1 | /* |
2 | * Copyright 2011 Intel Corporation |
3 | * |
4 | * Permission is hereby granted, free of charge, to any person obtaining a |
5 | * copy of this software and associated documentation files (the "Software"), |
6 | * to deal in the Software without restriction, including without limitation |
7 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
8 | * and/or sell copies of the Software, and to permit persons to whom the |
9 | * Software is furnished to do so, subject to the following conditions: |
10 | * |
11 | * The above copyright notice and this permission notice (including the next |
12 | * paragraph) shall be included in all copies or substantial portions of the |
13 | * Software. |
14 | * |
15 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
16 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
17 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
18 | * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR |
19 | * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
20 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
21 | * OTHER DEALINGS IN THE SOFTWARE. |
22 | */ |
23 | |
24 | #ifndef DRM_FOURCC_H |
25 | #define DRM_FOURCC_H |
26 | |
27 | #include "drm.h" |
28 | |
29 | #if defined(__cplusplus) |
30 | extern "C" { |
31 | #endif |
32 | |
33 | /** |
34 | * DOC: overview |
35 | * |
36 | * In the DRM subsystem, framebuffer pixel formats are described using the |
37 | * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the |
38 | * fourcc code, a Format Modifier may optionally be provided, in order to |
39 | * further describe the buffer's format - for example tiling or compression. |
40 | * |
41 | * Format Modifiers |
42 | * ---------------- |
43 | * |
44 | * Format modifiers are used in conjunction with a fourcc code, forming a |
45 | * unique fourcc:modifier pair. This format:modifier pair must fully define the |
46 | * format and data layout of the buffer, and should be the only way to describe |
47 | * that particular buffer. |
48 | * |
49 | * Having multiple fourcc:modifier pairs which describe the same layout should |
50 | * be avoided, as such aliases run the risk of different drivers exposing |
51 | * different names for the same data format, forcing userspace to understand |
52 | * that they are aliases. |
53 | * |
54 | * Format modifiers may change any property of the buffer, including the number |
55 | * of planes and/or the required allocation size. Format modifiers are |
56 | * vendor-namespaced, and as such the relationship between a fourcc code and a |
57 | * modifier is specific to the modifer being used. For example, some modifiers |
58 | * may preserve meaning - such as number of planes - from the fourcc code, |
59 | * whereas others may not. |
60 | * |
61 | * Modifiers must uniquely encode buffer layout. In other words, a buffer must |
62 | * match only a single modifier. A modifier must not be a subset of layouts of |
63 | * another modifier. For instance, it's incorrect to encode pitch alignment in |
64 | * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel |
65 | * aligned modifier. That said, modifiers can have implicit minimal |
66 | * requirements. |
67 | * |
68 | * For modifiers where the combination of fourcc code and modifier can alias, |
69 | * a canonical pair needs to be defined and used by all drivers. Preferred |
70 | * combinations are also encouraged where all combinations might lead to |
71 | * confusion and unnecessarily reduced interoperability. An example for the |
72 | * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts. |
73 | * |
74 | * There are two kinds of modifier users: |
75 | * |
76 | * - Kernel and user-space drivers: for drivers it's important that modifiers |
77 | * don't alias, otherwise two drivers might support the same format but use |
78 | * different aliases, preventing them from sharing buffers in an efficient |
79 | * format. |
80 | * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users |
81 | * see modifiers as opaque tokens they can check for equality and intersect. |
82 | * These users musn't need to know to reason about the modifier value |
83 | * (i.e. they are not expected to extract information out of the modifier). |
84 | * |
85 | * Vendors should document their modifier usage in as much detail as |
86 | * possible, to ensure maximum compatibility across devices, drivers and |
87 | * applications. |
88 | * |
89 | * The authoritative list of format modifier codes is found in |
90 | * `include/uapi/drm/drm_fourcc.h` |
91 | */ |
92 | |
93 | #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \ |
94 | ((__u32)(c) << 16) | ((__u32)(d) << 24)) |
95 | |
96 | #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */ |
97 | |
98 | /* Reserve 0 for the invalid format specifier */ |
99 | #define DRM_FORMAT_INVALID 0 |
100 | |
101 | /* color index */ |
102 | #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ |
103 | |
104 | /* 8 bpp Red */ |
105 | #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ |
106 | |
107 | /* 16 bpp Red */ |
108 | #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ |
109 | |
110 | /* 16 bpp RG */ |
111 | #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ |
112 | #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ |
113 | |
114 | /* 32 bpp RG */ |
115 | #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ |
116 | #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ |
117 | |
118 | /* 8 bpp RGB */ |
119 | #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ |
120 | #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ |
121 | |
122 | /* 16 bpp RGB */ |
123 | #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ |
124 | #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ |
125 | #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ |
126 | #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ |
127 | |
128 | #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ |
129 | #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ |
130 | #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ |
131 | #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ |
132 | |
133 | #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ |
134 | #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ |
135 | #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ |
136 | #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ |
137 | |
138 | #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ |
139 | #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ |
140 | #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ |
141 | #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ |
142 | |
143 | #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ |
144 | #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ |
145 | |
146 | /* 24 bpp RGB */ |
147 | #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ |
148 | #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ |
149 | |
150 | /* 32 bpp RGB */ |
151 | #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ |
152 | #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ |
153 | #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ |
154 | #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ |
155 | |
156 | #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ |
157 | #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ |
158 | #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ |
159 | #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ |
160 | |
161 | #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ |
162 | #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ |
163 | #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ |
164 | #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ |
165 | |
166 | #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ |
167 | #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ |
168 | #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ |
169 | #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ |
170 | |
171 | /* 64 bpp RGB */ |
172 | #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */ |
173 | #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */ |
174 | |
175 | #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */ |
176 | #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */ |
177 | |
178 | /* |
179 | * Floating point 64bpp RGB |
180 | * IEEE 754-2008 binary16 half-precision float |
181 | * [15:0] sign:exponent:mantissa 1:5:10 |
182 | */ |
183 | #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */ |
184 | #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */ |
185 | |
186 | #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */ |
187 | #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */ |
188 | |
189 | /* |
190 | * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits |
191 | * of unused padding per component: |
192 | */ |
193 | #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */ |
194 | |
195 | /* packed YCbCr */ |
196 | #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ |
197 | #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ |
198 | #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ |
199 | #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ |
200 | |
201 | #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ |
202 | #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ |
203 | #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */ |
204 | #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */ |
205 | |
206 | /* |
207 | * packed Y2xx indicate for each component, xx valid data occupy msb |
208 | * 16-xx padding occupy lsb |
209 | */ |
210 | #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */ |
211 | #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */ |
212 | #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */ |
213 | |
214 | /* |
215 | * packed Y4xx indicate for each component, xx valid data occupy msb |
216 | * 16-xx padding occupy lsb except Y410 |
217 | */ |
218 | #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */ |
219 | #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ |
220 | #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */ |
221 | |
222 | #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */ |
223 | #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ |
224 | #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */ |
225 | |
226 | /* |
227 | * packed YCbCr420 2x2 tiled formats |
228 | * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile |
229 | */ |
230 | /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ |
231 | #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0') |
232 | /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ |
233 | #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0') |
234 | |
235 | /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ |
236 | #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2') |
237 | /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ |
238 | #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2') |
239 | |
240 | /* |
241 | * 1-plane YUV 4:2:0 |
242 | * In these formats, the component ordering is specified (Y, followed by U |
243 | * then V), but the exact Linear layout is undefined. |
244 | * These formats can only be used with a non-Linear modifier. |
245 | */ |
246 | #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8') |
247 | #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0') |
248 | |
249 | /* |
250 | * 2 plane RGB + A |
251 | * index 0 = RGB plane, same format as the corresponding non _A8 format has |
252 | * index 1 = A plane, [7:0] A |
253 | */ |
254 | #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') |
255 | #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') |
256 | #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') |
257 | #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') |
258 | #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') |
259 | #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') |
260 | #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') |
261 | #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') |
262 | |
263 | /* |
264 | * 2 plane YCbCr |
265 | * index 0 = Y plane, [7:0] Y |
266 | * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian |
267 | * or |
268 | * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian |
269 | */ |
270 | #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ |
271 | #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ |
272 | #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ |
273 | #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ |
274 | #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ |
275 | #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ |
276 | /* |
277 | * 2 plane YCbCr |
278 | * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian |
279 | * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian |
280 | */ |
281 | #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */ |
282 | |
283 | /* |
284 | * 2 plane YCbCr MSB aligned |
285 | * index 0 = Y plane, [15:0] Y:x [10:6] little endian |
286 | * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian |
287 | */ |
288 | #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */ |
289 | |
290 | /* |
291 | * 2 plane YCbCr MSB aligned |
292 | * index 0 = Y plane, [15:0] Y:x [10:6] little endian |
293 | * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian |
294 | */ |
295 | #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */ |
296 | |
297 | /* |
298 | * 2 plane YCbCr MSB aligned |
299 | * index 0 = Y plane, [15:0] Y:x [12:4] little endian |
300 | * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian |
301 | */ |
302 | #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */ |
303 | |
304 | /* |
305 | * 2 plane YCbCr MSB aligned |
306 | * index 0 = Y plane, [15:0] Y little endian |
307 | * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian |
308 | */ |
309 | #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */ |
310 | |
311 | /* 2 plane YCbCr420. |
312 | * 3 10 bit components and 2 padding bits packed into 4 bytes. |
313 | * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian |
314 | * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian |
315 | */ |
316 | #define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */ |
317 | |
318 | /* 3 plane non-subsampled (444) YCbCr |
319 | * 16 bits per component, but only 10 bits are used and 6 bits are padded |
320 | * index 0: Y plane, [15:0] Y:x [10:6] little endian |
321 | * index 1: Cb plane, [15:0] Cb:x [10:6] little endian |
322 | * index 2: Cr plane, [15:0] Cr:x [10:6] little endian |
323 | */ |
324 | #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0') |
325 | |
326 | /* 3 plane non-subsampled (444) YCrCb |
327 | * 16 bits per component, but only 10 bits are used and 6 bits are padded |
328 | * index 0: Y plane, [15:0] Y:x [10:6] little endian |
329 | * index 1: Cr plane, [15:0] Cr:x [10:6] little endian |
330 | * index 2: Cb plane, [15:0] Cb:x [10:6] little endian |
331 | */ |
332 | #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1') |
333 | |
334 | /* |
335 | * 3 plane YCbCr |
336 | * index 0: Y plane, [7:0] Y |
337 | * index 1: Cb plane, [7:0] Cb |
338 | * index 2: Cr plane, [7:0] Cr |
339 | * or |
340 | * index 1: Cr plane, [7:0] Cr |
341 | * index 2: Cb plane, [7:0] Cb |
342 | */ |
343 | #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ |
344 | #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ |
345 | #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ |
346 | #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ |
347 | #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ |
348 | #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ |
349 | #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ |
350 | #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ |
351 | #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ |
352 | #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ |
353 | |
354 | |
355 | /* |
356 | * Format Modifiers: |
357 | * |
358 | * Format modifiers describe, typically, a re-ordering or modification |
359 | * of the data in a plane of an FB. This can be used to express tiled/ |
360 | * swizzled formats, or compression, or a combination of the two. |
361 | * |
362 | * The upper 8 bits of the format modifier are a vendor-id as assigned |
363 | * below. The lower 56 bits are assigned as vendor sees fit. |
364 | */ |
365 | |
366 | /* Vendor Ids: */ |
367 | #define DRM_FORMAT_MOD_VENDOR_NONE 0 |
368 | #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 |
369 | #define DRM_FORMAT_MOD_VENDOR_AMD 0x02 |
370 | #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 |
371 | #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 |
372 | #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 |
373 | #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 |
374 | #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 |
375 | #define DRM_FORMAT_MOD_VENDOR_ARM 0x08 |
376 | #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09 |
377 | #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a |
378 | |
379 | /* add more to the end as needed */ |
380 | |
381 | #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) |
382 | |
383 | #define fourcc_mod_code(vendor, val) \ |
384 | ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) |
385 | |
386 | /* |
387 | * Format Modifier tokens: |
388 | * |
389 | * When adding a new token please document the layout with a code comment, |
390 | * similar to the fourcc codes above. drm_fourcc.h is considered the |
391 | * authoritative source for all of these. |
392 | * |
393 | * Generic modifier names: |
394 | * |
395 | * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names |
396 | * for layouts which are common across multiple vendors. To preserve |
397 | * compatibility, in cases where a vendor-specific definition already exists and |
398 | * a generic name for it is desired, the common name is a purely symbolic alias |
399 | * and must use the same numerical value as the original definition. |
400 | * |
401 | * Note that generic names should only be used for modifiers which describe |
402 | * generic layouts (such as pixel re-ordering), which may have |
403 | * independently-developed support across multiple vendors. |
404 | * |
405 | * In future cases where a generic layout is identified before merging with a |
406 | * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor |
407 | * 'NONE' could be considered. This should only be for obvious, exceptional |
408 | * cases to avoid polluting the 'GENERIC' namespace with modifiers which only |
409 | * apply to a single vendor. |
410 | * |
411 | * Generic names should not be used for cases where multiple hardware vendors |
412 | * have implementations of the same standardised compression scheme (such as |
413 | * AFBC). In those cases, all implementations should use the same format |
414 | * modifier(s), reflecting the vendor of the standard. |
415 | */ |
416 | |
417 | #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE |
418 | |
419 | /* |
420 | * Invalid Modifier |
421 | * |
422 | * This modifier can be used as a sentinel to terminate the format modifiers |
423 | * list, or to initialize a variable with an invalid modifier. It might also be |
424 | * used to report an error back to userspace for certain APIs. |
425 | */ |
426 | #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) |
427 | |
428 | /* |
429 | * Linear Layout |
430 | * |
431 | * Just plain linear layout. Note that this is different from no specifying any |
432 | * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), |
433 | * which tells the driver to also take driver-internal information into account |
434 | * and so might actually result in a tiled framebuffer. |
435 | */ |
436 | #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) |
437 | |
438 | /* |
439 | * Deprecated: use DRM_FORMAT_MOD_LINEAR instead |
440 | * |
441 | * The "none" format modifier doesn't actually mean that the modifier is |
442 | * implicit, instead it means that the layout is linear. Whether modifiers are |
443 | * used is out-of-band information carried in an API-specific way (e.g. in a |
444 | * flag for drm_mode_fb_cmd2). |
445 | */ |
446 | #define DRM_FORMAT_MOD_NONE 0 |
447 | |
448 | /* Intel framebuffer modifiers */ |
449 | |
450 | /* |
451 | * Intel X-tiling layout |
452 | * |
453 | * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) |
454 | * in row-major layout. Within the tile bytes are laid out row-major, with |
455 | * a platform-dependent stride. On top of that the memory can apply |
456 | * platform-depending swizzling of some higher address bits into bit6. |
457 | * |
458 | * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. |
459 | * On earlier platforms the is highly platforms specific and not useful for |
460 | * cross-driver sharing. It exists since on a given platform it does uniquely |
461 | * identify the layout in a simple way for i915-specific userspace, which |
462 | * facilitated conversion of userspace to modifiers. Additionally the exact |
463 | * format on some really old platforms is not known. |
464 | */ |
465 | #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) |
466 | |
467 | /* |
468 | * Intel Y-tiling layout |
469 | * |
470 | * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) |
471 | * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) |
472 | * chunks column-major, with a platform-dependent height. On top of that the |
473 | * memory can apply platform-depending swizzling of some higher address bits |
474 | * into bit6. |
475 | * |
476 | * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. |
477 | * On earlier platforms the is highly platforms specific and not useful for |
478 | * cross-driver sharing. It exists since on a given platform it does uniquely |
479 | * identify the layout in a simple way for i915-specific userspace, which |
480 | * facilitated conversion of userspace to modifiers. Additionally the exact |
481 | * format on some really old platforms is not known. |
482 | */ |
483 | #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) |
484 | |
485 | /* |
486 | * Intel Yf-tiling layout |
487 | * |
488 | * This is a tiled layout using 4Kb tiles in row-major layout. |
489 | * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which |
490 | * are arranged in four groups (two wide, two high) with column-major layout. |
491 | * Each group therefore consits out of four 256 byte units, which are also laid |
492 | * out as 2x2 column-major. |
493 | * 256 byte units are made out of four 64 byte blocks of pixels, producing |
494 | * either a square block or a 2:1 unit. |
495 | * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width |
496 | * in pixel depends on the pixel depth. |
497 | */ |
498 | #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) |
499 | |
500 | /* |
501 | * Intel color control surface (CCS) for render compression |
502 | * |
503 | * The framebuffer format must be one of the 8:8:8:8 RGB formats. |
504 | * The main surface will be plane index 0 and must be Y/Yf-tiled, |
505 | * the CCS will be plane index 1. |
506 | * |
507 | * Each CCS tile matches a 1024x512 pixel area of the main surface. |
508 | * To match certain aspects of the 3D hardware the CCS is |
509 | * considered to be made up of normal 128Bx32 Y tiles, Thus |
510 | * the CCS pitch must be specified in multiples of 128 bytes. |
511 | * |
512 | * In reality the CCS tile appears to be a 64Bx64 Y tile, composed |
513 | * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. |
514 | * But that fact is not relevant unless the memory is accessed |
515 | * directly. |
516 | */ |
517 | #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) |
518 | #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) |
519 | |
520 | /* |
521 | * Intel color control surfaces (CCS) for Gen-12 render compression. |
522 | * |
523 | * The main surface is Y-tiled and at plane index 0, the CCS is linear and |
524 | * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in |
525 | * main surface. In other words, 4 bits in CCS map to a main surface cache |
526 | * line pair. The main surface pitch is required to be a multiple of four |
527 | * Y-tile widths. |
528 | */ |
529 | #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6) |
530 | |
531 | /* |
532 | * Intel color control surfaces (CCS) for Gen-12 media compression |
533 | * |
534 | * The main surface is Y-tiled and at plane index 0, the CCS is linear and |
535 | * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in |
536 | * main surface. In other words, 4 bits in CCS map to a main surface cache |
537 | * line pair. The main surface pitch is required to be a multiple of four |
538 | * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the |
539 | * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, |
540 | * planes 2 and 3 for the respective CCS. |
541 | */ |
542 | #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7) |
543 | |
544 | /* |
545 | * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render |
546 | * compression. |
547 | * |
548 | * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear |
549 | * and at index 1. The clear color is stored at index 2, and the pitch should |
550 | * be ignored. The clear color structure is 256 bits. The first 128 bits |
551 | * represents Raw Clear Color Red, Green, Blue and Alpha color each represented |
552 | * by 32 bits. The raw clear color is consumed by the 3d engine and generates |
553 | * the converted clear color of size 64 bits. The first 32 bits store the Lower |
554 | * Converted Clear Color value and the next 32 bits store the Higher Converted |
555 | * Clear Color value when applicable. The Converted Clear Color values are |
556 | * consumed by the DE. The last 64 bits are used to store Color Discard Enable |
557 | * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line |
558 | * corresponds to an area of 4x1 tiles in the main surface. The main surface |
559 | * pitch is required to be a multiple of 4 tile widths. |
560 | */ |
561 | #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8) |
562 | |
563 | /* |
564 | * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks |
565 | * |
566 | * Macroblocks are laid in a Z-shape, and each pixel data is following the |
567 | * standard NV12 style. |
568 | * As for NV12, an image is the result of two frame buffers: one for Y, |
569 | * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). |
570 | * Alignment requirements are (for each buffer): |
571 | * - multiple of 128 pixels for the width |
572 | * - multiple of 32 pixels for the height |
573 | * |
574 | * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html |
575 | */ |
576 | #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) |
577 | |
578 | /* |
579 | * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks |
580 | * |
581 | * This is a simple tiled layout using tiles of 16x16 pixels in a row-major |
582 | * layout. For YCbCr formats Cb/Cr components are taken in such a way that |
583 | * they correspond to their 16x16 luma block. |
584 | */ |
585 | #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2) |
586 | |
587 | /* |
588 | * Qualcomm Compressed Format |
589 | * |
590 | * Refers to a compressed variant of the base format that is compressed. |
591 | * Implementation may be platform and base-format specific. |
592 | * |
593 | * Each macrotile consists of m x n (mostly 4 x 4) tiles. |
594 | * Pixel data pitch/stride is aligned with macrotile width. |
595 | * Pixel data height is aligned with macrotile height. |
596 | * Entire pixel data buffer is aligned with 4k(bytes). |
597 | */ |
598 | #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) |
599 | |
600 | /* Vivante framebuffer modifiers */ |
601 | |
602 | /* |
603 | * Vivante 4x4 tiling layout |
604 | * |
605 | * This is a simple tiled layout using tiles of 4x4 pixels in a row-major |
606 | * layout. |
607 | */ |
608 | #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) |
609 | |
610 | /* |
611 | * Vivante 64x64 super-tiling layout |
612 | * |
613 | * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile |
614 | * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- |
615 | * major layout. |
616 | * |
617 | * For more information: see |
618 | * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling |
619 | */ |
620 | #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) |
621 | |
622 | /* |
623 | * Vivante 4x4 tiling layout for dual-pipe |
624 | * |
625 | * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a |
626 | * different base address. Offsets from the base addresses are therefore halved |
627 | * compared to the non-split tiled layout. |
628 | */ |
629 | #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) |
630 | |
631 | /* |
632 | * Vivante 64x64 super-tiling layout for dual-pipe |
633 | * |
634 | * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile |
635 | * starts at a different base address. Offsets from the base addresses are |
636 | * therefore halved compared to the non-split super-tiled layout. |
637 | */ |
638 | #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) |
639 | |
640 | /* NVIDIA frame buffer modifiers */ |
641 | |
642 | /* |
643 | * Tegra Tiled Layout, used by Tegra 2, 3 and 4. |
644 | * |
645 | * Pixels are arranged in simple tiles of 16 x 16 bytes. |
646 | */ |
647 | #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) |
648 | |
649 | /* |
650 | * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80, |
651 | * and Tegra GPUs starting with Tegra K1. |
652 | * |
653 | * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies |
654 | * based on the architecture generation. GOBs themselves are then arranged in |
655 | * 3D blocks, with the block dimensions (in terms of GOBs) always being a power |
656 | * of two, and hence expressible as their log2 equivalent (E.g., "2" represents |
657 | * a block depth or height of "4"). |
658 | * |
659 | * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format |
660 | * in full detail. |
661 | * |
662 | * Macro |
663 | * Bits Param Description |
664 | * ---- ----- ----------------------------------------------------------------- |
665 | * |
666 | * 3:0 h log2(height) of each block, in GOBs. Placed here for |
667 | * compatibility with the existing |
668 | * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. |
669 | * |
670 | * 4:4 - Must be 1, to indicate block-linear layout. Necessary for |
671 | * compatibility with the existing |
672 | * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. |
673 | * |
674 | * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block |
675 | * size). Must be zero. |
676 | * |
677 | * Note there is no log2(width) parameter. Some portions of the |
678 | * hardware support a block width of two gobs, but it is impractical |
679 | * to use due to lack of support elsewhere, and has no known |
680 | * benefits. |
681 | * |
682 | * 11:9 - Reserved (To support 2D-array textures with variable array stride |
683 | * in blocks, specified via log2(tile width in blocks)). Must be |
684 | * zero. |
685 | * |
686 | * 19:12 k Page Kind. This value directly maps to a field in the page |
687 | * tables of all GPUs >= NV50. It affects the exact layout of bits |
688 | * in memory and can be derived from the tuple |
689 | * |
690 | * (format, GPU model, compression type, samples per pixel) |
691 | * |
692 | * Where compression type is defined below. If GPU model were |
693 | * implied by the format modifier, format, or memory buffer, page |
694 | * kind would not need to be included in the modifier itself, but |
695 | * since the modifier should define the layout of the associated |
696 | * memory buffer independent from any device or other context, it |
697 | * must be included here. |
698 | * |
699 | * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed |
700 | * starting with Fermi GPUs. Additionally, the mapping between page |
701 | * kind and bit layout has changed at various points. |
702 | * |
703 | * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping |
704 | * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping |
705 | * 2 = Gob Height 8, Turing+ Page Kind mapping |
706 | * 3 = Reserved for future use. |
707 | * |
708 | * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further |
709 | * bit remapping step that occurs at an even lower level than the |
710 | * page kind and block linear swizzles. This causes the layout of |
711 | * surfaces mapped in those SOC's GPUs to be incompatible with the |
712 | * equivalent mapping on other GPUs in the same system. |
713 | * |
714 | * 0 = Tegra K1 - Tegra Parker/TX2 Layout. |
715 | * 1 = Desktop GPU and Tegra Xavier+ Layout |
716 | * |
717 | * 25:23 c Lossless Framebuffer Compression type. |
718 | * |
719 | * 0 = none |
720 | * 1 = ROP/3D, layout 1, exact compression format implied by Page |
721 | * Kind field |
722 | * 2 = ROP/3D, layout 2, exact compression format implied by Page |
723 | * Kind field |
724 | * 3 = CDE horizontal |
725 | * 4 = CDE vertical |
726 | * 5 = Reserved for future use |
727 | * 6 = Reserved for future use |
728 | * 7 = Reserved for future use |
729 | * |
730 | * 55:25 - Reserved for future use. Must be zero. |
731 | */ |
732 | #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \ |
733 | fourcc_mod_code(NVIDIA, (0x10 | \ |
734 | ((h) & 0xf) | \ |
735 | (((k) & 0xff) << 12) | \ |
736 | (((g) & 0x3) << 20) | \ |
737 | (((s) & 0x1) << 22) | \ |
738 | (((c) & 0x7) << 23))) |
739 | |
740 | /* To grandfather in prior block linear format modifiers to the above layout, |
741 | * the page kind "0", which corresponds to "pitch/linear" and hence is unusable |
742 | * with block-linear layouts, is remapped within drivers to the value 0xfe, |
743 | * which corresponds to the "generic" kind used for simple single-sample |
744 | * uncompressed color formats on Fermi - Volta GPUs. |
745 | */ |
746 | static __inline__ __u64 |
747 | drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier) |
748 | { |
749 | if (!(modifier & 0x10) || (modifier & (0xff << 12))) |
750 | return modifier; |
751 | else |
752 | return modifier | (0xfe << 12); |
753 | } |
754 | |
755 | /* |
756 | * 16Bx2 Block Linear layout, used by Tegra K1 and later |
757 | * |
758 | * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked |
759 | * vertically by a power of 2 (1 to 32 GOBs) to form a block. |
760 | * |
761 | * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. |
762 | * |
763 | * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. |
764 | * Valid values are: |
765 | * |
766 | * 0 == ONE_GOB |
767 | * 1 == TWO_GOBS |
768 | * 2 == FOUR_GOBS |
769 | * 3 == EIGHT_GOBS |
770 | * 4 == SIXTEEN_GOBS |
771 | * 5 == THIRTYTWO_GOBS |
772 | * |
773 | * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format |
774 | * in full detail. |
775 | */ |
776 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ |
777 | DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v)) |
778 | |
779 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ |
780 | DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0) |
781 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ |
782 | DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1) |
783 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ |
784 | DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2) |
785 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ |
786 | DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3) |
787 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ |
788 | DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4) |
789 | #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ |
790 | DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5) |
791 | |
792 | /* |
793 | * Some Broadcom modifiers take parameters, for example the number of |
794 | * vertical lines in the image. Reserve the lower 32 bits for modifier |
795 | * type, and the next 24 bits for parameters. Top 8 bits are the |
796 | * vendor code. |
797 | */ |
798 | #define __fourcc_mod_broadcom_param_shift 8 |
799 | #define __fourcc_mod_broadcom_param_bits 48 |
800 | #define fourcc_mod_broadcom_code(val, params) \ |
801 | fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val)) |
802 | #define fourcc_mod_broadcom_param(m) \ |
803 | ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ |
804 | ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) |
805 | #define fourcc_mod_broadcom_mod(m) \ |
806 | ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ |
807 | __fourcc_mod_broadcom_param_shift)) |
808 | |
809 | /* |
810 | * Broadcom VC4 "T" format |
811 | * |
812 | * This is the primary layout that the V3D GPU can texture from (it |
813 | * can't do linear). The T format has: |
814 | * |
815 | * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 |
816 | * pixels at 32 bit depth. |
817 | * |
818 | * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually |
819 | * 16x16 pixels). |
820 | * |
821 | * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On |
822 | * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows |
823 | * they're (TR, BR, BL, TL), where bottom left is start of memory. |
824 | * |
825 | * - an image made of 4k tiles in rows either left-to-right (even rows of 4k |
826 | * tiles) or right-to-left (odd rows of 4k tiles). |
827 | */ |
828 | #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) |
829 | |
830 | /* |
831 | * Broadcom SAND format |
832 | * |
833 | * This is the native format that the H.264 codec block uses. For VC4 |
834 | * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. |
835 | * |
836 | * The image can be considered to be split into columns, and the |
837 | * columns are placed consecutively into memory. The width of those |
838 | * columns can be either 32, 64, 128, or 256 pixels, but in practice |
839 | * only 128 pixel columns are used. |
840 | * |
841 | * The pitch between the start of each column is set to optimally |
842 | * switch between SDRAM banks. This is passed as the number of lines |
843 | * of column width in the modifier (we can't use the stride value due |
844 | * to various core checks that look at it , so you should set the |
845 | * stride to width*cpp). |
846 | * |
847 | * Note that the column height for this format modifier is the same |
848 | * for all of the planes, assuming that each column contains both Y |
849 | * and UV. Some SAND-using hardware stores UV in a separate tiled |
850 | * image from Y to reduce the column height, which is not supported |
851 | * with these modifiers. |
852 | * |
853 | * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also |
854 | * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes |
855 | * wide, but as this is a 10 bpp format that translates to 96 pixels. |
856 | */ |
857 | |
858 | #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ |
859 | fourcc_mod_broadcom_code(2, v) |
860 | #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ |
861 | fourcc_mod_broadcom_code(3, v) |
862 | #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ |
863 | fourcc_mod_broadcom_code(4, v) |
864 | #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ |
865 | fourcc_mod_broadcom_code(5, v) |
866 | |
867 | #define DRM_FORMAT_MOD_BROADCOM_SAND32 \ |
868 | DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) |
869 | #define DRM_FORMAT_MOD_BROADCOM_SAND64 \ |
870 | DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) |
871 | #define DRM_FORMAT_MOD_BROADCOM_SAND128 \ |
872 | DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) |
873 | #define DRM_FORMAT_MOD_BROADCOM_SAND256 \ |
874 | DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) |
875 | |
876 | /* Broadcom UIF format |
877 | * |
878 | * This is the common format for the current Broadcom multimedia |
879 | * blocks, including V3D 3.x and newer, newer video codecs, and |
880 | * displays. |
881 | * |
882 | * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), |
883 | * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are |
884 | * stored in columns, with padding between the columns to ensure that |
885 | * moving from one column to the next doesn't hit the same SDRAM page |
886 | * bank. |
887 | * |
888 | * To calculate the padding, it is assumed that each hardware block |
889 | * and the software driving it knows the platform's SDRAM page size, |
890 | * number of banks, and XOR address, and that it's identical between |
891 | * all blocks using the format. This tiling modifier will use XOR as |
892 | * necessary to reduce the padding. If a hardware block can't do XOR, |
893 | * the assumption is that a no-XOR tiling modifier will be created. |
894 | */ |
895 | #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) |
896 | |
897 | /* |
898 | * Arm Framebuffer Compression (AFBC) modifiers |
899 | * |
900 | * AFBC is a proprietary lossless image compression protocol and format. |
901 | * It provides fine-grained random access and minimizes the amount of data |
902 | * transferred between IP blocks. |
903 | * |
904 | * AFBC has several features which may be supported and/or used, which are |
905 | * represented using bits in the modifier. Not all combinations are valid, |
906 | * and different devices or use-cases may support different combinations. |
907 | * |
908 | * Further information on the use of AFBC modifiers can be found in |
909 | * Documentation/gpu/afbc.rst |
910 | */ |
911 | |
912 | /* |
913 | * The top 4 bits (out of the 56 bits alloted for specifying vendor specific |
914 | * modifiers) denote the category for modifiers. Currently we have three |
915 | * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of |
916 | * sixteen different categories. |
917 | */ |
918 | #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \ |
919 | fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL)) |
920 | |
921 | #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00 |
922 | #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01 |
923 | |
924 | #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \ |
925 | DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode) |
926 | |
927 | /* |
928 | * AFBC superblock size |
929 | * |
930 | * Indicates the superblock size(s) used for the AFBC buffer. The buffer |
931 | * size (in pixels) must be aligned to a multiple of the superblock size. |
932 | * Four lowest significant bits(LSBs) are reserved for block size. |
933 | * |
934 | * Where one superblock size is specified, it applies to all planes of the |
935 | * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified, |
936 | * the first applies to the Luma plane and the second applies to the Chroma |
937 | * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma). |
938 | * Multiple superblock sizes are only valid for multi-plane YCbCr formats. |
939 | */ |
940 | #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf |
941 | #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) |
942 | #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) |
943 | #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL) |
944 | #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL) |
945 | |
946 | /* |
947 | * AFBC lossless colorspace transform |
948 | * |
949 | * Indicates that the buffer makes use of the AFBC lossless colorspace |
950 | * transform. |
951 | */ |
952 | #define AFBC_FORMAT_MOD_YTR (1ULL << 4) |
953 | |
954 | /* |
955 | * AFBC block-split |
956 | * |
957 | * Indicates that the payload of each superblock is split. The second |
958 | * half of the payload is positioned at a predefined offset from the start |
959 | * of the superblock payload. |
960 | */ |
961 | #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) |
962 | |
963 | /* |
964 | * AFBC sparse layout |
965 | * |
966 | * This flag indicates that the payload of each superblock must be stored at a |
967 | * predefined position relative to the other superblocks in the same AFBC |
968 | * buffer. This order is the same order used by the header buffer. In this mode |
969 | * each superblock is given the same amount of space as an uncompressed |
970 | * superblock of the particular format would require, rounding up to the next |
971 | * multiple of 128 bytes in size. |
972 | */ |
973 | #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) |
974 | |
975 | /* |
976 | * AFBC copy-block restrict |
977 | * |
978 | * Buffers with this flag must obey the copy-block restriction. The restriction |
979 | * is such that there are no copy-blocks referring across the border of 8x8 |
980 | * blocks. For the subsampled data the 8x8 limitation is also subsampled. |
981 | */ |
982 | #define AFBC_FORMAT_MOD_CBR (1ULL << 7) |
983 | |
984 | /* |
985 | * AFBC tiled layout |
986 | * |
987 | * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all |
988 | * superblocks inside a tile are stored together in memory. 8x8 tiles are used |
989 | * for pixel formats up to and including 32 bpp while 4x4 tiles are used for |
990 | * larger bpp formats. The order between the tiles is scan line. |
991 | * When the tiled layout is used, the buffer size (in pixels) must be aligned |
992 | * to the tile size. |
993 | */ |
994 | #define AFBC_FORMAT_MOD_TILED (1ULL << 8) |
995 | |
996 | /* |
997 | * AFBC solid color blocks |
998 | * |
999 | * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth |
1000 | * can be reduced if a whole superblock is a single color. |
1001 | */ |
1002 | #define AFBC_FORMAT_MOD_SC (1ULL << 9) |
1003 | |
1004 | /* |
1005 | * AFBC double-buffer |
1006 | * |
1007 | * Indicates that the buffer is allocated in a layout safe for front-buffer |
1008 | * rendering. |
1009 | */ |
1010 | #define AFBC_FORMAT_MOD_DB (1ULL << 10) |
1011 | |
1012 | /* |
1013 | * AFBC buffer content hints |
1014 | * |
1015 | * Indicates that the buffer includes per-superblock content hints. |
1016 | */ |
1017 | #define AFBC_FORMAT_MOD_BCH (1ULL << 11) |
1018 | |
1019 | /* AFBC uncompressed storage mode |
1020 | * |
1021 | * Indicates that the buffer is using AFBC uncompressed storage mode. |
1022 | * In this mode all superblock payloads in the buffer use the uncompressed |
1023 | * storage mode, which is usually only used for data which cannot be compressed. |
1024 | * The buffer layout is the same as for AFBC buffers without USM set, this only |
1025 | * affects the storage mode of the individual superblocks. Note that even a |
1026 | * buffer without USM set may use uncompressed storage mode for some or all |
1027 | * superblocks, USM just guarantees it for all. |
1028 | */ |
1029 | #define AFBC_FORMAT_MOD_USM (1ULL << 12) |
1030 | |
1031 | /* |
1032 | * Arm Fixed-Rate Compression (AFRC) modifiers |
1033 | * |
1034 | * AFRC is a proprietary fixed rate image compression protocol and format, |
1035 | * designed to provide guaranteed bandwidth and memory footprint |
1036 | * reductions in graphics and media use-cases. |
1037 | * |
1038 | * AFRC buffers consist of one or more planes, with the same components |
1039 | * and meaning as an uncompressed buffer using the same pixel format. |
1040 | * |
1041 | * Within each plane, the pixel/luma/chroma values are grouped into |
1042 | * "coding unit" blocks which are individually compressed to a |
1043 | * fixed size (in bytes). All coding units within a given plane of a buffer |
1044 | * store the same number of values, and have the same compressed size. |
1045 | * |
1046 | * The coding unit size is configurable, allowing different rates of compression. |
1047 | * |
1048 | * The start of each AFRC buffer plane must be aligned to an alignment granule which |
1049 | * depends on the coding unit size. |
1050 | * |
1051 | * Coding Unit Size Plane Alignment |
1052 | * ---------------- --------------- |
1053 | * 16 bytes 1024 bytes |
1054 | * 24 bytes 512 bytes |
1055 | * 32 bytes 2048 bytes |
1056 | * |
1057 | * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned |
1058 | * to a multiple of the paging tile dimensions. |
1059 | * The dimensions of each paging tile depend on whether the buffer is optimised for |
1060 | * scanline (SCAN layout) or rotated (ROT layout) access. |
1061 | * |
1062 | * Layout Paging Tile Width Paging Tile Height |
1063 | * ------ ----------------- ------------------ |
1064 | * SCAN 16 coding units 4 coding units |
1065 | * ROT 8 coding units 8 coding units |
1066 | * |
1067 | * The dimensions of each coding unit depend on the number of components |
1068 | * in the compressed plane and whether the buffer is optimised for |
1069 | * scanline (SCAN layout) or rotated (ROT layout) access. |
1070 | * |
1071 | * Number of Components in Plane Layout Coding Unit Width Coding Unit Height |
1072 | * ----------------------------- --------- ----------------- ------------------ |
1073 | * 1 SCAN 16 samples 4 samples |
1074 | * Example: 16x4 luma samples in a 'Y' plane |
1075 | * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer |
1076 | * ----------------------------- --------- ----------------- ------------------ |
1077 | * 1 ROT 8 samples 8 samples |
1078 | * Example: 8x8 luma samples in a 'Y' plane |
1079 | * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer |
1080 | * ----------------------------- --------- ----------------- ------------------ |
1081 | * 2 DONT CARE 8 samples 4 samples |
1082 | * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer |
1083 | * ----------------------------- --------- ----------------- ------------------ |
1084 | * 3 DONT CARE 4 samples 4 samples |
1085 | * Example: 4x4 pixels in an RGB buffer without alpha |
1086 | * ----------------------------- --------- ----------------- ------------------ |
1087 | * 4 DONT CARE 4 samples 4 samples |
1088 | * Example: 4x4 pixels in an RGB buffer with alpha |
1089 | */ |
1090 | |
1091 | #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02 |
1092 | |
1093 | #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \ |
1094 | DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode) |
1095 | |
1096 | /* |
1097 | * AFRC coding unit size modifier. |
1098 | * |
1099 | * Indicates the number of bytes used to store each compressed coding unit for |
1100 | * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance |
1101 | * is the same for both Cb and Cr, which may be stored in separate planes. |
1102 | * |
1103 | * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store |
1104 | * each compressed coding unit in the first plane of the buffer. For RGBA buffers |
1105 | * this is the only plane, while for semi-planar and fully-planar YUV buffers, |
1106 | * this corresponds to the luma plane. |
1107 | * |
1108 | * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store |
1109 | * each compressed coding unit in the second and third planes in the buffer. |
1110 | * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s). |
1111 | * |
1112 | * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified |
1113 | * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero. |
1114 | * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and |
1115 | * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified. |
1116 | */ |
1117 | #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf |
1118 | #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL) |
1119 | #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL) |
1120 | #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL) |
1121 | |
1122 | #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size) |
1123 | #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4) |
1124 | |
1125 | /* |
1126 | * AFRC scanline memory layout. |
1127 | * |
1128 | * Indicates if the buffer uses the scanline-optimised layout |
1129 | * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout. |
1130 | * The memory layout is the same for all planes. |
1131 | */ |
1132 | #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8) |
1133 | |
1134 | /* |
1135 | * Arm 16x16 Block U-Interleaved modifier |
1136 | * |
1137 | * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image |
1138 | * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels |
1139 | * in the block are reordered. |
1140 | */ |
1141 | #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \ |
1142 | DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL) |
1143 | |
1144 | /* |
1145 | * Allwinner tiled modifier |
1146 | * |
1147 | * This tiling mode is implemented by the VPU found on all Allwinner platforms, |
1148 | * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3 |
1149 | * planes. |
1150 | * |
1151 | * With this tiling, the luminance samples are disposed in tiles representing |
1152 | * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels. |
1153 | * The pixel order in each tile is linear and the tiles are disposed linearly, |
1154 | * both in row-major order. |
1155 | */ |
1156 | #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1) |
1157 | |
1158 | /* |
1159 | * Amlogic Video Framebuffer Compression modifiers |
1160 | * |
1161 | * Amlogic uses a proprietary lossless image compression protocol and format |
1162 | * for their hardware video codec accelerators, either video decoders or |
1163 | * video input encoders. |
1164 | * |
1165 | * It considerably reduces memory bandwidth while writing and reading |
1166 | * frames in memory. |
1167 | * |
1168 | * The underlying storage is considered to be 3 components, 8bit or 10-bit |
1169 | * per component YCbCr 420, single plane : |
1170 | * - DRM_FORMAT_YUV420_8BIT |
1171 | * - DRM_FORMAT_YUV420_10BIT |
1172 | * |
1173 | * The first 8 bits of the mode defines the layout, then the following 8 bits |
1174 | * defines the options changing the layout. |
1175 | * |
1176 | * Not all combinations are valid, and different SoCs may support different |
1177 | * combinations of layout and options. |
1178 | */ |
1179 | #define __fourcc_mod_amlogic_layout_mask 0xff |
1180 | #define __fourcc_mod_amlogic_options_shift 8 |
1181 | #define __fourcc_mod_amlogic_options_mask 0xff |
1182 | |
1183 | #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \ |
1184 | fourcc_mod_code(AMLOGIC, \ |
1185 | ((__layout) & __fourcc_mod_amlogic_layout_mask) | \ |
1186 | (((__options) & __fourcc_mod_amlogic_options_mask) \ |
1187 | << __fourcc_mod_amlogic_options_shift)) |
1188 | |
1189 | /* Amlogic FBC Layouts */ |
1190 | |
1191 | /* |
1192 | * Amlogic FBC Basic Layout |
1193 | * |
1194 | * The basic layout is composed of: |
1195 | * - a body content organized in 64x32 superblocks with 4096 bytes per |
1196 | * superblock in default mode. |
1197 | * - a 32 bytes per 128x64 header block |
1198 | * |
1199 | * This layout is transferrable between Amlogic SoCs supporting this modifier. |
1200 | */ |
1201 | #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL) |
1202 | |
1203 | /* |
1204 | * Amlogic FBC Scatter Memory layout |
1205 | * |
1206 | * Indicates the header contains IOMMU references to the compressed |
1207 | * frames content to optimize memory access and layout. |
1208 | * |
1209 | * In this mode, only the header memory address is needed, thus the |
1210 | * content memory organization is tied to the current producer |
1211 | * execution and cannot be saved/dumped neither transferrable between |
1212 | * Amlogic SoCs supporting this modifier. |
1213 | * |
1214 | * Due to the nature of the layout, these buffers are not expected to |
1215 | * be accessible by the user-space clients, but only accessible by the |
1216 | * hardware producers and consumers. |
1217 | * |
1218 | * The user-space clients should expect a failure while trying to mmap |
1219 | * the DMA-BUF handle returned by the producer. |
1220 | */ |
1221 | #define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL) |
1222 | |
1223 | /* Amlogic FBC Layout Options Bit Mask */ |
1224 | |
1225 | /* |
1226 | * Amlogic FBC Memory Saving mode |
1227 | * |
1228 | * Indicates the storage is packed when pixel size is multiple of word |
1229 | * boudaries, i.e. 8bit should be stored in this mode to save allocation |
1230 | * memory. |
1231 | * |
1232 | * This mode reduces body layout to 3072 bytes per 64x32 superblock with |
1233 | * the basic layout and 3200 bytes per 64x32 superblock combined with |
1234 | * the scatter layout. |
1235 | */ |
1236 | #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0) |
1237 | |
1238 | /* |
1239 | * AMD modifiers |
1240 | * |
1241 | * Memory layout: |
1242 | * |
1243 | * without DCC: |
1244 | * - main surface |
1245 | * |
1246 | * with DCC & without DCC_RETILE: |
1247 | * - main surface in plane 0 |
1248 | * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set) |
1249 | * |
1250 | * with DCC & DCC_RETILE: |
1251 | * - main surface in plane 0 |
1252 | * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned) |
1253 | * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned) |
1254 | * |
1255 | * For multi-plane formats the above surfaces get merged into one plane for |
1256 | * each format plane, based on the required alignment only. |
1257 | * |
1258 | * Bits Parameter Notes |
1259 | * ----- ------------------------ --------------------------------------------- |
1260 | * |
1261 | * 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_* |
1262 | * 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_* |
1263 | * 13 DCC |
1264 | * 14 DCC_RETILE |
1265 | * 15 DCC_PIPE_ALIGN |
1266 | * 16 DCC_INDEPENDENT_64B |
1267 | * 17 DCC_INDEPENDENT_128B |
1268 | * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_* |
1269 | * 20 DCC_CONSTANT_ENCODE |
1270 | * 23:21 PIPE_XOR_BITS Only for some chips |
1271 | * 26:24 BANK_XOR_BITS Only for some chips |
1272 | * 29:27 PACKERS Only for some chips |
1273 | * 32:30 RB Only for some chips |
1274 | * 35:33 PIPE Only for some chips |
1275 | * 55:36 - Reserved for future use, must be zero |
1276 | */ |
1277 | #define AMD_FMT_MOD fourcc_mod_code(AMD, 0) |
1278 | |
1279 | #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD) |
1280 | |
1281 | /* Reserve 0 for GFX8 and older */ |
1282 | #define AMD_FMT_MOD_TILE_VER_GFX9 1 |
1283 | #define AMD_FMT_MOD_TILE_VER_GFX10 2 |
1284 | #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3 |
1285 | |
1286 | /* |
1287 | * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical |
1288 | * version. |
1289 | */ |
1290 | #define AMD_FMT_MOD_TILE_GFX9_64K_S 9 |
1291 | |
1292 | /* |
1293 | * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has |
1294 | * GFX9 as canonical version. |
1295 | */ |
1296 | #define AMD_FMT_MOD_TILE_GFX9_64K_D 10 |
1297 | #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25 |
1298 | #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26 |
1299 | #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27 |
1300 | |
1301 | #define AMD_FMT_MOD_DCC_BLOCK_64B 0 |
1302 | #define AMD_FMT_MOD_DCC_BLOCK_128B 1 |
1303 | #define AMD_FMT_MOD_DCC_BLOCK_256B 2 |
1304 | |
1305 | #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0 |
1306 | #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF |
1307 | #define AMD_FMT_MOD_TILE_SHIFT 8 |
1308 | #define AMD_FMT_MOD_TILE_MASK 0x1F |
1309 | |
1310 | /* Whether DCC compression is enabled. */ |
1311 | #define AMD_FMT_MOD_DCC_SHIFT 13 |
1312 | #define AMD_FMT_MOD_DCC_MASK 0x1 |
1313 | |
1314 | /* |
1315 | * Whether to include two DCC surfaces, one which is rb & pipe aligned, and |
1316 | * one which is not-aligned. |
1317 | */ |
1318 | #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14 |
1319 | #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1 |
1320 | |
1321 | /* Only set if DCC_RETILE = false */ |
1322 | #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15 |
1323 | #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1 |
1324 | |
1325 | #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16 |
1326 | #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1 |
1327 | #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17 |
1328 | #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1 |
1329 | #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18 |
1330 | #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3 |
1331 | |
1332 | /* |
1333 | * DCC supports embedding some clear colors directly in the DCC surface. |
1334 | * However, on older GPUs the rendering HW ignores the embedded clear color |
1335 | * and prefers the driver provided color. This necessitates doing a fastclear |
1336 | * eliminate operation before a process transfers control. |
1337 | * |
1338 | * If this bit is set that means the fastclear eliminate is not needed for these |
1339 | * embeddable colors. |
1340 | */ |
1341 | #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20 |
1342 | #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1 |
1343 | |
1344 | /* |
1345 | * The below fields are for accounting for per GPU differences. These are only |
1346 | * relevant for GFX9 and later and if the tile field is *_X/_T. |
1347 | * |
1348 | * PIPE_XOR_BITS = always needed |
1349 | * BANK_XOR_BITS = only for TILE_VER_GFX9 |
1350 | * PACKERS = only for TILE_VER_GFX10_RBPLUS |
1351 | * RB = only for TILE_VER_GFX9 & DCC |
1352 | * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN) |
1353 | */ |
1354 | #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21 |
1355 | #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7 |
1356 | #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24 |
1357 | #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7 |
1358 | #define AMD_FMT_MOD_PACKERS_SHIFT 27 |
1359 | #define AMD_FMT_MOD_PACKERS_MASK 0x7 |
1360 | #define AMD_FMT_MOD_RB_SHIFT 30 |
1361 | #define AMD_FMT_MOD_RB_MASK 0x7 |
1362 | #define AMD_FMT_MOD_PIPE_SHIFT 33 |
1363 | #define AMD_FMT_MOD_PIPE_MASK 0x7 |
1364 | |
1365 | #define AMD_FMT_MOD_SET(field, value) \ |
1366 | ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT) |
1367 | #define AMD_FMT_MOD_GET(field, value) \ |
1368 | (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK) |
1369 | #define AMD_FMT_MOD_CLEAR(field) \ |
1370 | (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT)) |
1371 | |
1372 | #if defined(__cplusplus) |
1373 | } |
1374 | #endif |
1375 | |
1376 | #endif /* DRM_FOURCC_H */ |
1377 | |