> typename _NodeGenerator::__node_type* |
| 160 | { |
| 161 | return __node_gen(std::forward<_Kt>(__k), |
| 162 | std::forward<_Arg>(__arg).second); |
| 163 | } |
| 164 | }; |
| 165 | |
| 166 | template<> |
| 167 | struct _NodeBuilder<_Identity> |
| 168 | { |
| 169 | template<typename _Kt, typename _Arg, typename _NodeGenerator> |
| 170 | static auto |
| 171 | _S_build(_Kt&& __k, _Arg&&, const _NodeGenerator& __node_gen) |
| 172 | -> typename _NodeGenerator::__node_type* |
| 173 | { return __node_gen(std::forward<_Kt>(__k)); } |
| 174 | }; |
| 175 | |
| 176 | template<typename _NodeAlloc> |
| 177 | struct _Hashtable_alloc; |
| 178 | |
| 179 | // Functor recycling a pool of nodes and using allocation once the pool is |
| 180 | // empty. |
| 181 | template<typename _NodeAlloc> |
| 182 | struct _ReuseOrAllocNode |
| 183 | { |
| 184 | private: |
| 185 | using __node_alloc_type = _NodeAlloc; |
| 186 | using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>; |
| 187 | using __node_alloc_traits = |
| 188 | typename __hashtable_alloc::__node_alloc_traits; |
| 189 | |
| 190 | public: |
| 191 | using __node_type = typename __hashtable_alloc::__node_type; |
| 192 | |
| 193 | _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h) |
| 194 | : _M_nodes(__nodes), _M_h(__h) { } |
| 195 | _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete; |
| 196 | |
| 197 | ~_ReuseOrAllocNode() |
| 198 | { _M_h._M_deallocate_nodes(_M_nodes); } |
| 199 | |
| 200 | template<typename... _Args> |
| 201 | __node_type* |
| 202 | operator()(_Args&&... __args) const |
| 203 | { |
| 204 | if (_M_nodes) |
| 205 | { |
| 206 | __node_type* __node = _M_nodes; |
| 207 | _M_nodes = _M_nodes->_M_next(); |
| 208 | __node->_M_nxt = nullptr; |
| 209 | auto& __a = _M_h._M_node_allocator(); |
| 210 | __node_alloc_traits::destroy(__a, __node->_M_valptr()); |
| 211 | __try |
| 212 | { |
| 213 | __node_alloc_traits::construct(__a, __node->_M_valptr(), |
| 214 | std::forward<_Args>(__args)...); |
| 215 | } |
| 216 | __catch(...) |
| 217 | { |
| 218 | _M_h._M_deallocate_node_ptr(__node); |
| 219 | __throw_exception_again; |
| 220 | } |
| 221 | return __node; |
| 222 | } |
| 223 | return _M_h._M_allocate_node(std::forward<_Args>(__args)...); |
| 224 | } |
| 225 | |
| 226 | private: |
| 227 | mutable __node_type* _M_nodes; |
| 228 | __hashtable_alloc& _M_h; |
| 229 | }; |
| 230 | |
| 231 | // Functor similar to the previous one but without any pool of nodes to |
| 232 | // recycle. |
| 233 | template<typename _NodeAlloc> |
| 234 | struct _AllocNode |
| 235 | { |
| 236 | private: |
| 237 | using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>; |
| 238 | |
| 239 | public: |
| 240 | using __node_type = typename __hashtable_alloc::__node_type; |
| 241 | |
| 242 | _AllocNode(__hashtable_alloc& __h) |
| 243 | : _M_h(__h) { } |
| 244 | |
| 245 | template<typename... _Args> |
| 246 | __node_type* |
| 247 | operator()(_Args&&... __args) const |
| 248 | { return _M_h._M_allocate_node(std::forward<_Args>(__args)...); } |
| 249 | |
| 250 | private: |
| 251 | __hashtable_alloc& _M_h; |
| 252 | }; |
| 253 | |
| 254 | // Auxiliary types used for all instantiations of _Hashtable nodes |
| 255 | // and iterators. |
| 256 | |
| 257 | /** |
| 258 | * struct _Hashtable_traits |
| 259 | * |
| 260 | * Important traits for hash tables. |
| 261 | * |
| 262 | * @tparam _Cache_hash_code Boolean value. True if the value of |
| 263 | * the hash function is stored along with the value. This is a |
| 264 | * time-space tradeoff. Storing it may improve lookup speed by |
| 265 | * reducing the number of times we need to call the _Hash or _Equal |
| 266 | * functors. |
| 267 | * |
| 268 | * @tparam _Constant_iterators Boolean value. True if iterator and |
| 269 | * const_iterator are both constant iterator types. This is true |
| 270 | * for unordered_set and unordered_multiset, false for |
| 271 | * unordered_map and unordered_multimap. |
| 272 | * |
| 273 | * @tparam _Unique_keys Boolean value. True if the return value |
| 274 | * of _Hashtable::count(k) is always at most one, false if it may |
| 275 | * be an arbitrary number. This is true for unordered_set and |
| 276 | * unordered_map, false for unordered_multiset and |
| 277 | * unordered_multimap. |
| 278 | */ |
| 279 | template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> |
| 280 | struct _Hashtable_traits |
| 281 | { |
| 282 | using __hash_cached = __bool_constant<_Cache_hash_code>; |
| 283 | using __constant_iterators = __bool_constant<_Constant_iterators>; |
| 284 | using __unique_keys = __bool_constant<_Unique_keys>; |
| 285 | }; |
| 286 | |
| 287 | /** |
| 288 | * struct _Hashtable_hash_traits |
| 289 | * |
| 290 | * Important traits for hash tables depending on associated hasher. |
| 291 | * |
| 292 | */ |
| 293 | template<typename _Hash> |
| 294 | struct _Hashtable_hash_traits |
| 295 | { |
| 296 | static constexpr std::size_t |
| 297 | __small_size_threshold() noexcept |
| 298 | { return std::__is_fast_hash<_Hash>::value ? 0 : 20; } |
| 299 | }; |
| 300 | |
| 301 | /** |
| 302 | * struct _Hash_node_base |
| 303 | * |
| 304 | * Nodes, used to wrap elements stored in the hash table. A policy |
| 305 | * template parameter of class template _Hashtable controls whether |
| 306 | * nodes also store a hash code. In some cases (e.g. strings) this |
| 307 | * may be a performance win. |
| 308 | */ |
| 309 | struct _Hash_node_base |
| 310 | { |
| 311 | _Hash_node_base* _M_nxt; |
| 312 | |
| 313 | _Hash_node_base() noexcept : _M_nxt() { } |
| 314 | |
| 315 | _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { } |
| 316 | }; |
| 317 | |
| 318 | /** |
| 319 | * struct _Hash_node_value_base |
| 320 | * |
| 321 | * Node type with the value to store. |
| 322 | */ |
| 323 | template<typename _Value> |
| 324 | struct _Hash_node_value_base |
| 325 | { |
| 326 | typedef _Value value_type; |
| 327 | |
| 328 | __gnu_cxx::__aligned_buffer<_Value> _M_storage; |
| 329 | |
| 330 | [[__gnu__::__always_inline__]] |
| 331 | _Value* |
| 332 | _M_valptr() noexcept |
| 333 | { return _M_storage._M_ptr(); } |
| 334 | |
| 335 | [[__gnu__::__always_inline__]] |
| 336 | const _Value* |
| 337 | _M_valptr() const noexcept |
| 338 | { return _M_storage._M_ptr(); } |
| 339 | |
| 340 | [[__gnu__::__always_inline__]] |
| 341 | _Value& |
| 342 | _M_v() noexcept |
| 343 | { return *_M_valptr(); } |
| 344 | |
| 345 | [[__gnu__::__always_inline__]] |
| 346 | const _Value& |
| 347 | _M_v() const noexcept |
| 348 | { return *_M_valptr(); } |
| 349 | }; |
| 350 | |
| 351 | /** |
| 352 | * Primary template struct _Hash_node_code_cache. |
| 353 | */ |
| 354 | template<bool _Cache_hash_code> |
| 355 | struct _Hash_node_code_cache |
| 356 | { }; |
| 357 | |
| 358 | /** |
| 359 | * Specialization for node with cache, struct _Hash_node_code_cache. |
| 360 | */ |
| 361 | template<> |
| 362 | struct _Hash_node_code_cache<true> |
| 363 | { std::size_t _M_hash_code; }; |
| 364 | |
| 365 | template<typename _Value, bool _Cache_hash_code> |
| 366 | struct _Hash_node_value |
| 367 | : _Hash_node_value_base<_Value> |
| 368 | , _Hash_node_code_cache<_Cache_hash_code> |
| 369 | { }; |
| 370 | |
| 371 | /** |
| 372 | * Primary template struct _Hash_node. |
| 373 | */ |
| 374 | template<typename _Value, bool _Cache_hash_code> |
| 375 | struct _Hash_node |
| 376 | : _Hash_node_base |
| 377 | , _Hash_node_value<_Value, _Cache_hash_code> |
| 378 | { |
| 379 | _Hash_node* |
| 380 | _M_next() const noexcept |
| 381 | { return static_cast<_Hash_node*>(this->_M_nxt); } |
| 382 | }; |
| 383 | |
| 384 | /// Base class for node iterators. |
| 385 | template<typename _Value, bool _Cache_hash_code> |
| 386 | struct _Node_iterator_base |
| 387 | { |
| 388 | using __node_type = _Hash_node<_Value, _Cache_hash_code>; |
| 389 | |
| 390 | __node_type* _M_cur; |
| 391 | |
| 392 | _Node_iterator_base() : _M_cur(nullptr) { } |
| 393 | _Node_iterator_base(__node_type* __p) noexcept |
| 394 | : _M_cur(__p) { } |
| 395 | |
| 396 | void |
| 397 | _M_incr() noexcept |
| 398 | { _M_cur = _M_cur->_M_next(); } |
| 399 | |
| 400 | friend bool |
| 401 | operator==(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
| 402 | noexcept |
| 403 | { return __x._M_cur == __y._M_cur; } |
| 404 | |
| 405 | #if __cpp_impl_three_way_comparison < 201907L |
| 406 | friend bool |
| 407 | operator!=(const _Node_iterator_base& __x, const _Node_iterator_base& __y) |
| 408 | noexcept |
| 409 | { return __x._M_cur != __y._M_cur; } |
| 410 | #endif |
| 411 | }; |
| 412 | |
| 413 | /// Node iterators, used to iterate through all the hashtable. |
| 414 | template<typename _Value, bool __constant_iterators, bool __cache> |
| 415 | struct _Node_iterator |
| 416 | : public _Node_iterator_base<_Value, __cache> |
| 417 | { |
| 418 | private: |
| 419 | using __base_type = _Node_iterator_base<_Value, __cache>; |
| 420 | using __node_type = typename __base_type::__node_type; |
| 421 | |
| 422 | public: |
| 423 | using value_type = _Value; |
| 424 | using difference_type = std::ptrdiff_t; |
| 425 | using iterator_category = std::forward_iterator_tag; |
| 426 | |
| 427 | using pointer = __conditional_t<__constant_iterators, |
| 428 | const value_type*, value_type*>; |
| 429 | |
| 430 | using reference = __conditional_t<__constant_iterators, |
| 431 | const value_type&, value_type&>; |
| 432 | |
| 433 | _Node_iterator() = default; |
| 434 | |
| 435 | explicit |
| 436 | _Node_iterator(__node_type* __p) noexcept |
| 437 | : __base_type(__p) { } |
| 438 | |
| 439 | reference |
| 440 | operator*() const noexcept |
| 441 | { return this->_M_cur->_M_v(); } |
| 442 | |
| 443 | pointer |
| 444 | operator->() const noexcept |
| 445 | { return this->_M_cur->_M_valptr(); } |
| 446 | |
| 447 | _Node_iterator& |
| 448 | operator++() noexcept |
| 449 | { |
| 450 | this->_M_incr(); |
| 451 | return *this; |
| 452 | } |
| 453 | |
| 454 | _Node_iterator |
| 455 | operator++(int) noexcept |
| 456 | { |
| 457 | _Node_iterator __tmp(*this); |
| 458 | this->_M_incr(); |
| 459 | return __tmp; |
| 460 | } |
| 461 | }; |
| 462 | |
| 463 | /// Node const_iterators, used to iterate through all the hashtable. |
| 464 | template<typename _Value, bool __constant_iterators, bool __cache> |
| 465 | struct _Node_const_iterator |
| 466 | : public _Node_iterator_base<_Value, __cache> |
| 467 | { |
| 468 | private: |
| 469 | using __base_type = _Node_iterator_base<_Value, __cache>; |
| 470 | using __node_type = typename __base_type::__node_type; |
| 471 | |
| 472 | public: |
| 473 | typedef _Value value_type; |
| 474 | typedef std::ptrdiff_t difference_type; |
| 475 | typedef std::forward_iterator_tag iterator_category; |
| 476 | |
| 477 | typedef const value_type* pointer; |
| 478 | typedef const value_type& reference; |
| 479 | |
| 480 | _Node_const_iterator() = default; |
| 481 | |
| 482 | explicit |
| 483 | _Node_const_iterator(__node_type* __p) noexcept |
| 484 | : __base_type(__p) { } |
| 485 | |
| 486 | _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, |
| 487 | __cache>& __x) noexcept |
| 488 | : __base_type(__x._M_cur) { } |
| 489 | |
| 490 | reference |
| 491 | operator*() const noexcept |
| 492 | { return this->_M_cur->_M_v(); } |
| 493 | |
| 494 | pointer |
| 495 | operator->() const noexcept |
| 496 | { return this->_M_cur->_M_valptr(); } |
| 497 | |
| 498 | _Node_const_iterator& |
| 499 | operator++() noexcept |
| 500 | { |
| 501 | this->_M_incr(); |
| 502 | return *this; |
| 503 | } |
| 504 | |
| 505 | _Node_const_iterator |
| 506 | operator++(int) noexcept |
| 507 | { |
| 508 | _Node_const_iterator __tmp(*this); |
| 509 | this->_M_incr(); |
| 510 | return __tmp; |
| 511 | } |
| 512 | }; |
| 513 | |
| 514 | // Many of class template _Hashtable's template parameters are policy |
| 515 | // classes. These are defaults for the policies. |
| 516 | |
| 517 | /// Default range hashing function: use division to fold a large number |
| 518 | /// into the range [0, N). |
| 519 | struct _Mod_range_hashing |
| 520 | { |
| 521 | typedef std::size_t first_argument_type; |
| 522 | typedef std::size_t second_argument_type; |
| 523 | typedef std::size_t result_type; |
| 524 | |
| 525 | result_type |
| 526 | operator()(first_argument_type __num, |
| 527 | second_argument_type __den) const noexcept |
| 528 | { return __num % __den; } |
| 529 | }; |
| 530 | |
| 531 | /// Default ranged hash function H. In principle it should be a |
| 532 | /// function object composed from objects of type H1 and H2 such that |
| 533 | /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of |
| 534 | /// h1 and h2. So instead we'll just use a tag to tell class template |
| 535 | /// hashtable to do that composition. |
| 536 | struct _Default_ranged_hash { }; |
| 537 | |
| 538 | /// Default value for rehash policy. Bucket size is (usually) the |
| 539 | /// smallest prime that keeps the load factor small enough. |
| 540 | struct _Prime_rehash_policy |
| 541 | { |
| 542 | using __has_load_factor = true_type; |
| 543 | |
| 544 | _Prime_rehash_policy(float __z = 1.0) noexcept |
| 545 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
| 546 | |
| 547 | float |
| 548 | max_load_factor() const noexcept |
| 549 | { return _M_max_load_factor; } |
| 550 | |
| 551 | // Return a bucket size no smaller than n. |
| 552 | std::size_t |
| 553 | _M_next_bkt(std::size_t __n) const; |
| 554 | |
| 555 | // Return a bucket count appropriate for n elements |
| 556 | std::size_t |
| 557 | _M_bkt_for_elements(std::size_t __n) const |
| 558 | { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
| 559 | |
| 560 | // __n_bkt is current bucket count, __n_elt is current element count, |
| 561 | // and __n_ins is number of elements to be inserted. Do we need to |
| 562 | // increase bucket count? If so, return make_pair(true, n), where n |
| 563 | // is the new bucket count. If not, return make_pair(false, 0). |
| 564 | std::pair<bool, std::size_t> |
| 565 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
| 566 | std::size_t __n_ins) const; |
| 567 | |
| 568 | typedef std::size_t _State; |
| 569 | |
| 570 | _State |
| 571 | _M_state() const |
| 572 | { return _M_next_resize; } |
| 573 | |
| 574 | void |
| 575 | _M_reset() noexcept |
| 576 | { _M_next_resize = 0; } |
| 577 | |
| 578 | void |
| 579 | _M_reset(_State __state) |
| 580 | { _M_next_resize = __state; } |
| 581 | |
| 582 | static const std::size_t _S_growth_factor = 2; |
| 583 | |
| 584 | float _M_max_load_factor; |
| 585 | mutable std::size_t _M_next_resize; |
| 586 | }; |
| 587 | |
| 588 | /// Range hashing function assuming that second arg is a power of 2. |
| 589 | struct _Mask_range_hashing |
| 590 | { |
| 591 | typedef std::size_t first_argument_type; |
| 592 | typedef std::size_t second_argument_type; |
| 593 | typedef std::size_t result_type; |
| 594 | |
| 595 | result_type |
| 596 | operator()(first_argument_type __num, |
| 597 | second_argument_type __den) const noexcept |
| 598 | { return __num & (__den - 1); } |
| 599 | }; |
| 600 | |
| 601 | /// Compute closest power of 2 not less than __n |
| 602 | inline std::size_t |
| 603 | __clp2(std::size_t __n) noexcept |
| 604 | { |
| 605 | using __gnu_cxx::__int_traits; |
| 606 | // Equivalent to return __n ? std::bit_ceil(__n) : 0; |
| 607 | if (__n < 2) |
| 608 | return __n; |
| 609 | const unsigned __lz = sizeof(size_t) > sizeof(long) |
| 610 | ? __builtin_clzll(__n - 1ull) |
| 611 | : __builtin_clzl(__n - 1ul); |
| 612 | // Doing two shifts avoids undefined behaviour when __lz == 0. |
| 613 | return (size_t(1) << (__int_traits<size_t>::__digits - __lz - 1)) << 1; |
| 614 | } |
| 615 | |
| 616 | /// Rehash policy providing power of 2 bucket numbers. Avoids modulo |
| 617 | /// operations. |
| 618 | struct _Power2_rehash_policy |
| 619 | { |
| 620 | using __has_load_factor = true_type; |
| 621 | |
| 622 | _Power2_rehash_policy(float __z = 1.0) noexcept |
| 623 | : _M_max_load_factor(__z), _M_next_resize(0) { } |
| 624 | |
| 625 | float |
| 626 | max_load_factor() const noexcept |
| 627 | { return _M_max_load_factor; } |
| 628 | |
| 629 | // Return a bucket size no smaller than n (as long as n is not above the |
| 630 | // highest power of 2). |
| 631 | std::size_t |
| 632 | _M_next_bkt(std::size_t __n) noexcept |
| 633 | { |
| 634 | if (__n == 0) |
| 635 | // Special case on container 1st initialization with 0 bucket count |
| 636 | // hint. We keep _M_next_resize to 0 to make sure that next time we |
| 637 | // want to add an element allocation will take place. |
| 638 | return 1; |
| 639 | |
| 640 | const auto __max_width = std::min<size_t>(a: sizeof(size_t), b: 8); |
| 641 | const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1); |
| 642 | std::size_t __res = __clp2(__n); |
| 643 | |
| 644 | if (__res == 0) |
| 645 | __res = __max_bkt; |
| 646 | else if (__res == 1) |
| 647 | // If __res is 1 we force it to 2 to make sure there will be an |
| 648 | // allocation so that nothing need to be stored in the initial |
| 649 | // single bucket |
| 650 | __res = 2; |
| 651 | |
| 652 | if (__res == __max_bkt) |
| 653 | // Set next resize to the max value so that we never try to rehash again |
| 654 | // as we already reach the biggest possible bucket number. |
| 655 | // Note that it might result in max_load_factor not being respected. |
| 656 | _M_next_resize = size_t(-1); |
| 657 | else |
| 658 | _M_next_resize |
| 659 | = __builtin_floor(__res * (double)_M_max_load_factor); |
| 660 | |
| 661 | return __res; |
| 662 | } |
| 663 | |
| 664 | // Return a bucket count appropriate for n elements |
| 665 | std::size_t |
| 666 | _M_bkt_for_elements(std::size_t __n) const noexcept |
| 667 | { return __builtin_ceil(__n / (double)_M_max_load_factor); } |
| 668 | |
| 669 | // __n_bkt is current bucket count, __n_elt is current element count, |
| 670 | // and __n_ins is number of elements to be inserted. Do we need to |
| 671 | // increase bucket count? If so, return make_pair(true, n), where n |
| 672 | // is the new bucket count. If not, return make_pair(false, 0). |
| 673 | std::pair<bool, std::size_t> |
| 674 | _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, |
| 675 | std::size_t __n_ins) noexcept |
| 676 | { |
| 677 | if (__n_elt + __n_ins > _M_next_resize) |
| 678 | { |
| 679 | // If _M_next_resize is 0 it means that we have nothing allocated so |
| 680 | // far and that we start inserting elements. In this case we start |
| 681 | // with an initial bucket size of 11. |
| 682 | double __min_bkts |
| 683 | = std::max<std::size_t>(a: __n_elt + __n_ins, b: _M_next_resize ? 0 : 11) |
| 684 | / (double)_M_max_load_factor; |
| 685 | if (__min_bkts >= __n_bkt) |
| 686 | return { true, |
| 687 | _M_next_bkt(n: std::max<std::size_t>(a: __builtin_floor(__min_bkts) + 1, |
| 688 | b: __n_bkt * _S_growth_factor)) }; |
| 689 | |
| 690 | _M_next_resize |
| 691 | = __builtin_floor(__n_bkt * (double)_M_max_load_factor); |
| 692 | return { false, 0 }; |
| 693 | } |
| 694 | else |
| 695 | return { false, 0 }; |
| 696 | } |
| 697 | |
| 698 | typedef std::size_t _State; |
| 699 | |
| 700 | _State |
| 701 | _M_state() const noexcept |
| 702 | { return _M_next_resize; } |
| 703 | |
| 704 | void |
| 705 | _M_reset() noexcept |
| 706 | { _M_next_resize = 0; } |
| 707 | |
| 708 | void |
| 709 | _M_reset(_State __state) noexcept |
| 710 | { _M_next_resize = __state; } |
| 711 | |
| 712 | static const std::size_t _S_growth_factor = 2; |
| 713 | |
| 714 | float _M_max_load_factor; |
| 715 | std::size_t _M_next_resize; |
| 716 | }; |
| 717 | |
| 718 | // Base classes for std::_Hashtable. We define these base classes |
| 719 | // because in some cases we want to do different things depending on |
| 720 | // the value of a policy class. In some cases the policy class |
| 721 | // affects which member functions and nested typedefs are defined; |
| 722 | // we handle that by specializing base class templates. Several of |
| 723 | // the base class templates need to access other members of class |
| 724 | // template _Hashtable, so we use a variant of the "Curiously |
| 725 | // Recurring Template Pattern" (CRTP) technique. |
| 726 | |
| 727 | /** |
| 728 | * Primary class template _Map_base. |
| 729 | * |
| 730 | * If the hashtable has a value type of the form pair<const T1, T2> and |
| 731 | * a key extraction policy (_ExtractKey) that returns the first part |
| 732 | * of the pair, the hashtable gets a mapped_type typedef. If it |
| 733 | * satisfies those criteria and also has unique keys, then it also |
| 734 | * gets an operator[]. |
| 735 | */ |
| 736 | template<typename _Key, typename _Value, typename _Alloc, |
| 737 | typename _ExtractKey, typename _Equal, |
| 738 | typename _Hash, typename _RangeHash, typename _Unused, |
| 739 | typename _RehashPolicy, typename _Traits, |
| 740 | bool _Unique_keys = _Traits::__unique_keys::value> |
| 741 | struct _Map_base { }; |
| 742 | |
| 743 | /// Partial specialization, __unique_keys set to false, std::pair value type. |
| 744 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| 745 | typename _Hash, typename _RangeHash, typename _Unused, |
| 746 | typename _RehashPolicy, typename _Traits> |
| 747 | struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
| 748 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
| 749 | { |
| 750 | using mapped_type = _Val; |
| 751 | }; |
| 752 | |
| 753 | /// Partial specialization, __unique_keys set to true. |
| 754 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| 755 | typename _Hash, typename _RangeHash, typename _Unused, |
| 756 | typename _RehashPolicy, typename _Traits> |
| 757 | struct _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
| 758 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
| 759 | { |
| 760 | private: |
| 761 | using __hashtable_base = _Hashtable_base<_Key, pair<const _Key, _Val>, |
| 762 | _Select1st, _Equal, _Hash, |
| 763 | _RangeHash, _Unused, |
| 764 | _Traits>; |
| 765 | |
| 766 | using __hashtable = _Hashtable<_Key, pair<const _Key, _Val>, _Alloc, |
| 767 | _Select1st, _Equal, _Hash, _RangeHash, |
| 768 | _Unused, _RehashPolicy, _Traits>; |
| 769 | |
| 770 | using __hash_code = typename __hashtable_base::__hash_code; |
| 771 | |
| 772 | public: |
| 773 | using key_type = typename __hashtable_base::key_type; |
| 774 | using mapped_type = _Val; |
| 775 | |
| 776 | mapped_type& |
| 777 | operator[](const key_type& __k); |
| 778 | |
| 779 | mapped_type& |
| 780 | operator[](key_type&& __k); |
| 781 | |
| 782 | // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| 783 | // DR 761. unordered_map needs an at() member function. |
| 784 | mapped_type& |
| 785 | at(const key_type& __k) |
| 786 | { |
| 787 | auto __ite = static_cast<__hashtable*>(this)->find(__k); |
| 788 | if (!__ite._M_cur) |
| 789 | __throw_out_of_range(__N("unordered_map::at" )); |
| 790 | return __ite->second; |
| 791 | } |
| 792 | |
| 793 | const mapped_type& |
| 794 | at(const key_type& __k) const |
| 795 | { |
| 796 | auto __ite = static_cast<const __hashtable*>(this)->find(__k); |
| 797 | if (!__ite._M_cur) |
| 798 | __throw_out_of_range(__N("unordered_map::at" )); |
| 799 | return __ite->second; |
| 800 | } |
| 801 | }; |
| 802 | |
| 803 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| 804 | typename _Hash, typename _RangeHash, typename _Unused, |
| 805 | typename _RehashPolicy, typename _Traits> |
| 806 | auto |
| 807 | _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
| 808 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
| 809 | operator[](const key_type& __k) |
| 810 | -> mapped_type& |
| 811 | { |
| 812 | __hashtable* __h = static_cast<__hashtable*>(this); |
| 813 | __hash_code __code = __h->_M_hash_code(__k); |
| 814 | std::size_t __bkt = __h->_M_bucket_index(__code); |
| 815 | if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
| 816 | return __node->_M_v().second; |
| 817 | |
| 818 | typename __hashtable::_Scoped_node __node { |
| 819 | __h, |
| 820 | std::piecewise_construct, |
| 821 | std::tuple<const key_type&>(__k), |
| 822 | std::tuple<>() |
| 823 | }; |
| 824 | auto __pos |
| 825 | = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
| 826 | __node._M_node = nullptr; |
| 827 | return __pos->second; |
| 828 | } |
| 829 | |
| 830 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| 831 | typename _Hash, typename _RangeHash, typename _Unused, |
| 832 | typename _RehashPolicy, typename _Traits> |
| 833 | auto |
| 834 | _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, |
| 835 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
| 836 | operator[](key_type&& __k) |
| 837 | -> mapped_type& |
| 838 | { |
| 839 | __hashtable* __h = static_cast<__hashtable*>(this); |
| 840 | __hash_code __code = __h->_M_hash_code(__k); |
| 841 | std::size_t __bkt = __h->_M_bucket_index(__code); |
| 842 | if (auto __node = __h->_M_find_node(__bkt, __k, __code)) |
| 843 | return __node->_M_v().second; |
| 844 | |
| 845 | typename __hashtable::_Scoped_node __node { |
| 846 | __h, |
| 847 | std::piecewise_construct, |
| 848 | std::forward_as_tuple(std::move(__k)), |
| 849 | std::tuple<>() |
| 850 | }; |
| 851 | auto __pos |
| 852 | = __h->_M_insert_unique_node(__bkt, __code, __node._M_node); |
| 853 | __node._M_node = nullptr; |
| 854 | return __pos->second; |
| 855 | } |
| 856 | |
| 857 | // Partial specialization for unordered_map<const T, U>, see PR 104174. |
| 858 | template<typename _Key, typename _Val, typename _Alloc, typename _Equal, |
| 859 | typename _Hash, typename _RangeHash, typename _Unused, |
| 860 | typename _RehashPolicy, typename _Traits, bool __uniq> |
| 861 | struct _Map_base<const _Key, pair<const _Key, _Val>, |
| 862 | _Alloc, _Select1st, _Equal, _Hash, |
| 863 | _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq> |
| 864 | : _Map_base<_Key, pair<const _Key, _Val>, _Alloc, _Select1st, _Equal, _Hash, |
| 865 | _RangeHash, _Unused, _RehashPolicy, _Traits, __uniq> |
| 866 | { }; |
| 867 | |
| 868 | /** |
| 869 | * Primary class template _Insert_base. |
| 870 | * |
| 871 | * Defines @c insert member functions appropriate to all _Hashtables. |
| 872 | */ |
| 873 | template<typename _Key, typename _Value, typename _Alloc, |
| 874 | typename _ExtractKey, typename _Equal, |
| 875 | typename _Hash, typename _RangeHash, typename _Unused, |
| 876 | typename _RehashPolicy, typename _Traits> |
| 877 | struct _Insert_base |
| 878 | { |
| 879 | protected: |
| 880 | using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, |
| 881 | _Equal, _Hash, _RangeHash, |
| 882 | _Unused, _Traits>; |
| 883 | |
| 884 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 885 | _Hash, _RangeHash, |
| 886 | _Unused, _RehashPolicy, _Traits>; |
| 887 | |
| 888 | using __hash_cached = typename _Traits::__hash_cached; |
| 889 | using __constant_iterators = typename _Traits::__constant_iterators; |
| 890 | |
| 891 | using __hashtable_alloc = _Hashtable_alloc< |
| 892 | __alloc_rebind<_Alloc, _Hash_node<_Value, |
| 893 | __hash_cached::value>>>; |
| 894 | |
| 895 | using value_type = typename __hashtable_base::value_type; |
| 896 | using size_type = typename __hashtable_base::size_type; |
| 897 | |
| 898 | using __unique_keys = typename _Traits::__unique_keys; |
| 899 | using __node_alloc_type = typename __hashtable_alloc::__node_alloc_type; |
| 900 | using __node_gen_type = _AllocNode<__node_alloc_type>; |
| 901 | |
| 902 | __hashtable& |
| 903 | _M_conjure_hashtable() |
| 904 | { return *(static_cast<__hashtable*>(this)); } |
| 905 | |
| 906 | template<typename _InputIterator, typename _NodeGetter> |
| 907 | void |
| 908 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
| 909 | const _NodeGetter&, true_type __uks); |
| 910 | |
| 911 | template<typename _InputIterator, typename _NodeGetter> |
| 912 | void |
| 913 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
| 914 | const _NodeGetter&, false_type __uks); |
| 915 | |
| 916 | public: |
| 917 | using iterator = _Node_iterator<_Value, __constant_iterators::value, |
| 918 | __hash_cached::value>; |
| 919 | |
| 920 | using const_iterator = _Node_const_iterator<_Value, |
| 921 | __constant_iterators::value, |
| 922 | __hash_cached::value>; |
| 923 | |
| 924 | using __ireturn_type = __conditional_t<__unique_keys::value, |
| 925 | std::pair<iterator, bool>, |
| 926 | iterator>; |
| 927 | |
| 928 | __ireturn_type |
| 929 | insert(const value_type& __v) |
| 930 | { |
| 931 | __hashtable& __h = _M_conjure_hashtable(); |
| 932 | __node_gen_type __node_gen(__h); |
| 933 | return __h._M_insert(__v, __node_gen, __unique_keys{}); |
| 934 | } |
| 935 | |
| 936 | iterator |
| 937 | insert(const_iterator __hint, const value_type& __v) |
| 938 | { |
| 939 | __hashtable& __h = _M_conjure_hashtable(); |
| 940 | __node_gen_type __node_gen(__h); |
| 941 | return __h._M_insert(__hint, __v, __node_gen, __unique_keys{}); |
| 942 | } |
| 943 | |
| 944 | template<typename _KType, typename... _Args> |
| 945 | std::pair<iterator, bool> |
| 946 | try_emplace(const_iterator, _KType&& __k, _Args&&... __args) |
| 947 | { |
| 948 | __hashtable& __h = _M_conjure_hashtable(); |
| 949 | auto __code = __h._M_hash_code(__k); |
| 950 | std::size_t __bkt = __h._M_bucket_index(__code); |
| 951 | if (auto __node = __h._M_find_node(__bkt, __k, __code)) |
| 952 | return { iterator(__node), false }; |
| 953 | |
| 954 | typename __hashtable::_Scoped_node __node { |
| 955 | &__h, |
| 956 | std::piecewise_construct, |
| 957 | std::forward_as_tuple(std::forward<_KType>(__k)), |
| 958 | std::forward_as_tuple(std::forward<_Args>(__args)...) |
| 959 | }; |
| 960 | auto __it |
| 961 | = __h._M_insert_unique_node(__bkt, __code, __node._M_node); |
| 962 | __node._M_node = nullptr; |
| 963 | return { __it, true }; |
| 964 | } |
| 965 | |
| 966 | void |
| 967 | insert(initializer_list<value_type> __l) |
| 968 | { this->insert(__l.begin(), __l.end()); } |
| 969 | |
| 970 | template<typename _InputIterator> |
| 971 | void |
| 972 | insert(_InputIterator __first, _InputIterator __last) |
| 973 | { |
| 974 | __hashtable& __h = _M_conjure_hashtable(); |
| 975 | __node_gen_type __node_gen(__h); |
| 976 | return _M_insert_range(__first, __last, __node_gen, __unique_keys{}); |
| 977 | } |
| 978 | }; |
| 979 | |
| 980 | template<typename _Key, typename _Value, typename _Alloc, |
| 981 | typename _ExtractKey, typename _Equal, |
| 982 | typename _Hash, typename _RangeHash, typename _Unused, |
| 983 | typename _RehashPolicy, typename _Traits> |
| 984 | template<typename _InputIterator, typename _NodeGetter> |
| 985 | void |
| 986 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 987 | _Hash, _RangeHash, _Unused, |
| 988 | _RehashPolicy, _Traits>:: |
| 989 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
| 990 | const _NodeGetter& __node_gen, true_type __uks) |
| 991 | { |
| 992 | __hashtable& __h = _M_conjure_hashtable(); |
| 993 | for (; __first != __last; ++__first) |
| 994 | __h._M_insert(*__first, __node_gen, __uks); |
| 995 | } |
| 996 | |
| 997 | template<typename _Key, typename _Value, typename _Alloc, |
| 998 | typename _ExtractKey, typename _Equal, |
| 999 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1000 | typename _RehashPolicy, typename _Traits> |
| 1001 | template<typename _InputIterator, typename _NodeGetter> |
| 1002 | void |
| 1003 | _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1004 | _Hash, _RangeHash, _Unused, |
| 1005 | _RehashPolicy, _Traits>:: |
| 1006 | _M_insert_range(_InputIterator __first, _InputIterator __last, |
| 1007 | const _NodeGetter& __node_gen, false_type __uks) |
| 1008 | { |
| 1009 | using __rehash_type = typename __hashtable::__rehash_type; |
| 1010 | using __rehash_state = typename __hashtable::__rehash_state; |
| 1011 | using pair_type = std::pair<bool, std::size_t>; |
| 1012 | |
| 1013 | size_type __n_elt = __detail::__distance_fw(__first, __last); |
| 1014 | if (__n_elt == 0) |
| 1015 | return; |
| 1016 | |
| 1017 | __hashtable& __h = _M_conjure_hashtable(); |
| 1018 | __rehash_type& __rehash = __h._M_rehash_policy; |
| 1019 | const __rehash_state& __saved_state = __rehash._M_state(); |
| 1020 | pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count, |
| 1021 | __h._M_element_count, |
| 1022 | __n_elt); |
| 1023 | |
| 1024 | if (__do_rehash.first) |
| 1025 | __h._M_rehash(__do_rehash.second, __saved_state); |
| 1026 | |
| 1027 | for (; __first != __last; ++__first) |
| 1028 | __h._M_insert(*__first, __node_gen, __uks); |
| 1029 | } |
| 1030 | |
| 1031 | /** |
| 1032 | * Primary class template _Insert. |
| 1033 | * |
| 1034 | * Defines @c insert member functions that depend on _Hashtable policies, |
| 1035 | * via partial specializations. |
| 1036 | */ |
| 1037 | template<typename _Key, typename _Value, typename _Alloc, |
| 1038 | typename _ExtractKey, typename _Equal, |
| 1039 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1040 | typename _RehashPolicy, typename _Traits, |
| 1041 | bool _Constant_iterators = _Traits::__constant_iterators::value> |
| 1042 | struct _Insert; |
| 1043 | |
| 1044 | /// Specialization. |
| 1045 | template<typename _Key, typename _Value, typename _Alloc, |
| 1046 | typename _ExtractKey, typename _Equal, |
| 1047 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1048 | typename _RehashPolicy, typename _Traits> |
| 1049 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1050 | _Hash, _RangeHash, _Unused, |
| 1051 | _RehashPolicy, _Traits, true> |
| 1052 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1053 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> |
| 1054 | { |
| 1055 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
| 1056 | _Equal, _Hash, _RangeHash, _Unused, |
| 1057 | _RehashPolicy, _Traits>; |
| 1058 | |
| 1059 | using value_type = typename __base_type::value_type; |
| 1060 | using iterator = typename __base_type::iterator; |
| 1061 | using const_iterator = typename __base_type::const_iterator; |
| 1062 | using __ireturn_type = typename __base_type::__ireturn_type; |
| 1063 | |
| 1064 | using __unique_keys = typename __base_type::__unique_keys; |
| 1065 | using __hashtable = typename __base_type::__hashtable; |
| 1066 | using __node_gen_type = typename __base_type::__node_gen_type; |
| 1067 | |
| 1068 | using __base_type::insert; |
| 1069 | |
| 1070 | __ireturn_type |
| 1071 | insert(value_type&& __v) |
| 1072 | { |
| 1073 | __hashtable& __h = this->_M_conjure_hashtable(); |
| 1074 | __node_gen_type __node_gen(__h); |
| 1075 | return __h._M_insert(std::move(__v), __node_gen, __unique_keys{}); |
| 1076 | } |
| 1077 | |
| 1078 | iterator |
| 1079 | insert(const_iterator __hint, value_type&& __v) |
| 1080 | { |
| 1081 | __hashtable& __h = this->_M_conjure_hashtable(); |
| 1082 | __node_gen_type __node_gen(__h); |
| 1083 | return __h._M_insert(__hint, std::move(__v), __node_gen, |
| 1084 | __unique_keys{}); |
| 1085 | } |
| 1086 | }; |
| 1087 | |
| 1088 | /// Specialization. |
| 1089 | template<typename _Key, typename _Value, typename _Alloc, |
| 1090 | typename _ExtractKey, typename _Equal, |
| 1091 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1092 | typename _RehashPolicy, typename _Traits> |
| 1093 | struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1094 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
| 1095 | : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1096 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits> |
| 1097 | { |
| 1098 | using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, |
| 1099 | _Equal, _Hash, _RangeHash, _Unused, |
| 1100 | _RehashPolicy, _Traits>; |
| 1101 | using value_type = typename __base_type::value_type; |
| 1102 | using iterator = typename __base_type::iterator; |
| 1103 | using const_iterator = typename __base_type::const_iterator; |
| 1104 | |
| 1105 | using __unique_keys = typename __base_type::__unique_keys; |
| 1106 | using __hashtable = typename __base_type::__hashtable; |
| 1107 | using __ireturn_type = typename __base_type::__ireturn_type; |
| 1108 | |
| 1109 | using __base_type::insert; |
| 1110 | |
| 1111 | template<typename _Pair> |
| 1112 | using __is_cons = std::is_constructible<value_type, _Pair&&>; |
| 1113 | |
| 1114 | template<typename _Pair> |
| 1115 | using _IFcons = std::enable_if<__is_cons<_Pair>::value>; |
| 1116 | |
| 1117 | template<typename _Pair> |
| 1118 | using _IFconsp = typename _IFcons<_Pair>::type; |
| 1119 | |
| 1120 | template<typename _Pair, typename = _IFconsp<_Pair>> |
| 1121 | __ireturn_type |
| 1122 | insert(_Pair&& __v) |
| 1123 | { |
| 1124 | __hashtable& __h = this->_M_conjure_hashtable(); |
| 1125 | return __h._M_emplace(__unique_keys{}, std::forward<_Pair>(__v)); |
| 1126 | } |
| 1127 | |
| 1128 | template<typename _Pair, typename = _IFconsp<_Pair>> |
| 1129 | iterator |
| 1130 | insert(const_iterator __hint, _Pair&& __v) |
| 1131 | { |
| 1132 | __hashtable& __h = this->_M_conjure_hashtable(); |
| 1133 | return __h._M_emplace(__hint, __unique_keys{}, |
| 1134 | std::forward<_Pair>(__v)); |
| 1135 | } |
| 1136 | }; |
| 1137 | |
| 1138 | template<typename _Policy> |
| 1139 | using __has_load_factor = typename _Policy::__has_load_factor; |
| 1140 | |
| 1141 | /** |
| 1142 | * Primary class template _Rehash_base. |
| 1143 | * |
| 1144 | * Give hashtable the max_load_factor functions and reserve iff the |
| 1145 | * rehash policy supports it. |
| 1146 | */ |
| 1147 | template<typename _Key, typename _Value, typename _Alloc, |
| 1148 | typename _ExtractKey, typename _Equal, |
| 1149 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1150 | typename _RehashPolicy, typename _Traits, |
| 1151 | typename = |
| 1152 | __detected_or_t<false_type, __has_load_factor, _RehashPolicy>> |
| 1153 | struct _Rehash_base; |
| 1154 | |
| 1155 | /// Specialization when rehash policy doesn't provide load factor management. |
| 1156 | template<typename _Key, typename _Value, typename _Alloc, |
| 1157 | typename _ExtractKey, typename _Equal, |
| 1158 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1159 | typename _RehashPolicy, typename _Traits> |
| 1160 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1161 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
| 1162 | false_type /* Has load factor */> |
| 1163 | { |
| 1164 | }; |
| 1165 | |
| 1166 | /// Specialization when rehash policy provide load factor management. |
| 1167 | template<typename _Key, typename _Value, typename _Alloc, |
| 1168 | typename _ExtractKey, typename _Equal, |
| 1169 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1170 | typename _RehashPolicy, typename _Traits> |
| 1171 | struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1172 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, |
| 1173 | true_type /* Has load factor */> |
| 1174 | { |
| 1175 | private: |
| 1176 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, |
| 1177 | _Equal, _Hash, _RangeHash, _Unused, |
| 1178 | _RehashPolicy, _Traits>; |
| 1179 | |
| 1180 | public: |
| 1181 | float |
| 1182 | max_load_factor() const noexcept |
| 1183 | { |
| 1184 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
| 1185 | return __this->__rehash_policy().max_load_factor(); |
| 1186 | } |
| 1187 | |
| 1188 | void |
| 1189 | max_load_factor(float __z) |
| 1190 | { |
| 1191 | __hashtable* __this = static_cast<__hashtable*>(this); |
| 1192 | __this->__rehash_policy(_RehashPolicy(__z)); |
| 1193 | } |
| 1194 | |
| 1195 | void |
| 1196 | reserve(std::size_t __n) |
| 1197 | { |
| 1198 | __hashtable* __this = static_cast<__hashtable*>(this); |
| 1199 | __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n)); |
| 1200 | } |
| 1201 | }; |
| 1202 | |
| 1203 | /** |
| 1204 | * Primary class template _Hashtable_ebo_helper. |
| 1205 | * |
| 1206 | * Helper class using EBO when it is not forbidden (the type is not |
| 1207 | * final) and when it is worth it (the type is empty.) |
| 1208 | */ |
| 1209 | template<int _Nm, typename _Tp, |
| 1210 | bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> |
| 1211 | struct _Hashtable_ebo_helper; |
| 1212 | |
| 1213 | /// Specialization using EBO. |
| 1214 | template<int _Nm, typename _Tp> |
| 1215 | struct _Hashtable_ebo_helper<_Nm, _Tp, true> |
| 1216 | : private _Tp |
| 1217 | { |
| 1218 | _Hashtable_ebo_helper() noexcept(noexcept(_Tp())) : _Tp() { } |
| 1219 | |
| 1220 | template<typename _OtherTp> |
| 1221 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
| 1222 | : _Tp(std::forward<_OtherTp>(__tp)) |
| 1223 | { } |
| 1224 | |
| 1225 | const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); } |
| 1226 | _Tp& _M_get() { return static_cast<_Tp&>(*this); } |
| 1227 | }; |
| 1228 | |
| 1229 | /// Specialization not using EBO. |
| 1230 | template<int _Nm, typename _Tp> |
| 1231 | struct _Hashtable_ebo_helper<_Nm, _Tp, false> |
| 1232 | { |
| 1233 | _Hashtable_ebo_helper() = default; |
| 1234 | |
| 1235 | template<typename _OtherTp> |
| 1236 | _Hashtable_ebo_helper(_OtherTp&& __tp) |
| 1237 | : _M_tp(std::forward<_OtherTp>(__tp)) |
| 1238 | { } |
| 1239 | |
| 1240 | const _Tp& _M_cget() const { return _M_tp; } |
| 1241 | _Tp& _M_get() { return _M_tp; } |
| 1242 | |
| 1243 | private: |
| 1244 | _Tp _M_tp{}; |
| 1245 | }; |
| 1246 | |
| 1247 | /** |
| 1248 | * Primary class template _Local_iterator_base. |
| 1249 | * |
| 1250 | * Base class for local iterators, used to iterate within a bucket |
| 1251 | * but not between buckets. |
| 1252 | */ |
| 1253 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1254 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1255 | bool __cache_hash_code> |
| 1256 | struct _Local_iterator_base; |
| 1257 | |
| 1258 | /** |
| 1259 | * Primary class template _Hash_code_base. |
| 1260 | * |
| 1261 | * Encapsulates two policy issues that aren't quite orthogonal. |
| 1262 | * (1) the difference between using a ranged hash function and using |
| 1263 | * the combination of a hash function and a range-hashing function. |
| 1264 | * In the former case we don't have such things as hash codes, so |
| 1265 | * we have a dummy type as placeholder. |
| 1266 | * (2) Whether or not we cache hash codes. Caching hash codes is |
| 1267 | * meaningless if we have a ranged hash function. |
| 1268 | * |
| 1269 | * We also put the key extraction objects here, for convenience. |
| 1270 | * Each specialization derives from one or more of the template |
| 1271 | * parameters to benefit from Ebo. This is important as this type |
| 1272 | * is inherited in some cases by the _Local_iterator_base type used |
| 1273 | * to implement local_iterator and const_local_iterator. As with |
| 1274 | * any iterator type we prefer to make it as small as possible. |
| 1275 | */ |
| 1276 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1277 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1278 | bool __cache_hash_code> |
| 1279 | struct _Hash_code_base |
| 1280 | : private _Hashtable_ebo_helper<1, _Hash> |
| 1281 | { |
| 1282 | private: |
| 1283 | using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>; |
| 1284 | |
| 1285 | // Gives the local iterator implementation access to _M_bucket_index(). |
| 1286 | friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1287 | _Hash, _RangeHash, _Unused, false>; |
| 1288 | |
| 1289 | public: |
| 1290 | typedef _Hash hasher; |
| 1291 | |
| 1292 | hasher |
| 1293 | hash_function() const |
| 1294 | { return _M_hash(); } |
| 1295 | |
| 1296 | protected: |
| 1297 | typedef std::size_t __hash_code; |
| 1298 | |
| 1299 | // We need the default constructor for the local iterators and _Hashtable |
| 1300 | // default constructor. |
| 1301 | _Hash_code_base() = default; |
| 1302 | |
| 1303 | _Hash_code_base(const _Hash& __hash) : __ebo_hash(__hash) { } |
| 1304 | |
| 1305 | __hash_code |
| 1306 | _M_hash_code(const _Key& __k) const |
| 1307 | { |
| 1308 | static_assert(__is_invocable<const _Hash&, const _Key&>{}, |
| 1309 | "hash function must be invocable with an argument of key type" ); |
| 1310 | return _M_hash()(__k); |
| 1311 | } |
| 1312 | |
| 1313 | template<typename _Kt> |
| 1314 | __hash_code |
| 1315 | _M_hash_code_tr(const _Kt& __k) const |
| 1316 | { |
| 1317 | static_assert(__is_invocable<const _Hash&, const _Kt&>{}, |
| 1318 | "hash function must be invocable with an argument of key type" ); |
| 1319 | return _M_hash()(__k); |
| 1320 | } |
| 1321 | |
| 1322 | __hash_code |
| 1323 | _M_hash_code(const _Hash_node_value<_Value, false>& __n) const |
| 1324 | { return _M_hash_code(_ExtractKey{}(__n._M_v())); } |
| 1325 | |
| 1326 | __hash_code |
| 1327 | _M_hash_code(const _Hash_node_value<_Value, true>& __n) const |
| 1328 | { return __n._M_hash_code; } |
| 1329 | |
| 1330 | std::size_t |
| 1331 | _M_bucket_index(__hash_code __c, std::size_t __bkt_count) const |
| 1332 | { return _RangeHash{}(__c, __bkt_count); } |
| 1333 | |
| 1334 | std::size_t |
| 1335 | _M_bucket_index(const _Hash_node_value<_Value, false>& __n, |
| 1336 | std::size_t __bkt_count) const |
| 1337 | noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>())) |
| 1338 | && noexcept(declval<const _RangeHash&>()((__hash_code)0, |
| 1339 | (std::size_t)0)) ) |
| 1340 | { |
| 1341 | return _RangeHash{}(_M_hash_code(_ExtractKey{}(__n._M_v())), |
| 1342 | __bkt_count); |
| 1343 | } |
| 1344 | |
| 1345 | std::size_t |
| 1346 | _M_bucket_index(const _Hash_node_value<_Value, true>& __n, |
| 1347 | std::size_t __bkt_count) const |
| 1348 | noexcept( noexcept(declval<const _RangeHash&>()((__hash_code)0, |
| 1349 | (std::size_t)0)) ) |
| 1350 | { return _RangeHash{}(__n._M_hash_code, __bkt_count); } |
| 1351 | |
| 1352 | void |
| 1353 | _M_store_code(_Hash_node_code_cache<false>&, __hash_code) const |
| 1354 | { } |
| 1355 | |
| 1356 | void |
| 1357 | _M_copy_code(_Hash_node_code_cache<false>&, |
| 1358 | const _Hash_node_code_cache<false>&) const |
| 1359 | { } |
| 1360 | |
| 1361 | void |
| 1362 | _M_store_code(_Hash_node_code_cache<true>& __n, __hash_code __c) const |
| 1363 | { __n._M_hash_code = __c; } |
| 1364 | |
| 1365 | void |
| 1366 | _M_copy_code(_Hash_node_code_cache<true>& __to, |
| 1367 | const _Hash_node_code_cache<true>& __from) const |
| 1368 | { __to._M_hash_code = __from._M_hash_code; } |
| 1369 | |
| 1370 | void |
| 1371 | _M_swap(_Hash_code_base& __x) |
| 1372 | { std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get()); } |
| 1373 | |
| 1374 | const _Hash& |
| 1375 | _M_hash() const { return __ebo_hash::_M_cget(); } |
| 1376 | }; |
| 1377 | |
| 1378 | /// Partial specialization used when nodes contain a cached hash code. |
| 1379 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1380 | typename _Hash, typename _RangeHash, typename _Unused> |
| 1381 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1382 | _Hash, _RangeHash, _Unused, true> |
| 1383 | : public _Node_iterator_base<_Value, true> |
| 1384 | { |
| 1385 | protected: |
| 1386 | using __base_node_iter = _Node_iterator_base<_Value, true>; |
| 1387 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
| 1388 | _Hash, _RangeHash, _Unused, true>; |
| 1389 | |
| 1390 | _Local_iterator_base() = default; |
| 1391 | _Local_iterator_base(const __hash_code_base&, |
| 1392 | _Hash_node<_Value, true>* __p, |
| 1393 | std::size_t __bkt, std::size_t __bkt_count) |
| 1394 | : __base_node_iter(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
| 1395 | { } |
| 1396 | |
| 1397 | void |
| 1398 | _M_incr() |
| 1399 | { |
| 1400 | __base_node_iter::_M_incr(); |
| 1401 | if (this->_M_cur) |
| 1402 | { |
| 1403 | std::size_t __bkt |
| 1404 | = _RangeHash{}(this->_M_cur->_M_hash_code, _M_bucket_count); |
| 1405 | if (__bkt != _M_bucket) |
| 1406 | this->_M_cur = nullptr; |
| 1407 | } |
| 1408 | } |
| 1409 | |
| 1410 | std::size_t _M_bucket; |
| 1411 | std::size_t _M_bucket_count; |
| 1412 | |
| 1413 | public: |
| 1414 | std::size_t |
| 1415 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
| 1416 | }; |
| 1417 | |
| 1418 | // Uninitialized storage for a _Hash_code_base. |
| 1419 | // This type is DefaultConstructible and Assignable even if the |
| 1420 | // _Hash_code_base type isn't, so that _Local_iterator_base<..., false> |
| 1421 | // can be DefaultConstructible and Assignable. |
| 1422 | template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value> |
| 1423 | struct _Hash_code_storage |
| 1424 | { |
| 1425 | __gnu_cxx::__aligned_buffer<_Tp> _M_storage; |
| 1426 | |
| 1427 | _Tp* |
| 1428 | _M_h() { return _M_storage._M_ptr(); } |
| 1429 | |
| 1430 | const _Tp* |
| 1431 | _M_h() const { return _M_storage._M_ptr(); } |
| 1432 | }; |
| 1433 | |
| 1434 | // Empty partial specialization for empty _Hash_code_base types. |
| 1435 | template<typename _Tp> |
| 1436 | struct _Hash_code_storage<_Tp, true> |
| 1437 | { |
| 1438 | static_assert( std::is_empty<_Tp>::value, "Type must be empty" ); |
| 1439 | |
| 1440 | // As _Tp is an empty type there will be no bytes written/read through |
| 1441 | // the cast pointer, so no strict-aliasing violation. |
| 1442 | _Tp* |
| 1443 | _M_h() { return reinterpret_cast<_Tp*>(this); } |
| 1444 | |
| 1445 | const _Tp* |
| 1446 | _M_h() const { return reinterpret_cast<const _Tp*>(this); } |
| 1447 | }; |
| 1448 | |
| 1449 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1450 | typename _Hash, typename _RangeHash, typename _Unused> |
| 1451 | using __hash_code_for_local_iter |
| 1452 | = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey, |
| 1453 | _Hash, _RangeHash, _Unused, false>>; |
| 1454 | |
| 1455 | // Partial specialization used when hash codes are not cached |
| 1456 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1457 | typename _Hash, typename _RangeHash, typename _Unused> |
| 1458 | struct _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1459 | _Hash, _RangeHash, _Unused, false> |
| 1460 | : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
| 1461 | _Unused> |
| 1462 | , _Node_iterator_base<_Value, false> |
| 1463 | { |
| 1464 | protected: |
| 1465 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
| 1466 | _Hash, _RangeHash, _Unused, false>; |
| 1467 | using __node_iter_base = _Node_iterator_base<_Value, false>; |
| 1468 | |
| 1469 | _Local_iterator_base() : _M_bucket_count(-1) { } |
| 1470 | |
| 1471 | _Local_iterator_base(const __hash_code_base& __base, |
| 1472 | _Hash_node<_Value, false>* __p, |
| 1473 | std::size_t __bkt, std::size_t __bkt_count) |
| 1474 | : __node_iter_base(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) |
| 1475 | { _M_init(__base); } |
| 1476 | |
| 1477 | ~_Local_iterator_base() |
| 1478 | { |
| 1479 | if (_M_bucket_count != size_t(-1)) |
| 1480 | _M_destroy(); |
| 1481 | } |
| 1482 | |
| 1483 | _Local_iterator_base(const _Local_iterator_base& __iter) |
| 1484 | : __node_iter_base(__iter._M_cur), _M_bucket(__iter._M_bucket) |
| 1485 | , _M_bucket_count(__iter._M_bucket_count) |
| 1486 | { |
| 1487 | if (_M_bucket_count != size_t(-1)) |
| 1488 | _M_init(base: *__iter._M_h()); |
| 1489 | } |
| 1490 | |
| 1491 | _Local_iterator_base& |
| 1492 | operator=(const _Local_iterator_base& __iter) |
| 1493 | { |
| 1494 | if (_M_bucket_count != -1) |
| 1495 | _M_destroy(); |
| 1496 | this->_M_cur = __iter._M_cur; |
| 1497 | _M_bucket = __iter._M_bucket; |
| 1498 | _M_bucket_count = __iter._M_bucket_count; |
| 1499 | if (_M_bucket_count != -1) |
| 1500 | _M_init(base: *__iter._M_h()); |
| 1501 | return *this; |
| 1502 | } |
| 1503 | |
| 1504 | void |
| 1505 | _M_incr() |
| 1506 | { |
| 1507 | __node_iter_base::_M_incr(); |
| 1508 | if (this->_M_cur) |
| 1509 | { |
| 1510 | std::size_t __bkt = this->_M_h()->_M_bucket_index(*this->_M_cur, |
| 1511 | _M_bucket_count); |
| 1512 | if (__bkt != _M_bucket) |
| 1513 | this->_M_cur = nullptr; |
| 1514 | } |
| 1515 | } |
| 1516 | |
| 1517 | std::size_t _M_bucket; |
| 1518 | std::size_t _M_bucket_count; |
| 1519 | |
| 1520 | void |
| 1521 | _M_init(const __hash_code_base& __base) |
| 1522 | { ::new(this->_M_h()) __hash_code_base(__base); } |
| 1523 | |
| 1524 | void |
| 1525 | _M_destroy() { this->_M_h()->~__hash_code_base(); } |
| 1526 | |
| 1527 | public: |
| 1528 | std::size_t |
| 1529 | _M_get_bucket() const { return _M_bucket; } // for debug mode |
| 1530 | }; |
| 1531 | |
| 1532 | /// local iterators |
| 1533 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1534 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1535 | bool __constant_iterators, bool __cache> |
| 1536 | struct _Local_iterator |
| 1537 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1538 | _Hash, _RangeHash, _Unused, __cache> |
| 1539 | { |
| 1540 | private: |
| 1541 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1542 | _Hash, _RangeHash, _Unused, __cache>; |
| 1543 | using __hash_code_base = typename __base_type::__hash_code_base; |
| 1544 | |
| 1545 | public: |
| 1546 | using value_type = _Value; |
| 1547 | using pointer = __conditional_t<__constant_iterators, |
| 1548 | const value_type*, value_type*>; |
| 1549 | using reference = __conditional_t<__constant_iterators, |
| 1550 | const value_type&, value_type&>; |
| 1551 | using difference_type = ptrdiff_t; |
| 1552 | using iterator_category = forward_iterator_tag; |
| 1553 | |
| 1554 | _Local_iterator() = default; |
| 1555 | |
| 1556 | _Local_iterator(const __hash_code_base& __base, |
| 1557 | _Hash_node<_Value, __cache>* __n, |
| 1558 | std::size_t __bkt, std::size_t __bkt_count) |
| 1559 | : __base_type(__base, __n, __bkt, __bkt_count) |
| 1560 | { } |
| 1561 | |
| 1562 | reference |
| 1563 | operator*() const |
| 1564 | { return this->_M_cur->_M_v(); } |
| 1565 | |
| 1566 | pointer |
| 1567 | operator->() const |
| 1568 | { return this->_M_cur->_M_valptr(); } |
| 1569 | |
| 1570 | _Local_iterator& |
| 1571 | operator++() |
| 1572 | { |
| 1573 | this->_M_incr(); |
| 1574 | return *this; |
| 1575 | } |
| 1576 | |
| 1577 | _Local_iterator |
| 1578 | operator++(int) |
| 1579 | { |
| 1580 | _Local_iterator __tmp(*this); |
| 1581 | this->_M_incr(); |
| 1582 | return __tmp; |
| 1583 | } |
| 1584 | }; |
| 1585 | |
| 1586 | /// local const_iterators |
| 1587 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1588 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1589 | bool __constant_iterators, bool __cache> |
| 1590 | struct _Local_const_iterator |
| 1591 | : public _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1592 | _Hash, _RangeHash, _Unused, __cache> |
| 1593 | { |
| 1594 | private: |
| 1595 | using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, |
| 1596 | _Hash, _RangeHash, _Unused, __cache>; |
| 1597 | using __hash_code_base = typename __base_type::__hash_code_base; |
| 1598 | |
| 1599 | public: |
| 1600 | typedef _Value value_type; |
| 1601 | typedef const value_type* pointer; |
| 1602 | typedef const value_type& reference; |
| 1603 | typedef std::ptrdiff_t difference_type; |
| 1604 | typedef std::forward_iterator_tag iterator_category; |
| 1605 | |
| 1606 | _Local_const_iterator() = default; |
| 1607 | |
| 1608 | _Local_const_iterator(const __hash_code_base& __base, |
| 1609 | _Hash_node<_Value, __cache>* __n, |
| 1610 | std::size_t __bkt, std::size_t __bkt_count) |
| 1611 | : __base_type(__base, __n, __bkt, __bkt_count) |
| 1612 | { } |
| 1613 | |
| 1614 | _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, |
| 1615 | _Hash, _RangeHash, _Unused, |
| 1616 | __constant_iterators, |
| 1617 | __cache>& __x) |
| 1618 | : __base_type(__x) |
| 1619 | { } |
| 1620 | |
| 1621 | reference |
| 1622 | operator*() const |
| 1623 | { return this->_M_cur->_M_v(); } |
| 1624 | |
| 1625 | pointer |
| 1626 | operator->() const |
| 1627 | { return this->_M_cur->_M_valptr(); } |
| 1628 | |
| 1629 | _Local_const_iterator& |
| 1630 | operator++() |
| 1631 | { |
| 1632 | this->_M_incr(); |
| 1633 | return *this; |
| 1634 | } |
| 1635 | |
| 1636 | _Local_const_iterator |
| 1637 | operator++(int) |
| 1638 | { |
| 1639 | _Local_const_iterator __tmp(*this); |
| 1640 | this->_M_incr(); |
| 1641 | return __tmp; |
| 1642 | } |
| 1643 | }; |
| 1644 | |
| 1645 | /** |
| 1646 | * Primary class template _Hashtable_base. |
| 1647 | * |
| 1648 | * Helper class adding management of _Equal functor to |
| 1649 | * _Hash_code_base type. |
| 1650 | * |
| 1651 | * Base class templates are: |
| 1652 | * - __detail::_Hash_code_base |
| 1653 | * - __detail::_Hashtable_ebo_helper |
| 1654 | */ |
| 1655 | template<typename _Key, typename _Value, typename _ExtractKey, |
| 1656 | typename _Equal, typename _Hash, typename _RangeHash, |
| 1657 | typename _Unused, typename _Traits> |
| 1658 | struct _Hashtable_base |
| 1659 | : public _Hash_code_base<_Key, _Value, _ExtractKey, _Hash, _RangeHash, |
| 1660 | _Unused, _Traits::__hash_cached::value>, |
| 1661 | private _Hashtable_ebo_helper<0, _Equal> |
| 1662 | { |
| 1663 | public: |
| 1664 | typedef _Key key_type; |
| 1665 | typedef _Value value_type; |
| 1666 | typedef _Equal key_equal; |
| 1667 | typedef std::size_t size_type; |
| 1668 | typedef std::ptrdiff_t difference_type; |
| 1669 | |
| 1670 | using __traits_type = _Traits; |
| 1671 | using __hash_cached = typename __traits_type::__hash_cached; |
| 1672 | |
| 1673 | using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, |
| 1674 | _Hash, _RangeHash, _Unused, |
| 1675 | __hash_cached::value>; |
| 1676 | |
| 1677 | using __hash_code = typename __hash_code_base::__hash_code; |
| 1678 | |
| 1679 | private: |
| 1680 | using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>; |
| 1681 | |
| 1682 | static bool |
| 1683 | _S_equals(__hash_code, const _Hash_node_code_cache<false>&) |
| 1684 | { return true; } |
| 1685 | |
| 1686 | static bool |
| 1687 | _S_node_equals(const _Hash_node_code_cache<false>&, |
| 1688 | const _Hash_node_code_cache<false>&) |
| 1689 | { return true; } |
| 1690 | |
| 1691 | static bool |
| 1692 | _S_equals(__hash_code __c, const _Hash_node_code_cache<true>& __n) |
| 1693 | { return __c == __n._M_hash_code; } |
| 1694 | |
| 1695 | static bool |
| 1696 | _S_node_equals(const _Hash_node_code_cache<true>& __lhn, |
| 1697 | const _Hash_node_code_cache<true>& __rhn) |
| 1698 | { return __lhn._M_hash_code == __rhn._M_hash_code; } |
| 1699 | |
| 1700 | protected: |
| 1701 | _Hashtable_base() = default; |
| 1702 | |
| 1703 | _Hashtable_base(const _Hash& __hash, const _Equal& __eq) |
| 1704 | : __hash_code_base(__hash), _EqualEBO(__eq) |
| 1705 | { } |
| 1706 | |
| 1707 | bool |
| 1708 | _M_key_equals(const _Key& __k, |
| 1709 | const _Hash_node_value<_Value, |
| 1710 | __hash_cached::value>& __n) const |
| 1711 | { |
| 1712 | static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{}, |
| 1713 | "key equality predicate must be invocable with two arguments of " |
| 1714 | "key type" ); |
| 1715 | return _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
| 1716 | } |
| 1717 | |
| 1718 | template<typename _Kt> |
| 1719 | bool |
| 1720 | _M_key_equals_tr(const _Kt& __k, |
| 1721 | const _Hash_node_value<_Value, |
| 1722 | __hash_cached::value>& __n) const |
| 1723 | { |
| 1724 | static_assert( |
| 1725 | __is_invocable<const _Equal&, const _Kt&, const _Key&>{}, |
| 1726 | "key equality predicate must be invocable with two arguments of " |
| 1727 | "key type" ); |
| 1728 | return _M_eq()(__k, _ExtractKey{}(__n._M_v())); |
| 1729 | } |
| 1730 | |
| 1731 | bool |
| 1732 | _M_equals(const _Key& __k, __hash_code __c, |
| 1733 | const _Hash_node_value<_Value, __hash_cached::value>& __n) const |
| 1734 | { return _S_equals(__c, __n) && _M_key_equals(__k, __n); } |
| 1735 | |
| 1736 | template<typename _Kt> |
| 1737 | bool |
| 1738 | _M_equals_tr(const _Kt& __k, __hash_code __c, |
| 1739 | const _Hash_node_value<_Value, |
| 1740 | __hash_cached::value>& __n) const |
| 1741 | { return _S_equals(__c, __n) && _M_key_equals_tr(__k, __n); } |
| 1742 | |
| 1743 | bool |
| 1744 | _M_node_equals( |
| 1745 | const _Hash_node_value<_Value, __hash_cached::value>& __lhn, |
| 1746 | const _Hash_node_value<_Value, __hash_cached::value>& __rhn) const |
| 1747 | { |
| 1748 | return _S_node_equals(__lhn, __rhn) |
| 1749 | && _M_key_equals(k: _ExtractKey{}(__lhn._M_v()), n: __rhn); |
| 1750 | } |
| 1751 | |
| 1752 | void |
| 1753 | _M_swap(_Hashtable_base& __x) |
| 1754 | { |
| 1755 | __hash_code_base::_M_swap(__x); |
| 1756 | std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get()); |
| 1757 | } |
| 1758 | |
| 1759 | const _Equal& |
| 1760 | _M_eq() const { return _EqualEBO::_M_cget(); } |
| 1761 | }; |
| 1762 | |
| 1763 | /** |
| 1764 | * Primary class template _Equality. |
| 1765 | * |
| 1766 | * This is for implementing equality comparison for unordered |
| 1767 | * containers, per N3068, by John Lakos and Pablo Halpern. |
| 1768 | * Algorithmically, we follow closely the reference implementations |
| 1769 | * therein. |
| 1770 | */ |
| 1771 | template<typename _Key, typename _Value, typename _Alloc, |
| 1772 | typename _ExtractKey, typename _Equal, |
| 1773 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1774 | typename _RehashPolicy, typename _Traits, |
| 1775 | bool _Unique_keys = _Traits::__unique_keys::value> |
| 1776 | struct _Equality; |
| 1777 | |
| 1778 | /// unordered_map and unordered_set specializations. |
| 1779 | template<typename _Key, typename _Value, typename _Alloc, |
| 1780 | typename _ExtractKey, typename _Equal, |
| 1781 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1782 | typename _RehashPolicy, typename _Traits> |
| 1783 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1784 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true> |
| 1785 | { |
| 1786 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1787 | _Hash, _RangeHash, _Unused, |
| 1788 | _RehashPolicy, _Traits>; |
| 1789 | |
| 1790 | bool |
| 1791 | _M_equal(const __hashtable&) const; |
| 1792 | }; |
| 1793 | |
| 1794 | template<typename _Key, typename _Value, typename _Alloc, |
| 1795 | typename _ExtractKey, typename _Equal, |
| 1796 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1797 | typename _RehashPolicy, typename _Traits> |
| 1798 | bool |
| 1799 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1800 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, true>:: |
| 1801 | _M_equal(const __hashtable& __other) const |
| 1802 | { |
| 1803 | using __node_type = typename __hashtable::__node_type; |
| 1804 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
| 1805 | if (__this->size() != __other.size()) |
| 1806 | return false; |
| 1807 | |
| 1808 | for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) |
| 1809 | { |
| 1810 | std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur); |
| 1811 | auto __prev_n = __other._M_buckets[__ybkt]; |
| 1812 | if (!__prev_n) |
| 1813 | return false; |
| 1814 | |
| 1815 | for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);; |
| 1816 | __n = __n->_M_next()) |
| 1817 | { |
| 1818 | if (__n->_M_v() == *__itx) |
| 1819 | break; |
| 1820 | |
| 1821 | if (!__n->_M_nxt |
| 1822 | || __other._M_bucket_index(*__n->_M_next()) != __ybkt) |
| 1823 | return false; |
| 1824 | } |
| 1825 | } |
| 1826 | |
| 1827 | return true; |
| 1828 | } |
| 1829 | |
| 1830 | /// unordered_multiset and unordered_multimap specializations. |
| 1831 | template<typename _Key, typename _Value, typename _Alloc, |
| 1832 | typename _ExtractKey, typename _Equal, |
| 1833 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1834 | typename _RehashPolicy, typename _Traits> |
| 1835 | struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1836 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false> |
| 1837 | { |
| 1838 | using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1839 | _Hash, _RangeHash, _Unused, |
| 1840 | _RehashPolicy, _Traits>; |
| 1841 | |
| 1842 | bool |
| 1843 | _M_equal(const __hashtable&) const; |
| 1844 | }; |
| 1845 | |
| 1846 | template<typename _Key, typename _Value, typename _Alloc, |
| 1847 | typename _ExtractKey, typename _Equal, |
| 1848 | typename _Hash, typename _RangeHash, typename _Unused, |
| 1849 | typename _RehashPolicy, typename _Traits> |
| 1850 | bool |
| 1851 | _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, |
| 1852 | _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits, false>:: |
| 1853 | _M_equal(const __hashtable& __other) const |
| 1854 | { |
| 1855 | using __node_type = typename __hashtable::__node_type; |
| 1856 | const __hashtable* __this = static_cast<const __hashtable*>(this); |
| 1857 | if (__this->size() != __other.size()) |
| 1858 | return false; |
| 1859 | |
| 1860 | for (auto __itx = __this->begin(); __itx != __this->end();) |
| 1861 | { |
| 1862 | std::size_t __x_count = 1; |
| 1863 | auto __itx_end = __itx; |
| 1864 | for (++__itx_end; __itx_end != __this->end() |
| 1865 | && __this->key_eq()(_ExtractKey{}(*__itx), |
| 1866 | _ExtractKey{}(*__itx_end)); |
| 1867 | ++__itx_end) |
| 1868 | ++__x_count; |
| 1869 | |
| 1870 | std::size_t __ybkt = __other._M_bucket_index(*__itx._M_cur); |
| 1871 | auto __y_prev_n = __other._M_buckets[__ybkt]; |
| 1872 | if (!__y_prev_n) |
| 1873 | return false; |
| 1874 | |
| 1875 | __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt); |
| 1876 | for (;;) |
| 1877 | { |
| 1878 | if (__this->key_eq()(_ExtractKey{}(__y_n->_M_v()), |
| 1879 | _ExtractKey{}(*__itx))) |
| 1880 | break; |
| 1881 | |
| 1882 | auto __y_ref_n = __y_n; |
| 1883 | for (__y_n = __y_n->_M_next(); __y_n; __y_n = __y_n->_M_next()) |
| 1884 | if (!__other._M_node_equals(*__y_ref_n, *__y_n)) |
| 1885 | break; |
| 1886 | |
| 1887 | if (!__y_n || __other._M_bucket_index(*__y_n) != __ybkt) |
| 1888 | return false; |
| 1889 | } |
| 1890 | |
| 1891 | typename __hashtable::const_iterator __ity(__y_n); |
| 1892 | for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end) |
| 1893 | if (--__x_count == 0) |
| 1894 | break; |
| 1895 | |
| 1896 | if (__x_count != 0) |
| 1897 | return false; |
| 1898 | |
| 1899 | if (!std::is_permutation(__itx, __itx_end, __ity)) |
| 1900 | return false; |
| 1901 | |
| 1902 | __itx = __itx_end; |
| 1903 | } |
| 1904 | return true; |
| 1905 | } |
| 1906 | |
| 1907 | /** |
| 1908 | * This type deals with all allocation and keeps an allocator instance |
| 1909 | * through inheritance to benefit from EBO when possible. |
| 1910 | */ |
| 1911 | template<typename _NodeAlloc> |
| 1912 | struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc> |
| 1913 | { |
| 1914 | private: |
| 1915 | using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>; |
| 1916 | |
| 1917 | template<typename> |
| 1918 | struct __get_value_type; |
| 1919 | template<typename _Val, bool _Cache_hash_code> |
| 1920 | struct __get_value_type<_Hash_node<_Val, _Cache_hash_code>> |
| 1921 | { using type = _Val; }; |
| 1922 | |
| 1923 | public: |
| 1924 | using __node_type = typename _NodeAlloc::value_type; |
| 1925 | using __node_alloc_type = _NodeAlloc; |
| 1926 | // Use __gnu_cxx to benefit from _S_always_equal and al. |
| 1927 | using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>; |
| 1928 | |
| 1929 | using __value_alloc_traits = typename __node_alloc_traits::template |
| 1930 | rebind_traits<typename __get_value_type<__node_type>::type>; |
| 1931 | |
| 1932 | using __node_ptr = __node_type*; |
| 1933 | using __node_base = _Hash_node_base; |
| 1934 | using __node_base_ptr = __node_base*; |
| 1935 | using __buckets_alloc_type = |
| 1936 | __alloc_rebind<__node_alloc_type, __node_base_ptr>; |
| 1937 | using __buckets_alloc_traits = std::allocator_traits<__buckets_alloc_type>; |
| 1938 | using __buckets_ptr = __node_base_ptr*; |
| 1939 | |
| 1940 | _Hashtable_alloc() = default; |
| 1941 | _Hashtable_alloc(const _Hashtable_alloc&) = default; |
| 1942 | _Hashtable_alloc(_Hashtable_alloc&&) = default; |
| 1943 | |
| 1944 | template<typename _Alloc> |
| 1945 | _Hashtable_alloc(_Alloc&& __a) |
| 1946 | : __ebo_node_alloc(std::forward<_Alloc>(__a)) |
| 1947 | { } |
| 1948 | |
| 1949 | __node_alloc_type& |
| 1950 | _M_node_allocator() |
| 1951 | { return __ebo_node_alloc::_M_get(); } |
| 1952 | |
| 1953 | const __node_alloc_type& |
| 1954 | _M_node_allocator() const |
| 1955 | { return __ebo_node_alloc::_M_cget(); } |
| 1956 | |
| 1957 | // Allocate a node and construct an element within it. |
| 1958 | template<typename... _Args> |
| 1959 | __node_ptr |
| 1960 | _M_allocate_node(_Args&&... __args); |
| 1961 | |
| 1962 | // Destroy the element within a node and deallocate the node. |
| 1963 | void |
| 1964 | _M_deallocate_node(__node_ptr __n); |
| 1965 | |
| 1966 | // Deallocate a node. |
| 1967 | void |
| 1968 | _M_deallocate_node_ptr(__node_ptr __n); |
| 1969 | |
| 1970 | // Deallocate the linked list of nodes pointed to by __n. |
| 1971 | // The elements within the nodes are destroyed. |
| 1972 | void |
| 1973 | _M_deallocate_nodes(__node_ptr __n); |
| 1974 | |
| 1975 | __buckets_ptr |
| 1976 | _M_allocate_buckets(std::size_t __bkt_count); |
| 1977 | |
| 1978 | void |
| 1979 | _M_deallocate_buckets(__buckets_ptr, std::size_t __bkt_count); |
| 1980 | }; |
| 1981 | |
| 1982 | // Definitions of class template _Hashtable_alloc's out-of-line member |
| 1983 | // functions. |
| 1984 | template<typename _NodeAlloc> |
| 1985 | template<typename... _Args> |
| 1986 | auto |
| 1987 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args) |
| 1988 | -> __node_ptr |
| 1989 | { |
| 1990 | auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1); |
| 1991 | __node_ptr __n = std::__to_address(__nptr); |
| 1992 | __try |
| 1993 | { |
| 1994 | ::new ((void*)__n) __node_type; |
| 1995 | __node_alloc_traits::construct(_M_node_allocator(), |
| 1996 | __n->_M_valptr(), |
| 1997 | std::forward<_Args>(__args)...); |
| 1998 | return __n; |
| 1999 | } |
| 2000 | __catch(...) |
| 2001 | { |
| 2002 | __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1); |
| 2003 | __throw_exception_again; |
| 2004 | } |
| 2005 | } |
| 2006 | |
| 2007 | template<typename _NodeAlloc> |
| 2008 | void |
| 2009 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_ptr __n) |
| 2010 | { |
| 2011 | __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr()); |
| 2012 | _M_deallocate_node_ptr(__n); |
| 2013 | } |
| 2014 | |
| 2015 | template<typename _NodeAlloc> |
| 2016 | void |
| 2017 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_ptr __n) |
| 2018 | { |
| 2019 | typedef typename __node_alloc_traits::pointer _Ptr; |
| 2020 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n); |
| 2021 | __n->~__node_type(); |
| 2022 | __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1); |
| 2023 | } |
| 2024 | |
| 2025 | template<typename _NodeAlloc> |
| 2026 | void |
| 2027 | _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_ptr __n) |
| 2028 | { |
| 2029 | while (__n) |
| 2030 | { |
| 2031 | __node_ptr __tmp = __n; |
| 2032 | __n = __n->_M_next(); |
| 2033 | _M_deallocate_node(n: __tmp); |
| 2034 | } |
| 2035 | } |
| 2036 | |
| 2037 | template<typename _NodeAlloc> |
| 2038 | auto |
| 2039 | _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count) |
| 2040 | -> __buckets_ptr |
| 2041 | { |
| 2042 | __buckets_alloc_type __alloc(_M_node_allocator()); |
| 2043 | |
| 2044 | auto __ptr = __buckets_alloc_traits::allocate(__alloc, __bkt_count); |
| 2045 | __buckets_ptr __p = std::__to_address(__ptr); |
| 2046 | __builtin_memset(__p, 0, __bkt_count * sizeof(__node_base_ptr)); |
| 2047 | return __p; |
| 2048 | } |
| 2049 | |
| 2050 | template<typename _NodeAlloc> |
| 2051 | void |
| 2052 | _Hashtable_alloc<_NodeAlloc>:: |
| 2053 | _M_deallocate_buckets(__buckets_ptr __bkts, |
| 2054 | std::size_t __bkt_count) |
| 2055 | { |
| 2056 | typedef typename __buckets_alloc_traits::pointer _Ptr; |
| 2057 | auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts); |
| 2058 | __buckets_alloc_type __alloc(_M_node_allocator()); |
| 2059 | __buckets_alloc_traits::deallocate(__alloc, __ptr, __bkt_count); |
| 2060 | } |
| 2061 | |
| 2062 | ///@} hashtable-detail |
| 2063 | } // namespace __detail |
| 2064 | /// @endcond |
| 2065 | _GLIBCXX_END_NAMESPACE_VERSION |
| 2066 | } // namespace std |
| 2067 | |
| 2068 | #endif // _HASHTABLE_POLICY_H |
| 2069 | |