1 | //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file contains some templates that are useful if you are working with |
11 | /// the STL at all. |
12 | /// |
13 | /// No library is required when using these functions. |
14 | /// |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #ifndef LLVM_ADT_STLEXTRAS_H |
18 | #define |
19 | |
20 | #include "llvm/ADT/ADL.h" |
21 | #include "llvm/ADT/Hashing.h" |
22 | #include "llvm/ADT/STLForwardCompat.h" |
23 | #include "llvm/ADT/STLFunctionalExtras.h" |
24 | #include "llvm/ADT/identity.h" |
25 | #include "llvm/ADT/iterator.h" |
26 | #include "llvm/ADT/iterator_range.h" |
27 | #include "llvm/Config/abi-breaking.h" |
28 | #include "llvm/Support/ErrorHandling.h" |
29 | #include <algorithm> |
30 | #include <cassert> |
31 | #include <cstddef> |
32 | #include <cstdint> |
33 | #include <cstdlib> |
34 | #include <functional> |
35 | #include <initializer_list> |
36 | #include <iterator> |
37 | #include <limits> |
38 | #include <memory> |
39 | #include <optional> |
40 | #include <tuple> |
41 | #include <type_traits> |
42 | #include <utility> |
43 | |
44 | #ifdef EXPENSIVE_CHECKS |
45 | #include <random> // for std::mt19937 |
46 | #endif |
47 | |
48 | namespace llvm { |
49 | |
50 | //===----------------------------------------------------------------------===// |
51 | // Extra additions to <type_traits> |
52 | //===----------------------------------------------------------------------===// |
53 | |
54 | template <typename T> struct make_const_ptr { |
55 | using type = std::add_pointer_t<std::add_const_t<T>>; |
56 | }; |
57 | |
58 | template <typename T> struct make_const_ref { |
59 | using type = std::add_lvalue_reference_t<std::add_const_t<T>>; |
60 | }; |
61 | |
62 | namespace detail { |
63 | template <class, template <class...> class Op, class... Args> struct detector { |
64 | using value_t = std::false_type; |
65 | }; |
66 | template <template <class...> class Op, class... Args> |
67 | struct detector<std::void_t<Op<Args...>>, Op, Args...> { |
68 | using value_t = std::true_type; |
69 | }; |
70 | } // end namespace detail |
71 | |
72 | /// Detects if a given trait holds for some set of arguments 'Args'. |
73 | /// For example, the given trait could be used to detect if a given type |
74 | /// has a copy assignment operator: |
75 | /// template<class T> |
76 | /// using has_copy_assign_t = decltype(std::declval<T&>() |
77 | /// = std::declval<const T&>()); |
78 | /// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value; |
79 | template <template <class...> class Op, class... Args> |
80 | using is_detected = typename detail::detector<void, Op, Args...>::value_t; |
81 | |
82 | /// This class provides various trait information about a callable object. |
83 | /// * To access the number of arguments: Traits::num_args |
84 | /// * To access the type of an argument: Traits::arg_t<Index> |
85 | /// * To access the type of the result: Traits::result_t |
86 | template <typename T, bool isClass = std::is_class<T>::value> |
87 | struct function_traits : public function_traits<decltype(&T::operator())> {}; |
88 | |
89 | /// Overload for class function types. |
90 | template <typename ClassType, typename ReturnType, typename... Args> |
91 | struct function_traits<ReturnType (ClassType::*)(Args...) const, false> { |
92 | /// The number of arguments to this function. |
93 | enum { num_args = sizeof...(Args) }; |
94 | |
95 | /// The result type of this function. |
96 | using result_t = ReturnType; |
97 | |
98 | /// The type of an argument to this function. |
99 | template <size_t Index> |
100 | using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>; |
101 | }; |
102 | /// Overload for class function types. |
103 | template <typename ClassType, typename ReturnType, typename... Args> |
104 | struct function_traits<ReturnType (ClassType::*)(Args...), false> |
105 | : public function_traits<ReturnType (ClassType::*)(Args...) const> {}; |
106 | /// Overload for non-class function types. |
107 | template <typename ReturnType, typename... Args> |
108 | struct function_traits<ReturnType (*)(Args...), false> { |
109 | /// The number of arguments to this function. |
110 | enum { num_args = sizeof...(Args) }; |
111 | |
112 | /// The result type of this function. |
113 | using result_t = ReturnType; |
114 | |
115 | /// The type of an argument to this function. |
116 | template <size_t i> |
117 | using arg_t = std::tuple_element_t<i, std::tuple<Args...>>; |
118 | }; |
119 | template <typename ReturnType, typename... Args> |
120 | struct function_traits<ReturnType (*const)(Args...), false> |
121 | : public function_traits<ReturnType (*)(Args...)> {}; |
122 | /// Overload for non-class function type references. |
123 | template <typename ReturnType, typename... Args> |
124 | struct function_traits<ReturnType (&)(Args...), false> |
125 | : public function_traits<ReturnType (*)(Args...)> {}; |
126 | |
127 | /// traits class for checking whether type T is one of any of the given |
128 | /// types in the variadic list. |
129 | template <typename T, typename... Ts> |
130 | using is_one_of = std::disjunction<std::is_same<T, Ts>...>; |
131 | |
132 | /// traits class for checking whether type T is a base class for all |
133 | /// the given types in the variadic list. |
134 | template <typename T, typename... Ts> |
135 | using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>; |
136 | |
137 | namespace detail { |
138 | template <typename T, typename... Us> struct TypesAreDistinct; |
139 | template <typename T, typename... Us> |
140 | struct TypesAreDistinct |
141 | : std::integral_constant<bool, !is_one_of<T, Us...>::value && |
142 | TypesAreDistinct<Us...>::value> {}; |
143 | template <typename T> struct TypesAreDistinct<T> : std::true_type {}; |
144 | } // namespace detail |
145 | |
146 | /// Determine if all types in Ts are distinct. |
147 | /// |
148 | /// Useful to statically assert when Ts is intended to describe a non-multi set |
149 | /// of types. |
150 | /// |
151 | /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be |
152 | /// asserted once per instantiation of a type which requires it. |
153 | template <typename... Ts> struct TypesAreDistinct; |
154 | template <> struct TypesAreDistinct<> : std::true_type {}; |
155 | template <typename... Ts> |
156 | struct TypesAreDistinct |
157 | : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {}; |
158 | |
159 | /// Find the first index where a type appears in a list of types. |
160 | /// |
161 | /// FirstIndexOfType<T, Us...>::value is the first index of T in Us. |
162 | /// |
163 | /// Typically only meaningful when it is otherwise statically known that the |
164 | /// type pack has no duplicate types. This should be guaranteed explicitly with |
165 | /// static_assert(TypesAreDistinct<Us...>::value). |
166 | /// |
167 | /// It is a compile-time error to instantiate when T is not present in Us, i.e. |
168 | /// if is_one_of<T, Us...>::value is false. |
169 | template <typename T, typename... Us> struct FirstIndexOfType; |
170 | template <typename T, typename U, typename... Us> |
171 | struct FirstIndexOfType<T, U, Us...> |
172 | : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {}; |
173 | template <typename T, typename... Us> |
174 | struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {}; |
175 | |
176 | /// Find the type at a given index in a list of types. |
177 | /// |
178 | /// TypeAtIndex<I, Ts...> is the type at index I in Ts. |
179 | template <size_t I, typename... Ts> |
180 | using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>; |
181 | |
182 | /// Helper which adds two underlying types of enumeration type. |
183 | /// Implicit conversion to a common type is accepted. |
184 | template <typename EnumTy1, typename EnumTy2, |
185 | typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value, |
186 | std::underlying_type_t<EnumTy1>>, |
187 | typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value, |
188 | std::underlying_type_t<EnumTy2>>> |
189 | constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) { |
190 | return static_cast<UT1>(LHS) + static_cast<UT2>(RHS); |
191 | } |
192 | |
193 | //===----------------------------------------------------------------------===// |
194 | // Extra additions to <iterator> |
195 | //===----------------------------------------------------------------------===// |
196 | |
197 | namespace callable_detail { |
198 | |
199 | /// Templated storage wrapper for a callable. |
200 | /// |
201 | /// This class is consistently default constructible, copy / move |
202 | /// constructible / assignable. |
203 | /// |
204 | /// Supported callable types: |
205 | /// - Function pointer |
206 | /// - Function reference |
207 | /// - Lambda |
208 | /// - Function object |
209 | template <typename T, |
210 | bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>> |
211 | class Callable { |
212 | using value_type = std::remove_reference_t<T>; |
213 | using reference = value_type &; |
214 | using const_reference = value_type const &; |
215 | |
216 | std::optional<value_type> Obj; |
217 | |
218 | static_assert(!std::is_pointer_v<value_type>, |
219 | "Pointers to non-functions are not callable." ); |
220 | |
221 | public: |
222 | Callable() = default; |
223 | Callable(T const &O) : Obj(std::in_place, O) {} |
224 | |
225 | Callable(Callable const &Other) = default; |
226 | Callable(Callable &&Other) = default; |
227 | |
228 | Callable &operator=(Callable const &Other) { |
229 | Obj = std::nullopt; |
230 | if (Other.Obj) |
231 | Obj.emplace(*Other.Obj); |
232 | return *this; |
233 | } |
234 | |
235 | Callable &operator=(Callable &&Other) { |
236 | Obj = std::nullopt; |
237 | if (Other.Obj) |
238 | Obj.emplace(std::move(*Other.Obj)); |
239 | return *this; |
240 | } |
241 | |
242 | template <typename... Pn, |
243 | std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> |
244 | decltype(auto) operator()(Pn &&...Params) { |
245 | return (*Obj)(std::forward<Pn>(Params)...); |
246 | } |
247 | |
248 | template <typename... Pn, |
249 | std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0> |
250 | decltype(auto) operator()(Pn &&...Params) const { |
251 | return (*Obj)(std::forward<Pn>(Params)...); |
252 | } |
253 | |
254 | bool valid() const { return Obj != std::nullopt; } |
255 | bool reset() { return Obj = std::nullopt; } |
256 | |
257 | operator reference() { return *Obj; } |
258 | operator const_reference() const { return *Obj; } |
259 | }; |
260 | |
261 | // Function specialization. No need to waste extra space wrapping with a |
262 | // std::optional. |
263 | template <typename T> class Callable<T, true> { |
264 | static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>; |
265 | |
266 | using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>; |
267 | using CastT = std::conditional_t<IsPtr, T, T &>; |
268 | |
269 | private: |
270 | StorageT Func = nullptr; |
271 | |
272 | private: |
273 | template <typename In> static constexpr auto convertIn(In &&I) { |
274 | if constexpr (IsPtr) { |
275 | // Pointer... just echo it back. |
276 | return I; |
277 | } else { |
278 | // Must be a function reference. Return its address. |
279 | return &I; |
280 | } |
281 | } |
282 | |
283 | public: |
284 | Callable() = default; |
285 | |
286 | // Construct from a function pointer or reference. |
287 | // |
288 | // Disable this constructor for references to 'Callable' so we don't violate |
289 | // the rule of 0. |
290 | template < // clang-format off |
291 | typename FnPtrOrRef, |
292 | std::enable_if_t< |
293 | !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int |
294 | > = 0 |
295 | > // clang-format on |
296 | Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {} |
297 | |
298 | template <typename... Pn, |
299 | std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> |
300 | decltype(auto) operator()(Pn &&...Params) const { |
301 | return Func(std::forward<Pn>(Params)...); |
302 | } |
303 | |
304 | bool valid() const { return Func != nullptr; } |
305 | void reset() { Func = nullptr; } |
306 | |
307 | operator T const &() const { |
308 | if constexpr (IsPtr) { |
309 | // T is a pointer... just echo it back. |
310 | return Func; |
311 | } else { |
312 | static_assert(std::is_reference_v<T>, |
313 | "Expected a reference to a function." ); |
314 | // T is a function reference... dereference the stored pointer. |
315 | return *Func; |
316 | } |
317 | } |
318 | }; |
319 | |
320 | } // namespace callable_detail |
321 | |
322 | /// Returns true if the given container only contains a single element. |
323 | template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) { |
324 | auto B = std::begin(C), E = std::end(C); |
325 | return B != E && std::next(B) == E; |
326 | } |
327 | |
328 | /// Return a range covering \p RangeOrContainer with the first N elements |
329 | /// excluded. |
330 | template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) { |
331 | return make_range(std::next(adl_begin(RangeOrContainer), N), |
332 | adl_end(RangeOrContainer)); |
333 | } |
334 | |
335 | /// Return a range covering \p RangeOrContainer with the last N elements |
336 | /// excluded. |
337 | template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) { |
338 | return make_range(adl_begin(RangeOrContainer), |
339 | std::prev(adl_end(RangeOrContainer), N)); |
340 | } |
341 | |
342 | // mapped_iterator - This is a simple iterator adapter that causes a function to |
343 | // be applied whenever operator* is invoked on the iterator. |
344 | |
345 | template <typename ItTy, typename FuncTy, |
346 | typename ReferenceTy = |
347 | decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> |
348 | class mapped_iterator |
349 | : public iterator_adaptor_base< |
350 | mapped_iterator<ItTy, FuncTy>, ItTy, |
351 | typename std::iterator_traits<ItTy>::iterator_category, |
352 | std::remove_reference_t<ReferenceTy>, |
353 | typename std::iterator_traits<ItTy>::difference_type, |
354 | std::remove_reference_t<ReferenceTy> *, ReferenceTy> { |
355 | public: |
356 | mapped_iterator() = default; |
357 | mapped_iterator(ItTy U, FuncTy F) |
358 | : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} |
359 | |
360 | ItTy getCurrent() { return this->I; } |
361 | |
362 | const FuncTy &getFunction() const { return F; } |
363 | |
364 | ReferenceTy operator*() const { return F(*this->I); } |
365 | |
366 | private: |
367 | callable_detail::Callable<FuncTy> F{}; |
368 | }; |
369 | |
370 | // map_iterator - Provide a convenient way to create mapped_iterators, just like |
371 | // make_pair is useful for creating pairs... |
372 | template <class ItTy, class FuncTy> |
373 | inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { |
374 | return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); |
375 | } |
376 | |
377 | template <class ContainerTy, class FuncTy> |
378 | auto map_range(ContainerTy &&C, FuncTy F) { |
379 | return make_range(map_iterator(std::begin(C), F), |
380 | map_iterator(std::end(C), F)); |
381 | } |
382 | |
383 | /// A base type of mapped iterator, that is useful for building derived |
384 | /// iterators that do not need/want to store the map function (as in |
385 | /// mapped_iterator). These iterators must simply provide a `mapElement` method |
386 | /// that defines how to map a value of the iterator to the provided reference |
387 | /// type. |
388 | template <typename DerivedT, typename ItTy, typename ReferenceTy> |
389 | class mapped_iterator_base |
390 | : public iterator_adaptor_base< |
391 | DerivedT, ItTy, |
392 | typename std::iterator_traits<ItTy>::iterator_category, |
393 | std::remove_reference_t<ReferenceTy>, |
394 | typename std::iterator_traits<ItTy>::difference_type, |
395 | std::remove_reference_t<ReferenceTy> *, ReferenceTy> { |
396 | public: |
397 | using BaseT = mapped_iterator_base; |
398 | |
399 | mapped_iterator_base(ItTy U) |
400 | : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {} |
401 | |
402 | ItTy getCurrent() { return this->I; } |
403 | |
404 | ReferenceTy operator*() const { |
405 | return static_cast<const DerivedT &>(*this).mapElement(*this->I); |
406 | } |
407 | }; |
408 | |
409 | /// Helper to determine if type T has a member called rbegin(). |
410 | template <typename Ty> class has_rbegin_impl { |
411 | using yes = char[1]; |
412 | using no = char[2]; |
413 | |
414 | template <typename Inner> |
415 | static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); |
416 | |
417 | template <typename> |
418 | static no& test(...); |
419 | |
420 | public: |
421 | static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); |
422 | }; |
423 | |
424 | /// Metafunction to determine if T& or T has a member called rbegin(). |
425 | template <typename Ty> |
426 | struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {}; |
427 | |
428 | // Returns an iterator_range over the given container which iterates in reverse. |
429 | template <typename ContainerTy> auto reverse(ContainerTy &&C) { |
430 | if constexpr (has_rbegin<ContainerTy>::value) |
431 | return make_range(C.rbegin(), C.rend()); |
432 | else |
433 | return make_range(std::make_reverse_iterator(std::end(C)), |
434 | std::make_reverse_iterator(std::begin(C))); |
435 | } |
436 | |
437 | /// An iterator adaptor that filters the elements of given inner iterators. |
438 | /// |
439 | /// The predicate parameter should be a callable object that accepts the wrapped |
440 | /// iterator's reference type and returns a bool. When incrementing or |
441 | /// decrementing the iterator, it will call the predicate on each element and |
442 | /// skip any where it returns false. |
443 | /// |
444 | /// \code |
445 | /// int A[] = { 1, 2, 3, 4 }; |
446 | /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); |
447 | /// // R contains { 1, 3 }. |
448 | /// \endcode |
449 | /// |
450 | /// Note: filter_iterator_base implements support for forward iteration. |
451 | /// filter_iterator_impl exists to provide support for bidirectional iteration, |
452 | /// conditional on whether the wrapped iterator supports it. |
453 | template <typename WrappedIteratorT, typename PredicateT, typename IterTag> |
454 | class filter_iterator_base |
455 | : public iterator_adaptor_base< |
456 | filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, |
457 | WrappedIteratorT, |
458 | std::common_type_t<IterTag, |
459 | typename std::iterator_traits< |
460 | WrappedIteratorT>::iterator_category>> { |
461 | using BaseT = typename filter_iterator_base::iterator_adaptor_base; |
462 | |
463 | protected: |
464 | WrappedIteratorT End; |
465 | PredicateT Pred; |
466 | |
467 | void findNextValid() { |
468 | while (this->I != End && !Pred(*this->I)) |
469 | BaseT::operator++(); |
470 | } |
471 | |
472 | filter_iterator_base() = default; |
473 | |
474 | // Construct the iterator. The begin iterator needs to know where the end |
475 | // is, so that it can properly stop when it gets there. The end iterator only |
476 | // needs the predicate to support bidirectional iteration. |
477 | filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, |
478 | PredicateT Pred) |
479 | : BaseT(Begin), End(End), Pred(Pred) { |
480 | findNextValid(); |
481 | } |
482 | |
483 | public: |
484 | using BaseT::operator++; |
485 | |
486 | filter_iterator_base &operator++() { |
487 | BaseT::operator++(); |
488 | findNextValid(); |
489 | return *this; |
490 | } |
491 | |
492 | decltype(auto) operator*() const { |
493 | assert(BaseT::wrapped() != End && "Cannot dereference end iterator!" ); |
494 | return BaseT::operator*(); |
495 | } |
496 | |
497 | decltype(auto) operator->() const { |
498 | assert(BaseT::wrapped() != End && "Cannot dereference end iterator!" ); |
499 | return BaseT::operator->(); |
500 | } |
501 | }; |
502 | |
503 | /// Specialization of filter_iterator_base for forward iteration only. |
504 | template <typename WrappedIteratorT, typename PredicateT, |
505 | typename IterTag = std::forward_iterator_tag> |
506 | class filter_iterator_impl |
507 | : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { |
508 | public: |
509 | filter_iterator_impl() = default; |
510 | |
511 | filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, |
512 | PredicateT Pred) |
513 | : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {} |
514 | }; |
515 | |
516 | /// Specialization of filter_iterator_base for bidirectional iteration. |
517 | template <typename WrappedIteratorT, typename PredicateT> |
518 | class filter_iterator_impl<WrappedIteratorT, PredicateT, |
519 | std::bidirectional_iterator_tag> |
520 | : public filter_iterator_base<WrappedIteratorT, PredicateT, |
521 | std::bidirectional_iterator_tag> { |
522 | using BaseT = typename filter_iterator_impl::filter_iterator_base; |
523 | |
524 | void findPrevValid() { |
525 | while (!this->Pred(*this->I)) |
526 | BaseT::operator--(); |
527 | } |
528 | |
529 | public: |
530 | using BaseT::operator--; |
531 | |
532 | filter_iterator_impl() = default; |
533 | |
534 | filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, |
535 | PredicateT Pred) |
536 | : BaseT(Begin, End, Pred) {} |
537 | |
538 | filter_iterator_impl &operator--() { |
539 | BaseT::operator--(); |
540 | findPrevValid(); |
541 | return *this; |
542 | } |
543 | }; |
544 | |
545 | namespace detail { |
546 | |
547 | template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { |
548 | using type = std::forward_iterator_tag; |
549 | }; |
550 | |
551 | template <> struct fwd_or_bidi_tag_impl<true> { |
552 | using type = std::bidirectional_iterator_tag; |
553 | }; |
554 | |
555 | /// Helper which sets its type member to forward_iterator_tag if the category |
556 | /// of \p IterT does not derive from bidirectional_iterator_tag, and to |
557 | /// bidirectional_iterator_tag otherwise. |
558 | template <typename IterT> struct fwd_or_bidi_tag { |
559 | using type = typename fwd_or_bidi_tag_impl<std::is_base_of< |
560 | std::bidirectional_iterator_tag, |
561 | typename std::iterator_traits<IterT>::iterator_category>::value>::type; |
562 | }; |
563 | |
564 | } // namespace detail |
565 | |
566 | /// Defines filter_iterator to a suitable specialization of |
567 | /// filter_iterator_impl, based on the underlying iterator's category. |
568 | template <typename WrappedIteratorT, typename PredicateT> |
569 | using filter_iterator = filter_iterator_impl< |
570 | WrappedIteratorT, PredicateT, |
571 | typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; |
572 | |
573 | /// Convenience function that takes a range of elements and a predicate, |
574 | /// and return a new filter_iterator range. |
575 | /// |
576 | /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the |
577 | /// lifetime of that temporary is not kept by the returned range object, and the |
578 | /// temporary is going to be dropped on the floor after the make_iterator_range |
579 | /// full expression that contains this function call. |
580 | template <typename RangeT, typename PredicateT> |
581 | iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> |
582 | make_filter_range(RangeT &&Range, PredicateT Pred) { |
583 | using FilterIteratorT = |
584 | filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; |
585 | return make_range( |
586 | FilterIteratorT(std::begin(std::forward<RangeT>(Range)), |
587 | std::end(std::forward<RangeT>(Range)), Pred), |
588 | FilterIteratorT(std::end(std::forward<RangeT>(Range)), |
589 | std::end(std::forward<RangeT>(Range)), Pred)); |
590 | } |
591 | |
592 | /// A pseudo-iterator adaptor that is designed to implement "early increment" |
593 | /// style loops. |
594 | /// |
595 | /// This is *not a normal iterator* and should almost never be used directly. It |
596 | /// is intended primarily to be used with range based for loops and some range |
597 | /// algorithms. |
598 | /// |
599 | /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but |
600 | /// somewhere between them. The constraints of these iterators are: |
601 | /// |
602 | /// - On construction or after being incremented, it is comparable and |
603 | /// dereferencable. It is *not* incrementable. |
604 | /// - After being dereferenced, it is neither comparable nor dereferencable, it |
605 | /// is only incrementable. |
606 | /// |
607 | /// This means you can only dereference the iterator once, and you can only |
608 | /// increment it once between dereferences. |
609 | template <typename WrappedIteratorT> |
610 | class early_inc_iterator_impl |
611 | : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, |
612 | WrappedIteratorT, std::input_iterator_tag> { |
613 | using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base; |
614 | |
615 | using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; |
616 | |
617 | protected: |
618 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
619 | bool IsEarlyIncremented = false; |
620 | #endif |
621 | |
622 | public: |
623 | early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} |
624 | |
625 | using BaseT::operator*; |
626 | decltype(*std::declval<WrappedIteratorT>()) operator*() { |
627 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
628 | assert(!IsEarlyIncremented && "Cannot dereference twice!" ); |
629 | IsEarlyIncremented = true; |
630 | #endif |
631 | return *(this->I)++; |
632 | } |
633 | |
634 | using BaseT::operator++; |
635 | early_inc_iterator_impl &operator++() { |
636 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
637 | assert(IsEarlyIncremented && "Cannot increment before dereferencing!" ); |
638 | IsEarlyIncremented = false; |
639 | #endif |
640 | return *this; |
641 | } |
642 | |
643 | friend bool operator==(const early_inc_iterator_impl &LHS, |
644 | const early_inc_iterator_impl &RHS) { |
645 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
646 | assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!" ); |
647 | #endif |
648 | return (const BaseT &)LHS == (const BaseT &)RHS; |
649 | } |
650 | }; |
651 | |
652 | /// Make a range that does early increment to allow mutation of the underlying |
653 | /// range without disrupting iteration. |
654 | /// |
655 | /// The underlying iterator will be incremented immediately after it is |
656 | /// dereferenced, allowing deletion of the current node or insertion of nodes to |
657 | /// not disrupt iteration provided they do not invalidate the *next* iterator -- |
658 | /// the current iterator can be invalidated. |
659 | /// |
660 | /// This requires a very exact pattern of use that is only really suitable to |
661 | /// range based for loops and other range algorithms that explicitly guarantee |
662 | /// to dereference exactly once each element, and to increment exactly once each |
663 | /// element. |
664 | template <typename RangeT> |
665 | iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> |
666 | make_early_inc_range(RangeT &&Range) { |
667 | using EarlyIncIteratorT = |
668 | early_inc_iterator_impl<detail::IterOfRange<RangeT>>; |
669 | return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), |
670 | EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); |
671 | } |
672 | |
673 | // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest |
674 | template <typename R, typename UnaryPredicate> |
675 | bool all_of(R &&range, UnaryPredicate P); |
676 | |
677 | template <typename R, typename UnaryPredicate> |
678 | bool any_of(R &&range, UnaryPredicate P); |
679 | |
680 | template <typename T> bool all_equal(std::initializer_list<T> Values); |
681 | |
682 | template <typename R> constexpr size_t range_size(R &&Range); |
683 | |
684 | namespace detail { |
685 | |
686 | using std::declval; |
687 | |
688 | // We have to alias this since inlining the actual type at the usage site |
689 | // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. |
690 | template<typename... Iters> struct ZipTupleType { |
691 | using type = std::tuple<decltype(*declval<Iters>())...>; |
692 | }; |
693 | |
694 | template <typename ZipType, typename ReferenceTupleType, typename... Iters> |
695 | using zip_traits = iterator_facade_base< |
696 | ZipType, |
697 | std::common_type_t< |
698 | std::bidirectional_iterator_tag, |
699 | typename std::iterator_traits<Iters>::iterator_category...>, |
700 | // ^ TODO: Implement random access methods. |
701 | ReferenceTupleType, |
702 | typename std::iterator_traits< |
703 | std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, |
704 | // ^ FIXME: This follows boost::make_zip_iterator's assumption that all |
705 | // inner iterators have the same difference_type. It would fail if, for |
706 | // instance, the second field's difference_type were non-numeric while the |
707 | // first is. |
708 | ReferenceTupleType *, ReferenceTupleType>; |
709 | |
710 | template <typename ZipType, typename ReferenceTupleType, typename... Iters> |
711 | struct zip_common : public zip_traits<ZipType, ReferenceTupleType, Iters...> { |
712 | using Base = zip_traits<ZipType, ReferenceTupleType, Iters...>; |
713 | using IndexSequence = std::index_sequence_for<Iters...>; |
714 | using value_type = typename Base::value_type; |
715 | |
716 | std::tuple<Iters...> iterators; |
717 | |
718 | protected: |
719 | template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { |
720 | return value_type(*std::get<Ns>(iterators)...); |
721 | } |
722 | |
723 | template <size_t... Ns> void tup_inc(std::index_sequence<Ns...>) { |
724 | (++std::get<Ns>(iterators), ...); |
725 | } |
726 | |
727 | template <size_t... Ns> void tup_dec(std::index_sequence<Ns...>) { |
728 | (--std::get<Ns>(iterators), ...); |
729 | } |
730 | |
731 | template <size_t... Ns> |
732 | bool test_all_equals(const zip_common &other, |
733 | std::index_sequence<Ns...>) const { |
734 | return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) && |
735 | ...); |
736 | } |
737 | |
738 | public: |
739 | zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} |
740 | |
741 | value_type operator*() const { return deref(IndexSequence{}); } |
742 | |
743 | ZipType &operator++() { |
744 | tup_inc(IndexSequence{}); |
745 | return static_cast<ZipType &>(*this); |
746 | } |
747 | |
748 | ZipType &operator--() { |
749 | static_assert(Base::IsBidirectional, |
750 | "All inner iterators must be at least bidirectional." ); |
751 | tup_dec(IndexSequence{}); |
752 | return static_cast<ZipType &>(*this); |
753 | } |
754 | |
755 | /// Return true if all the iterator are matching `other`'s iterators. |
756 | bool all_equals(zip_common &other) { |
757 | return test_all_equals(other, IndexSequence{}); |
758 | } |
759 | }; |
760 | |
761 | template <typename... Iters> |
762 | struct zip_first : zip_common<zip_first<Iters...>, |
763 | typename ZipTupleType<Iters...>::type, Iters...> { |
764 | using zip_common<zip_first, typename ZipTupleType<Iters...>::type, |
765 | Iters...>::zip_common; |
766 | |
767 | bool operator==(const zip_first &other) const { |
768 | return std::get<0>(this->iterators) == std::get<0>(other.iterators); |
769 | } |
770 | }; |
771 | |
772 | template <typename... Iters> |
773 | struct zip_shortest |
774 | : zip_common<zip_shortest<Iters...>, typename ZipTupleType<Iters...>::type, |
775 | Iters...> { |
776 | using zip_common<zip_shortest, typename ZipTupleType<Iters...>::type, |
777 | Iters...>::zip_common; |
778 | |
779 | bool operator==(const zip_shortest &other) const { |
780 | return any_iterator_equals(other, std::index_sequence_for<Iters...>{}); |
781 | } |
782 | |
783 | private: |
784 | template <size_t... Ns> |
785 | bool any_iterator_equals(const zip_shortest &other, |
786 | std::index_sequence<Ns...>) const { |
787 | return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) || |
788 | ...); |
789 | } |
790 | }; |
791 | |
792 | /// Helper to obtain the iterator types for the tuple storage within `zippy`. |
793 | template <template <typename...> class ItType, typename TupleStorageType, |
794 | typename IndexSequence> |
795 | struct ZippyIteratorTuple; |
796 | |
797 | /// Partial specialization for non-const tuple storage. |
798 | template <template <typename...> class ItType, typename... Args, |
799 | std::size_t... Ns> |
800 | struct ZippyIteratorTuple<ItType, std::tuple<Args...>, |
801 | std::index_sequence<Ns...>> { |
802 | using type = ItType<decltype(adl_begin( |
803 | std::get<Ns>(declval<std::tuple<Args...> &>())))...>; |
804 | }; |
805 | |
806 | /// Partial specialization for const tuple storage. |
807 | template <template <typename...> class ItType, typename... Args, |
808 | std::size_t... Ns> |
809 | struct ZippyIteratorTuple<ItType, const std::tuple<Args...>, |
810 | std::index_sequence<Ns...>> { |
811 | using type = ItType<decltype(adl_begin( |
812 | std::get<Ns>(declval<const std::tuple<Args...> &>())))...>; |
813 | }; |
814 | |
815 | template <template <typename...> class ItType, typename... Args> class zippy { |
816 | private: |
817 | std::tuple<Args...> storage; |
818 | using IndexSequence = std::index_sequence_for<Args...>; |
819 | |
820 | public: |
821 | using iterator = typename ZippyIteratorTuple<ItType, decltype(storage), |
822 | IndexSequence>::type; |
823 | using const_iterator = |
824 | typename ZippyIteratorTuple<ItType, const decltype(storage), |
825 | IndexSequence>::type; |
826 | using iterator_category = typename iterator::iterator_category; |
827 | using value_type = typename iterator::value_type; |
828 | using difference_type = typename iterator::difference_type; |
829 | using pointer = typename iterator::pointer; |
830 | using reference = typename iterator::reference; |
831 | using const_reference = typename const_iterator::reference; |
832 | |
833 | zippy(Args &&...args) : storage(std::forward<Args>(args)...) {} |
834 | |
835 | const_iterator begin() const { return begin_impl(IndexSequence{}); } |
836 | iterator begin() { return begin_impl(IndexSequence{}); } |
837 | const_iterator end() const { return end_impl(IndexSequence{}); } |
838 | iterator end() { return end_impl(IndexSequence{}); } |
839 | |
840 | private: |
841 | template <size_t... Ns> |
842 | const_iterator begin_impl(std::index_sequence<Ns...>) const { |
843 | return const_iterator(adl_begin(std::get<Ns>(storage))...); |
844 | } |
845 | template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) { |
846 | return iterator(adl_begin(std::get<Ns>(storage))...); |
847 | } |
848 | |
849 | template <size_t... Ns> |
850 | const_iterator end_impl(std::index_sequence<Ns...>) const { |
851 | return const_iterator(adl_end(std::get<Ns>(storage))...); |
852 | } |
853 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { |
854 | return iterator(adl_end(std::get<Ns>(storage))...); |
855 | } |
856 | }; |
857 | |
858 | } // end namespace detail |
859 | |
860 | /// zip iterator for two or more iteratable types. Iteration continues until the |
861 | /// end of the *shortest* iteratee is reached. |
862 | template <typename T, typename U, typename... Args> |
863 | detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, |
864 | Args &&...args) { |
865 | return detail::zippy<detail::zip_shortest, T, U, Args...>( |
866 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
867 | } |
868 | |
869 | /// zip iterator that assumes that all iteratees have the same length. |
870 | /// In builds with assertions on, this assumption is checked before the |
871 | /// iteration starts. |
872 | template <typename T, typename U, typename... Args> |
873 | detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u, |
874 | Args &&...args) { |
875 | assert(all_equal({range_size(t), range_size(u), range_size(args)...}) && |
876 | "Iteratees do not have equal length" ); |
877 | return detail::zippy<detail::zip_first, T, U, Args...>( |
878 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
879 | } |
880 | |
881 | /// zip iterator that, for the sake of efficiency, assumes the first iteratee to |
882 | /// be the shortest. Iteration continues until the end of the first iteratee is |
883 | /// reached. In builds with assertions on, we check that the assumption about |
884 | /// the first iteratee being the shortest holds. |
885 | template <typename T, typename U, typename... Args> |
886 | detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, |
887 | Args &&...args) { |
888 | assert(range_size(t) <= std::min({range_size(u), range_size(args)...}) && |
889 | "First iteratee is not the shortest" ); |
890 | |
891 | return detail::zippy<detail::zip_first, T, U, Args...>( |
892 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
893 | } |
894 | |
895 | namespace detail { |
896 | template <typename Iter> |
897 | Iter next_or_end(const Iter &I, const Iter &End) { |
898 | if (I == End) |
899 | return End; |
900 | return std::next(I); |
901 | } |
902 | |
903 | template <typename Iter> |
904 | auto deref_or_none(const Iter &I, const Iter &End) -> std::optional< |
905 | std::remove_const_t<std::remove_reference_t<decltype(*I)>>> { |
906 | if (I == End) |
907 | return std::nullopt; |
908 | return *I; |
909 | } |
910 | |
911 | template <typename Iter> struct ZipLongestItemType { |
912 | using type = std::optional<std::remove_const_t< |
913 | std::remove_reference_t<decltype(*std::declval<Iter>())>>>; |
914 | }; |
915 | |
916 | template <typename... Iters> struct ZipLongestTupleType { |
917 | using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; |
918 | }; |
919 | |
920 | template <typename... Iters> |
921 | class zip_longest_iterator |
922 | : public iterator_facade_base< |
923 | zip_longest_iterator<Iters...>, |
924 | std::common_type_t< |
925 | std::forward_iterator_tag, |
926 | typename std::iterator_traits<Iters>::iterator_category...>, |
927 | typename ZipLongestTupleType<Iters...>::type, |
928 | typename std::iterator_traits< |
929 | std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, |
930 | typename ZipLongestTupleType<Iters...>::type *, |
931 | typename ZipLongestTupleType<Iters...>::type> { |
932 | public: |
933 | using value_type = typename ZipLongestTupleType<Iters...>::type; |
934 | |
935 | private: |
936 | std::tuple<Iters...> iterators; |
937 | std::tuple<Iters...> end_iterators; |
938 | |
939 | template <size_t... Ns> |
940 | bool test(const zip_longest_iterator<Iters...> &other, |
941 | std::index_sequence<Ns...>) const { |
942 | return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) || |
943 | ...); |
944 | } |
945 | |
946 | template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { |
947 | return value_type( |
948 | deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); |
949 | } |
950 | |
951 | template <size_t... Ns> |
952 | decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { |
953 | return std::tuple<Iters...>( |
954 | next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); |
955 | } |
956 | |
957 | public: |
958 | zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) |
959 | : iterators(std::forward<Iters>(ts.first)...), |
960 | end_iterators(std::forward<Iters>(ts.second)...) {} |
961 | |
962 | value_type operator*() const { |
963 | return deref(std::index_sequence_for<Iters...>{}); |
964 | } |
965 | |
966 | zip_longest_iterator<Iters...> &operator++() { |
967 | iterators = tup_inc(std::index_sequence_for<Iters...>{}); |
968 | return *this; |
969 | } |
970 | |
971 | bool operator==(const zip_longest_iterator<Iters...> &other) const { |
972 | return !test(other, std::index_sequence_for<Iters...>{}); |
973 | } |
974 | }; |
975 | |
976 | template <typename... Args> class zip_longest_range { |
977 | public: |
978 | using iterator = |
979 | zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; |
980 | using iterator_category = typename iterator::iterator_category; |
981 | using value_type = typename iterator::value_type; |
982 | using difference_type = typename iterator::difference_type; |
983 | using pointer = typename iterator::pointer; |
984 | using reference = typename iterator::reference; |
985 | |
986 | private: |
987 | std::tuple<Args...> ts; |
988 | |
989 | template <size_t... Ns> |
990 | iterator begin_impl(std::index_sequence<Ns...>) const { |
991 | return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), |
992 | adl_end(std::get<Ns>(ts)))...); |
993 | } |
994 | |
995 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { |
996 | return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), |
997 | adl_end(std::get<Ns>(ts)))...); |
998 | } |
999 | |
1000 | public: |
1001 | zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} |
1002 | |
1003 | iterator begin() const { |
1004 | return begin_impl(std::index_sequence_for<Args...>{}); |
1005 | } |
1006 | iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } |
1007 | }; |
1008 | } // namespace detail |
1009 | |
1010 | /// Iterate over two or more iterators at the same time. Iteration continues |
1011 | /// until all iterators reach the end. The std::optional only contains a value |
1012 | /// if the iterator has not reached the end. |
1013 | template <typename T, typename U, typename... Args> |
1014 | detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, |
1015 | Args &&... args) { |
1016 | return detail::zip_longest_range<T, U, Args...>( |
1017 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
1018 | } |
1019 | |
1020 | /// Iterator wrapper that concatenates sequences together. |
1021 | /// |
1022 | /// This can concatenate different iterators, even with different types, into |
1023 | /// a single iterator provided the value types of all the concatenated |
1024 | /// iterators expose `reference` and `pointer` types that can be converted to |
1025 | /// `ValueT &` and `ValueT *` respectively. It doesn't support more |
1026 | /// interesting/customized pointer or reference types. |
1027 | /// |
1028 | /// Currently this only supports forward or higher iterator categories as |
1029 | /// inputs and always exposes a forward iterator interface. |
1030 | template <typename ValueT, typename... IterTs> |
1031 | class concat_iterator |
1032 | : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, |
1033 | std::forward_iterator_tag, ValueT> { |
1034 | using BaseT = typename concat_iterator::iterator_facade_base; |
1035 | |
1036 | /// We store both the current and end iterators for each concatenated |
1037 | /// sequence in a tuple of pairs. |
1038 | /// |
1039 | /// Note that something like iterator_range seems nice at first here, but the |
1040 | /// range properties are of little benefit and end up getting in the way |
1041 | /// because we need to do mutation on the current iterators. |
1042 | std::tuple<IterTs...> Begins; |
1043 | std::tuple<IterTs...> Ends; |
1044 | |
1045 | /// Attempts to increment a specific iterator. |
1046 | /// |
1047 | /// Returns true if it was able to increment the iterator. Returns false if |
1048 | /// the iterator is already at the end iterator. |
1049 | template <size_t Index> bool incrementHelper() { |
1050 | auto &Begin = std::get<Index>(Begins); |
1051 | auto &End = std::get<Index>(Ends); |
1052 | if (Begin == End) |
1053 | return false; |
1054 | |
1055 | ++Begin; |
1056 | return true; |
1057 | } |
1058 | |
1059 | /// Increments the first non-end iterator. |
1060 | /// |
1061 | /// It is an error to call this with all iterators at the end. |
1062 | template <size_t... Ns> void increment(std::index_sequence<Ns...>) { |
1063 | // Build a sequence of functions to increment each iterator if possible. |
1064 | bool (concat_iterator::*IncrementHelperFns[])() = { |
1065 | &concat_iterator::incrementHelper<Ns>...}; |
1066 | |
1067 | // Loop over them, and stop as soon as we succeed at incrementing one. |
1068 | for (auto &IncrementHelperFn : IncrementHelperFns) |
1069 | if ((this->*IncrementHelperFn)()) |
1070 | return; |
1071 | |
1072 | llvm_unreachable("Attempted to increment an end concat iterator!" ); |
1073 | } |
1074 | |
1075 | /// Returns null if the specified iterator is at the end. Otherwise, |
1076 | /// dereferences the iterator and returns the address of the resulting |
1077 | /// reference. |
1078 | template <size_t Index> ValueT *getHelper() const { |
1079 | auto &Begin = std::get<Index>(Begins); |
1080 | auto &End = std::get<Index>(Ends); |
1081 | if (Begin == End) |
1082 | return nullptr; |
1083 | |
1084 | return &*Begin; |
1085 | } |
1086 | |
1087 | /// Finds the first non-end iterator, dereferences, and returns the resulting |
1088 | /// reference. |
1089 | /// |
1090 | /// It is an error to call this with all iterators at the end. |
1091 | template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const { |
1092 | // Build a sequence of functions to get from iterator if possible. |
1093 | ValueT *(concat_iterator::*GetHelperFns[])() const = { |
1094 | &concat_iterator::getHelper<Ns>...}; |
1095 | |
1096 | // Loop over them, and return the first result we find. |
1097 | for (auto &GetHelperFn : GetHelperFns) |
1098 | if (ValueT *P = (this->*GetHelperFn)()) |
1099 | return *P; |
1100 | |
1101 | llvm_unreachable("Attempted to get a pointer from an end concat iterator!" ); |
1102 | } |
1103 | |
1104 | public: |
1105 | /// Constructs an iterator from a sequence of ranges. |
1106 | /// |
1107 | /// We need the full range to know how to switch between each of the |
1108 | /// iterators. |
1109 | template <typename... RangeTs> |
1110 | explicit concat_iterator(RangeTs &&... Ranges) |
1111 | : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} |
1112 | |
1113 | using BaseT::operator++; |
1114 | |
1115 | concat_iterator &operator++() { |
1116 | increment(std::index_sequence_for<IterTs...>()); |
1117 | return *this; |
1118 | } |
1119 | |
1120 | ValueT &operator*() const { |
1121 | return get(std::index_sequence_for<IterTs...>()); |
1122 | } |
1123 | |
1124 | bool operator==(const concat_iterator &RHS) const { |
1125 | return Begins == RHS.Begins && Ends == RHS.Ends; |
1126 | } |
1127 | }; |
1128 | |
1129 | namespace detail { |
1130 | |
1131 | /// Helper to store a sequence of ranges being concatenated and access them. |
1132 | /// |
1133 | /// This is designed to facilitate providing actual storage when temporaries |
1134 | /// are passed into the constructor such that we can use it as part of range |
1135 | /// based for loops. |
1136 | template <typename ValueT, typename... RangeTs> class concat_range { |
1137 | public: |
1138 | using iterator = |
1139 | concat_iterator<ValueT, |
1140 | decltype(std::begin(std::declval<RangeTs &>()))...>; |
1141 | |
1142 | private: |
1143 | std::tuple<RangeTs...> Ranges; |
1144 | |
1145 | template <size_t... Ns> |
1146 | iterator begin_impl(std::index_sequence<Ns...>) { |
1147 | return iterator(std::get<Ns>(Ranges)...); |
1148 | } |
1149 | template <size_t... Ns> |
1150 | iterator begin_impl(std::index_sequence<Ns...>) const { |
1151 | return iterator(std::get<Ns>(Ranges)...); |
1152 | } |
1153 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { |
1154 | return iterator(make_range(std::end(std::get<Ns>(Ranges)), |
1155 | std::end(std::get<Ns>(Ranges)))...); |
1156 | } |
1157 | template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { |
1158 | return iterator(make_range(std::end(std::get<Ns>(Ranges)), |
1159 | std::end(std::get<Ns>(Ranges)))...); |
1160 | } |
1161 | |
1162 | public: |
1163 | concat_range(RangeTs &&... Ranges) |
1164 | : Ranges(std::forward<RangeTs>(Ranges)...) {} |
1165 | |
1166 | iterator begin() { |
1167 | return begin_impl(std::index_sequence_for<RangeTs...>{}); |
1168 | } |
1169 | iterator begin() const { |
1170 | return begin_impl(std::index_sequence_for<RangeTs...>{}); |
1171 | } |
1172 | iterator end() { |
1173 | return end_impl(std::index_sequence_for<RangeTs...>{}); |
1174 | } |
1175 | iterator end() const { |
1176 | return end_impl(std::index_sequence_for<RangeTs...>{}); |
1177 | } |
1178 | }; |
1179 | |
1180 | } // end namespace detail |
1181 | |
1182 | /// Concatenated range across two or more ranges. |
1183 | /// |
1184 | /// The desired value type must be explicitly specified. |
1185 | template <typename ValueT, typename... RangeTs> |
1186 | detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { |
1187 | static_assert(sizeof...(RangeTs) > 1, |
1188 | "Need more than one range to concatenate!" ); |
1189 | return detail::concat_range<ValueT, RangeTs...>( |
1190 | std::forward<RangeTs>(Ranges)...); |
1191 | } |
1192 | |
1193 | /// A utility class used to implement an iterator that contains some base object |
1194 | /// and an index. The iterator moves the index but keeps the base constant. |
1195 | template <typename DerivedT, typename BaseT, typename T, |
1196 | typename PointerT = T *, typename ReferenceT = T &> |
1197 | class indexed_accessor_iterator |
1198 | : public llvm::iterator_facade_base<DerivedT, |
1199 | std::random_access_iterator_tag, T, |
1200 | std::ptrdiff_t, PointerT, ReferenceT> { |
1201 | public: |
1202 | ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const { |
1203 | assert(base == rhs.base && "incompatible iterators" ); |
1204 | return index - rhs.index; |
1205 | } |
1206 | bool operator==(const indexed_accessor_iterator &rhs) const { |
1207 | return base == rhs.base && index == rhs.index; |
1208 | } |
1209 | bool operator<(const indexed_accessor_iterator &rhs) const { |
1210 | assert(base == rhs.base && "incompatible iterators" ); |
1211 | return index < rhs.index; |
1212 | } |
1213 | |
1214 | DerivedT &operator+=(ptrdiff_t offset) { |
1215 | this->index += offset; |
1216 | return static_cast<DerivedT &>(*this); |
1217 | } |
1218 | DerivedT &operator-=(ptrdiff_t offset) { |
1219 | this->index -= offset; |
1220 | return static_cast<DerivedT &>(*this); |
1221 | } |
1222 | |
1223 | /// Returns the current index of the iterator. |
1224 | ptrdiff_t getIndex() const { return index; } |
1225 | |
1226 | /// Returns the current base of the iterator. |
1227 | const BaseT &getBase() const { return base; } |
1228 | |
1229 | protected: |
1230 | indexed_accessor_iterator(BaseT base, ptrdiff_t index) |
1231 | : base(base), index(index) {} |
1232 | BaseT base; |
1233 | ptrdiff_t index; |
1234 | }; |
1235 | |
1236 | namespace detail { |
1237 | /// The class represents the base of a range of indexed_accessor_iterators. It |
1238 | /// provides support for many different range functionalities, e.g. |
1239 | /// drop_front/slice/etc.. Derived range classes must implement the following |
1240 | /// static methods: |
1241 | /// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index) |
1242 | /// - Dereference an iterator pointing to the base object at the given |
1243 | /// index. |
1244 | /// * BaseT offset_base(const BaseT &base, ptrdiff_t index) |
1245 | /// - Return a new base that is offset from the provide base by 'index' |
1246 | /// elements. |
1247 | template <typename DerivedT, typename BaseT, typename T, |
1248 | typename PointerT = T *, typename ReferenceT = T &> |
1249 | class indexed_accessor_range_base { |
1250 | public: |
1251 | using RangeBaseT = indexed_accessor_range_base; |
1252 | |
1253 | /// An iterator element of this range. |
1254 | class iterator : public indexed_accessor_iterator<iterator, BaseT, T, |
1255 | PointerT, ReferenceT> { |
1256 | public: |
1257 | // Index into this iterator, invoking a static method on the derived type. |
1258 | ReferenceT operator*() const { |
1259 | return DerivedT::dereference_iterator(this->getBase(), this->getIndex()); |
1260 | } |
1261 | |
1262 | private: |
1263 | iterator(BaseT owner, ptrdiff_t curIndex) |
1264 | : iterator::indexed_accessor_iterator(owner, curIndex) {} |
1265 | |
1266 | /// Allow access to the constructor. |
1267 | friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, |
1268 | ReferenceT>; |
1269 | }; |
1270 | |
1271 | indexed_accessor_range_base(iterator begin, iterator end) |
1272 | : base(offset_base(base: begin.getBase(), n: begin.getIndex())), |
1273 | count(end.getIndex() - begin.getIndex()) {} |
1274 | indexed_accessor_range_base(const iterator_range<iterator> &range) |
1275 | : indexed_accessor_range_base(range.begin(), range.end()) {} |
1276 | indexed_accessor_range_base(BaseT base, ptrdiff_t count) |
1277 | : base(base), count(count) {} |
1278 | |
1279 | iterator begin() const { return iterator(base, 0); } |
1280 | iterator end() const { return iterator(base, count); } |
1281 | ReferenceT operator[](size_t Index) const { |
1282 | assert(Index < size() && "invalid index for value range" ); |
1283 | return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index)); |
1284 | } |
1285 | ReferenceT front() const { |
1286 | assert(!empty() && "expected non-empty range" ); |
1287 | return (*this)[0]; |
1288 | } |
1289 | ReferenceT back() const { |
1290 | assert(!empty() && "expected non-empty range" ); |
1291 | return (*this)[size() - 1]; |
1292 | } |
1293 | |
1294 | /// Compare this range with another. |
1295 | template <typename OtherT> |
1296 | friend bool operator==(const indexed_accessor_range_base &lhs, |
1297 | const OtherT &rhs) { |
1298 | return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
1299 | } |
1300 | template <typename OtherT> |
1301 | friend bool operator!=(const indexed_accessor_range_base &lhs, |
1302 | const OtherT &rhs) { |
1303 | return !(lhs == rhs); |
1304 | } |
1305 | |
1306 | /// Return the size of this range. |
1307 | size_t size() const { return count; } |
1308 | |
1309 | /// Return if the range is empty. |
1310 | bool empty() const { return size() == 0; } |
1311 | |
1312 | /// Drop the first N elements, and keep M elements. |
1313 | DerivedT slice(size_t n, size_t m) const { |
1314 | assert(n + m <= size() && "invalid size specifiers" ); |
1315 | return DerivedT(offset_base(base, n), m); |
1316 | } |
1317 | |
1318 | /// Drop the first n elements. |
1319 | DerivedT drop_front(size_t n = 1) const { |
1320 | assert(size() >= n && "Dropping more elements than exist" ); |
1321 | return slice(n, m: size() - n); |
1322 | } |
1323 | /// Drop the last n elements. |
1324 | DerivedT drop_back(size_t n = 1) const { |
1325 | assert(size() >= n && "Dropping more elements than exist" ); |
1326 | return DerivedT(base, size() - n); |
1327 | } |
1328 | |
1329 | /// Take the first n elements. |
1330 | DerivedT take_front(size_t n = 1) const { |
1331 | return n < size() ? drop_back(n: size() - n) |
1332 | : static_cast<const DerivedT &>(*this); |
1333 | } |
1334 | |
1335 | /// Take the last n elements. |
1336 | DerivedT take_back(size_t n = 1) const { |
1337 | return n < size() ? drop_front(n: size() - n) |
1338 | : static_cast<const DerivedT &>(*this); |
1339 | } |
1340 | |
1341 | /// Allow conversion to any type accepting an iterator_range. |
1342 | template <typename RangeT, typename = std::enable_if_t<std::is_constructible< |
1343 | RangeT, iterator_range<iterator>>::value>> |
1344 | operator RangeT() const { |
1345 | return RangeT(iterator_range<iterator>(*this)); |
1346 | } |
1347 | |
1348 | /// Returns the base of this range. |
1349 | const BaseT &getBase() const { return base; } |
1350 | |
1351 | private: |
1352 | /// Offset the given base by the given amount. |
1353 | static BaseT offset_base(const BaseT &base, size_t n) { |
1354 | return n == 0 ? base : DerivedT::offset_base(base, n); |
1355 | } |
1356 | |
1357 | protected: |
1358 | indexed_accessor_range_base(const indexed_accessor_range_base &) = default; |
1359 | indexed_accessor_range_base(indexed_accessor_range_base &&) = default; |
1360 | indexed_accessor_range_base & |
1361 | operator=(const indexed_accessor_range_base &) = default; |
1362 | |
1363 | /// The base that owns the provided range of values. |
1364 | BaseT base; |
1365 | /// The size from the owning range. |
1366 | ptrdiff_t count; |
1367 | }; |
1368 | } // end namespace detail |
1369 | |
1370 | /// This class provides an implementation of a range of |
1371 | /// indexed_accessor_iterators where the base is not indexable. Ranges with |
1372 | /// bases that are offsetable should derive from indexed_accessor_range_base |
1373 | /// instead. Derived range classes are expected to implement the following |
1374 | /// static method: |
1375 | /// * ReferenceT dereference(const BaseT &base, ptrdiff_t index) |
1376 | /// - Dereference an iterator pointing to a parent base at the given index. |
1377 | template <typename DerivedT, typename BaseT, typename T, |
1378 | typename PointerT = T *, typename ReferenceT = T &> |
1379 | class indexed_accessor_range |
1380 | : public detail::indexed_accessor_range_base< |
1381 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> { |
1382 | public: |
1383 | indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count) |
1384 | : detail::indexed_accessor_range_base< |
1385 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>( |
1386 | std::make_pair(base, startIndex), count) {} |
1387 | using detail::indexed_accessor_range_base< |
1388 | DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, |
1389 | ReferenceT>::indexed_accessor_range_base; |
1390 | |
1391 | /// Returns the current base of the range. |
1392 | const BaseT &getBase() const { return this->base.first; } |
1393 | |
1394 | /// Returns the current start index of the range. |
1395 | ptrdiff_t getStartIndex() const { return this->base.second; } |
1396 | |
1397 | /// See `detail::indexed_accessor_range_base` for details. |
1398 | static std::pair<BaseT, ptrdiff_t> |
1399 | offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) { |
1400 | // We encode the internal base as a pair of the derived base and a start |
1401 | // index into the derived base. |
1402 | return std::make_pair(base.first, base.second + index); |
1403 | } |
1404 | /// See `detail::indexed_accessor_range_base` for details. |
1405 | static ReferenceT |
1406 | dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base, |
1407 | ptrdiff_t index) { |
1408 | return DerivedT::dereference(base.first, base.second + index); |
1409 | } |
1410 | }; |
1411 | |
1412 | namespace detail { |
1413 | /// Return a reference to the first or second member of a reference. Otherwise, |
1414 | /// return a copy of the member of a temporary. |
1415 | /// |
1416 | /// When passing a range whose iterators return values instead of references, |
1417 | /// the reference must be dropped from `decltype((elt.first))`, which will |
1418 | /// always be a reference, to avoid returning a reference to a temporary. |
1419 | template <typename EltTy, typename FirstTy> class first_or_second_type { |
1420 | public: |
1421 | using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy, |
1422 | std::remove_reference_t<FirstTy>>; |
1423 | }; |
1424 | } // end namespace detail |
1425 | |
1426 | /// Given a container of pairs, return a range over the first elements. |
1427 | template <typename ContainerTy> auto make_first_range(ContainerTy &&c) { |
1428 | using EltTy = decltype((*std::begin(c))); |
1429 | return llvm::map_range(std::forward<ContainerTy>(c), |
1430 | [](EltTy elt) -> typename detail::first_or_second_type< |
1431 | EltTy, decltype((elt.first))>::type { |
1432 | return elt.first; |
1433 | }); |
1434 | } |
1435 | |
1436 | /// Given a container of pairs, return a range over the second elements. |
1437 | template <typename ContainerTy> auto make_second_range(ContainerTy &&c) { |
1438 | using EltTy = decltype((*std::begin(c))); |
1439 | return llvm::map_range( |
1440 | std::forward<ContainerTy>(c), |
1441 | [](EltTy elt) -> |
1442 | typename detail::first_or_second_type<EltTy, |
1443 | decltype((elt.second))>::type { |
1444 | return elt.second; |
1445 | }); |
1446 | } |
1447 | |
1448 | //===----------------------------------------------------------------------===// |
1449 | // Extra additions to <utility> |
1450 | //===----------------------------------------------------------------------===// |
1451 | |
1452 | /// Function object to check whether the first component of a container |
1453 | /// supported by std::get (like std::pair and std::tuple) compares less than the |
1454 | /// first component of another container. |
1455 | struct less_first { |
1456 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
1457 | return std::less<>()(std::get<0>(lhs), std::get<0>(rhs)); |
1458 | } |
1459 | }; |
1460 | |
1461 | /// Function object to check whether the second component of a container |
1462 | /// supported by std::get (like std::pair and std::tuple) compares less than the |
1463 | /// second component of another container. |
1464 | struct less_second { |
1465 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
1466 | return std::less<>()(std::get<1>(lhs), std::get<1>(rhs)); |
1467 | } |
1468 | }; |
1469 | |
1470 | /// \brief Function object to apply a binary function to the first component of |
1471 | /// a std::pair. |
1472 | template<typename FuncTy> |
1473 | struct on_first { |
1474 | FuncTy func; |
1475 | |
1476 | template <typename T> |
1477 | decltype(auto) operator()(const T &lhs, const T &rhs) const { |
1478 | return func(lhs.first, rhs.first); |
1479 | } |
1480 | }; |
1481 | |
1482 | /// Utility type to build an inheritance chain that makes it easy to rank |
1483 | /// overload candidates. |
1484 | template <int N> struct rank : rank<N - 1> {}; |
1485 | template <> struct rank<0> {}; |
1486 | |
1487 | /// traits class for checking whether type T is one of any of the given |
1488 | /// types in the variadic list. |
1489 | template <typename T, typename... Ts> |
1490 | using is_one_of = std::disjunction<std::is_same<T, Ts>...>; |
1491 | |
1492 | /// traits class for checking whether type T is a base class for all |
1493 | /// the given types in the variadic list. |
1494 | template <typename T, typename... Ts> |
1495 | using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>; |
1496 | |
1497 | namespace detail { |
1498 | template <typename... Ts> struct Visitor; |
1499 | |
1500 | template <typename HeadT, typename... TailTs> |
1501 | struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> { |
1502 | explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail) |
1503 | : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)), |
1504 | Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {} |
1505 | using remove_cvref_t<HeadT>::operator(); |
1506 | using Visitor<TailTs...>::operator(); |
1507 | }; |
1508 | |
1509 | template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> { |
1510 | explicit constexpr Visitor(HeadT &&Head) |
1511 | : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {} |
1512 | using remove_cvref_t<HeadT>::operator(); |
1513 | }; |
1514 | } // namespace detail |
1515 | |
1516 | /// Returns an opaquely-typed Callable object whose operator() overload set is |
1517 | /// the sum of the operator() overload sets of each CallableT in CallableTs. |
1518 | /// |
1519 | /// The type of the returned object derives from each CallableT in CallableTs. |
1520 | /// The returned object is constructed by invoking the appropriate copy or move |
1521 | /// constructor of each CallableT, as selected by overload resolution on the |
1522 | /// corresponding argument to makeVisitor. |
1523 | /// |
1524 | /// Example: |
1525 | /// |
1526 | /// \code |
1527 | /// auto visitor = makeVisitor([](auto) { return "unhandled type"; }, |
1528 | /// [](int i) { return "int"; }, |
1529 | /// [](std::string s) { return "str"; }); |
1530 | /// auto a = visitor(42); // `a` is now "int". |
1531 | /// auto b = visitor("foo"); // `b` is now "str". |
1532 | /// auto c = visitor(3.14f); // `c` is now "unhandled type". |
1533 | /// \endcode |
1534 | /// |
1535 | /// Example of making a visitor with a lambda which captures a move-only type: |
1536 | /// |
1537 | /// \code |
1538 | /// std::unique_ptr<FooHandler> FH = /* ... */; |
1539 | /// auto visitor = makeVisitor( |
1540 | /// [FH{std::move(FH)}](Foo F) { return FH->handle(F); }, |
1541 | /// [](int i) { return i; }, |
1542 | /// [](std::string s) { return atoi(s); }); |
1543 | /// \endcode |
1544 | template <typename... CallableTs> |
1545 | constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) { |
1546 | return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...); |
1547 | } |
1548 | |
1549 | //===----------------------------------------------------------------------===// |
1550 | // Extra additions to <algorithm> |
1551 | //===----------------------------------------------------------------------===// |
1552 | |
1553 | // We have a copy here so that LLVM behaves the same when using different |
1554 | // standard libraries. |
1555 | template <class Iterator, class RNG> |
1556 | void shuffle(Iterator first, Iterator last, RNG &&g) { |
1557 | // It would be better to use a std::uniform_int_distribution, |
1558 | // but that would be stdlib dependent. |
1559 | typedef |
1560 | typename std::iterator_traits<Iterator>::difference_type difference_type; |
1561 | for (auto size = last - first; size > 1; ++first, (void)--size) { |
1562 | difference_type offset = g() % size; |
1563 | // Avoid self-assignment due to incorrect assertions in libstdc++ |
1564 | // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828). |
1565 | if (offset != difference_type(0)) |
1566 | std::iter_swap(first, first + offset); |
1567 | } |
1568 | } |
1569 | |
1570 | /// Adapt std::less<T> for array_pod_sort. |
1571 | template<typename T> |
1572 | inline int array_pod_sort_comparator(const void *P1, const void *P2) { |
1573 | if (std::less<T>()(*reinterpret_cast<const T*>(P1), |
1574 | *reinterpret_cast<const T*>(P2))) |
1575 | return -1; |
1576 | if (std::less<T>()(*reinterpret_cast<const T*>(P2), |
1577 | *reinterpret_cast<const T*>(P1))) |
1578 | return 1; |
1579 | return 0; |
1580 | } |
1581 | |
1582 | /// get_array_pod_sort_comparator - This is an internal helper function used to |
1583 | /// get type deduction of T right. |
1584 | template<typename T> |
1585 | inline int (*get_array_pod_sort_comparator(const T &)) |
1586 | (const void*, const void*) { |
1587 | return array_pod_sort_comparator<T>; |
1588 | } |
1589 | |
1590 | #ifdef EXPENSIVE_CHECKS |
1591 | namespace detail { |
1592 | |
1593 | inline unsigned presortShuffleEntropy() { |
1594 | static unsigned Result(std::random_device{}()); |
1595 | return Result; |
1596 | } |
1597 | |
1598 | template <class IteratorTy> |
1599 | inline void presortShuffle(IteratorTy Start, IteratorTy End) { |
1600 | std::mt19937 Generator(presortShuffleEntropy()); |
1601 | llvm::shuffle(Start, End, Generator); |
1602 | } |
1603 | |
1604 | } // end namespace detail |
1605 | #endif |
1606 | |
1607 | /// array_pod_sort - This sorts an array with the specified start and end |
1608 | /// extent. This is just like std::sort, except that it calls qsort instead of |
1609 | /// using an inlined template. qsort is slightly slower than std::sort, but |
1610 | /// most sorts are not performance critical in LLVM and std::sort has to be |
1611 | /// template instantiated for each type, leading to significant measured code |
1612 | /// bloat. This function should generally be used instead of std::sort where |
1613 | /// possible. |
1614 | /// |
1615 | /// This function assumes that you have simple POD-like types that can be |
1616 | /// compared with std::less and can be moved with memcpy. If this isn't true, |
1617 | /// you should use std::sort. |
1618 | /// |
1619 | /// NOTE: If qsort_r were portable, we could allow a custom comparator and |
1620 | /// default to std::less. |
1621 | template<class IteratorTy> |
1622 | inline void array_pod_sort(IteratorTy Start, IteratorTy End) { |
1623 | // Don't inefficiently call qsort with one element or trigger undefined |
1624 | // behavior with an empty sequence. |
1625 | auto NElts = End - Start; |
1626 | if (NElts <= 1) return; |
1627 | #ifdef EXPENSIVE_CHECKS |
1628 | detail::presortShuffle<IteratorTy>(Start, End); |
1629 | #endif |
1630 | qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); |
1631 | } |
1632 | |
1633 | template <class IteratorTy> |
1634 | inline void array_pod_sort( |
1635 | IteratorTy Start, IteratorTy End, |
1636 | int (*Compare)( |
1637 | const typename std::iterator_traits<IteratorTy>::value_type *, |
1638 | const typename std::iterator_traits<IteratorTy>::value_type *)) { |
1639 | // Don't inefficiently call qsort with one element or trigger undefined |
1640 | // behavior with an empty sequence. |
1641 | auto NElts = End - Start; |
1642 | if (NElts <= 1) return; |
1643 | #ifdef EXPENSIVE_CHECKS |
1644 | detail::presortShuffle<IteratorTy>(Start, End); |
1645 | #endif |
1646 | qsort(&*Start, NElts, sizeof(*Start), |
1647 | reinterpret_cast<int (*)(const void *, const void *)>(Compare)); |
1648 | } |
1649 | |
1650 | namespace detail { |
1651 | template <typename T> |
1652 | // We can use qsort if the iterator type is a pointer and the underlying value |
1653 | // is trivially copyable. |
1654 | using sort_trivially_copyable = std::conjunction< |
1655 | std::is_pointer<T>, |
1656 | std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>; |
1657 | } // namespace detail |
1658 | |
1659 | // Provide wrappers to std::sort which shuffle the elements before sorting |
1660 | // to help uncover non-deterministic behavior (PR35135). |
1661 | template <typename IteratorTy> |
1662 | inline void sort(IteratorTy Start, IteratorTy End) { |
1663 | if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) { |
1664 | // Forward trivially copyable types to array_pod_sort. This avoids a large |
1665 | // amount of code bloat for a minor performance hit. |
1666 | array_pod_sort(Start, End); |
1667 | } else { |
1668 | #ifdef EXPENSIVE_CHECKS |
1669 | detail::presortShuffle<IteratorTy>(Start, End); |
1670 | #endif |
1671 | std::sort(Start, End); |
1672 | } |
1673 | } |
1674 | |
1675 | template <typename Container> inline void sort(Container &&C) { |
1676 | llvm::sort(adl_begin(C), adl_end(C)); |
1677 | } |
1678 | |
1679 | template <typename IteratorTy, typename Compare> |
1680 | inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { |
1681 | #ifdef EXPENSIVE_CHECKS |
1682 | detail::presortShuffle<IteratorTy>(Start, End); |
1683 | #endif |
1684 | std::sort(Start, End, Comp); |
1685 | } |
1686 | |
1687 | template <typename Container, typename Compare> |
1688 | inline void sort(Container &&C, Compare Comp) { |
1689 | llvm::sort(adl_begin(C), adl_end(C), Comp); |
1690 | } |
1691 | |
1692 | /// Get the size of a range. This is a wrapper function around std::distance |
1693 | /// which is only enabled when the operation is O(1). |
1694 | template <typename R> |
1695 | auto size(R &&Range, |
1696 | std::enable_if_t< |
1697 | std::is_base_of<std::random_access_iterator_tag, |
1698 | typename std::iterator_traits<decltype( |
1699 | Range.begin())>::iterator_category>::value, |
1700 | void> * = nullptr) { |
1701 | return std::distance(Range.begin(), Range.end()); |
1702 | } |
1703 | |
1704 | namespace detail { |
1705 | template <typename Range> |
1706 | using check_has_free_function_size = |
1707 | decltype(adl_size(std::declval<Range &>())); |
1708 | |
1709 | template <typename Range> |
1710 | static constexpr bool HasFreeFunctionSize = |
1711 | is_detected<check_has_free_function_size, Range>::value; |
1712 | } // namespace detail |
1713 | |
1714 | /// Returns the size of the \p Range, i.e., the number of elements. This |
1715 | /// implementation takes inspiration from `std::ranges::size` from C++20 and |
1716 | /// delegates the size check to `adl_size` or `std::distance`, in this order of |
1717 | /// preference. Unlike `llvm::size`, this function does *not* guarantee O(1) |
1718 | /// running time, and is intended to be used in generic code that does not know |
1719 | /// the exact range type. |
1720 | template <typename R> constexpr size_t range_size(R &&Range) { |
1721 | if constexpr (detail::HasFreeFunctionSize<R>) |
1722 | return adl_size(Range); |
1723 | else |
1724 | return static_cast<size_t>(std::distance(adl_begin(Range), adl_end(Range))); |
1725 | } |
1726 | |
1727 | /// Provide wrappers to std::for_each which take ranges instead of having to |
1728 | /// pass begin/end explicitly. |
1729 | template <typename R, typename UnaryFunction> |
1730 | UnaryFunction for_each(R &&Range, UnaryFunction F) { |
1731 | return std::for_each(adl_begin(Range), adl_end(Range), F); |
1732 | } |
1733 | |
1734 | /// Provide wrappers to std::all_of which take ranges instead of having to pass |
1735 | /// begin/end explicitly. |
1736 | template <typename R, typename UnaryPredicate> |
1737 | bool all_of(R &&Range, UnaryPredicate P) { |
1738 | return std::all_of(adl_begin(Range), adl_end(Range), P); |
1739 | } |
1740 | |
1741 | /// Provide wrappers to std::any_of which take ranges instead of having to pass |
1742 | /// begin/end explicitly. |
1743 | template <typename R, typename UnaryPredicate> |
1744 | bool any_of(R &&Range, UnaryPredicate P) { |
1745 | return std::any_of(adl_begin(Range), adl_end(Range), P); |
1746 | } |
1747 | |
1748 | /// Provide wrappers to std::none_of which take ranges instead of having to pass |
1749 | /// begin/end explicitly. |
1750 | template <typename R, typename UnaryPredicate> |
1751 | bool none_of(R &&Range, UnaryPredicate P) { |
1752 | return std::none_of(adl_begin(Range), adl_end(Range), P); |
1753 | } |
1754 | |
1755 | /// Provide wrappers to std::find which take ranges instead of having to pass |
1756 | /// begin/end explicitly. |
1757 | template <typename R, typename T> auto find(R &&Range, const T &Val) { |
1758 | return std::find(adl_begin(Range), adl_end(Range), Val); |
1759 | } |
1760 | |
1761 | /// Provide wrappers to std::find_if which take ranges instead of having to pass |
1762 | /// begin/end explicitly. |
1763 | template <typename R, typename UnaryPredicate> |
1764 | auto find_if(R &&Range, UnaryPredicate P) { |
1765 | return std::find_if(adl_begin(Range), adl_end(Range), P); |
1766 | } |
1767 | |
1768 | template <typename R, typename UnaryPredicate> |
1769 | auto find_if_not(R &&Range, UnaryPredicate P) { |
1770 | return std::find_if_not(adl_begin(Range), adl_end(Range), P); |
1771 | } |
1772 | |
1773 | /// Provide wrappers to std::remove_if which take ranges instead of having to |
1774 | /// pass begin/end explicitly. |
1775 | template <typename R, typename UnaryPredicate> |
1776 | auto remove_if(R &&Range, UnaryPredicate P) { |
1777 | return std::remove_if(adl_begin(Range), adl_end(Range), P); |
1778 | } |
1779 | |
1780 | /// Provide wrappers to std::copy_if which take ranges instead of having to |
1781 | /// pass begin/end explicitly. |
1782 | template <typename R, typename OutputIt, typename UnaryPredicate> |
1783 | OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { |
1784 | return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); |
1785 | } |
1786 | |
1787 | /// Return the single value in \p Range that satisfies |
1788 | /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr |
1789 | /// when no values or multiple values were found. |
1790 | /// When \p AllowRepeats is true, multiple values that compare equal |
1791 | /// are allowed. |
1792 | template <typename T, typename R, typename Predicate> |
1793 | T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) { |
1794 | T *RC = nullptr; |
1795 | for (auto *A : Range) { |
1796 | if (T *PRC = P(A, AllowRepeats)) { |
1797 | if (RC) { |
1798 | if (!AllowRepeats || PRC != RC) |
1799 | return nullptr; |
1800 | } else |
1801 | RC = PRC; |
1802 | } |
1803 | } |
1804 | return RC; |
1805 | } |
1806 | |
1807 | /// Return a pair consisting of the single value in \p Range that satisfies |
1808 | /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning |
1809 | /// nullptr when no values or multiple values were found, and a bool indicating |
1810 | /// whether multiple values were found to cause the nullptr. |
1811 | /// When \p AllowRepeats is true, multiple values that compare equal are |
1812 | /// allowed. The predicate \p P returns a pair<T *, bool> where T is the |
1813 | /// singleton while the bool indicates whether multiples have already been |
1814 | /// found. It is expected that first will be nullptr when second is true. |
1815 | /// This allows using find_singleton_nested within the predicate \P. |
1816 | template <typename T, typename R, typename Predicate> |
1817 | std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P, |
1818 | bool AllowRepeats = false) { |
1819 | T *RC = nullptr; |
1820 | for (auto *A : Range) { |
1821 | std::pair<T *, bool> PRC = P(A, AllowRepeats); |
1822 | if (PRC.second) { |
1823 | assert(PRC.first == nullptr && |
1824 | "Inconsistent return values in find_singleton_nested." ); |
1825 | return PRC; |
1826 | } |
1827 | if (PRC.first) { |
1828 | if (RC) { |
1829 | if (!AllowRepeats || PRC.first != RC) |
1830 | return {nullptr, true}; |
1831 | } else |
1832 | RC = PRC.first; |
1833 | } |
1834 | } |
1835 | return {RC, false}; |
1836 | } |
1837 | |
1838 | template <typename R, typename OutputIt> |
1839 | OutputIt copy(R &&Range, OutputIt Out) { |
1840 | return std::copy(adl_begin(Range), adl_end(Range), Out); |
1841 | } |
1842 | |
1843 | /// Provide wrappers to std::replace_copy_if which take ranges instead of having |
1844 | /// to pass begin/end explicitly. |
1845 | template <typename R, typename OutputIt, typename UnaryPredicate, typename T> |
1846 | OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P, |
1847 | const T &NewValue) { |
1848 | return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P, |
1849 | NewValue); |
1850 | } |
1851 | |
1852 | /// Provide wrappers to std::replace_copy which take ranges instead of having to |
1853 | /// pass begin/end explicitly. |
1854 | template <typename R, typename OutputIt, typename T> |
1855 | OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue, |
1856 | const T &NewValue) { |
1857 | return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue, |
1858 | NewValue); |
1859 | } |
1860 | |
1861 | /// Provide wrappers to std::move which take ranges instead of having to |
1862 | /// pass begin/end explicitly. |
1863 | template <typename R, typename OutputIt> |
1864 | OutputIt move(R &&Range, OutputIt Out) { |
1865 | return std::move(adl_begin(Range), adl_end(Range), Out); |
1866 | } |
1867 | |
1868 | namespace detail { |
1869 | template <typename Range, typename Element> |
1870 | using check_has_member_contains_t = |
1871 | decltype(std::declval<Range &>().contains(std::declval<const Element &>())); |
1872 | |
1873 | template <typename Range, typename Element> |
1874 | static constexpr bool HasMemberContains = |
1875 | is_detected<check_has_member_contains_t, Range, Element>::value; |
1876 | |
1877 | template <typename Range, typename Element> |
1878 | using check_has_member_find_t = |
1879 | decltype(std::declval<Range &>().find(std::declval<const Element &>()) != |
1880 | std::declval<Range &>().end()); |
1881 | |
1882 | template <typename Range, typename Element> |
1883 | static constexpr bool HasMemberFind = |
1884 | is_detected<check_has_member_find_t, Range, Element>::value; |
1885 | |
1886 | } // namespace detail |
1887 | |
1888 | /// Returns true if \p Element is found in \p Range. Delegates the check to |
1889 | /// either `.contains(Element)`, `.find(Element)`, or `std::find`, in this |
1890 | /// order of preference. This is intended as the canonical way to check if an |
1891 | /// element exists in a range in generic code or range type that does not |
1892 | /// expose a `.contains(Element)` member. |
1893 | template <typename R, typename E> |
1894 | bool is_contained(R &&Range, const E &Element) { |
1895 | if constexpr (detail::HasMemberContains<R, E>) |
1896 | return Range.contains(Element); |
1897 | else if constexpr (detail::HasMemberFind<R, E>) |
1898 | return Range.find(Element) != Range.end(); |
1899 | else |
1900 | return std::find(adl_begin(Range), adl_end(Range), Element) != |
1901 | adl_end(Range); |
1902 | } |
1903 | |
1904 | /// Returns true iff \p Element exists in \p Set. This overload takes \p Set as |
1905 | /// an initializer list and is `constexpr`-friendly. |
1906 | template <typename T, typename E> |
1907 | constexpr bool is_contained(std::initializer_list<T> Set, const E &Element) { |
1908 | // TODO: Use std::find when we switch to C++20. |
1909 | for (const T &V : Set) |
1910 | if (V == Element) |
1911 | return true; |
1912 | return false; |
1913 | } |
1914 | |
1915 | /// Wrapper function around std::is_sorted to check if elements in a range \p R |
1916 | /// are sorted with respect to a comparator \p C. |
1917 | template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) { |
1918 | return std::is_sorted(adl_begin(Range), adl_end(Range), C); |
1919 | } |
1920 | |
1921 | /// Wrapper function around std::is_sorted to check if elements in a range \p R |
1922 | /// are sorted in non-descending order. |
1923 | template <typename R> bool is_sorted(R &&Range) { |
1924 | return std::is_sorted(adl_begin(Range), adl_end(Range)); |
1925 | } |
1926 | |
1927 | /// Wrapper function around std::count to count the number of times an element |
1928 | /// \p Element occurs in the given range \p Range. |
1929 | template <typename R, typename E> auto count(R &&Range, const E &Element) { |
1930 | return std::count(adl_begin(Range), adl_end(Range), Element); |
1931 | } |
1932 | |
1933 | /// Wrapper function around std::count_if to count the number of times an |
1934 | /// element satisfying a given predicate occurs in a range. |
1935 | template <typename R, typename UnaryPredicate> |
1936 | auto count_if(R &&Range, UnaryPredicate P) { |
1937 | return std::count_if(adl_begin(Range), adl_end(Range), P); |
1938 | } |
1939 | |
1940 | /// Wrapper function around std::transform to apply a function to a range and |
1941 | /// store the result elsewhere. |
1942 | template <typename R, typename OutputIt, typename UnaryFunction> |
1943 | OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) { |
1944 | return std::transform(adl_begin(Range), adl_end(Range), d_first, F); |
1945 | } |
1946 | |
1947 | /// Provide wrappers to std::partition which take ranges instead of having to |
1948 | /// pass begin/end explicitly. |
1949 | template <typename R, typename UnaryPredicate> |
1950 | auto partition(R &&Range, UnaryPredicate P) { |
1951 | return std::partition(adl_begin(Range), adl_end(Range), P); |
1952 | } |
1953 | |
1954 | /// Provide wrappers to std::lower_bound which take ranges instead of having to |
1955 | /// pass begin/end explicitly. |
1956 | template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) { |
1957 | return std::lower_bound(adl_begin(Range), adl_end(Range), |
1958 | std::forward<T>(Value)); |
1959 | } |
1960 | |
1961 | template <typename R, typename T, typename Compare> |
1962 | auto lower_bound(R &&Range, T &&Value, Compare C) { |
1963 | return std::lower_bound(adl_begin(Range), adl_end(Range), |
1964 | std::forward<T>(Value), C); |
1965 | } |
1966 | |
1967 | /// Provide wrappers to std::upper_bound which take ranges instead of having to |
1968 | /// pass begin/end explicitly. |
1969 | template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) { |
1970 | return std::upper_bound(adl_begin(Range), adl_end(Range), |
1971 | std::forward<T>(Value)); |
1972 | } |
1973 | |
1974 | template <typename R, typename T, typename Compare> |
1975 | auto upper_bound(R &&Range, T &&Value, Compare C) { |
1976 | return std::upper_bound(adl_begin(Range), adl_end(Range), |
1977 | std::forward<T>(Value), C); |
1978 | } |
1979 | |
1980 | template <typename R> |
1981 | void stable_sort(R &&Range) { |
1982 | std::stable_sort(adl_begin(Range), adl_end(Range)); |
1983 | } |
1984 | |
1985 | template <typename R, typename Compare> |
1986 | void stable_sort(R &&Range, Compare C) { |
1987 | std::stable_sort(adl_begin(Range), adl_end(Range), C); |
1988 | } |
1989 | |
1990 | /// Binary search for the first iterator in a range where a predicate is false. |
1991 | /// Requires that C is always true below some limit, and always false above it. |
1992 | template <typename R, typename Predicate, |
1993 | typename Val = decltype(*adl_begin(std::declval<R>()))> |
1994 | auto partition_point(R &&Range, Predicate P) { |
1995 | return std::partition_point(adl_begin(Range), adl_end(Range), P); |
1996 | } |
1997 | |
1998 | template<typename Range, typename Predicate> |
1999 | auto unique(Range &&R, Predicate P) { |
2000 | return std::unique(adl_begin(R), adl_end(R), P); |
2001 | } |
2002 | |
2003 | /// Wrapper function around std::equal to detect if pair-wise elements between |
2004 | /// two ranges are the same. |
2005 | template <typename L, typename R> bool equal(L &&LRange, R &&RRange) { |
2006 | return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange), |
2007 | adl_end(RRange)); |
2008 | } |
2009 | |
2010 | /// Returns true if all elements in Range are equal or when the Range is empty. |
2011 | template <typename R> bool all_equal(R &&Range) { |
2012 | auto Begin = adl_begin(Range); |
2013 | auto End = adl_end(Range); |
2014 | return Begin == End || std::equal(Begin + 1, End, Begin); |
2015 | } |
2016 | |
2017 | /// Returns true if all Values in the initializer lists are equal or the list |
2018 | // is empty. |
2019 | template <typename T> bool all_equal(std::initializer_list<T> Values) { |
2020 | return all_equal<std::initializer_list<T>>(std::move(Values)); |
2021 | } |
2022 | |
2023 | /// Provide a container algorithm similar to C++ Library Fundamentals v2's |
2024 | /// `erase_if` which is equivalent to: |
2025 | /// |
2026 | /// C.erase(remove_if(C, pred), C.end()); |
2027 | /// |
2028 | /// This version works for any container with an erase method call accepting |
2029 | /// two iterators. |
2030 | template <typename Container, typename UnaryPredicate> |
2031 | void erase_if(Container &C, UnaryPredicate P) { |
2032 | C.erase(remove_if(C, P), C.end()); |
2033 | } |
2034 | |
2035 | /// Wrapper function to remove a value from a container: |
2036 | /// |
2037 | /// C.erase(remove(C.begin(), C.end(), V), C.end()); |
2038 | template <typename Container, typename ValueType> |
2039 | void erase_value(Container &C, ValueType V) { |
2040 | C.erase(std::remove(C.begin(), C.end(), V), C.end()); |
2041 | } |
2042 | |
2043 | /// Wrapper function to append a range to a container. |
2044 | /// |
2045 | /// C.insert(C.end(), R.begin(), R.end()); |
2046 | template <typename Container, typename Range> |
2047 | inline void append_range(Container &C, Range &&R) { |
2048 | C.insert(C.end(), adl_begin(R), adl_end(R)); |
2049 | } |
2050 | |
2051 | /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with |
2052 | /// the range [ValIt, ValEnd) (which is not from the same container). |
2053 | template<typename Container, typename RandomAccessIterator> |
2054 | void replace(Container &Cont, typename Container::iterator ContIt, |
2055 | typename Container::iterator ContEnd, RandomAccessIterator ValIt, |
2056 | RandomAccessIterator ValEnd) { |
2057 | while (true) { |
2058 | if (ValIt == ValEnd) { |
2059 | Cont.erase(ContIt, ContEnd); |
2060 | return; |
2061 | } else if (ContIt == ContEnd) { |
2062 | Cont.insert(ContIt, ValIt, ValEnd); |
2063 | return; |
2064 | } |
2065 | *ContIt++ = *ValIt++; |
2066 | } |
2067 | } |
2068 | |
2069 | /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with |
2070 | /// the range R. |
2071 | template<typename Container, typename Range = std::initializer_list< |
2072 | typename Container::value_type>> |
2073 | void replace(Container &Cont, typename Container::iterator ContIt, |
2074 | typename Container::iterator ContEnd, Range R) { |
2075 | replace(Cont, ContIt, ContEnd, R.begin(), R.end()); |
2076 | } |
2077 | |
2078 | /// An STL-style algorithm similar to std::for_each that applies a second |
2079 | /// functor between every pair of elements. |
2080 | /// |
2081 | /// This provides the control flow logic to, for example, print a |
2082 | /// comma-separated list: |
2083 | /// \code |
2084 | /// interleave(names.begin(), names.end(), |
2085 | /// [&](StringRef name) { os << name; }, |
2086 | /// [&] { os << ", "; }); |
2087 | /// \endcode |
2088 | template <typename ForwardIterator, typename UnaryFunctor, |
2089 | typename NullaryFunctor, |
2090 | typename = std::enable_if_t< |
2091 | !std::is_constructible<StringRef, UnaryFunctor>::value && |
2092 | !std::is_constructible<StringRef, NullaryFunctor>::value>> |
2093 | inline void interleave(ForwardIterator begin, ForwardIterator end, |
2094 | UnaryFunctor each_fn, NullaryFunctor between_fn) { |
2095 | if (begin == end) |
2096 | return; |
2097 | each_fn(*begin); |
2098 | ++begin; |
2099 | for (; begin != end; ++begin) { |
2100 | between_fn(); |
2101 | each_fn(*begin); |
2102 | } |
2103 | } |
2104 | |
2105 | template <typename Container, typename UnaryFunctor, typename NullaryFunctor, |
2106 | typename = std::enable_if_t< |
2107 | !std::is_constructible<StringRef, UnaryFunctor>::value && |
2108 | !std::is_constructible<StringRef, NullaryFunctor>::value>> |
2109 | inline void interleave(const Container &c, UnaryFunctor each_fn, |
2110 | NullaryFunctor between_fn) { |
2111 | interleave(c.begin(), c.end(), each_fn, between_fn); |
2112 | } |
2113 | |
2114 | /// Overload of interleave for the common case of string separator. |
2115 | template <typename Container, typename UnaryFunctor, typename StreamT, |
2116 | typename T = detail::ValueOfRange<Container>> |
2117 | inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn, |
2118 | const StringRef &separator) { |
2119 | interleave(c.begin(), c.end(), each_fn, [&] { os << separator; }); |
2120 | } |
2121 | template <typename Container, typename StreamT, |
2122 | typename T = detail::ValueOfRange<Container>> |
2123 | inline void interleave(const Container &c, StreamT &os, |
2124 | const StringRef &separator) { |
2125 | interleave( |
2126 | c, os, [&](const T &a) { os << a; }, separator); |
2127 | } |
2128 | |
2129 | template <typename Container, typename UnaryFunctor, typename StreamT, |
2130 | typename T = detail::ValueOfRange<Container>> |
2131 | inline void interleaveComma(const Container &c, StreamT &os, |
2132 | UnaryFunctor each_fn) { |
2133 | interleave(c, os, each_fn, ", " ); |
2134 | } |
2135 | template <typename Container, typename StreamT, |
2136 | typename T = detail::ValueOfRange<Container>> |
2137 | inline void interleaveComma(const Container &c, StreamT &os) { |
2138 | interleaveComma(c, os, [&](const T &a) { os << a; }); |
2139 | } |
2140 | |
2141 | //===----------------------------------------------------------------------===// |
2142 | // Extra additions to <memory> |
2143 | //===----------------------------------------------------------------------===// |
2144 | |
2145 | struct FreeDeleter { |
2146 | void operator()(void* v) { |
2147 | ::free(ptr: v); |
2148 | } |
2149 | }; |
2150 | |
2151 | template<typename First, typename Second> |
2152 | struct pair_hash { |
2153 | size_t operator()(const std::pair<First, Second> &P) const { |
2154 | return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); |
2155 | } |
2156 | }; |
2157 | |
2158 | /// Binary functor that adapts to any other binary functor after dereferencing |
2159 | /// operands. |
2160 | template <typename T> struct deref { |
2161 | T func; |
2162 | |
2163 | // Could be further improved to cope with non-derivable functors and |
2164 | // non-binary functors (should be a variadic template member function |
2165 | // operator()). |
2166 | template <typename A, typename B> auto operator()(A &lhs, B &rhs) const { |
2167 | assert(lhs); |
2168 | assert(rhs); |
2169 | return func(*lhs, *rhs); |
2170 | } |
2171 | }; |
2172 | |
2173 | namespace detail { |
2174 | |
2175 | /// Tuple-like type for `zip_enumerator` dereference. |
2176 | template <typename... Refs> struct enumerator_result; |
2177 | |
2178 | template <typename... Iters> |
2179 | using EnumeratorTupleType = enumerator_result<decltype(*declval<Iters>())...>; |
2180 | |
2181 | /// Zippy iterator that uses the second iterator for comparisons. For the |
2182 | /// increment to be safe, the second range has to be the shortest. |
2183 | /// Returns `enumerator_result` on dereference to provide `.index()` and |
2184 | /// `.value()` member functions. |
2185 | /// Note: Because the dereference operator returns `enumerator_result` as a |
2186 | /// value instead of a reference and does not strictly conform to the C++17's |
2187 | /// definition of forward iterator. However, it satisfies all the |
2188 | /// forward_iterator requirements that the `zip_common` and `zippy` depend on |
2189 | /// and fully conforms to the C++20 definition of forward iterator. |
2190 | /// This is similar to `std::vector<bool>::iterator` that returns bit reference |
2191 | /// wrappers on dereference. |
2192 | template <typename... Iters> |
2193 | struct zip_enumerator : zip_common<zip_enumerator<Iters...>, |
2194 | EnumeratorTupleType<Iters...>, Iters...> { |
2195 | static_assert(sizeof...(Iters) >= 2, "Expected at least two iteratees" ); |
2196 | using zip_common<zip_enumerator<Iters...>, EnumeratorTupleType<Iters...>, |
2197 | Iters...>::zip_common; |
2198 | |
2199 | bool operator==(const zip_enumerator &Other) const { |
2200 | return std::get<1>(this->iterators) == std::get<1>(Other.iterators); |
2201 | } |
2202 | }; |
2203 | |
2204 | template <typename... Refs> struct enumerator_result<std::size_t, Refs...> { |
2205 | static constexpr std::size_t NumRefs = sizeof...(Refs); |
2206 | static_assert(NumRefs != 0); |
2207 | // `NumValues` includes the index. |
2208 | static constexpr std::size_t NumValues = NumRefs + 1; |
2209 | |
2210 | // Tuple type whose element types are references for each `Ref`. |
2211 | using range_reference_tuple = std::tuple<Refs...>; |
2212 | // Tuple type who elements are references to all values, including both |
2213 | // the index and `Refs` reference types. |
2214 | using value_reference_tuple = std::tuple<std::size_t, Refs...>; |
2215 | |
2216 | enumerator_result(std::size_t Index, Refs &&...Rs) |
2217 | : Idx(Index), Storage(std::forward<Refs>(Rs)...) {} |
2218 | |
2219 | /// Returns the 0-based index of the current position within the original |
2220 | /// input range(s). |
2221 | std::size_t index() const { return Idx; } |
2222 | |
2223 | /// Returns the value(s) for the current iterator. This does not include the |
2224 | /// index. |
2225 | decltype(auto) value() const { |
2226 | if constexpr (NumRefs == 1) |
2227 | return std::get<0>(Storage); |
2228 | else |
2229 | return Storage; |
2230 | } |
2231 | |
2232 | /// Returns the value at index `I`. This case covers the index. |
2233 | template <std::size_t I, typename = std::enable_if_t<I == 0>> |
2234 | friend std::size_t get(const enumerator_result &Result) { |
2235 | return Result.Idx; |
2236 | } |
2237 | |
2238 | /// Returns the value at index `I`. This case covers references to the |
2239 | /// iteratees. |
2240 | template <std::size_t I, typename = std::enable_if_t<I != 0>> |
2241 | friend decltype(auto) get(const enumerator_result &Result) { |
2242 | // Note: This is a separate function from the other `get`, instead of an |
2243 | // `if constexpr` case, to work around an MSVC 19.31.31XXX compiler |
2244 | // (Visual Studio 2022 17.1) return type deduction bug. |
2245 | return std::get<I - 1>(Result.Storage); |
2246 | } |
2247 | |
2248 | template <typename... Ts> |
2249 | friend bool operator==(const enumerator_result &Result, |
2250 | const std::tuple<std::size_t, Ts...> &Other) { |
2251 | static_assert(NumRefs == sizeof...(Ts), "Size mismatch" ); |
2252 | if (Result.Idx != std::get<0>(Other)) |
2253 | return false; |
2254 | return Result.is_value_equal(Other, std::make_index_sequence<NumRefs>{}); |
2255 | } |
2256 | |
2257 | private: |
2258 | template <typename Tuple, std::size_t... Idx> |
2259 | bool is_value_equal(const Tuple &Other, std::index_sequence<Idx...>) const { |
2260 | return ((std::get<Idx>(Storage) == std::get<Idx + 1>(Other)) && ...); |
2261 | } |
2262 | |
2263 | std::size_t Idx; |
2264 | // Make this tuple mutable to avoid casts that obfuscate const-correctness |
2265 | // issues. Const-correctness of references is taken care of by `zippy` that |
2266 | // defines const-non and const iterator types that will propagate down to |
2267 | // `enumerator_result`'s `Refs`. |
2268 | // Note that unlike the results of `zip*` functions, `enumerate`'s result are |
2269 | // supposed to be modifiable even when defined as |
2270 | // `const`. |
2271 | mutable range_reference_tuple Storage; |
2272 | }; |
2273 | |
2274 | /// Infinite stream of increasing 0-based `size_t` indices. |
2275 | struct index_stream { |
2276 | struct iterator : iterator_facade_base<iterator, std::forward_iterator_tag, |
2277 | const iterator> { |
2278 | iterator &operator++() { |
2279 | assert(Index != std::numeric_limits<std::size_t>::max() && |
2280 | "Attempting to increment end iterator" ); |
2281 | ++Index; |
2282 | return *this; |
2283 | } |
2284 | |
2285 | // Note: This dereference operator returns a value instead of a reference |
2286 | // and does not strictly conform to the C++17's definition of forward |
2287 | // iterator. However, it satisfies all the forward_iterator requirements |
2288 | // that the `zip_common` depends on and fully conforms to the C++20 |
2289 | // definition of forward iterator. |
2290 | std::size_t operator*() const { return Index; } |
2291 | |
2292 | friend bool operator==(const iterator &Lhs, const iterator &Rhs) { |
2293 | return Lhs.Index == Rhs.Index; |
2294 | } |
2295 | |
2296 | std::size_t Index = 0; |
2297 | }; |
2298 | |
2299 | iterator begin() const { return {}; } |
2300 | iterator end() const { |
2301 | // We approximate 'infinity' with the max size_t value, which should be good |
2302 | // enough to index over any container. |
2303 | iterator It; |
2304 | It.Index = std::numeric_limits<std::size_t>::max(); |
2305 | return It; |
2306 | } |
2307 | }; |
2308 | |
2309 | } // end namespace detail |
2310 | |
2311 | /// Given two or more input ranges, returns a new range whose values are are |
2312 | /// tuples (A, B, C, ...), such that A is the 0-based index of the item in the |
2313 | /// sequence, and B, C, ..., are the values from the original input ranges. All |
2314 | /// input ranges are required to have equal lengths. Note that the returned |
2315 | /// iterator allows for the values (B, C, ...) to be modified. Example: |
2316 | /// |
2317 | /// ```c++ |
2318 | /// std::vector<char> Letters = {'A', 'B', 'C', 'D'}; |
2319 | /// std::vector<int> Vals = {10, 11, 12, 13}; |
2320 | /// |
2321 | /// for (auto [Index, Letter, Value] : enumerate(Letters, Vals)) { |
2322 | /// printf("Item %zu - %c: %d\n", Index, Letter, Value); |
2323 | /// Value -= 10; |
2324 | /// } |
2325 | /// ``` |
2326 | /// |
2327 | /// Output: |
2328 | /// Item 0 - A: 10 |
2329 | /// Item 1 - B: 11 |
2330 | /// Item 2 - C: 12 |
2331 | /// Item 3 - D: 13 |
2332 | /// |
2333 | /// or using an iterator: |
2334 | /// ```c++ |
2335 | /// for (auto it : enumerate(Vals)) { |
2336 | /// it.value() += 10; |
2337 | /// printf("Item %zu: %d\n", it.index(), it.value()); |
2338 | /// } |
2339 | /// ``` |
2340 | /// |
2341 | /// Output: |
2342 | /// Item 0: 20 |
2343 | /// Item 1: 21 |
2344 | /// Item 2: 22 |
2345 | /// Item 3: 23 |
2346 | /// |
2347 | template <typename FirstRange, typename... RestRanges> |
2348 | auto enumerate(FirstRange &&First, RestRanges &&...Rest) { |
2349 | if constexpr (sizeof...(Rest) != 0) { |
2350 | #ifndef NDEBUG |
2351 | // Note: Create an array instead of an initializer list to work around an |
2352 | // Apple clang 14 compiler bug. |
2353 | size_t sizes[] = {range_size(First), range_size(Rest)...}; |
2354 | assert(all_equal(sizes) && "Ranges have different length" ); |
2355 | #endif |
2356 | } |
2357 | using enumerator = detail::zippy<detail::zip_enumerator, detail::index_stream, |
2358 | FirstRange, RestRanges...>; |
2359 | return enumerator(detail::index_stream{}, std::forward<FirstRange>(First), |
2360 | std::forward<RestRanges>(Rest)...); |
2361 | } |
2362 | |
2363 | namespace detail { |
2364 | |
2365 | template <typename Predicate, typename... Args> |
2366 | bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) { |
2367 | auto z = zip(args...); |
2368 | auto it = z.begin(); |
2369 | auto end = z.end(); |
2370 | while (it != end) { |
2371 | if (!std::apply([&](auto &&...args) { return P(args...); }, *it)) |
2372 | return false; |
2373 | ++it; |
2374 | } |
2375 | return it.all_equals(end); |
2376 | } |
2377 | |
2378 | // Just an adaptor to switch the order of argument and have the predicate before |
2379 | // the zipped inputs. |
2380 | template <typename... ArgsThenPredicate, size_t... InputIndexes> |
2381 | bool all_of_zip_predicate_last( |
2382 | std::tuple<ArgsThenPredicate...> argsThenPredicate, |
2383 | std::index_sequence<InputIndexes...>) { |
2384 | auto constexpr OutputIndex = |
2385 | std::tuple_size<decltype(argsThenPredicate)>::value - 1; |
2386 | return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate), |
2387 | std::get<InputIndexes>(argsThenPredicate)...); |
2388 | } |
2389 | |
2390 | } // end namespace detail |
2391 | |
2392 | /// Compare two zipped ranges using the provided predicate (as last argument). |
2393 | /// Return true if all elements satisfy the predicate and false otherwise. |
2394 | // Return false if the zipped iterator aren't all at end (size mismatch). |
2395 | template <typename... ArgsAndPredicate> |
2396 | bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) { |
2397 | return detail::all_of_zip_predicate_last( |
2398 | std::forward_as_tuple(argsAndPredicate...), |
2399 | std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{}); |
2400 | } |
2401 | |
2402 | /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) |
2403 | /// time. Not meant for use with random-access iterators. |
2404 | /// Can optionally take a predicate to filter lazily some items. |
2405 | template <typename IterTy, |
2406 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
2407 | bool hasNItems( |
2408 | IterTy &&Begin, IterTy &&End, unsigned N, |
2409 | Pred &&ShouldBeCounted = |
2410 | [](const decltype(*std::declval<IterTy>()) &) { return true; }, |
2411 | std::enable_if_t< |
2412 | !std::is_base_of<std::random_access_iterator_tag, |
2413 | typename std::iterator_traits<std::remove_reference_t< |
2414 | decltype(Begin)>>::iterator_category>::value, |
2415 | void> * = nullptr) { |
2416 | for (; N; ++Begin) { |
2417 | if (Begin == End) |
2418 | return false; // Too few. |
2419 | N -= ShouldBeCounted(*Begin); |
2420 | } |
2421 | for (; Begin != End; ++Begin) |
2422 | if (ShouldBeCounted(*Begin)) |
2423 | return false; // Too many. |
2424 | return true; |
2425 | } |
2426 | |
2427 | /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) |
2428 | /// time. Not meant for use with random-access iterators. |
2429 | /// Can optionally take a predicate to lazily filter some items. |
2430 | template <typename IterTy, |
2431 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
2432 | bool hasNItemsOrMore( |
2433 | IterTy &&Begin, IterTy &&End, unsigned N, |
2434 | Pred &&ShouldBeCounted = |
2435 | [](const decltype(*std::declval<IterTy>()) &) { return true; }, |
2436 | std::enable_if_t< |
2437 | !std::is_base_of<std::random_access_iterator_tag, |
2438 | typename std::iterator_traits<std::remove_reference_t< |
2439 | decltype(Begin)>>::iterator_category>::value, |
2440 | void> * = nullptr) { |
2441 | for (; N; ++Begin) { |
2442 | if (Begin == End) |
2443 | return false; // Too few. |
2444 | N -= ShouldBeCounted(*Begin); |
2445 | } |
2446 | return true; |
2447 | } |
2448 | |
2449 | /// Returns true if the sequence [Begin, End) has N or less items. Can |
2450 | /// optionally take a predicate to lazily filter some items. |
2451 | template <typename IterTy, |
2452 | typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> |
2453 | bool hasNItemsOrLess( |
2454 | IterTy &&Begin, IterTy &&End, unsigned N, |
2455 | Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { |
2456 | return true; |
2457 | }) { |
2458 | assert(N != std::numeric_limits<unsigned>::max()); |
2459 | return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted); |
2460 | } |
2461 | |
2462 | /// Returns true if the given container has exactly N items |
2463 | template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) { |
2464 | return hasNItems(std::begin(C), std::end(C), N); |
2465 | } |
2466 | |
2467 | /// Returns true if the given container has N or more items |
2468 | template <typename ContainerTy> |
2469 | bool hasNItemsOrMore(ContainerTy &&C, unsigned N) { |
2470 | return hasNItemsOrMore(std::begin(C), std::end(C), N); |
2471 | } |
2472 | |
2473 | /// Returns true if the given container has N or less items |
2474 | template <typename ContainerTy> |
2475 | bool hasNItemsOrLess(ContainerTy &&C, unsigned N) { |
2476 | return hasNItemsOrLess(std::begin(C), std::end(C), N); |
2477 | } |
2478 | |
2479 | /// Returns a raw pointer that represents the same address as the argument. |
2480 | /// |
2481 | /// This implementation can be removed once we move to C++20 where it's defined |
2482 | /// as std::to_address(). |
2483 | /// |
2484 | /// The std::pointer_traits<>::to_address(p) variations of these overloads has |
2485 | /// not been implemented. |
2486 | template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); } |
2487 | template <class T> constexpr T *to_address(T *P) { return P; } |
2488 | |
2489 | } // end namespace llvm |
2490 | |
2491 | namespace std { |
2492 | template <typename... Refs> |
2493 | struct tuple_size<llvm::detail::enumerator_result<Refs...>> |
2494 | : std::integral_constant<std::size_t, sizeof...(Refs)> {}; |
2495 | |
2496 | template <std::size_t I, typename... Refs> |
2497 | struct tuple_element<I, llvm::detail::enumerator_result<Refs...>> |
2498 | : std::tuple_element<I, std::tuple<Refs...>> {}; |
2499 | |
2500 | template <std::size_t I, typename... Refs> |
2501 | struct tuple_element<I, const llvm::detail::enumerator_result<Refs...>> |
2502 | : std::tuple_element<I, std::tuple<Refs...>> {}; |
2503 | |
2504 | } // namespace std |
2505 | |
2506 | #endif // LLVM_ADT_STLEXTRAS_H |
2507 | |