1 | //===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #ifndef LLVM_ADT_TWINE_H |
10 | #define LLVM_ADT_TWINE_H |
11 | |
12 | #include "llvm/ADT/SmallVector.h" |
13 | #include "llvm/ADT/StringRef.h" |
14 | #include "llvm/Support/ErrorHandling.h" |
15 | #include <cassert> |
16 | #include <cstdint> |
17 | #include <string> |
18 | #include <string_view> |
19 | |
20 | namespace llvm { |
21 | |
22 | class formatv_object_base; |
23 | class raw_ostream; |
24 | |
25 | /// Twine - A lightweight data structure for efficiently representing the |
26 | /// concatenation of temporary values as strings. |
27 | /// |
28 | /// A Twine is a kind of rope, it represents a concatenated string using a |
29 | /// binary-tree, where the string is the preorder of the nodes. Since the |
30 | /// Twine can be efficiently rendered into a buffer when its result is used, |
31 | /// it avoids the cost of generating temporary values for intermediate string |
32 | /// results -- particularly in cases when the Twine result is never |
33 | /// required. By explicitly tracking the type of leaf nodes, we can also avoid |
34 | /// the creation of temporary strings for conversions operations (such as |
35 | /// appending an integer to a string). |
36 | /// |
37 | /// A Twine is not intended for use directly and should not be stored, its |
38 | /// implementation relies on the ability to store pointers to temporary stack |
39 | /// objects which may be deallocated at the end of a statement. Twines should |
40 | /// only be used accepted as const references in arguments, when an API wishes |
41 | /// to accept possibly-concatenated strings. |
42 | /// |
43 | /// Twines support a special 'null' value, which always concatenates to form |
44 | /// itself, and renders as an empty string. This can be returned from APIs to |
45 | /// effectively nullify any concatenations performed on the result. |
46 | /// |
47 | /// \b Implementation |
48 | /// |
49 | /// Given the nature of a Twine, it is not possible for the Twine's |
50 | /// concatenation method to construct interior nodes; the result must be |
51 | /// represented inside the returned value. For this reason a Twine object |
52 | /// actually holds two values, the left- and right-hand sides of a |
53 | /// concatenation. We also have nullary Twine objects, which are effectively |
54 | /// sentinel values that represent empty strings. |
55 | /// |
56 | /// Thus, a Twine can effectively have zero, one, or two children. The \see |
57 | /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for |
58 | /// testing the number of children. |
59 | /// |
60 | /// We maintain a number of invariants on Twine objects (FIXME: Why): |
61 | /// - Nullary twines are always represented with their Kind on the left-hand |
62 | /// side, and the Empty kind on the right-hand side. |
63 | /// - Unary twines are always represented with the value on the left-hand |
64 | /// side, and the Empty kind on the right-hand side. |
65 | /// - If a Twine has another Twine as a child, that child should always be |
66 | /// binary (otherwise it could have been folded into the parent). |
67 | /// |
68 | /// These invariants are check by \see isValid(). |
69 | /// |
70 | /// \b Efficiency Considerations |
71 | /// |
72 | /// The Twine is designed to yield efficient and small code for common |
73 | /// situations. For this reason, the concat() method is inlined so that |
74 | /// concatenations of leaf nodes can be optimized into stores directly into a |
75 | /// single stack allocated object. |
76 | /// |
77 | /// In practice, not all compilers can be trusted to optimize concat() fully, |
78 | /// so we provide two additional methods (and accompanying operator+ |
79 | /// overloads) to guarantee that particularly important cases (cstring plus |
80 | /// StringRef) codegen as desired. |
81 | class Twine { |
82 | /// NodeKind - Represent the type of an argument. |
83 | enum NodeKind : unsigned char { |
84 | /// An empty string; the result of concatenating anything with it is also |
85 | /// empty. |
86 | NullKind, |
87 | |
88 | /// The empty string. |
89 | EmptyKind, |
90 | |
91 | /// A pointer to a Twine instance. |
92 | TwineKind, |
93 | |
94 | /// A pointer to a C string instance. |
95 | CStringKind, |
96 | |
97 | /// A pointer to an std::string instance. |
98 | StdStringKind, |
99 | |
100 | /// A Pointer and Length representation. Used for std::string_view, |
101 | /// StringRef, and SmallString. Can't use a StringRef here |
102 | /// because they are not trivally constructible. |
103 | PtrAndLengthKind, |
104 | |
105 | /// A pointer to a formatv_object_base instance. |
106 | FormatvObjectKind, |
107 | |
108 | /// A char value, to render as a character. |
109 | CharKind, |
110 | |
111 | /// An unsigned int value, to render as an unsigned decimal integer. |
112 | DecUIKind, |
113 | |
114 | /// An int value, to render as a signed decimal integer. |
115 | DecIKind, |
116 | |
117 | /// A pointer to an unsigned long value, to render as an unsigned decimal |
118 | /// integer. |
119 | DecULKind, |
120 | |
121 | /// A pointer to a long value, to render as a signed decimal integer. |
122 | DecLKind, |
123 | |
124 | /// A pointer to an unsigned long long value, to render as an unsigned |
125 | /// decimal integer. |
126 | DecULLKind, |
127 | |
128 | /// A pointer to a long long value, to render as a signed decimal integer. |
129 | DecLLKind, |
130 | |
131 | /// A pointer to a uint64_t value, to render as an unsigned hexadecimal |
132 | /// integer. |
133 | UHexKind |
134 | }; |
135 | |
136 | union Child |
137 | { |
138 | const Twine *twine; |
139 | const char *cString; |
140 | const std::string *stdString; |
141 | struct { |
142 | const char *ptr; |
143 | size_t length; |
144 | } ptrAndLength; |
145 | const formatv_object_base *formatvObject; |
146 | char character; |
147 | unsigned int decUI; |
148 | int decI; |
149 | const unsigned long *decUL; |
150 | const long *decL; |
151 | const unsigned long long *decULL; |
152 | const long long *decLL; |
153 | const uint64_t *uHex; |
154 | }; |
155 | |
156 | /// LHS - The prefix in the concatenation, which may be uninitialized for |
157 | /// Null or Empty kinds. |
158 | Child LHS; |
159 | |
160 | /// RHS - The suffix in the concatenation, which may be uninitialized for |
161 | /// Null or Empty kinds. |
162 | Child RHS; |
163 | |
164 | /// LHSKind - The NodeKind of the left hand side, \see getLHSKind(). |
165 | NodeKind LHSKind = EmptyKind; |
166 | |
167 | /// RHSKind - The NodeKind of the right hand side, \see getRHSKind(). |
168 | NodeKind RHSKind = EmptyKind; |
169 | |
170 | /// Construct a nullary twine; the kind must be NullKind or EmptyKind. |
171 | explicit Twine(NodeKind Kind) : LHSKind(Kind) { |
172 | assert(isNullary() && "Invalid kind!" ); |
173 | } |
174 | |
175 | /// Construct a binary twine. |
176 | explicit Twine(const Twine &LHS, const Twine &RHS) |
177 | : LHSKind(TwineKind), RHSKind(TwineKind) { |
178 | this->LHS.twine = &LHS; |
179 | this->RHS.twine = &RHS; |
180 | assert(isValid() && "Invalid twine!" ); |
181 | } |
182 | |
183 | /// Construct a twine from explicit values. |
184 | explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind) |
185 | : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) { |
186 | assert(isValid() && "Invalid twine!" ); |
187 | } |
188 | |
189 | /// Check for the null twine. |
190 | bool isNull() const { |
191 | return getLHSKind() == NullKind; |
192 | } |
193 | |
194 | /// Check for the empty twine. |
195 | bool isEmpty() const { |
196 | return getLHSKind() == EmptyKind; |
197 | } |
198 | |
199 | /// Check if this is a nullary twine (null or empty). |
200 | bool isNullary() const { |
201 | return isNull() || isEmpty(); |
202 | } |
203 | |
204 | /// Check if this is a unary twine. |
205 | bool isUnary() const { |
206 | return getRHSKind() == EmptyKind && !isNullary(); |
207 | } |
208 | |
209 | /// Check if this is a binary twine. |
210 | bool isBinary() const { |
211 | return getLHSKind() != NullKind && getRHSKind() != EmptyKind; |
212 | } |
213 | |
214 | /// Check if this is a valid twine (satisfying the invariants on |
215 | /// order and number of arguments). |
216 | bool isValid() const { |
217 | // Nullary twines always have Empty on the RHS. |
218 | if (isNullary() && getRHSKind() != EmptyKind) |
219 | return false; |
220 | |
221 | // Null should never appear on the RHS. |
222 | if (getRHSKind() == NullKind) |
223 | return false; |
224 | |
225 | // The RHS cannot be non-empty if the LHS is empty. |
226 | if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind) |
227 | return false; |
228 | |
229 | // A twine child should always be binary. |
230 | if (getLHSKind() == TwineKind && |
231 | !LHS.twine->isBinary()) |
232 | return false; |
233 | if (getRHSKind() == TwineKind && |
234 | !RHS.twine->isBinary()) |
235 | return false; |
236 | |
237 | return true; |
238 | } |
239 | |
240 | /// Get the NodeKind of the left-hand side. |
241 | NodeKind getLHSKind() const { return LHSKind; } |
242 | |
243 | /// Get the NodeKind of the right-hand side. |
244 | NodeKind getRHSKind() const { return RHSKind; } |
245 | |
246 | /// Print one child from a twine. |
247 | void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const; |
248 | |
249 | /// Print the representation of one child from a twine. |
250 | void printOneChildRepr(raw_ostream &OS, Child Ptr, |
251 | NodeKind Kind) const; |
252 | |
253 | public: |
254 | /// @name Constructors |
255 | /// @{ |
256 | |
257 | /// Construct from an empty string. |
258 | /*implicit*/ Twine() { |
259 | assert(isValid() && "Invalid twine!" ); |
260 | } |
261 | |
262 | Twine(const Twine &) = default; |
263 | |
264 | /// Construct from a C string. |
265 | /// |
266 | /// We take care here to optimize "" into the empty twine -- this will be |
267 | /// optimized out for string constants. This allows Twine arguments have |
268 | /// default "" values, without introducing unnecessary string constants. |
269 | /*implicit*/ Twine(const char *Str) { |
270 | if (Str[0] != '\0') { |
271 | LHS.cString = Str; |
272 | LHSKind = CStringKind; |
273 | } else |
274 | LHSKind = EmptyKind; |
275 | |
276 | assert(isValid() && "Invalid twine!" ); |
277 | } |
278 | /// Delete the implicit conversion from nullptr as Twine(const char *) |
279 | /// cannot take nullptr. |
280 | /*implicit*/ Twine(std::nullptr_t) = delete; |
281 | |
282 | /// Construct from an std::string. |
283 | /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) { |
284 | LHS.stdString = &Str; |
285 | assert(isValid() && "Invalid twine!" ); |
286 | } |
287 | |
288 | /// Construct from an std::string_view by converting it to a pointer and |
289 | /// length. This handles string_views on a pure API basis, and avoids |
290 | /// storing one (or a pointer to one) inside a Twine, which avoids problems |
291 | /// when mixing code compiled under various C++ standards. |
292 | /*implicit*/ Twine(const std::string_view &Str) |
293 | : LHSKind(PtrAndLengthKind) { |
294 | LHS.ptrAndLength.ptr = Str.data(); |
295 | LHS.ptrAndLength.length = Str.length(); |
296 | assert(isValid() && "Invalid twine!" ); |
297 | } |
298 | |
299 | /// Construct from a StringRef. |
300 | /*implicit*/ Twine(const StringRef &Str) : LHSKind(PtrAndLengthKind) { |
301 | LHS.ptrAndLength.ptr = Str.data(); |
302 | LHS.ptrAndLength.length = Str.size(); |
303 | assert(isValid() && "Invalid twine!" ); |
304 | } |
305 | |
306 | /// Construct from a SmallString. |
307 | /*implicit*/ Twine(const SmallVectorImpl<char> &Str) |
308 | : LHSKind(PtrAndLengthKind) { |
309 | LHS.ptrAndLength.ptr = Str.data(); |
310 | LHS.ptrAndLength.length = Str.size(); |
311 | assert(isValid() && "Invalid twine!" ); |
312 | } |
313 | |
314 | /// Construct from a formatv_object_base. |
315 | /*implicit*/ Twine(const formatv_object_base &Fmt) |
316 | : LHSKind(FormatvObjectKind) { |
317 | LHS.formatvObject = &Fmt; |
318 | assert(isValid() && "Invalid twine!" ); |
319 | } |
320 | |
321 | /// Construct from a char. |
322 | explicit Twine(char Val) : LHSKind(CharKind) { |
323 | LHS.character = Val; |
324 | } |
325 | |
326 | /// Construct from a signed char. |
327 | explicit Twine(signed char Val) : LHSKind(CharKind) { |
328 | LHS.character = static_cast<char>(Val); |
329 | } |
330 | |
331 | /// Construct from an unsigned char. |
332 | explicit Twine(unsigned char Val) : LHSKind(CharKind) { |
333 | LHS.character = static_cast<char>(Val); |
334 | } |
335 | |
336 | /// Construct a twine to print \p Val as an unsigned decimal integer. |
337 | explicit Twine(unsigned Val) : LHSKind(DecUIKind) { |
338 | LHS.decUI = Val; |
339 | } |
340 | |
341 | /// Construct a twine to print \p Val as a signed decimal integer. |
342 | explicit Twine(int Val) : LHSKind(DecIKind) { |
343 | LHS.decI = Val; |
344 | } |
345 | |
346 | /// Construct a twine to print \p Val as an unsigned decimal integer. |
347 | explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) { |
348 | LHS.decUL = &Val; |
349 | } |
350 | |
351 | /// Construct a twine to print \p Val as a signed decimal integer. |
352 | explicit Twine(const long &Val) : LHSKind(DecLKind) { |
353 | LHS.decL = &Val; |
354 | } |
355 | |
356 | /// Construct a twine to print \p Val as an unsigned decimal integer. |
357 | explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) { |
358 | LHS.decULL = &Val; |
359 | } |
360 | |
361 | /// Construct a twine to print \p Val as a signed decimal integer. |
362 | explicit Twine(const long long &Val) : LHSKind(DecLLKind) { |
363 | LHS.decLL = &Val; |
364 | } |
365 | |
366 | // FIXME: Unfortunately, to make sure this is as efficient as possible we |
367 | // need extra binary constructors from particular types. We can't rely on |
368 | // the compiler to be smart enough to fold operator+()/concat() down to the |
369 | // right thing. Yet. |
370 | |
371 | /// Construct as the concatenation of a C string and a StringRef. |
372 | /*implicit*/ Twine(const char *LHS, const StringRef &RHS) |
373 | : LHSKind(CStringKind), RHSKind(PtrAndLengthKind) { |
374 | this->LHS.cString = LHS; |
375 | this->RHS.ptrAndLength.ptr = RHS.data(); |
376 | this->RHS.ptrAndLength.length = RHS.size(); |
377 | assert(isValid() && "Invalid twine!" ); |
378 | } |
379 | |
380 | /// Construct as the concatenation of a StringRef and a C string. |
381 | /*implicit*/ Twine(const StringRef &LHS, const char *RHS) |
382 | : LHSKind(PtrAndLengthKind), RHSKind(CStringKind) { |
383 | this->LHS.ptrAndLength.ptr = LHS.data(); |
384 | this->LHS.ptrAndLength.length = LHS.size(); |
385 | this->RHS.cString = RHS; |
386 | assert(isValid() && "Invalid twine!" ); |
387 | } |
388 | |
389 | /// Since the intended use of twines is as temporary objects, assignments |
390 | /// when concatenating might cause undefined behavior or stack corruptions |
391 | Twine &operator=(const Twine &) = delete; |
392 | |
393 | /// Create a 'null' string, which is an empty string that always |
394 | /// concatenates to form another empty string. |
395 | static Twine createNull() { |
396 | return Twine(NullKind); |
397 | } |
398 | |
399 | /// @} |
400 | /// @name Numeric Conversions |
401 | /// @{ |
402 | |
403 | // Construct a twine to print \p Val as an unsigned hexadecimal integer. |
404 | static Twine utohexstr(const uint64_t &Val) { |
405 | Child LHS, RHS; |
406 | LHS.uHex = &Val; |
407 | RHS.twine = nullptr; |
408 | return Twine(LHS, UHexKind, RHS, EmptyKind); |
409 | } |
410 | |
411 | /// @} |
412 | /// @name Predicate Operations |
413 | /// @{ |
414 | |
415 | /// Check if this twine is trivially empty; a false return value does not |
416 | /// necessarily mean the twine is empty. |
417 | bool isTriviallyEmpty() const { |
418 | return isNullary(); |
419 | } |
420 | |
421 | /// Return true if this twine can be dynamically accessed as a single |
422 | /// StringRef value with getSingleStringRef(). |
423 | bool isSingleStringRef() const { |
424 | if (getRHSKind() != EmptyKind) return false; |
425 | |
426 | switch (getLHSKind()) { |
427 | case EmptyKind: |
428 | case CStringKind: |
429 | case StdStringKind: |
430 | case PtrAndLengthKind: |
431 | return true; |
432 | default: |
433 | return false; |
434 | } |
435 | } |
436 | |
437 | /// @} |
438 | /// @name String Operations |
439 | /// @{ |
440 | |
441 | Twine concat(const Twine &Suffix) const; |
442 | |
443 | /// @} |
444 | /// @name Output & Conversion. |
445 | /// @{ |
446 | |
447 | /// Return the twine contents as a std::string. |
448 | std::string str() const; |
449 | |
450 | /// Append the concatenated string into the given SmallString or SmallVector. |
451 | void toVector(SmallVectorImpl<char> &Out) const; |
452 | |
453 | /// This returns the twine as a single StringRef. This method is only valid |
454 | /// if isSingleStringRef() is true. |
455 | StringRef getSingleStringRef() const { |
456 | assert(isSingleStringRef() &&"This cannot be had as a single stringref!" ); |
457 | switch (getLHSKind()) { |
458 | default: llvm_unreachable("Out of sync with isSingleStringRef" ); |
459 | case EmptyKind: |
460 | return StringRef(); |
461 | case CStringKind: |
462 | return StringRef(LHS.cString); |
463 | case StdStringKind: |
464 | return StringRef(*LHS.stdString); |
465 | case PtrAndLengthKind: |
466 | return StringRef(LHS.ptrAndLength.ptr, LHS.ptrAndLength.length); |
467 | } |
468 | } |
469 | |
470 | /// This returns the twine as a single StringRef if it can be |
471 | /// represented as such. Otherwise the twine is written into the given |
472 | /// SmallVector and a StringRef to the SmallVector's data is returned. |
473 | StringRef toStringRef(SmallVectorImpl<char> &Out) const { |
474 | if (isSingleStringRef()) |
475 | return getSingleStringRef(); |
476 | toVector(Out); |
477 | return StringRef(Out.data(), Out.size()); |
478 | } |
479 | |
480 | /// This returns the twine as a single null terminated StringRef if it |
481 | /// can be represented as such. Otherwise the twine is written into the |
482 | /// given SmallVector and a StringRef to the SmallVector's data is returned. |
483 | /// |
484 | /// The returned StringRef's size does not include the null terminator. |
485 | StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const; |
486 | |
487 | /// Write the concatenated string represented by this twine to the |
488 | /// stream \p OS. |
489 | void print(raw_ostream &OS) const; |
490 | |
491 | /// Dump the concatenated string represented by this twine to stderr. |
492 | void dump() const; |
493 | |
494 | /// Write the representation of this twine to the stream \p OS. |
495 | void printRepr(raw_ostream &OS) const; |
496 | |
497 | /// Dump the representation of this twine to stderr. |
498 | void dumpRepr() const; |
499 | |
500 | /// @} |
501 | }; |
502 | |
503 | /// @name Twine Inline Implementations |
504 | /// @{ |
505 | |
506 | inline Twine Twine::concat(const Twine &Suffix) const { |
507 | // Concatenation with null is null. |
508 | if (isNull() || Suffix.isNull()) |
509 | return Twine(NullKind); |
510 | |
511 | // Concatenation with empty yields the other side. |
512 | if (isEmpty()) |
513 | return Suffix; |
514 | if (Suffix.isEmpty()) |
515 | return *this; |
516 | |
517 | // Otherwise we need to create a new node, taking care to fold in unary |
518 | // twines. |
519 | Child NewLHS, NewRHS; |
520 | NewLHS.twine = this; |
521 | NewRHS.twine = &Suffix; |
522 | NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind; |
523 | if (isUnary()) { |
524 | NewLHS = LHS; |
525 | NewLHSKind = getLHSKind(); |
526 | } |
527 | if (Suffix.isUnary()) { |
528 | NewRHS = Suffix.LHS; |
529 | NewRHSKind = Suffix.getLHSKind(); |
530 | } |
531 | |
532 | return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind); |
533 | } |
534 | |
535 | inline Twine operator+(const Twine &LHS, const Twine &RHS) { |
536 | return LHS.concat(Suffix: RHS); |
537 | } |
538 | |
539 | /// Additional overload to guarantee simplified codegen; this is equivalent to |
540 | /// concat(). |
541 | |
542 | inline Twine operator+(const char *LHS, const StringRef &RHS) { |
543 | return Twine(LHS, RHS); |
544 | } |
545 | |
546 | /// Additional overload to guarantee simplified codegen; this is equivalent to |
547 | /// concat(). |
548 | |
549 | inline Twine operator+(const StringRef &LHS, const char *RHS) { |
550 | return Twine(LHS, RHS); |
551 | } |
552 | |
553 | inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) { |
554 | RHS.print(OS); |
555 | return OS; |
556 | } |
557 | |
558 | /// @} |
559 | |
560 | } // end namespace llvm |
561 | |
562 | #endif // LLVM_ADT_TWINE_H |
563 | |