| 1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// | 
| 2 | // | 
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
| 4 | // See https://llvm.org/LICENSE.txt for license information. | 
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
| 6 | // | 
| 7 | //===----------------------------------------------------------------------===// | 
| 8 | // | 
| 9 | // This file contains some functions that are useful for math stuff. | 
| 10 | // | 
| 11 | //===----------------------------------------------------------------------===// | 
| 12 |  | 
| 13 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H | 
| 14 | #define  | 
| 15 |  | 
| 16 | #include "llvm/ADT/bit.h" | 
| 17 | #include "llvm/Support/Compiler.h" | 
| 18 | #include <cassert> | 
| 19 | #include <climits> | 
| 20 | #include <cstdint> | 
| 21 | #include <cstring> | 
| 22 | #include <limits> | 
| 23 | #include <type_traits> | 
| 24 |  | 
| 25 | namespace llvm { | 
| 26 |  | 
| 27 | /// Mathematical constants. | 
| 28 | namespace numbers { | 
| 29 | // TODO: Track C++20 std::numbers. | 
| 30 | // TODO: Favor using the hexadecimal FP constants (requires C++17). | 
| 31 | constexpr double e          = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 | 
| 32 |                  egamma     = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 | 
| 33 |                  ln2        = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 | 
| 34 |                  ln10       = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 | 
| 35 |                  log2e      = 1.4426950408889634074, // (0x1.71547652b82feP+0) | 
| 36 |                  log10e     = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) | 
| 37 |                  pi         = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 | 
| 38 |                  inv_pi     = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 | 
| 39 |                  sqrtpi     = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 | 
| 40 |                  inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 | 
| 41 |                  sqrt2      = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 | 
| 42 |                  inv_sqrt2  = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) | 
| 43 |                  sqrt3      = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 | 
| 44 |                  inv_sqrt3  = .57735026918962576451, // (0x1.279a74590331cP-1) | 
| 45 |                  phi        = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 | 
| 46 | constexpr float ef          = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 | 
| 47 |                 egammaf     = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 | 
| 48 |                 ln2f        = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 | 
| 49 |                 ln10f       = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 | 
| 50 |                 log2ef      = 1.44269504F, // (0x1.715476P+0) | 
| 51 |                 log10ef     = .434294482F, // (0x1.bcb7b2P-2) | 
| 52 |                 pif         = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 | 
| 53 |                 inv_pif     = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 | 
| 54 |                 sqrtpif     = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 | 
| 55 |                 inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 | 
| 56 |                 sqrt2f      = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 | 
| 57 |                 inv_sqrt2f  = .707106781F, // (0x1.6a09e6P-1) | 
| 58 |                 sqrt3f      = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 | 
| 59 |                 inv_sqrt3f  = .577350269F, // (0x1.279a74P-1) | 
| 60 |                 phif        = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 | 
| 61 | } // namespace numbers | 
| 62 |  | 
| 63 | /// Create a bitmask with the N right-most bits set to 1, and all other | 
| 64 | /// bits set to 0.  Only unsigned types are allowed. | 
| 65 | template <typename T> T maskTrailingOnes(unsigned N) { | 
| 66 |   static_assert(std::is_unsigned_v<T>, "Invalid type!" ); | 
| 67 |   const unsigned Bits = CHAR_BIT * sizeof(T); | 
| 68 |   assert(N <= Bits && "Invalid bit index" ); | 
| 69 |   return N == 0 ? 0 : (T(-1) >> (Bits - N)); | 
| 70 | } | 
| 71 |  | 
| 72 | /// Create a bitmask with the N left-most bits set to 1, and all other | 
| 73 | /// bits set to 0.  Only unsigned types are allowed. | 
| 74 | template <typename T> T maskLeadingOnes(unsigned N) { | 
| 75 |   return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); | 
| 76 | } | 
| 77 |  | 
| 78 | /// Create a bitmask with the N right-most bits set to 0, and all other | 
| 79 | /// bits set to 1.  Only unsigned types are allowed. | 
| 80 | template <typename T> T maskTrailingZeros(unsigned N) { | 
| 81 |   return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); | 
| 82 | } | 
| 83 |  | 
| 84 | /// Create a bitmask with the N left-most bits set to 0, and all other | 
| 85 | /// bits set to 1.  Only unsigned types are allowed. | 
| 86 | template <typename T> T maskLeadingZeros(unsigned N) { | 
| 87 |   return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); | 
| 88 | } | 
| 89 |  | 
| 90 | /// Macro compressed bit reversal table for 256 bits. | 
| 91 | /// | 
| 92 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable | 
| 93 | static const unsigned char BitReverseTable256[256] = { | 
| 94 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 | 
| 95 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) | 
| 96 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) | 
| 97 |   R6(0), R6(2), R6(1), R6(3) | 
| 98 | #undef R2 | 
| 99 | #undef R4 | 
| 100 | #undef R6 | 
| 101 | }; | 
| 102 |  | 
| 103 | /// Reverse the bits in \p Val. | 
| 104 | template <typename T> T reverseBits(T Val) { | 
| 105 | #if __has_builtin(__builtin_bitreverse8) | 
| 106 |   if constexpr (std::is_same_v<T, uint8_t>) | 
| 107 |     return __builtin_bitreverse8(Val); | 
| 108 | #endif | 
| 109 | #if __has_builtin(__builtin_bitreverse16) | 
| 110 |   if constexpr (std::is_same_v<T, uint16_t>) | 
| 111 |     return __builtin_bitreverse16(Val); | 
| 112 | #endif | 
| 113 | #if __has_builtin(__builtin_bitreverse32) | 
| 114 |   if constexpr (std::is_same_v<T, uint32_t>) | 
| 115 |     return __builtin_bitreverse32(Val); | 
| 116 | #endif | 
| 117 | #if __has_builtin(__builtin_bitreverse64) | 
| 118 |   if constexpr (std::is_same_v<T, uint64_t>) | 
| 119 |     return __builtin_bitreverse64(Val); | 
| 120 | #endif | 
| 121 |  | 
| 122 |   unsigned char in[sizeof(Val)]; | 
| 123 |   unsigned char out[sizeof(Val)]; | 
| 124 |   std::memcpy(dest: in, src: &Val, n: sizeof(Val)); | 
| 125 |   for (unsigned i = 0; i < sizeof(Val); ++i) | 
| 126 |     out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; | 
| 127 |   std::memcpy(dest: &Val, src: out, n: sizeof(Val)); | 
| 128 |   return Val; | 
| 129 | } | 
| 130 |  | 
| 131 | // NOTE: The following support functions use the _32/_64 extensions instead of | 
| 132 | // type overloading so that signed and unsigned integers can be used without | 
| 133 | // ambiguity. | 
| 134 |  | 
| 135 | /// Return the high 32 bits of a 64 bit value. | 
| 136 | constexpr inline uint32_t Hi_32(uint64_t Value) { | 
| 137 |   return static_cast<uint32_t>(Value >> 32); | 
| 138 | } | 
| 139 |  | 
| 140 | /// Return the low 32 bits of a 64 bit value. | 
| 141 | constexpr inline uint32_t Lo_32(uint64_t Value) { | 
| 142 |   return static_cast<uint32_t>(Value); | 
| 143 | } | 
| 144 |  | 
| 145 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. | 
| 146 | constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { | 
| 147 |   return ((uint64_t)High << 32) | (uint64_t)Low; | 
| 148 | } | 
| 149 |  | 
| 150 | /// Checks if an integer fits into the given bit width. | 
| 151 | template <unsigned N> constexpr inline bool isInt(int64_t x) { | 
| 152 |   if constexpr (N == 8) | 
| 153 |     return static_cast<int8_t>(x) == x; | 
| 154 |   if constexpr (N == 16) | 
| 155 |     return static_cast<int16_t>(x) == x; | 
| 156 |   if constexpr (N == 32) | 
| 157 |     return static_cast<int32_t>(x) == x; | 
| 158 |   if constexpr (N < 64) | 
| 159 |     return -(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1)); | 
| 160 |   (void)x; // MSVC v19.25 warns that x is unused. | 
| 161 |   return true; | 
| 162 | } | 
| 163 |  | 
| 164 | /// Checks if a signed integer is an N bit number shifted left by S. | 
| 165 | template <unsigned N, unsigned S> | 
| 166 | constexpr inline bool isShiftedInt(int64_t x) { | 
| 167 |   static_assert( | 
| 168 |       N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number." ); | 
| 169 |   static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide." ); | 
| 170 |   return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); | 
| 171 | } | 
| 172 |  | 
| 173 | /// Checks if an unsigned integer fits into the given bit width. | 
| 174 | template <unsigned N> constexpr inline bool isUInt(uint64_t x) { | 
| 175 |   static_assert(N > 0, "isUInt<0> doesn't make sense" ); | 
| 176 |   if constexpr (N == 8) | 
| 177 |     return static_cast<uint8_t>(x) == x; | 
| 178 |   if constexpr (N == 16) | 
| 179 |     return static_cast<uint16_t>(x) == x; | 
| 180 |   if constexpr (N == 32) | 
| 181 |     return static_cast<uint32_t>(x) == x; | 
| 182 |   if constexpr (N < 64) | 
| 183 |     return x < (UINT64_C(1) << (N)); | 
| 184 |   (void)x; // MSVC v19.25 warns that x is unused. | 
| 185 |   return true; | 
| 186 | } | 
| 187 |  | 
| 188 | /// Checks if a unsigned integer is an N bit number shifted left by S. | 
| 189 | template <unsigned N, unsigned S> | 
| 190 | constexpr inline bool isShiftedUInt(uint64_t x) { | 
| 191 |   static_assert( | 
| 192 |       N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)" ); | 
| 193 |   static_assert(N + S <= 64, | 
| 194 |                 "isShiftedUInt<N, S> with N + S > 64 is too wide." ); | 
| 195 |   // Per the two static_asserts above, S must be strictly less than 64.  So | 
| 196 |   // 1 << S is not undefined behavior. | 
| 197 |   return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); | 
| 198 | } | 
| 199 |  | 
| 200 | /// Gets the maximum value for a N-bit unsigned integer. | 
| 201 | inline uint64_t maxUIntN(uint64_t N) { | 
| 202 |   assert(N > 0 && N <= 64 && "integer width out of range" ); | 
| 203 |  | 
| 204 |   // uint64_t(1) << 64 is undefined behavior, so we can't do | 
| 205 |   //   (uint64_t(1) << N) - 1 | 
| 206 |   // without checking first that N != 64.  But this works and doesn't have a | 
| 207 |   // branch. | 
| 208 |   return UINT64_MAX >> (64 - N); | 
| 209 | } | 
| 210 |  | 
| 211 | /// Gets the minimum value for a N-bit signed integer. | 
| 212 | inline int64_t minIntN(int64_t N) { | 
| 213 |   assert(N > 0 && N <= 64 && "integer width out of range" ); | 
| 214 |  | 
| 215 |   return UINT64_C(1) + ~(UINT64_C(1) << (N - 1)); | 
| 216 | } | 
| 217 |  | 
| 218 | /// Gets the maximum value for a N-bit signed integer. | 
| 219 | inline int64_t maxIntN(int64_t N) { | 
| 220 |   assert(N > 0 && N <= 64 && "integer width out of range" ); | 
| 221 |  | 
| 222 |   // This relies on two's complement wraparound when N == 64, so we convert to | 
| 223 |   // int64_t only at the very end to avoid UB. | 
| 224 |   return (UINT64_C(1) << (N - 1)) - 1; | 
| 225 | } | 
| 226 |  | 
| 227 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. | 
| 228 | inline bool isUIntN(unsigned N, uint64_t x) { | 
| 229 |   return N >= 64 || x <= maxUIntN(N); | 
| 230 | } | 
| 231 |  | 
| 232 | /// Checks if an signed integer fits into the given (dynamic) bit width. | 
| 233 | inline bool isIntN(unsigned N, int64_t x) { | 
| 234 |   return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); | 
| 235 | } | 
| 236 |  | 
| 237 | /// Return true if the argument is a non-empty sequence of ones starting at the | 
| 238 | /// least significant bit with the remainder zero (32 bit version). | 
| 239 | /// Ex. isMask_32(0x0000FFFFU) == true. | 
| 240 | constexpr inline bool isMask_32(uint32_t Value) { | 
| 241 |   return Value && ((Value + 1) & Value) == 0; | 
| 242 | } | 
| 243 |  | 
| 244 | /// Return true if the argument is a non-empty sequence of ones starting at the | 
| 245 | /// least significant bit with the remainder zero (64 bit version). | 
| 246 | constexpr inline bool isMask_64(uint64_t Value) { | 
| 247 |   return Value && ((Value + 1) & Value) == 0; | 
| 248 | } | 
| 249 |  | 
| 250 | /// Return true if the argument contains a non-empty sequence of ones with the | 
| 251 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. | 
| 252 | constexpr inline bool isShiftedMask_32(uint32_t Value) { | 
| 253 |   return Value && isMask_32(Value: (Value - 1) | Value); | 
| 254 | } | 
| 255 |  | 
| 256 | /// Return true if the argument contains a non-empty sequence of ones with the | 
| 257 | /// remainder zero (64 bit version.) | 
| 258 | constexpr inline bool isShiftedMask_64(uint64_t Value) { | 
| 259 |   return Value && isMask_64(Value: (Value - 1) | Value); | 
| 260 | } | 
| 261 |  | 
| 262 | /// Return true if the argument is a power of two > 0. | 
| 263 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) | 
| 264 | constexpr inline bool isPowerOf2_32(uint32_t Value) { | 
| 265 |   return llvm::has_single_bit(Value); | 
| 266 | } | 
| 267 |  | 
| 268 | /// Return true if the argument is a power of two > 0 (64 bit edition.) | 
| 269 | constexpr inline bool isPowerOf2_64(uint64_t Value) { | 
| 270 |   return llvm::has_single_bit(Value); | 
| 271 | } | 
| 272 |  | 
| 273 | /// Return true if the argument contains a non-empty sequence of ones with the | 
| 274 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. | 
| 275 | /// If true, \p MaskIdx will specify the index of the lowest set bit and \p | 
| 276 | /// MaskLen is updated to specify the length of the mask, else neither are | 
| 277 | /// updated. | 
| 278 | inline bool isShiftedMask_32(uint32_t Value, unsigned &MaskIdx, | 
| 279 |                              unsigned &MaskLen) { | 
| 280 |   if (!isShiftedMask_32(Value)) | 
| 281 |     return false; | 
| 282 |   MaskIdx = llvm::countr_zero(Val: Value); | 
| 283 |   MaskLen = llvm::popcount(Value); | 
| 284 |   return true; | 
| 285 | } | 
| 286 |  | 
| 287 | /// Return true if the argument contains a non-empty sequence of ones with the | 
| 288 | /// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index | 
| 289 | /// of the lowest set bit and \p MaskLen is updated to specify the length of the | 
| 290 | /// mask, else neither are updated. | 
| 291 | inline bool isShiftedMask_64(uint64_t Value, unsigned &MaskIdx, | 
| 292 |                              unsigned &MaskLen) { | 
| 293 |   if (!isShiftedMask_64(Value)) | 
| 294 |     return false; | 
| 295 |   MaskIdx = llvm::countr_zero(Val: Value); | 
| 296 |   MaskLen = llvm::popcount(Value); | 
| 297 |   return true; | 
| 298 | } | 
| 299 |  | 
| 300 | /// Compile time Log2. | 
| 301 | /// Valid only for positive powers of two. | 
| 302 | template <size_t kValue> constexpr inline size_t CTLog2() { | 
| 303 |   static_assert(kValue > 0 && llvm::isPowerOf2_64(Value: kValue), | 
| 304 |                 "Value is not a valid power of 2" ); | 
| 305 |   return 1 + CTLog2<kValue / 2>(); | 
| 306 | } | 
| 307 |  | 
| 308 | template <> constexpr inline size_t CTLog2<1>() { return 0; } | 
| 309 |  | 
| 310 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. | 
| 311 | /// (32 bit edition.) | 
| 312 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 | 
| 313 | inline unsigned Log2_32(uint32_t Value) { | 
| 314 |   return 31 - llvm::countl_zero(Val: Value); | 
| 315 | } | 
| 316 |  | 
| 317 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. | 
| 318 | /// (64 bit edition.) | 
| 319 | inline unsigned Log2_64(uint64_t Value) { | 
| 320 |   return 63 - llvm::countl_zero(Val: Value); | 
| 321 | } | 
| 322 |  | 
| 323 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. | 
| 324 | /// (32 bit edition). | 
| 325 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 | 
| 326 | inline unsigned Log2_32_Ceil(uint32_t Value) { | 
| 327 |   return 32 - llvm::countl_zero(Val: Value - 1); | 
| 328 | } | 
| 329 |  | 
| 330 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. | 
| 331 | /// (64 bit edition.) | 
| 332 | inline unsigned Log2_64_Ceil(uint64_t Value) { | 
| 333 |   return 64 - llvm::countl_zero(Val: Value - 1); | 
| 334 | } | 
| 335 |  | 
| 336 | /// A and B are either alignments or offsets. Return the minimum alignment that | 
| 337 | /// may be assumed after adding the two together. | 
| 338 | constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { | 
| 339 |   // The largest power of 2 that divides both A and B. | 
| 340 |   // | 
| 341 |   // Replace "-Value" by "1+~Value" in the following commented code to avoid | 
| 342 |   // MSVC warning C4146 | 
| 343 |   //    return (A | B) & -(A | B); | 
| 344 |   return (A | B) & (1 + ~(A | B)); | 
| 345 | } | 
| 346 |  | 
| 347 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. | 
| 348 | /// Returns zero on overflow. | 
| 349 | constexpr inline uint64_t NextPowerOf2(uint64_t A) { | 
| 350 |   A |= (A >> 1); | 
| 351 |   A |= (A >> 2); | 
| 352 |   A |= (A >> 4); | 
| 353 |   A |= (A >> 8); | 
| 354 |   A |= (A >> 16); | 
| 355 |   A |= (A >> 32); | 
| 356 |   return A + 1; | 
| 357 | } | 
| 358 |  | 
| 359 | /// Returns the power of two which is greater than or equal to the given value. | 
| 360 | /// Essentially, it is a ceil operation across the domain of powers of two. | 
| 361 | inline uint64_t PowerOf2Ceil(uint64_t A) { | 
| 362 |   if (!A) | 
| 363 |     return 0; | 
| 364 |   return NextPowerOf2(A: A - 1); | 
| 365 | } | 
| 366 |  | 
| 367 | /// Returns the next integer (mod 2**64) that is greater than or equal to | 
| 368 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. | 
| 369 | /// | 
| 370 | /// Examples: | 
| 371 | /// \code | 
| 372 | ///   alignTo(5, 8) = 8 | 
| 373 | ///   alignTo(17, 8) = 24 | 
| 374 | ///   alignTo(~0LL, 8) = 0 | 
| 375 | ///   alignTo(321, 255) = 510 | 
| 376 | /// \endcode | 
| 377 | inline uint64_t alignTo(uint64_t Value, uint64_t Align) { | 
| 378 |   assert(Align != 0u && "Align can't be 0." ); | 
| 379 |   return (Value + Align - 1) / Align * Align; | 
| 380 | } | 
| 381 |  | 
| 382 | inline uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align) { | 
| 383 |   assert(Align != 0 && (Align & (Align - 1)) == 0 && | 
| 384 |          "Align must be a power of 2" ); | 
| 385 |   return (Value + Align - 1) & -Align; | 
| 386 | } | 
| 387 |  | 
| 388 | /// If non-zero \p Skew is specified, the return value will be a minimal integer | 
| 389 | /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for | 
| 390 | /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p | 
| 391 | /// Skew mod \p A'. \p Align must be non-zero. | 
| 392 | /// | 
| 393 | /// Examples: | 
| 394 | /// \code | 
| 395 | ///   alignTo(5, 8, 7) = 7 | 
| 396 | ///   alignTo(17, 8, 1) = 17 | 
| 397 | ///   alignTo(~0LL, 8, 3) = 3 | 
| 398 | ///   alignTo(321, 255, 42) = 552 | 
| 399 | /// \endcode | 
| 400 | inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew) { | 
| 401 |   assert(Align != 0u && "Align can't be 0." ); | 
| 402 |   Skew %= Align; | 
| 403 |   return alignTo(Value: Value - Skew, Align) + Skew; | 
| 404 | } | 
| 405 |  | 
| 406 | /// Returns the next integer (mod 2**64) that is greater than or equal to | 
| 407 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. | 
| 408 | template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { | 
| 409 |   static_assert(Align != 0u, "Align must be non-zero" ); | 
| 410 |   return (Value + Align - 1) / Align * Align; | 
| 411 | } | 
| 412 |  | 
| 413 | /// Returns the integer ceil(Numerator / Denominator). | 
| 414 | inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { | 
| 415 |   return alignTo(Value: Numerator, Align: Denominator) / Denominator; | 
| 416 | } | 
| 417 |  | 
| 418 | /// Returns the integer nearest(Numerator / Denominator). | 
| 419 | inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) { | 
| 420 |   return (Numerator + (Denominator / 2)) / Denominator; | 
| 421 | } | 
| 422 |  | 
| 423 | /// Returns the largest uint64_t less than or equal to \p Value and is | 
| 424 | /// \p Skew mod \p Align. \p Align must be non-zero | 
| 425 | inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { | 
| 426 |   assert(Align != 0u && "Align can't be 0." ); | 
| 427 |   Skew %= Align; | 
| 428 |   return (Value - Skew) / Align * Align + Skew; | 
| 429 | } | 
| 430 |  | 
| 431 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. | 
| 432 | /// Requires 0 < B <= 32. | 
| 433 | template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { | 
| 434 |   static_assert(B > 0, "Bit width can't be 0." ); | 
| 435 |   static_assert(B <= 32, "Bit width out of range." ); | 
| 436 |   return int32_t(X << (32 - B)) >> (32 - B); | 
| 437 | } | 
| 438 |  | 
| 439 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. | 
| 440 | /// Requires 0 < B <= 32. | 
| 441 | inline int32_t SignExtend32(uint32_t X, unsigned B) { | 
| 442 |   assert(B > 0 && "Bit width can't be 0." ); | 
| 443 |   assert(B <= 32 && "Bit width out of range." ); | 
| 444 |   return int32_t(X << (32 - B)) >> (32 - B); | 
| 445 | } | 
| 446 |  | 
| 447 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. | 
| 448 | /// Requires 0 < B <= 64. | 
| 449 | template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { | 
| 450 |   static_assert(B > 0, "Bit width can't be 0." ); | 
| 451 |   static_assert(B <= 64, "Bit width out of range." ); | 
| 452 |   return int64_t(x << (64 - B)) >> (64 - B); | 
| 453 | } | 
| 454 |  | 
| 455 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. | 
| 456 | /// Requires 0 < B <= 64. | 
| 457 | inline int64_t SignExtend64(uint64_t X, unsigned B) { | 
| 458 |   assert(B > 0 && "Bit width can't be 0." ); | 
| 459 |   assert(B <= 64 && "Bit width out of range." ); | 
| 460 |   return int64_t(X << (64 - B)) >> (64 - B); | 
| 461 | } | 
| 462 |  | 
| 463 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute | 
| 464 | /// value of the result. | 
| 465 | template <typename T> | 
| 466 | std::enable_if_t<std::is_unsigned_v<T>, T> AbsoluteDifference(T X, T Y) { | 
| 467 |   return X > Y ? (X - Y) : (Y - X); | 
| 468 | } | 
| 469 |  | 
| 470 | /// Add two unsigned integers, X and Y, of type T.  Clamp the result to the | 
| 471 | /// maximum representable value of T on overflow.  ResultOverflowed indicates if | 
| 472 | /// the result is larger than the maximum representable value of type T. | 
| 473 | template <typename T> | 
| 474 | std::enable_if_t<std::is_unsigned_v<T>, T> | 
| 475 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { | 
| 476 |   bool Dummy; | 
| 477 |   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; | 
| 478 |   // Hacker's Delight, p. 29 | 
| 479 |   T Z = X + Y; | 
| 480 |   Overflowed = (Z < X || Z < Y); | 
| 481 |   if (Overflowed) | 
| 482 |     return std::numeric_limits<T>::max(); | 
| 483 |   else | 
| 484 |     return Z; | 
| 485 | } | 
| 486 |  | 
| 487 | /// Add multiple unsigned integers of type T.  Clamp the result to the | 
| 488 | /// maximum representable value of T on overflow. | 
| 489 | template <class T, class... Ts> | 
| 490 | std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingAdd(T X, T Y, T Z, | 
| 491 |                                                          Ts... Args) { | 
| 492 |   bool Overflowed = false; | 
| 493 |   T XY = SaturatingAdd(X, Y, &Overflowed); | 
| 494 |   if (Overflowed) | 
| 495 |     return SaturatingAdd(std::numeric_limits<T>::max(), T(1), Args...); | 
| 496 |   return SaturatingAdd(XY, Z, Args...); | 
| 497 | } | 
| 498 |  | 
| 499 | /// Multiply two unsigned integers, X and Y, of type T.  Clamp the result to the | 
| 500 | /// maximum representable value of T on overflow.  ResultOverflowed indicates if | 
| 501 | /// the result is larger than the maximum representable value of type T. | 
| 502 | template <typename T> | 
| 503 | std::enable_if_t<std::is_unsigned_v<T>, T> | 
| 504 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { | 
| 505 |   bool Dummy; | 
| 506 |   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; | 
| 507 |  | 
| 508 |   // Hacker's Delight, p. 30 has a different algorithm, but we don't use that | 
| 509 |   // because it fails for uint16_t (where multiplication can have undefined | 
| 510 |   // behavior due to promotion to int), and requires a division in addition | 
| 511 |   // to the multiplication. | 
| 512 |  | 
| 513 |   Overflowed = false; | 
| 514 |  | 
| 515 |   // Log2(Z) would be either Log2Z or Log2Z + 1. | 
| 516 |   // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z | 
| 517 |   // will necessarily be less than Log2Max as desired. | 
| 518 |   int Log2Z = Log2_64(X) + Log2_64(Y); | 
| 519 |   const T Max = std::numeric_limits<T>::max(); | 
| 520 |   int Log2Max = Log2_64(Max); | 
| 521 |   if (Log2Z < Log2Max) { | 
| 522 |     return X * Y; | 
| 523 |   } | 
| 524 |   if (Log2Z > Log2Max) { | 
| 525 |     Overflowed = true; | 
| 526 |     return Max; | 
| 527 |   } | 
| 528 |  | 
| 529 |   // We're going to use the top bit, and maybe overflow one | 
| 530 |   // bit past it. Multiply all but the bottom bit then add | 
| 531 |   // that on at the end. | 
| 532 |   T Z = (X >> 1) * Y; | 
| 533 |   if (Z & ~(Max >> 1)) { | 
| 534 |     Overflowed = true; | 
| 535 |     return Max; | 
| 536 |   } | 
| 537 |   Z <<= 1; | 
| 538 |   if (X & 1) | 
| 539 |     return SaturatingAdd(Z, Y, ResultOverflowed); | 
| 540 |  | 
| 541 |   return Z; | 
| 542 | } | 
| 543 |  | 
| 544 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to | 
| 545 | /// the product. Clamp the result to the maximum representable value of T on | 
| 546 | /// overflow. ResultOverflowed indicates if the result is larger than the | 
| 547 | /// maximum representable value of type T. | 
| 548 | template <typename T> | 
| 549 | std::enable_if_t<std::is_unsigned_v<T>, T> | 
| 550 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { | 
| 551 |   bool Dummy; | 
| 552 |   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; | 
| 553 |  | 
| 554 |   T Product = SaturatingMultiply(X, Y, &Overflowed); | 
| 555 |   if (Overflowed) | 
| 556 |     return Product; | 
| 557 |  | 
| 558 |   return SaturatingAdd(A, Product, &Overflowed); | 
| 559 | } | 
| 560 |  | 
| 561 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. | 
| 562 | extern const float huge_valf; | 
| 563 |  | 
| 564 |  | 
| 565 | /// Add two signed integers, computing the two's complement truncated result, | 
| 566 | /// returning true if overflow occurred. | 
| 567 | template <typename T> | 
| 568 | std::enable_if_t<std::is_signed_v<T>, T> AddOverflow(T X, T Y, T &Result) { | 
| 569 | #if __has_builtin(__builtin_add_overflow) | 
| 570 |   return __builtin_add_overflow(X, Y, &Result); | 
| 571 | #else | 
| 572 |   // Perform the unsigned addition. | 
| 573 |   using U = std::make_unsigned_t<T>; | 
| 574 |   const U UX = static_cast<U>(X); | 
| 575 |   const U UY = static_cast<U>(Y); | 
| 576 |   const U UResult = UX + UY; | 
| 577 |  | 
| 578 |   // Convert to signed. | 
| 579 |   Result = static_cast<T>(UResult); | 
| 580 |  | 
| 581 |   // Adding two positive numbers should result in a positive number. | 
| 582 |   if (X > 0 && Y > 0) | 
| 583 |     return Result <= 0; | 
| 584 |   // Adding two negatives should result in a negative number. | 
| 585 |   if (X < 0 && Y < 0) | 
| 586 |     return Result >= 0; | 
| 587 |   return false; | 
| 588 | #endif | 
| 589 | } | 
| 590 |  | 
| 591 | /// Subtract two signed integers, computing the two's complement truncated | 
| 592 | /// result, returning true if an overflow ocurred. | 
| 593 | template <typename T> | 
| 594 | std::enable_if_t<std::is_signed_v<T>, T> SubOverflow(T X, T Y, T &Result) { | 
| 595 | #if __has_builtin(__builtin_sub_overflow) | 
| 596 |   return __builtin_sub_overflow(X, Y, &Result); | 
| 597 | #else | 
| 598 |   // Perform the unsigned addition. | 
| 599 |   using U = std::make_unsigned_t<T>; | 
| 600 |   const U UX = static_cast<U>(X); | 
| 601 |   const U UY = static_cast<U>(Y); | 
| 602 |   const U UResult = UX - UY; | 
| 603 |  | 
| 604 |   // Convert to signed. | 
| 605 |   Result = static_cast<T>(UResult); | 
| 606 |  | 
| 607 |   // Subtracting a positive number from a negative results in a negative number. | 
| 608 |   if (X <= 0 && Y > 0) | 
| 609 |     return Result >= 0; | 
| 610 |   // Subtracting a negative number from a positive results in a positive number. | 
| 611 |   if (X >= 0 && Y < 0) | 
| 612 |     return Result <= 0; | 
| 613 |   return false; | 
| 614 | #endif | 
| 615 | } | 
| 616 |  | 
| 617 | /// Multiply two signed integers, computing the two's complement truncated | 
| 618 | /// result, returning true if an overflow ocurred. | 
| 619 | template <typename T> | 
| 620 | std::enable_if_t<std::is_signed_v<T>, T> MulOverflow(T X, T Y, T &Result) { | 
| 621 |   // Perform the unsigned multiplication on absolute values. | 
| 622 |   using U = std::make_unsigned_t<T>; | 
| 623 |   const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); | 
| 624 |   const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); | 
| 625 |   const U UResult = UX * UY; | 
| 626 |  | 
| 627 |   // Convert to signed. | 
| 628 |   const bool IsNegative = (X < 0) ^ (Y < 0); | 
| 629 |   Result = IsNegative ? (0 - UResult) : UResult; | 
| 630 |  | 
| 631 |   // If any of the args was 0, result is 0 and no overflow occurs. | 
| 632 |   if (UX == 0 || UY == 0) | 
| 633 |     return false; | 
| 634 |  | 
| 635 |   // UX and UY are in [1, 2^n], where n is the number of digits. | 
| 636 |   // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for | 
| 637 |   // positive) divided by an argument compares to the other. | 
| 638 |   if (IsNegative) | 
| 639 |     return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; | 
| 640 |   else | 
| 641 |     return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; | 
| 642 | } | 
| 643 |  | 
| 644 | } // End llvm namespace | 
| 645 |  | 
| 646 | #endif | 
| 647 |  |