| 1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains some functions that are useful for math stuff. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H |
| 14 | #define |
| 15 | |
| 16 | #include "llvm/ADT/bit.h" |
| 17 | #include "llvm/Support/Compiler.h" |
| 18 | #include <cassert> |
| 19 | #include <climits> |
| 20 | #include <cstdint> |
| 21 | #include <cstring> |
| 22 | #include <limits> |
| 23 | #include <type_traits> |
| 24 | |
| 25 | namespace llvm { |
| 26 | /// Some template parameter helpers to optimize for bitwidth, for functions that |
| 27 | /// take multiple arguments. |
| 28 | |
| 29 | // We can't verify signedness, since callers rely on implicit coercions to |
| 30 | // signed/unsigned. |
| 31 | template <typename T, typename U> |
| 32 | using enableif_int = |
| 33 | std::enable_if_t<std::is_integral_v<T> && std::is_integral_v<U>>; |
| 34 | |
| 35 | // Use std::common_type_t to widen only up to the widest argument. |
| 36 | template <typename T, typename U, typename = enableif_int<T, U>> |
| 37 | using common_uint = |
| 38 | std::common_type_t<std::make_unsigned_t<T>, std::make_unsigned_t<U>>; |
| 39 | template <typename T, typename U, typename = enableif_int<T, U>> |
| 40 | using common_sint = |
| 41 | std::common_type_t<std::make_signed_t<T>, std::make_signed_t<U>>; |
| 42 | |
| 43 | /// Mathematical constants. |
| 44 | namespace numbers { |
| 45 | // TODO: Track C++20 std::numbers. |
| 46 | // clang-format off |
| 47 | constexpr double e = 0x1.5bf0a8b145769P+1, // (2.7182818284590452354) https://oeis.org/A001113 |
| 48 | egamma = 0x1.2788cfc6fb619P-1, // (.57721566490153286061) https://oeis.org/A001620 |
| 49 | ln2 = 0x1.62e42fefa39efP-1, // (.69314718055994530942) https://oeis.org/A002162 |
| 50 | ln10 = 0x1.26bb1bbb55516P+1, // (2.3025850929940456840) https://oeis.org/A002392 |
| 51 | log2e = 0x1.71547652b82feP+0, // (1.4426950408889634074) |
| 52 | log10e = 0x1.bcb7b1526e50eP-2, // (.43429448190325182765) |
| 53 | pi = 0x1.921fb54442d18P+1, // (3.1415926535897932385) https://oeis.org/A000796 |
| 54 | inv_pi = 0x1.45f306dc9c883P-2, // (.31830988618379067154) https://oeis.org/A049541 |
| 55 | sqrtpi = 0x1.c5bf891b4ef6bP+0, // (1.7724538509055160273) https://oeis.org/A002161 |
| 56 | inv_sqrtpi = 0x1.20dd750429b6dP-1, // (.56418958354775628695) https://oeis.org/A087197 |
| 57 | sqrt2 = 0x1.6a09e667f3bcdP+0, // (1.4142135623730950488) https://oeis.org/A00219 |
| 58 | inv_sqrt2 = 0x1.6a09e667f3bcdP-1, // (.70710678118654752440) |
| 59 | sqrt3 = 0x1.bb67ae8584caaP+0, // (1.7320508075688772935) https://oeis.org/A002194 |
| 60 | inv_sqrt3 = 0x1.279a74590331cP-1, // (.57735026918962576451) |
| 61 | phi = 0x1.9e3779b97f4a8P+0; // (1.6180339887498948482) https://oeis.org/A001622 |
| 62 | constexpr float ef = 0x1.5bf0a8P+1F, // (2.71828183) https://oeis.org/A001113 |
| 63 | egammaf = 0x1.2788d0P-1F, // (.577215665) https://oeis.org/A001620 |
| 64 | ln2f = 0x1.62e430P-1F, // (.693147181) https://oeis.org/A002162 |
| 65 | ln10f = 0x1.26bb1cP+1F, // (2.30258509) https://oeis.org/A002392 |
| 66 | log2ef = 0x1.715476P+0F, // (1.44269504) |
| 67 | log10ef = 0x1.bcb7b2P-2F, // (.434294482) |
| 68 | pif = 0x1.921fb6P+1F, // (3.14159265) https://oeis.org/A000796 |
| 69 | inv_pif = 0x1.45f306P-2F, // (.318309886) https://oeis.org/A049541 |
| 70 | sqrtpif = 0x1.c5bf8aP+0F, // (1.77245385) https://oeis.org/A002161 |
| 71 | inv_sqrtpif = 0x1.20dd76P-1F, // (.564189584) https://oeis.org/A087197 |
| 72 | sqrt2f = 0x1.6a09e6P+0F, // (1.41421356) https://oeis.org/A002193 |
| 73 | inv_sqrt2f = 0x1.6a09e6P-1F, // (.707106781) |
| 74 | sqrt3f = 0x1.bb67aeP+0F, // (1.73205081) https://oeis.org/A002194 |
| 75 | inv_sqrt3f = 0x1.279a74P-1F, // (.577350269) |
| 76 | phif = 0x1.9e377aP+0F; // (1.61803399) https://oeis.org/A001622 |
| 77 | // clang-format on |
| 78 | } // namespace numbers |
| 79 | |
| 80 | /// Create a bitmask with the N right-most bits set to 1, and all other |
| 81 | /// bits set to 0. Only unsigned types are allowed. |
| 82 | template <typename T> T maskTrailingOnes(unsigned N) { |
| 83 | static_assert(std::is_unsigned_v<T>, "Invalid type!" ); |
| 84 | const unsigned Bits = CHAR_BIT * sizeof(T); |
| 85 | assert(N <= Bits && "Invalid bit index" ); |
| 86 | if (N == 0) |
| 87 | return 0; |
| 88 | return T(-1) >> (Bits - N); |
| 89 | } |
| 90 | |
| 91 | /// Create a bitmask with the N left-most bits set to 1, and all other |
| 92 | /// bits set to 0. Only unsigned types are allowed. |
| 93 | template <typename T> T maskLeadingOnes(unsigned N) { |
| 94 | return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
| 95 | } |
| 96 | |
| 97 | /// Create a bitmask with the N right-most bits set to 0, and all other |
| 98 | /// bits set to 1. Only unsigned types are allowed. |
| 99 | template <typename T> T maskTrailingZeros(unsigned N) { |
| 100 | return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); |
| 101 | } |
| 102 | |
| 103 | /// Create a bitmask with the N left-most bits set to 0, and all other |
| 104 | /// bits set to 1. Only unsigned types are allowed. |
| 105 | template <typename T> T maskLeadingZeros(unsigned N) { |
| 106 | return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
| 107 | } |
| 108 | |
| 109 | /// Macro compressed bit reversal table for 256 bits. |
| 110 | /// |
| 111 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable |
| 112 | static const unsigned char BitReverseTable256[256] = { |
| 113 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 |
| 114 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) |
| 115 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) |
| 116 | R6(0), R6(2), R6(1), R6(3) |
| 117 | #undef R2 |
| 118 | #undef R4 |
| 119 | #undef R6 |
| 120 | }; |
| 121 | |
| 122 | /// Reverse the bits in \p Val. |
| 123 | template <typename T> T reverseBits(T Val) { |
| 124 | #if __has_builtin(__builtin_bitreverse8) |
| 125 | if constexpr (std::is_same_v<T, uint8_t>) |
| 126 | return __builtin_bitreverse8(Val); |
| 127 | #endif |
| 128 | #if __has_builtin(__builtin_bitreverse16) |
| 129 | if constexpr (std::is_same_v<T, uint16_t>) |
| 130 | return __builtin_bitreverse16(Val); |
| 131 | #endif |
| 132 | #if __has_builtin(__builtin_bitreverse32) |
| 133 | if constexpr (std::is_same_v<T, uint32_t>) |
| 134 | return __builtin_bitreverse32(Val); |
| 135 | #endif |
| 136 | #if __has_builtin(__builtin_bitreverse64) |
| 137 | if constexpr (std::is_same_v<T, uint64_t>) |
| 138 | return __builtin_bitreverse64(Val); |
| 139 | #endif |
| 140 | |
| 141 | unsigned char in[sizeof(Val)]; |
| 142 | unsigned char out[sizeof(Val)]; |
| 143 | std::memcpy(dest: in, src: &Val, n: sizeof(Val)); |
| 144 | for (unsigned i = 0; i < sizeof(Val); ++i) |
| 145 | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; |
| 146 | std::memcpy(dest: &Val, src: out, n: sizeof(Val)); |
| 147 | return Val; |
| 148 | } |
| 149 | |
| 150 | // NOTE: The following support functions use the _32/_64 extensions instead of |
| 151 | // type overloading so that signed and unsigned integers can be used without |
| 152 | // ambiguity. |
| 153 | |
| 154 | /// Return the high 32 bits of a 64 bit value. |
| 155 | constexpr uint32_t Hi_32(uint64_t Value) { |
| 156 | return static_cast<uint32_t>(Value >> 32); |
| 157 | } |
| 158 | |
| 159 | /// Return the low 32 bits of a 64 bit value. |
| 160 | constexpr uint32_t Lo_32(uint64_t Value) { |
| 161 | return static_cast<uint32_t>(Value); |
| 162 | } |
| 163 | |
| 164 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. |
| 165 | constexpr uint64_t Make_64(uint32_t High, uint32_t Low) { |
| 166 | return ((uint64_t)High << 32) | (uint64_t)Low; |
| 167 | } |
| 168 | |
| 169 | /// Checks if an integer fits into the given bit width. |
| 170 | template <unsigned N> constexpr bool isInt(int64_t x) { |
| 171 | if constexpr (N == 0) |
| 172 | return 0 == x; |
| 173 | if constexpr (N == 8) |
| 174 | return static_cast<int8_t>(x) == x; |
| 175 | if constexpr (N == 16) |
| 176 | return static_cast<int16_t>(x) == x; |
| 177 | if constexpr (N == 32) |
| 178 | return static_cast<int32_t>(x) == x; |
| 179 | if constexpr (N < 64) |
| 180 | return -(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1)); |
| 181 | (void)x; // MSVC v19.25 warns that x is unused. |
| 182 | return true; |
| 183 | } |
| 184 | |
| 185 | /// Checks if a signed integer is an N bit number shifted left by S. |
| 186 | template <unsigned N, unsigned S> |
| 187 | constexpr bool isShiftedInt(int64_t x) { |
| 188 | static_assert(S < 64, "isShiftedInt<N, S> with S >= 64 is too much." ); |
| 189 | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide." ); |
| 190 | return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
| 191 | } |
| 192 | |
| 193 | /// Checks if an unsigned integer fits into the given bit width. |
| 194 | template <unsigned N> constexpr bool isUInt(uint64_t x) { |
| 195 | if constexpr (N == 0) |
| 196 | return 0 == x; |
| 197 | if constexpr (N == 8) |
| 198 | return static_cast<uint8_t>(x) == x; |
| 199 | if constexpr (N == 16) |
| 200 | return static_cast<uint16_t>(x) == x; |
| 201 | if constexpr (N == 32) |
| 202 | return static_cast<uint32_t>(x) == x; |
| 203 | if constexpr (N < 64) |
| 204 | return x < (UINT64_C(1) << (N)); |
| 205 | (void)x; // MSVC v19.25 warns that x is unused. |
| 206 | return true; |
| 207 | } |
| 208 | |
| 209 | /// Checks if a unsigned integer is an N bit number shifted left by S. |
| 210 | template <unsigned N, unsigned S> |
| 211 | constexpr bool isShiftedUInt(uint64_t x) { |
| 212 | static_assert(S < 64, "isShiftedUInt<N, S> with S >= 64 is too much." ); |
| 213 | static_assert(N + S <= 64, |
| 214 | "isShiftedUInt<N, S> with N + S > 64 is too wide." ); |
| 215 | // S must be strictly less than 64. So 1 << S is not undefined behavior. |
| 216 | return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
| 217 | } |
| 218 | |
| 219 | /// Gets the maximum value for a N-bit unsigned integer. |
| 220 | inline uint64_t maxUIntN(uint64_t N) { |
| 221 | assert(N <= 64 && "integer width out of range" ); |
| 222 | |
| 223 | // uint64_t(1) << 64 is undefined behavior, so we can't do |
| 224 | // (uint64_t(1) << N) - 1 |
| 225 | // without checking first that N != 64. But this works and doesn't have a |
| 226 | // branch for N != 0. |
| 227 | // Unfortunately, shifting a uint64_t right by 64 bit is undefined |
| 228 | // behavior, so the condition on N == 0 is necessary. Fortunately, most |
| 229 | // optimizers do not emit branches for this check. |
| 230 | if (N == 0) |
| 231 | return 0; |
| 232 | return UINT64_MAX >> (64 - N); |
| 233 | } |
| 234 | |
| 235 | /// Gets the minimum value for a N-bit signed integer. |
| 236 | inline int64_t minIntN(int64_t N) { |
| 237 | assert(N <= 64 && "integer width out of range" ); |
| 238 | |
| 239 | if (N == 0) |
| 240 | return 0; |
| 241 | return UINT64_C(1) + ~(UINT64_C(1) << (N - 1)); |
| 242 | } |
| 243 | |
| 244 | /// Gets the maximum value for a N-bit signed integer. |
| 245 | inline int64_t maxIntN(int64_t N) { |
| 246 | assert(N <= 64 && "integer width out of range" ); |
| 247 | |
| 248 | // This relies on two's complement wraparound when N == 64, so we convert to |
| 249 | // int64_t only at the very end to avoid UB. |
| 250 | if (N == 0) |
| 251 | return 0; |
| 252 | return (UINT64_C(1) << (N - 1)) - 1; |
| 253 | } |
| 254 | |
| 255 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. |
| 256 | inline bool isUIntN(unsigned N, uint64_t x) { |
| 257 | return N >= 64 || x <= maxUIntN(N); |
| 258 | } |
| 259 | |
| 260 | /// Checks if an signed integer fits into the given (dynamic) bit width. |
| 261 | inline bool isIntN(unsigned N, int64_t x) { |
| 262 | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); |
| 263 | } |
| 264 | |
| 265 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 266 | /// least significant bit with the remainder zero (32 bit version). |
| 267 | /// Ex. isMask_32(0x0000FFFFU) == true. |
| 268 | constexpr bool isMask_32(uint32_t Value) { |
| 269 | return Value && ((Value + 1) & Value) == 0; |
| 270 | } |
| 271 | |
| 272 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 273 | /// least significant bit with the remainder zero (64 bit version). |
| 274 | constexpr bool isMask_64(uint64_t Value) { |
| 275 | return Value && ((Value + 1) & Value) == 0; |
| 276 | } |
| 277 | |
| 278 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 279 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
| 280 | constexpr bool isShiftedMask_32(uint32_t Value) { |
| 281 | return Value && isMask_32(Value: (Value - 1) | Value); |
| 282 | } |
| 283 | |
| 284 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 285 | /// remainder zero (64 bit version.) |
| 286 | constexpr bool isShiftedMask_64(uint64_t Value) { |
| 287 | return Value && isMask_64(Value: (Value - 1) | Value); |
| 288 | } |
| 289 | |
| 290 | /// Return true if the argument is a power of two > 0. |
| 291 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) |
| 292 | constexpr bool isPowerOf2_32(uint32_t Value) { |
| 293 | return llvm::has_single_bit(Value); |
| 294 | } |
| 295 | |
| 296 | /// Return true if the argument is a power of two > 0 (64 bit edition.) |
| 297 | constexpr bool isPowerOf2_64(uint64_t Value) { |
| 298 | return llvm::has_single_bit(Value); |
| 299 | } |
| 300 | |
| 301 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 302 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
| 303 | /// If true, \p MaskIdx will specify the index of the lowest set bit and \p |
| 304 | /// MaskLen is updated to specify the length of the mask, else neither are |
| 305 | /// updated. |
| 306 | inline bool isShiftedMask_32(uint32_t Value, unsigned &MaskIdx, |
| 307 | unsigned &MaskLen) { |
| 308 | if (!isShiftedMask_32(Value)) |
| 309 | return false; |
| 310 | MaskIdx = llvm::countr_zero(Val: Value); |
| 311 | MaskLen = llvm::popcount(Value); |
| 312 | return true; |
| 313 | } |
| 314 | |
| 315 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 316 | /// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index |
| 317 | /// of the lowest set bit and \p MaskLen is updated to specify the length of the |
| 318 | /// mask, else neither are updated. |
| 319 | inline bool isShiftedMask_64(uint64_t Value, unsigned &MaskIdx, |
| 320 | unsigned &MaskLen) { |
| 321 | if (!isShiftedMask_64(Value)) |
| 322 | return false; |
| 323 | MaskIdx = llvm::countr_zero(Val: Value); |
| 324 | MaskLen = llvm::popcount(Value); |
| 325 | return true; |
| 326 | } |
| 327 | |
| 328 | /// Compile time Log2. |
| 329 | /// Valid only for positive powers of two. |
| 330 | template <size_t kValue> constexpr size_t CTLog2() { |
| 331 | static_assert(kValue > 0 && llvm::isPowerOf2_64(Value: kValue), |
| 332 | "Value is not a valid power of 2" ); |
| 333 | return 1 + CTLog2<kValue / 2>(); |
| 334 | } |
| 335 | |
| 336 | template <> constexpr size_t CTLog2<1>() { return 0; } |
| 337 | |
| 338 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 339 | /// (32 bit edition.) |
| 340 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 |
| 341 | inline unsigned Log2_32(uint32_t Value) { |
| 342 | return 31 - llvm::countl_zero(Val: Value); |
| 343 | } |
| 344 | |
| 345 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 346 | /// (64 bit edition.) |
| 347 | inline unsigned Log2_64(uint64_t Value) { |
| 348 | return 63 - llvm::countl_zero(Val: Value); |
| 349 | } |
| 350 | |
| 351 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. |
| 352 | /// (32 bit edition). |
| 353 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 |
| 354 | inline unsigned Log2_32_Ceil(uint32_t Value) { |
| 355 | return 32 - llvm::countl_zero(Val: Value - 1); |
| 356 | } |
| 357 | |
| 358 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. |
| 359 | /// (64 bit edition.) |
| 360 | inline unsigned Log2_64_Ceil(uint64_t Value) { |
| 361 | return 64 - llvm::countl_zero(Val: Value - 1); |
| 362 | } |
| 363 | |
| 364 | /// A and B are either alignments or offsets. Return the minimum alignment that |
| 365 | /// may be assumed after adding the two together. |
| 366 | template <typename U, typename V, typename T = common_uint<U, V>> |
| 367 | constexpr T MinAlign(U A, V B) { |
| 368 | // The largest power of 2 that divides both A and B. |
| 369 | // |
| 370 | // Replace "-Value" by "1+~Value" in the following commented code to avoid |
| 371 | // MSVC warning C4146 |
| 372 | // return (A | B) & -(A | B); |
| 373 | return (A | B) & (1 + ~(A | B)); |
| 374 | } |
| 375 | |
| 376 | /// Fallback when arguments aren't integral. |
| 377 | constexpr uint64_t MinAlign(uint64_t A, uint64_t B) { |
| 378 | return (A | B) & (1 + ~(A | B)); |
| 379 | } |
| 380 | |
| 381 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. |
| 382 | /// Returns zero on overflow. |
| 383 | constexpr uint64_t NextPowerOf2(uint64_t A) { |
| 384 | A |= (A >> 1); |
| 385 | A |= (A >> 2); |
| 386 | A |= (A >> 4); |
| 387 | A |= (A >> 8); |
| 388 | A |= (A >> 16); |
| 389 | A |= (A >> 32); |
| 390 | return A + 1; |
| 391 | } |
| 392 | |
| 393 | /// Returns the power of two which is greater than or equal to the given value. |
| 394 | /// Essentially, it is a ceil operation across the domain of powers of two. |
| 395 | inline uint64_t PowerOf2Ceil(uint64_t A) { |
| 396 | if (!A || A > UINT64_MAX / 2) |
| 397 | return 0; |
| 398 | return UINT64_C(1) << Log2_64_Ceil(Value: A); |
| 399 | } |
| 400 | |
| 401 | /// Returns the integer ceil(Numerator / Denominator). Unsigned version. |
| 402 | /// Guaranteed to never overflow. |
| 403 | template <typename U, typename V, typename T = common_uint<U, V>> |
| 404 | constexpr T divideCeil(U Numerator, V Denominator) { |
| 405 | assert(Denominator && "Division by zero" ); |
| 406 | T Bias = (Numerator != 0); |
| 407 | return (Numerator - Bias) / Denominator + Bias; |
| 408 | } |
| 409 | |
| 410 | /// Fallback when arguments aren't integral. |
| 411 | constexpr uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { |
| 412 | assert(Denominator && "Division by zero" ); |
| 413 | uint64_t Bias = (Numerator != 0); |
| 414 | return (Numerator - Bias) / Denominator + Bias; |
| 415 | } |
| 416 | |
| 417 | // Check whether divideCeilSigned or divideFloorSigned would overflow. This |
| 418 | // happens only when Numerator = INT_MIN and Denominator = -1. |
| 419 | template <typename U, typename V> |
| 420 | constexpr bool divideSignedWouldOverflow(U Numerator, V Denominator) { |
| 421 | return Numerator == std::numeric_limits<U>::min() && Denominator == -1; |
| 422 | } |
| 423 | |
| 424 | /// Returns the integer ceil(Numerator / Denominator). Signed version. |
| 425 | /// Overflow is explicitly forbidden with an assert. |
| 426 | template <typename U, typename V, typename T = common_sint<U, V>> |
| 427 | constexpr T divideCeilSigned(U Numerator, V Denominator) { |
| 428 | assert(Denominator && "Division by zero" ); |
| 429 | assert(!divideSignedWouldOverflow(Numerator, Denominator) && |
| 430 | "Divide would overflow" ); |
| 431 | if (!Numerator) |
| 432 | return 0; |
| 433 | // C's integer division rounds towards 0. |
| 434 | T Bias = Denominator >= 0 ? 1 : -1; |
| 435 | bool SameSign = (Numerator >= 0) == (Denominator >= 0); |
| 436 | return SameSign ? (Numerator - Bias) / Denominator + 1 |
| 437 | : Numerator / Denominator; |
| 438 | } |
| 439 | |
| 440 | /// Returns the integer floor(Numerator / Denominator). Signed version. |
| 441 | /// Overflow is explicitly forbidden with an assert. |
| 442 | template <typename U, typename V, typename T = common_sint<U, V>> |
| 443 | constexpr T divideFloorSigned(U Numerator, V Denominator) { |
| 444 | assert(Denominator && "Division by zero" ); |
| 445 | assert(!divideSignedWouldOverflow(Numerator, Denominator) && |
| 446 | "Divide would overflow" ); |
| 447 | if (!Numerator) |
| 448 | return 0; |
| 449 | // C's integer division rounds towards 0. |
| 450 | T Bias = Denominator >= 0 ? -1 : 1; |
| 451 | bool SameSign = (Numerator >= 0) == (Denominator >= 0); |
| 452 | return SameSign ? Numerator / Denominator |
| 453 | : (Numerator - Bias) / Denominator - 1; |
| 454 | } |
| 455 | |
| 456 | /// Returns the remainder of the Euclidean division of LHS by RHS. Result is |
| 457 | /// always non-negative. |
| 458 | template <typename U, typename V, typename T = common_sint<U, V>> |
| 459 | constexpr T mod(U Numerator, V Denominator) { |
| 460 | assert(Denominator >= 1 && "Mod by non-positive number" ); |
| 461 | T Mod = Numerator % Denominator; |
| 462 | return Mod < 0 ? Mod + Denominator : Mod; |
| 463 | } |
| 464 | |
| 465 | /// Returns (Numerator / Denominator) rounded by round-half-up. Guaranteed to |
| 466 | /// never overflow. |
| 467 | template <typename U, typename V, typename T = common_uint<U, V>> |
| 468 | constexpr T divideNearest(U Numerator, V Denominator) { |
| 469 | assert(Denominator && "Division by zero" ); |
| 470 | T Mod = Numerator % Denominator; |
| 471 | return (Numerator / Denominator) + |
| 472 | (Mod > (static_cast<T>(Denominator) - 1) / 2); |
| 473 | } |
| 474 | |
| 475 | /// Returns the next integer (mod 2**nbits) that is greater than or equal to |
| 476 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. |
| 477 | /// |
| 478 | /// Examples: |
| 479 | /// \code |
| 480 | /// alignTo(5, 8) = 8 |
| 481 | /// alignTo(17, 8) = 24 |
| 482 | /// alignTo(~0LL, 8) = 0 |
| 483 | /// alignTo(321, 255) = 510 |
| 484 | /// \endcode |
| 485 | /// |
| 486 | /// Will overflow only if result is not representable in T. |
| 487 | template <typename U, typename V, typename T = common_uint<U, V>> |
| 488 | constexpr T alignTo(U Value, V Align) { |
| 489 | assert(Align != 0u && "Align can't be 0." ); |
| 490 | T CeilDiv = divideCeil(Value, Align); |
| 491 | return CeilDiv * Align; |
| 492 | } |
| 493 | |
| 494 | /// Fallback when arguments aren't integral. |
| 495 | constexpr uint64_t alignTo(uint64_t Value, uint64_t Align) { |
| 496 | assert(Align != 0u && "Align can't be 0." ); |
| 497 | uint64_t CeilDiv = divideCeil(Numerator: Value, Denominator: Align); |
| 498 | return CeilDiv * Align; |
| 499 | } |
| 500 | |
| 501 | /// Will overflow only if result is not representable in T. |
| 502 | template <typename U, typename V, typename T = common_uint<U, V>> |
| 503 | constexpr T alignToPowerOf2(U Value, V Align) { |
| 504 | assert(Align != 0 && (Align & (Align - 1)) == 0 && |
| 505 | "Align must be a power of 2" ); |
| 506 | T NegAlign = static_cast<T>(0) - Align; |
| 507 | return (Value + (Align - 1)) & NegAlign; |
| 508 | } |
| 509 | |
| 510 | /// Fallback when arguments aren't integral. |
| 511 | constexpr uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align) { |
| 512 | assert(Align != 0 && (Align & (Align - 1)) == 0 && |
| 513 | "Align must be a power of 2" ); |
| 514 | uint64_t NegAlign = 0 - Align; |
| 515 | return (Value + (Align - 1)) & NegAlign; |
| 516 | } |
| 517 | |
| 518 | /// If non-zero \p Skew is specified, the return value will be a minimal integer |
| 519 | /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for |
| 520 | /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p |
| 521 | /// Skew mod \p A'. \p Align must be non-zero. |
| 522 | /// |
| 523 | /// Examples: |
| 524 | /// \code |
| 525 | /// alignTo(5, 8, 7) = 7 |
| 526 | /// alignTo(17, 8, 1) = 17 |
| 527 | /// alignTo(~0LL, 8, 3) = 3 |
| 528 | /// alignTo(321, 255, 42) = 552 |
| 529 | /// \endcode |
| 530 | /// |
| 531 | /// May overflow. |
| 532 | template <typename U, typename V, typename W, |
| 533 | typename T = common_uint<common_uint<U, V>, W>> |
| 534 | constexpr T alignTo(U Value, V Align, W Skew) { |
| 535 | assert(Align != 0u && "Align can't be 0." ); |
| 536 | Skew %= Align; |
| 537 | return alignTo(Value - Skew, Align) + Skew; |
| 538 | } |
| 539 | |
| 540 | /// Returns the next integer (mod 2**nbits) that is greater than or equal to |
| 541 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. |
| 542 | /// |
| 543 | /// Will overflow only if result is not representable in T. |
| 544 | template <auto Align, typename V, typename T = common_uint<decltype(Align), V>> |
| 545 | constexpr T alignTo(V Value) { |
| 546 | static_assert(Align != 0u, "Align must be non-zero" ); |
| 547 | T CeilDiv = divideCeil(Value, Align); |
| 548 | return CeilDiv * Align; |
| 549 | } |
| 550 | |
| 551 | /// Returns the largest unsigned integer less than or equal to \p Value and is |
| 552 | /// \p Skew mod \p Align. \p Align must be non-zero. Guaranteed to never |
| 553 | /// overflow. |
| 554 | template <typename U, typename V, typename W = uint8_t, |
| 555 | typename T = common_uint<common_uint<U, V>, W>> |
| 556 | constexpr T alignDown(U Value, V Align, W Skew = 0) { |
| 557 | assert(Align != 0u && "Align can't be 0." ); |
| 558 | Skew %= Align; |
| 559 | return (Value - Skew) / Align * Align + Skew; |
| 560 | } |
| 561 | |
| 562 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 563 | /// Requires B <= 32. |
| 564 | template <unsigned B> constexpr int32_t SignExtend32(uint32_t X) { |
| 565 | static_assert(B <= 32, "Bit width out of range." ); |
| 566 | if constexpr (B == 0) |
| 567 | return 0; |
| 568 | return int32_t(X << (32 - B)) >> (32 - B); |
| 569 | } |
| 570 | |
| 571 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 572 | /// Requires B <= 32. |
| 573 | inline int32_t SignExtend32(uint32_t X, unsigned B) { |
| 574 | assert(B <= 32 && "Bit width out of range." ); |
| 575 | if (B == 0) |
| 576 | return 0; |
| 577 | return int32_t(X << (32 - B)) >> (32 - B); |
| 578 | } |
| 579 | |
| 580 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 581 | /// Requires B <= 64. |
| 582 | template <unsigned B> constexpr int64_t SignExtend64(uint64_t x) { |
| 583 | static_assert(B <= 64, "Bit width out of range." ); |
| 584 | if constexpr (B == 0) |
| 585 | return 0; |
| 586 | return int64_t(x << (64 - B)) >> (64 - B); |
| 587 | } |
| 588 | |
| 589 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 590 | /// Requires B <= 64. |
| 591 | inline int64_t SignExtend64(uint64_t X, unsigned B) { |
| 592 | assert(B <= 64 && "Bit width out of range." ); |
| 593 | if (B == 0) |
| 594 | return 0; |
| 595 | return int64_t(X << (64 - B)) >> (64 - B); |
| 596 | } |
| 597 | |
| 598 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute |
| 599 | /// value of the result. |
| 600 | template <typename U, typename V, typename T = common_uint<U, V>> |
| 601 | constexpr T AbsoluteDifference(U X, V Y) { |
| 602 | return X > Y ? (X - Y) : (Y - X); |
| 603 | } |
| 604 | |
| 605 | /// Add two unsigned integers, X and Y, of type T. Clamp the result to the |
| 606 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 607 | /// the result is larger than the maximum representable value of type T. |
| 608 | template <typename T> |
| 609 | std::enable_if_t<std::is_unsigned_v<T>, T> |
| 610 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 611 | bool Dummy; |
| 612 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 613 | // Hacker's Delight, p. 29 |
| 614 | T Z = X + Y; |
| 615 | Overflowed = (Z < X || Z < Y); |
| 616 | if (Overflowed) |
| 617 | return std::numeric_limits<T>::max(); |
| 618 | else |
| 619 | return Z; |
| 620 | } |
| 621 | |
| 622 | /// Add multiple unsigned integers of type T. Clamp the result to the |
| 623 | /// maximum representable value of T on overflow. |
| 624 | template <class T, class... Ts> |
| 625 | std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingAdd(T X, T Y, T Z, |
| 626 | Ts... Args) { |
| 627 | bool Overflowed = false; |
| 628 | T XY = SaturatingAdd(X, Y, &Overflowed); |
| 629 | if (Overflowed) |
| 630 | return SaturatingAdd(std::numeric_limits<T>::max(), T(1), Args...); |
| 631 | return SaturatingAdd(XY, Z, Args...); |
| 632 | } |
| 633 | |
| 634 | /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the |
| 635 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 636 | /// the result is larger than the maximum representable value of type T. |
| 637 | template <typename T> |
| 638 | std::enable_if_t<std::is_unsigned_v<T>, T> |
| 639 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 640 | bool Dummy; |
| 641 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 642 | |
| 643 | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that |
| 644 | // because it fails for uint16_t (where multiplication can have undefined |
| 645 | // behavior due to promotion to int), and requires a division in addition |
| 646 | // to the multiplication. |
| 647 | |
| 648 | Overflowed = false; |
| 649 | |
| 650 | // Log2(Z) would be either Log2Z or Log2Z + 1. |
| 651 | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z |
| 652 | // will necessarily be less than Log2Max as desired. |
| 653 | int Log2Z = Log2_64(X) + Log2_64(Y); |
| 654 | const T Max = std::numeric_limits<T>::max(); |
| 655 | int Log2Max = Log2_64(Max); |
| 656 | if (Log2Z < Log2Max) { |
| 657 | return X * Y; |
| 658 | } |
| 659 | if (Log2Z > Log2Max) { |
| 660 | Overflowed = true; |
| 661 | return Max; |
| 662 | } |
| 663 | |
| 664 | // We're going to use the top bit, and maybe overflow one |
| 665 | // bit past it. Multiply all but the bottom bit then add |
| 666 | // that on at the end. |
| 667 | T Z = (X >> 1) * Y; |
| 668 | if (Z & ~(Max >> 1)) { |
| 669 | Overflowed = true; |
| 670 | return Max; |
| 671 | } |
| 672 | Z <<= 1; |
| 673 | if (X & 1) |
| 674 | return SaturatingAdd(Z, Y, ResultOverflowed); |
| 675 | |
| 676 | return Z; |
| 677 | } |
| 678 | |
| 679 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to |
| 680 | /// the product. Clamp the result to the maximum representable value of T on |
| 681 | /// overflow. ResultOverflowed indicates if the result is larger than the |
| 682 | /// maximum representable value of type T. |
| 683 | template <typename T> |
| 684 | std::enable_if_t<std::is_unsigned_v<T>, T> |
| 685 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { |
| 686 | bool Dummy; |
| 687 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 688 | |
| 689 | T Product = SaturatingMultiply(X, Y, &Overflowed); |
| 690 | if (Overflowed) |
| 691 | return Product; |
| 692 | |
| 693 | return SaturatingAdd(A, Product, &Overflowed); |
| 694 | } |
| 695 | |
| 696 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. |
| 697 | extern const float huge_valf; |
| 698 | |
| 699 | /// Add two signed integers, computing the two's complement truncated result, |
| 700 | /// returning true if overflow occurred. |
| 701 | template <typename T> |
| 702 | std::enable_if_t<std::is_signed_v<T>, T> AddOverflow(T X, T Y, T &Result) { |
| 703 | #if __has_builtin(__builtin_add_overflow) |
| 704 | return __builtin_add_overflow(X, Y, &Result); |
| 705 | #else |
| 706 | // Perform the unsigned addition. |
| 707 | using U = std::make_unsigned_t<T>; |
| 708 | const U UX = static_cast<U>(X); |
| 709 | const U UY = static_cast<U>(Y); |
| 710 | const U UResult = UX + UY; |
| 711 | |
| 712 | // Convert to signed. |
| 713 | Result = static_cast<T>(UResult); |
| 714 | |
| 715 | // Adding two positive numbers should result in a positive number. |
| 716 | if (X > 0 && Y > 0) |
| 717 | return Result <= 0; |
| 718 | // Adding two negatives should result in a negative number. |
| 719 | if (X < 0 && Y < 0) |
| 720 | return Result >= 0; |
| 721 | return false; |
| 722 | #endif |
| 723 | } |
| 724 | |
| 725 | /// Subtract two signed integers, computing the two's complement truncated |
| 726 | /// result, returning true if an overflow ocurred. |
| 727 | template <typename T> |
| 728 | std::enable_if_t<std::is_signed_v<T>, T> SubOverflow(T X, T Y, T &Result) { |
| 729 | #if __has_builtin(__builtin_sub_overflow) |
| 730 | return __builtin_sub_overflow(X, Y, &Result); |
| 731 | #else |
| 732 | // Perform the unsigned addition. |
| 733 | using U = std::make_unsigned_t<T>; |
| 734 | const U UX = static_cast<U>(X); |
| 735 | const U UY = static_cast<U>(Y); |
| 736 | const U UResult = UX - UY; |
| 737 | |
| 738 | // Convert to signed. |
| 739 | Result = static_cast<T>(UResult); |
| 740 | |
| 741 | // Subtracting a positive number from a negative results in a negative number. |
| 742 | if (X <= 0 && Y > 0) |
| 743 | return Result >= 0; |
| 744 | // Subtracting a negative number from a positive results in a positive number. |
| 745 | if (X >= 0 && Y < 0) |
| 746 | return Result <= 0; |
| 747 | return false; |
| 748 | #endif |
| 749 | } |
| 750 | |
| 751 | /// Multiply two signed integers, computing the two's complement truncated |
| 752 | /// result, returning true if an overflow ocurred. |
| 753 | template <typename T> |
| 754 | std::enable_if_t<std::is_signed_v<T>, T> MulOverflow(T X, T Y, T &Result) { |
| 755 | #if __has_builtin(__builtin_mul_overflow) |
| 756 | return __builtin_mul_overflow(X, Y, &Result); |
| 757 | #else |
| 758 | // Perform the unsigned multiplication on absolute values. |
| 759 | using U = std::make_unsigned_t<T>; |
| 760 | const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); |
| 761 | const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); |
| 762 | const U UResult = UX * UY; |
| 763 | |
| 764 | // Convert to signed. |
| 765 | const bool IsNegative = (X < 0) ^ (Y < 0); |
| 766 | Result = IsNegative ? (0 - UResult) : UResult; |
| 767 | |
| 768 | // If any of the args was 0, result is 0 and no overflow occurs. |
| 769 | if (UX == 0 || UY == 0) |
| 770 | return false; |
| 771 | |
| 772 | // UX and UY are in [1, 2^n], where n is the number of digits. |
| 773 | // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for |
| 774 | // positive) divided by an argument compares to the other. |
| 775 | if (IsNegative) |
| 776 | return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; |
| 777 | else |
| 778 | return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; |
| 779 | #endif |
| 780 | } |
| 781 | |
| 782 | /// Type to force float point values onto the stack, so that x86 doesn't add |
| 783 | /// hidden precision, avoiding rounding differences on various platforms. |
| 784 | #if defined(__i386__) || defined(_M_IX86) |
| 785 | using stack_float_t = volatile float; |
| 786 | #else |
| 787 | using stack_float_t = float; |
| 788 | #endif |
| 789 | |
| 790 | } // namespace llvm |
| 791 | |
| 792 | #endif |
| 793 | |