1 | //===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// This file provides a collection of function (or more generally, callable) |
10 | /// type erasure utilities supplementing those provided by the standard library |
11 | /// in `<function>`. |
12 | /// |
13 | /// It provides `unique_function`, which works like `std::function` but supports |
14 | /// move-only callable objects and const-qualification. |
15 | /// |
16 | /// Future plans: |
17 | /// - Add a `function` that provides ref-qualified support, which doesn't work |
18 | /// with `std::function`. |
19 | /// - Provide support for specifying multiple signatures to type erase callable |
20 | /// objects with an overload set, such as those produced by generic lambdas. |
21 | /// - Expand to include a copyable utility that directly replaces std::function |
22 | /// but brings the above improvements. |
23 | /// |
24 | /// Note that LLVM's utilities are greatly simplified by not supporting |
25 | /// allocators. |
26 | /// |
27 | /// If the standard library ever begins to provide comparable facilities we can |
28 | /// consider switching to those. |
29 | /// |
30 | //===----------------------------------------------------------------------===// |
31 | |
32 | #ifndef LLVM_ADT_FUNCTIONEXTRAS_H |
33 | #define |
34 | |
35 | #include "llvm/ADT/PointerIntPair.h" |
36 | #include "llvm/ADT/PointerUnion.h" |
37 | #include "llvm/ADT/STLForwardCompat.h" |
38 | #include "llvm/Support/MemAlloc.h" |
39 | #include "llvm/Support/type_traits.h" |
40 | #include <cstring> |
41 | #include <memory> |
42 | #include <type_traits> |
43 | |
44 | namespace llvm { |
45 | |
46 | /// unique_function is a type-erasing functor similar to std::function. |
47 | /// |
48 | /// It can hold move-only function objects, like lambdas capturing unique_ptrs. |
49 | /// Accordingly, it is movable but not copyable. |
50 | /// |
51 | /// It supports const-qualification: |
52 | /// - unique_function<int() const> has a const operator(). |
53 | /// It can only hold functions which themselves have a const operator(). |
54 | /// - unique_function<int()> has a non-const operator(). |
55 | /// It can hold functions with a non-const operator(), like mutable lambdas. |
56 | template <typename FunctionT> class unique_function; |
57 | |
58 | namespace detail { |
59 | |
60 | template <typename T> |
61 | using EnableIfTrivial = |
62 | std::enable_if_t<std::is_trivially_move_constructible<T>::value && |
63 | std::is_trivially_destructible<T>::value>; |
64 | template <typename CallableT, typename ThisT> |
65 | using EnableUnlessSameType = |
66 | std::enable_if_t<!std::is_same<remove_cvref_t<CallableT>, ThisT>::value>; |
67 | template <typename CallableT, typename Ret, typename... Params> |
68 | using EnableIfCallable = std::enable_if_t<std::disjunction< |
69 | std::is_void<Ret>, |
70 | std::is_same<decltype(std::declval<CallableT>()(std::declval<Params>()...)), |
71 | Ret>, |
72 | std::is_same<const decltype(std::declval<CallableT>()( |
73 | std::declval<Params>()...)), |
74 | Ret>, |
75 | std::is_convertible<decltype(std::declval<CallableT>()( |
76 | std::declval<Params>()...)), |
77 | Ret>>::value>; |
78 | |
79 | template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase { |
80 | protected: |
81 | static constexpr size_t InlineStorageSize = sizeof(void *) * 3; |
82 | |
83 | template <typename T, class = void> |
84 | struct IsSizeLessThanThresholdT : std::false_type {}; |
85 | |
86 | template <typename T> |
87 | struct IsSizeLessThanThresholdT< |
88 | T, std::enable_if_t<sizeof(T) <= 2 * sizeof(void *)>> : std::true_type {}; |
89 | |
90 | // Provide a type function to map parameters that won't observe extra copies |
91 | // or moves and which are small enough to likely pass in register to values |
92 | // and all other types to l-value reference types. We use this to compute the |
93 | // types used in our erased call utility to minimize copies and moves unless |
94 | // doing so would force things unnecessarily into memory. |
95 | // |
96 | // The heuristic used is related to common ABI register passing conventions. |
97 | // It doesn't have to be exact though, and in one way it is more strict |
98 | // because we want to still be able to observe either moves *or* copies. |
99 | template <typename T> struct AdjustedParamTBase { |
100 | static_assert(!std::is_reference<T>::value, |
101 | "references should be handled by template specialization" ); |
102 | using type = |
103 | std::conditional_t<std::is_trivially_copy_constructible<T>::value && |
104 | std::is_trivially_move_constructible<T>::value && |
105 | IsSizeLessThanThresholdT<T>::value, |
106 | T, T &>; |
107 | }; |
108 | |
109 | // This specialization ensures that 'AdjustedParam<V<T>&>' or |
110 | // 'AdjustedParam<V<T>&&>' does not trigger a compile-time error when 'T' is |
111 | // an incomplete type and V a templated type. |
112 | template <typename T> struct AdjustedParamTBase<T &> { using type = T &; }; |
113 | template <typename T> struct AdjustedParamTBase<T &&> { using type = T &; }; |
114 | |
115 | template <typename T> |
116 | using AdjustedParamT = typename AdjustedParamTBase<T>::type; |
117 | |
118 | // The type of the erased function pointer we use as a callback to dispatch to |
119 | // the stored callable when it is trivial to move and destroy. |
120 | using CallPtrT = ReturnT (*)(void *CallableAddr, |
121 | AdjustedParamT<ParamTs>... Params); |
122 | using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr); |
123 | using DestroyPtrT = void (*)(void *CallableAddr); |
124 | |
125 | /// A struct to hold a single trivial callback with sufficient alignment for |
126 | /// our bitpacking. |
127 | struct alignas(8) TrivialCallback { |
128 | CallPtrT CallPtr; |
129 | }; |
130 | |
131 | /// A struct we use to aggregate three callbacks when we need full set of |
132 | /// operations. |
133 | struct alignas(8) NonTrivialCallbacks { |
134 | CallPtrT CallPtr; |
135 | MovePtrT MovePtr; |
136 | DestroyPtrT DestroyPtr; |
137 | }; |
138 | |
139 | // Create a pointer union between either a pointer to a static trivial call |
140 | // pointer in a struct or a pointer to a static struct of the call, move, and |
141 | // destroy pointers. |
142 | using CallbackPointerUnionT = |
143 | PointerUnion<TrivialCallback *, NonTrivialCallbacks *>; |
144 | |
145 | // The main storage buffer. This will either have a pointer to out-of-line |
146 | // storage or an inline buffer storing the callable. |
147 | union StorageUnionT { |
148 | // For out-of-line storage we keep a pointer to the underlying storage and |
149 | // the size. This is enough to deallocate the memory. |
150 | struct OutOfLineStorageT { |
151 | void *StoragePtr; |
152 | size_t Size; |
153 | size_t Alignment; |
154 | } OutOfLineStorage; |
155 | static_assert( |
156 | sizeof(OutOfLineStorageT) <= InlineStorageSize, |
157 | "Should always use all of the out-of-line storage for inline storage!" ); |
158 | |
159 | // For in-line storage, we just provide an aligned character buffer. We |
160 | // provide three pointers worth of storage here. |
161 | // This is mutable as an inlined `const unique_function<void() const>` may |
162 | // still modify its own mutable members. |
163 | mutable std::aligned_storage_t<InlineStorageSize, alignof(void *)> |
164 | InlineStorage; |
165 | } StorageUnion; |
166 | |
167 | // A compressed pointer to either our dispatching callback or our table of |
168 | // dispatching callbacks and the flag for whether the callable itself is |
169 | // stored inline or not. |
170 | PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag; |
171 | |
172 | bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); } |
173 | |
174 | bool isTrivialCallback() const { |
175 | return isa<TrivialCallback *>(CallbackAndInlineFlag.getPointer()); |
176 | } |
177 | |
178 | CallPtrT getTrivialCallback() const { |
179 | return cast<TrivialCallback *>(CallbackAndInlineFlag.getPointer())->CallPtr; |
180 | } |
181 | |
182 | NonTrivialCallbacks *getNonTrivialCallbacks() const { |
183 | return cast<NonTrivialCallbacks *>(CallbackAndInlineFlag.getPointer()); |
184 | } |
185 | |
186 | CallPtrT getCallPtr() const { |
187 | return isTrivialCallback() ? getTrivialCallback() |
188 | : getNonTrivialCallbacks()->CallPtr; |
189 | } |
190 | |
191 | // These three functions are only const in the narrow sense. They return |
192 | // mutable pointers to function state. |
193 | // This allows unique_function<T const>::operator() to be const, even if the |
194 | // underlying functor may be internally mutable. |
195 | // |
196 | // const callers must ensure they're only used in const-correct ways. |
197 | void *getCalleePtr() const { |
198 | return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage(); |
199 | } |
200 | void *getInlineStorage() const { return &StorageUnion.InlineStorage; } |
201 | void *getOutOfLineStorage() const { |
202 | return StorageUnion.OutOfLineStorage.StoragePtr; |
203 | } |
204 | |
205 | size_t getOutOfLineStorageSize() const { |
206 | return StorageUnion.OutOfLineStorage.Size; |
207 | } |
208 | size_t getOutOfLineStorageAlignment() const { |
209 | return StorageUnion.OutOfLineStorage.Alignment; |
210 | } |
211 | |
212 | void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) { |
213 | StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment}; |
214 | } |
215 | |
216 | template <typename CalledAsT> |
217 | static ReturnT CallImpl(void *CallableAddr, |
218 | AdjustedParamT<ParamTs>... Params) { |
219 | auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr); |
220 | return Func(std::forward<ParamTs>(Params)...); |
221 | } |
222 | |
223 | template <typename CallableT> |
224 | static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept { |
225 | new (LHSCallableAddr) |
226 | CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr))); |
227 | } |
228 | |
229 | template <typename CallableT> |
230 | static void DestroyImpl(void *CallableAddr) noexcept { |
231 | reinterpret_cast<CallableT *>(CallableAddr)->~CallableT(); |
232 | } |
233 | |
234 | // The pointers to call/move/destroy functions are determined for each |
235 | // callable type (and called-as type, which determines the overload chosen). |
236 | // (definitions are out-of-line). |
237 | |
238 | // By default, we need an object that contains all the different |
239 | // type erased behaviors needed. Create a static instance of the struct type |
240 | // here and each instance will contain a pointer to it. |
241 | // Wrap in a struct to avoid https://gcc.gnu.org/PR71954 |
242 | template <typename CallableT, typename CalledAs, typename Enable = void> |
243 | struct CallbacksHolder { |
244 | static NonTrivialCallbacks Callbacks; |
245 | }; |
246 | // See if we can create a trivial callback. We need the callable to be |
247 | // trivially moved and trivially destroyed so that we don't have to store |
248 | // type erased callbacks for those operations. |
249 | template <typename CallableT, typename CalledAs> |
250 | struct CallbacksHolder<CallableT, CalledAs, EnableIfTrivial<CallableT>> { |
251 | static TrivialCallback Callbacks; |
252 | }; |
253 | |
254 | // A simple tag type so the call-as type to be passed to the constructor. |
255 | template <typename T> struct CalledAs {}; |
256 | |
257 | // Essentially the "main" unique_function constructor, but subclasses |
258 | // provide the qualified type to be used for the call. |
259 | // (We always store a T, even if the call will use a pointer to const T). |
260 | template <typename CallableT, typename CalledAsT> |
261 | UniqueFunctionBase(CallableT Callable, CalledAs<CalledAsT>) { |
262 | bool IsInlineStorage = true; |
263 | void *CallableAddr = getInlineStorage(); |
264 | if (sizeof(CallableT) > InlineStorageSize || |
265 | alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) { |
266 | IsInlineStorage = false; |
267 | // Allocate out-of-line storage. FIXME: Use an explicit alignment |
268 | // parameter in C++17 mode. |
269 | auto Size = sizeof(CallableT); |
270 | auto Alignment = alignof(CallableT); |
271 | CallableAddr = allocate_buffer(Size, Alignment); |
272 | setOutOfLineStorage(Ptr: CallableAddr, Size, Alignment); |
273 | } |
274 | |
275 | // Now move into the storage. |
276 | new (CallableAddr) CallableT(std::move(Callable)); |
277 | CallbackAndInlineFlag.setPointerAndInt( |
278 | &CallbacksHolder<CallableT, CalledAsT>::Callbacks, IsInlineStorage); |
279 | } |
280 | |
281 | ~UniqueFunctionBase() { |
282 | if (!CallbackAndInlineFlag.getPointer()) |
283 | return; |
284 | |
285 | // Cache this value so we don't re-check it after type-erased operations. |
286 | bool IsInlineStorage = isInlineStorage(); |
287 | |
288 | if (!isTrivialCallback()) |
289 | getNonTrivialCallbacks()->DestroyPtr( |
290 | IsInlineStorage ? getInlineStorage() : getOutOfLineStorage()); |
291 | |
292 | if (!IsInlineStorage) |
293 | deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(), |
294 | getOutOfLineStorageAlignment()); |
295 | } |
296 | |
297 | UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept { |
298 | // Copy the callback and inline flag. |
299 | CallbackAndInlineFlag = RHS.CallbackAndInlineFlag; |
300 | |
301 | // If the RHS is empty, just copying the above is sufficient. |
302 | if (!RHS) |
303 | return; |
304 | |
305 | if (!isInlineStorage()) { |
306 | // The out-of-line case is easiest to move. |
307 | StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage; |
308 | } else if (isTrivialCallback()) { |
309 | // Move is trivial, just memcpy the bytes across. |
310 | memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize); |
311 | } else { |
312 | // Non-trivial move, so dispatch to a type-erased implementation. |
313 | getNonTrivialCallbacks()->MovePtr(getInlineStorage(), |
314 | RHS.getInlineStorage()); |
315 | } |
316 | |
317 | // Clear the old callback and inline flag to get back to as-if-null. |
318 | RHS.CallbackAndInlineFlag = {}; |
319 | |
320 | #ifndef NDEBUG |
321 | // In debug builds, we also scribble across the rest of the storage. |
322 | memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize); |
323 | #endif |
324 | } |
325 | |
326 | UniqueFunctionBase &operator=(UniqueFunctionBase &&RHS) noexcept { |
327 | if (this == &RHS) |
328 | return *this; |
329 | |
330 | // Because we don't try to provide any exception safety guarantees we can |
331 | // implement move assignment very simply by first destroying the current |
332 | // object and then move-constructing over top of it. |
333 | this->~UniqueFunctionBase(); |
334 | new (this) UniqueFunctionBase(std::move(RHS)); |
335 | return *this; |
336 | } |
337 | |
338 | UniqueFunctionBase() = default; |
339 | |
340 | public: |
341 | explicit operator bool() const { |
342 | return (bool)CallbackAndInlineFlag.getPointer(); |
343 | } |
344 | }; |
345 | |
346 | template <typename R, typename... P> |
347 | template <typename CallableT, typename CalledAsT, typename Enable> |
348 | typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks UniqueFunctionBase< |
349 | R, P...>::CallbacksHolder<CallableT, CalledAsT, Enable>::Callbacks = { |
350 | &CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>}; |
351 | |
352 | template <typename R, typename... P> |
353 | template <typename CallableT, typename CalledAsT> |
354 | typename UniqueFunctionBase<R, P...>::TrivialCallback |
355 | UniqueFunctionBase<R, P...>::CallbacksHolder< |
356 | CallableT, CalledAsT, EnableIfTrivial<CallableT>>::Callbacks{ |
357 | &CallImpl<CalledAsT>}; |
358 | |
359 | } // namespace detail |
360 | |
361 | template <typename R, typename... P> |
362 | class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> { |
363 | using Base = detail::UniqueFunctionBase<R, P...>; |
364 | |
365 | public: |
366 | unique_function() = default; |
367 | unique_function(std::nullptr_t) {} |
368 | unique_function(unique_function &&) = default; |
369 | unique_function(const unique_function &) = delete; |
370 | unique_function &operator=(unique_function &&) = default; |
371 | unique_function &operator=(const unique_function &) = delete; |
372 | |
373 | template <typename CallableT> |
374 | unique_function( |
375 | CallableT Callable, |
376 | detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr, |
377 | detail::EnableIfCallable<CallableT, R, P...> * = nullptr) |
378 | : Base(std::forward<CallableT>(Callable), |
379 | typename Base::template CalledAs<CallableT>{}) {} |
380 | |
381 | R operator()(P... Params) { |
382 | return this->getCallPtr()(this->getCalleePtr(), Params...); |
383 | } |
384 | }; |
385 | |
386 | template <typename R, typename... P> |
387 | class unique_function<R(P...) const> |
388 | : public detail::UniqueFunctionBase<R, P...> { |
389 | using Base = detail::UniqueFunctionBase<R, P...>; |
390 | |
391 | public: |
392 | unique_function() = default; |
393 | unique_function(std::nullptr_t) {} |
394 | unique_function(unique_function &&) = default; |
395 | unique_function(const unique_function &) = delete; |
396 | unique_function &operator=(unique_function &&) = default; |
397 | unique_function &operator=(const unique_function &) = delete; |
398 | |
399 | template <typename CallableT> |
400 | unique_function( |
401 | CallableT Callable, |
402 | detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr, |
403 | detail::EnableIfCallable<const CallableT, R, P...> * = nullptr) |
404 | : Base(std::forward<CallableT>(Callable), |
405 | typename Base::template CalledAs<const CallableT>{}) {} |
406 | |
407 | R operator()(P... Params) const { |
408 | return this->getCallPtr()(this->getCalleePtr(), Params...); |
409 | } |
410 | }; |
411 | |
412 | } // end namespace llvm |
413 | |
414 | #endif // LLVM_ADT_FUNCTIONEXTRAS_H |
415 | |