1 | /* |
2 | * copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at> |
3 | * |
4 | * This file is part of FFmpeg. |
5 | * |
6 | * FFmpeg is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU Lesser General Public |
8 | * License as published by the Free Software Foundation; either |
9 | * version 2.1 of the License, or (at your option) any later version. |
10 | * |
11 | * FFmpeg is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | * Lesser General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Lesser General Public |
17 | * License along with FFmpeg; if not, write to the Free Software |
18 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
19 | */ |
20 | |
21 | /** |
22 | * @file |
23 | * @ingroup lavu_mem |
24 | * Memory handling functions |
25 | */ |
26 | |
27 | #ifndef AVUTIL_MEM_H |
28 | #define AVUTIL_MEM_H |
29 | |
30 | #include <limits.h> |
31 | #include <stdint.h> |
32 | |
33 | #include "attributes.h" |
34 | #include "error.h" |
35 | #include "avutil.h" |
36 | #include "version.h" |
37 | |
38 | /** |
39 | * @addtogroup lavu_mem |
40 | * Utilities for manipulating memory. |
41 | * |
42 | * FFmpeg has several applications of memory that are not required of a typical |
43 | * program. For example, the computing-heavy components like video decoding and |
44 | * encoding can be sped up significantly through the use of aligned memory. |
45 | * |
46 | * However, for each of FFmpeg's applications of memory, there might not be a |
47 | * recognized or standardized API for that specific use. Memory alignment, for |
48 | * instance, varies wildly depending on operating systems, architectures, and |
49 | * compilers. Hence, this component of @ref libavutil is created to make |
50 | * dealing with memory consistently possible on all platforms. |
51 | * |
52 | * @{ |
53 | */ |
54 | |
55 | #if FF_API_DECLARE_ALIGNED |
56 | /** |
57 | * |
58 | * @defgroup lavu_mem_macros Alignment Macros |
59 | * Helper macros for declaring aligned variables. |
60 | * @{ |
61 | */ |
62 | |
63 | /** |
64 | * @def DECLARE_ALIGNED(n,t,v) |
65 | * Declare a variable that is aligned in memory. |
66 | * |
67 | * @code{.c} |
68 | * DECLARE_ALIGNED(16, uint16_t, aligned_int) = 42; |
69 | * DECLARE_ALIGNED(32, uint8_t, aligned_array)[128]; |
70 | * |
71 | * // The default-alignment equivalent would be |
72 | * uint16_t aligned_int = 42; |
73 | * uint8_t aligned_array[128]; |
74 | * @endcode |
75 | * |
76 | * @param n Minimum alignment in bytes |
77 | * @param t Type of the variable (or array element) |
78 | * @param v Name of the variable |
79 | */ |
80 | |
81 | /** |
82 | * @def DECLARE_ASM_ALIGNED(n,t,v) |
83 | * Declare an aligned variable appropriate for use in inline assembly code. |
84 | * |
85 | * @code{.c} |
86 | * DECLARE_ASM_ALIGNED(16, uint64_t, pw_08) = UINT64_C(0x0008000800080008); |
87 | * @endcode |
88 | * |
89 | * @param n Minimum alignment in bytes |
90 | * @param t Type of the variable (or array element) |
91 | * @param v Name of the variable |
92 | */ |
93 | |
94 | /** |
95 | * @def DECLARE_ASM_CONST(n,t,v) |
96 | * Declare a static constant aligned variable appropriate for use in inline |
97 | * assembly code. |
98 | * |
99 | * @code{.c} |
100 | * DECLARE_ASM_CONST(16, uint64_t, pw_08) = UINT64_C(0x0008000800080008); |
101 | * @endcode |
102 | * |
103 | * @param n Minimum alignment in bytes |
104 | * @param t Type of the variable (or array element) |
105 | * @param v Name of the variable |
106 | */ |
107 | |
108 | #if defined(__INTEL_COMPILER) && __INTEL_COMPILER < 1110 || defined(__SUNPRO_C) |
109 | #define DECLARE_ALIGNED(n,t,v) t __attribute__ ((aligned (n))) v |
110 | #define DECLARE_ASM_ALIGNED(n,t,v) t __attribute__ ((aligned (n))) v |
111 | #define DECLARE_ASM_CONST(n,t,v) const t __attribute__ ((aligned (n))) v |
112 | #elif defined(__DJGPP__) |
113 | #define DECLARE_ALIGNED(n,t,v) t __attribute__ ((aligned (FFMIN(n, 16)))) v |
114 | #define DECLARE_ASM_ALIGNED(n,t,v) t av_used __attribute__ ((aligned (FFMIN(n, 16)))) v |
115 | #define DECLARE_ASM_CONST(n,t,v) static const t av_used __attribute__ ((aligned (FFMIN(n, 16)))) v |
116 | #elif defined(__GNUC__) || defined(__clang__) |
117 | #define DECLARE_ALIGNED(n,t,v) t __attribute__ ((aligned (n))) v |
118 | #define DECLARE_ASM_ALIGNED(n,t,v) t av_used __attribute__ ((aligned (n))) v |
119 | #define DECLARE_ASM_CONST(n,t,v) static const t av_used __attribute__ ((aligned (n))) v |
120 | #elif defined(_MSC_VER) |
121 | #define DECLARE_ALIGNED(n,t,v) __declspec(align(n)) t v |
122 | #define DECLARE_ASM_ALIGNED(n,t,v) __declspec(align(n)) t v |
123 | #define DECLARE_ASM_CONST(n,t,v) __declspec(align(n)) static const t v |
124 | #else |
125 | #define DECLARE_ALIGNED(n,t,v) t v |
126 | #define DECLARE_ASM_ALIGNED(n,t,v) t v |
127 | #define DECLARE_ASM_CONST(n,t,v) static const t v |
128 | #endif |
129 | |
130 | /** |
131 | * @} |
132 | */ |
133 | #endif |
134 | |
135 | /** |
136 | * @defgroup lavu_mem_attrs Function Attributes |
137 | * Function attributes applicable to memory handling functions. |
138 | * |
139 | * These function attributes can help compilers emit more useful warnings, or |
140 | * generate better code. |
141 | * @{ |
142 | */ |
143 | |
144 | /** |
145 | * @def av_malloc_attrib |
146 | * Function attribute denoting a malloc-like function. |
147 | * |
148 | * @see <a href="https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-g_t_0040code_007bmalloc_007d-function-attribute-3251">Function attribute `malloc` in GCC's documentation</a> |
149 | */ |
150 | |
151 | #if AV_GCC_VERSION_AT_LEAST(3,1) |
152 | #define av_malloc_attrib __attribute__((__malloc__)) |
153 | #else |
154 | #define av_malloc_attrib |
155 | #endif |
156 | |
157 | /** |
158 | * @def av_alloc_size(...) |
159 | * Function attribute used on a function that allocates memory, whose size is |
160 | * given by the specified parameter(s). |
161 | * |
162 | * @code{.c} |
163 | * void *av_malloc(size_t size) av_alloc_size(1); |
164 | * void *av_calloc(size_t nmemb, size_t size) av_alloc_size(1, 2); |
165 | * @endcode |
166 | * |
167 | * @param ... One or two parameter indexes, separated by a comma |
168 | * |
169 | * @see <a href="https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-g_t_0040code_007balloc_005fsize_007d-function-attribute-3220">Function attribute `alloc_size` in GCC's documentation</a> |
170 | */ |
171 | |
172 | #if AV_GCC_VERSION_AT_LEAST(4,3) |
173 | #define av_alloc_size(...) __attribute__((alloc_size(__VA_ARGS__))) |
174 | #else |
175 | #define av_alloc_size(...) |
176 | #endif |
177 | |
178 | /** |
179 | * @} |
180 | */ |
181 | |
182 | /** |
183 | * @defgroup lavu_mem_funcs Heap Management |
184 | * Functions responsible for allocating, freeing, and copying memory. |
185 | * |
186 | * All memory allocation functions have a built-in upper limit of `INT_MAX` |
187 | * bytes. This may be changed with av_max_alloc(), although exercise extreme |
188 | * caution when doing so. |
189 | * |
190 | * @{ |
191 | */ |
192 | |
193 | /** |
194 | * Allocate a memory block with alignment suitable for all memory accesses |
195 | * (including vectors if available on the CPU). |
196 | * |
197 | * @param size Size in bytes for the memory block to be allocated |
198 | * @return Pointer to the allocated block, or `NULL` if the block cannot |
199 | * be allocated |
200 | * @see av_mallocz() |
201 | */ |
202 | void *av_malloc(size_t size) av_malloc_attrib av_alloc_size(1); |
203 | |
204 | /** |
205 | * Allocate a memory block with alignment suitable for all memory accesses |
206 | * (including vectors if available on the CPU) and zero all the bytes of the |
207 | * block. |
208 | * |
209 | * @param size Size in bytes for the memory block to be allocated |
210 | * @return Pointer to the allocated block, or `NULL` if it cannot be allocated |
211 | * @see av_malloc() |
212 | */ |
213 | void *av_mallocz(size_t size) av_malloc_attrib av_alloc_size(1); |
214 | |
215 | /** |
216 | * Allocate a memory block for an array with av_malloc(). |
217 | * |
218 | * The allocated memory will have size `size * nmemb` bytes. |
219 | * |
220 | * @param nmemb Number of element |
221 | * @param size Size of a single element |
222 | * @return Pointer to the allocated block, or `NULL` if the block cannot |
223 | * be allocated |
224 | * @see av_malloc() |
225 | */ |
226 | av_alloc_size(1, 2) void *av_malloc_array(size_t nmemb, size_t size); |
227 | |
228 | /** |
229 | * Allocate a memory block for an array with av_mallocz(). |
230 | * |
231 | * The allocated memory will have size `size * nmemb` bytes. |
232 | * |
233 | * @param nmemb Number of elements |
234 | * @param size Size of the single element |
235 | * @return Pointer to the allocated block, or `NULL` if the block cannot |
236 | * be allocated |
237 | * |
238 | * @see av_mallocz() |
239 | * @see av_malloc_array() |
240 | */ |
241 | av_alloc_size(1, 2) void *av_mallocz_array(size_t nmemb, size_t size); |
242 | |
243 | /** |
244 | * Non-inlined equivalent of av_mallocz_array(). |
245 | * |
246 | * Created for symmetry with the calloc() C function. |
247 | */ |
248 | void *av_calloc(size_t nmemb, size_t size) av_malloc_attrib; |
249 | |
250 | /** |
251 | * Allocate, reallocate, or free a block of memory. |
252 | * |
253 | * If `ptr` is `NULL` and `size` > 0, allocate a new block. If `size` is |
254 | * zero, free the memory block pointed to by `ptr`. Otherwise, expand or |
255 | * shrink that block of memory according to `size`. |
256 | * |
257 | * @param ptr Pointer to a memory block already allocated with |
258 | * av_realloc() or `NULL` |
259 | * @param size Size in bytes of the memory block to be allocated or |
260 | * reallocated |
261 | * |
262 | * @return Pointer to a newly-reallocated block or `NULL` if the block |
263 | * cannot be reallocated or the function is used to free the memory block |
264 | * |
265 | * @warning Unlike av_malloc(), the returned pointer is not guaranteed to be |
266 | * correctly aligned. |
267 | * @see av_fast_realloc() |
268 | * @see av_reallocp() |
269 | */ |
270 | void *av_realloc(void *ptr, size_t size) av_alloc_size(2); |
271 | |
272 | /** |
273 | * Allocate, reallocate, or free a block of memory through a pointer to a |
274 | * pointer. |
275 | * |
276 | * If `*ptr` is `NULL` and `size` > 0, allocate a new block. If `size` is |
277 | * zero, free the memory block pointed to by `*ptr`. Otherwise, expand or |
278 | * shrink that block of memory according to `size`. |
279 | * |
280 | * @param[in,out] ptr Pointer to a pointer to a memory block already allocated |
281 | * with av_realloc(), or a pointer to `NULL`. The pointer |
282 | * is updated on success, or freed on failure. |
283 | * @param[in] size Size in bytes for the memory block to be allocated or |
284 | * reallocated |
285 | * |
286 | * @return Zero on success, an AVERROR error code on failure |
287 | * |
288 | * @warning Unlike av_malloc(), the allocated memory is not guaranteed to be |
289 | * correctly aligned. |
290 | */ |
291 | av_warn_unused_result |
292 | int av_reallocp(void *ptr, size_t size); |
293 | |
294 | /** |
295 | * Allocate, reallocate, or free a block of memory. |
296 | * |
297 | * This function does the same thing as av_realloc(), except: |
298 | * - It takes two size arguments and allocates `nelem * elsize` bytes, |
299 | * after checking the result of the multiplication for integer overflow. |
300 | * - It frees the input block in case of failure, thus avoiding the memory |
301 | * leak with the classic |
302 | * @code{.c} |
303 | * buf = realloc(buf); |
304 | * if (!buf) |
305 | * return -1; |
306 | * @endcode |
307 | * pattern. |
308 | */ |
309 | void *av_realloc_f(void *ptr, size_t nelem, size_t elsize); |
310 | |
311 | /** |
312 | * Allocate, reallocate, or free an array. |
313 | * |
314 | * If `ptr` is `NULL` and `nmemb` > 0, allocate a new block. If |
315 | * `nmemb` is zero, free the memory block pointed to by `ptr`. |
316 | * |
317 | * @param ptr Pointer to a memory block already allocated with |
318 | * av_realloc() or `NULL` |
319 | * @param nmemb Number of elements in the array |
320 | * @param size Size of the single element of the array |
321 | * |
322 | * @return Pointer to a newly-reallocated block or NULL if the block |
323 | * cannot be reallocated or the function is used to free the memory block |
324 | * |
325 | * @warning Unlike av_malloc(), the allocated memory is not guaranteed to be |
326 | * correctly aligned. |
327 | * @see av_reallocp_array() |
328 | */ |
329 | av_alloc_size(2, 3) void *av_realloc_array(void *ptr, size_t nmemb, size_t size); |
330 | |
331 | /** |
332 | * Allocate, reallocate, or free an array through a pointer to a pointer. |
333 | * |
334 | * If `*ptr` is `NULL` and `nmemb` > 0, allocate a new block. If `nmemb` is |
335 | * zero, free the memory block pointed to by `*ptr`. |
336 | * |
337 | * @param[in,out] ptr Pointer to a pointer to a memory block already |
338 | * allocated with av_realloc(), or a pointer to `NULL`. |
339 | * The pointer is updated on success, or freed on failure. |
340 | * @param[in] nmemb Number of elements |
341 | * @param[in] size Size of the single element |
342 | * |
343 | * @return Zero on success, an AVERROR error code on failure |
344 | * |
345 | * @warning Unlike av_malloc(), the allocated memory is not guaranteed to be |
346 | * correctly aligned. |
347 | */ |
348 | int av_reallocp_array(void *ptr, size_t nmemb, size_t size); |
349 | |
350 | /** |
351 | * Reallocate the given buffer if it is not large enough, otherwise do nothing. |
352 | * |
353 | * If the given buffer is `NULL`, then a new uninitialized buffer is allocated. |
354 | * |
355 | * If the given buffer is not large enough, and reallocation fails, `NULL` is |
356 | * returned and `*size` is set to 0, but the original buffer is not changed or |
357 | * freed. |
358 | * |
359 | * A typical use pattern follows: |
360 | * |
361 | * @code{.c} |
362 | * uint8_t *buf = ...; |
363 | * uint8_t *new_buf = av_fast_realloc(buf, ¤t_size, size_needed); |
364 | * if (!new_buf) { |
365 | * // Allocation failed; clean up original buffer |
366 | * av_freep(&buf); |
367 | * return AVERROR(ENOMEM); |
368 | * } |
369 | * @endcode |
370 | * |
371 | * @param[in,out] ptr Already allocated buffer, or `NULL` |
372 | * @param[in,out] size Pointer to the size of buffer `ptr`. `*size` is |
373 | * updated to the new allocated size, in particular 0 |
374 | * in case of failure. |
375 | * @param[in] min_size Desired minimal size of buffer `ptr` |
376 | * @return `ptr` if the buffer is large enough, a pointer to newly reallocated |
377 | * buffer if the buffer was not large enough, or `NULL` in case of |
378 | * error |
379 | * @see av_realloc() |
380 | * @see av_fast_malloc() |
381 | */ |
382 | void *av_fast_realloc(void *ptr, unsigned int *size, size_t min_size); |
383 | |
384 | /** |
385 | * Allocate a buffer, reusing the given one if large enough. |
386 | * |
387 | * Contrary to av_fast_realloc(), the current buffer contents might not be |
388 | * preserved and on error the old buffer is freed, thus no special handling to |
389 | * avoid memleaks is necessary. |
390 | * |
391 | * `*ptr` is allowed to be `NULL`, in which case allocation always happens if |
392 | * `size_needed` is greater than 0. |
393 | * |
394 | * @code{.c} |
395 | * uint8_t *buf = ...; |
396 | * av_fast_malloc(&buf, ¤t_size, size_needed); |
397 | * if (!buf) { |
398 | * // Allocation failed; buf already freed |
399 | * return AVERROR(ENOMEM); |
400 | * } |
401 | * @endcode |
402 | * |
403 | * @param[in,out] ptr Pointer to pointer to an already allocated buffer. |
404 | * `*ptr` will be overwritten with pointer to new |
405 | * buffer on success or `NULL` on failure |
406 | * @param[in,out] size Pointer to the size of buffer `*ptr`. `*size` is |
407 | * updated to the new allocated size, in particular 0 |
408 | * in case of failure. |
409 | * @param[in] min_size Desired minimal size of buffer `*ptr` |
410 | * @see av_realloc() |
411 | * @see av_fast_mallocz() |
412 | */ |
413 | void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size); |
414 | |
415 | /** |
416 | * Allocate and clear a buffer, reusing the given one if large enough. |
417 | * |
418 | * Like av_fast_malloc(), but all newly allocated space is initially cleared. |
419 | * Reused buffer is not cleared. |
420 | * |
421 | * `*ptr` is allowed to be `NULL`, in which case allocation always happens if |
422 | * `size_needed` is greater than 0. |
423 | * |
424 | * @param[in,out] ptr Pointer to pointer to an already allocated buffer. |
425 | * `*ptr` will be overwritten with pointer to new |
426 | * buffer on success or `NULL` on failure |
427 | * @param[in,out] size Pointer to the size of buffer `*ptr`. `*size` is |
428 | * updated to the new allocated size, in particular 0 |
429 | * in case of failure. |
430 | * @param[in] min_size Desired minimal size of buffer `*ptr` |
431 | * @see av_fast_malloc() |
432 | */ |
433 | void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size); |
434 | |
435 | /** |
436 | * Free a memory block which has been allocated with a function of av_malloc() |
437 | * or av_realloc() family. |
438 | * |
439 | * @param ptr Pointer to the memory block which should be freed. |
440 | * |
441 | * @note `ptr = NULL` is explicitly allowed. |
442 | * @note It is recommended that you use av_freep() instead, to prevent leaving |
443 | * behind dangling pointers. |
444 | * @see av_freep() |
445 | */ |
446 | void av_free(void *ptr); |
447 | |
448 | /** |
449 | * Free a memory block which has been allocated with a function of av_malloc() |
450 | * or av_realloc() family, and set the pointer pointing to it to `NULL`. |
451 | * |
452 | * @code{.c} |
453 | * uint8_t *buf = av_malloc(16); |
454 | * av_free(buf); |
455 | * // buf now contains a dangling pointer to freed memory, and accidental |
456 | * // dereference of buf will result in a use-after-free, which may be a |
457 | * // security risk. |
458 | * |
459 | * uint8_t *buf = av_malloc(16); |
460 | * av_freep(&buf); |
461 | * // buf is now NULL, and accidental dereference will only result in a |
462 | * // NULL-pointer dereference. |
463 | * @endcode |
464 | * |
465 | * @param ptr Pointer to the pointer to the memory block which should be freed |
466 | * @note `*ptr = NULL` is safe and leads to no action. |
467 | * @see av_free() |
468 | */ |
469 | void av_freep(void *ptr); |
470 | |
471 | /** |
472 | * Duplicate a string. |
473 | * |
474 | * @param s String to be duplicated |
475 | * @return Pointer to a newly-allocated string containing a |
476 | * copy of `s` or `NULL` if the string cannot be allocated |
477 | * @see av_strndup() |
478 | */ |
479 | char *av_strdup(const char *s) av_malloc_attrib; |
480 | |
481 | /** |
482 | * Duplicate a substring of a string. |
483 | * |
484 | * @param s String to be duplicated |
485 | * @param len Maximum length of the resulting string (not counting the |
486 | * terminating byte) |
487 | * @return Pointer to a newly-allocated string containing a |
488 | * substring of `s` or `NULL` if the string cannot be allocated |
489 | */ |
490 | char *av_strndup(const char *s, size_t len) av_malloc_attrib; |
491 | |
492 | /** |
493 | * Duplicate a buffer with av_malloc(). |
494 | * |
495 | * @param p Buffer to be duplicated |
496 | * @param size Size in bytes of the buffer copied |
497 | * @return Pointer to a newly allocated buffer containing a |
498 | * copy of `p` or `NULL` if the buffer cannot be allocated |
499 | */ |
500 | void *av_memdup(const void *p, size_t size); |
501 | |
502 | /** |
503 | * Overlapping memcpy() implementation. |
504 | * |
505 | * @param dst Destination buffer |
506 | * @param back Number of bytes back to start copying (i.e. the initial size of |
507 | * the overlapping window); must be > 0 |
508 | * @param cnt Number of bytes to copy; must be >= 0 |
509 | * |
510 | * @note `cnt > back` is valid, this will copy the bytes we just copied, |
511 | * thus creating a repeating pattern with a period length of `back`. |
512 | */ |
513 | void av_memcpy_backptr(uint8_t *dst, int back, int cnt); |
514 | |
515 | /** |
516 | * @} |
517 | */ |
518 | |
519 | /** |
520 | * @defgroup lavu_mem_dynarray Dynamic Array |
521 | * |
522 | * Utilities to make an array grow when needed. |
523 | * |
524 | * Sometimes, the programmer would want to have an array that can grow when |
525 | * needed. The libavutil dynamic array utilities fill that need. |
526 | * |
527 | * libavutil supports two systems of appending elements onto a dynamically |
528 | * allocated array, the first one storing the pointer to the value in the |
529 | * array, and the second storing the value directly. In both systems, the |
530 | * caller is responsible for maintaining a variable containing the length of |
531 | * the array, as well as freeing of the array after use. |
532 | * |
533 | * The first system stores pointers to values in a block of dynamically |
534 | * allocated memory. Since only pointers are stored, the function does not need |
535 | * to know the size of the type. Both av_dynarray_add() and |
536 | * av_dynarray_add_nofree() implement this system. |
537 | * |
538 | * @code |
539 | * type **array = NULL; //< an array of pointers to values |
540 | * int nb = 0; //< a variable to keep track of the length of the array |
541 | * |
542 | * type to_be_added = ...; |
543 | * type to_be_added2 = ...; |
544 | * |
545 | * av_dynarray_add(&array, &nb, &to_be_added); |
546 | * if (nb == 0) |
547 | * return AVERROR(ENOMEM); |
548 | * |
549 | * av_dynarray_add(&array, &nb, &to_be_added2); |
550 | * if (nb == 0) |
551 | * return AVERROR(ENOMEM); |
552 | * |
553 | * // Now: |
554 | * // nb == 2 |
555 | * // &to_be_added == array[0] |
556 | * // &to_be_added2 == array[1] |
557 | * |
558 | * av_freep(&array); |
559 | * @endcode |
560 | * |
561 | * The second system stores the value directly in a block of memory. As a |
562 | * result, the function has to know the size of the type. av_dynarray2_add() |
563 | * implements this mechanism. |
564 | * |
565 | * @code |
566 | * type *array = NULL; //< an array of values |
567 | * int nb = 0; //< a variable to keep track of the length of the array |
568 | * |
569 | * type to_be_added = ...; |
570 | * type to_be_added2 = ...; |
571 | * |
572 | * type *addr = av_dynarray2_add((void **)&array, &nb, sizeof(*array), NULL); |
573 | * if (!addr) |
574 | * return AVERROR(ENOMEM); |
575 | * memcpy(addr, &to_be_added, sizeof(to_be_added)); |
576 | * |
577 | * // Shortcut of the above. |
578 | * type *addr = av_dynarray2_add((void **)&array, &nb, sizeof(*array), |
579 | * (const void *)&to_be_added2); |
580 | * if (!addr) |
581 | * return AVERROR(ENOMEM); |
582 | * |
583 | * // Now: |
584 | * // nb == 2 |
585 | * // to_be_added == array[0] |
586 | * // to_be_added2 == array[1] |
587 | * |
588 | * av_freep(&array); |
589 | * @endcode |
590 | * |
591 | * @{ |
592 | */ |
593 | |
594 | /** |
595 | * Add the pointer to an element to a dynamic array. |
596 | * |
597 | * The array to grow is supposed to be an array of pointers to |
598 | * structures, and the element to add must be a pointer to an already |
599 | * allocated structure. |
600 | * |
601 | * The array is reallocated when its size reaches powers of 2. |
602 | * Therefore, the amortized cost of adding an element is constant. |
603 | * |
604 | * In case of success, the pointer to the array is updated in order to |
605 | * point to the new grown array, and the number pointed to by `nb_ptr` |
606 | * is incremented. |
607 | * In case of failure, the array is freed, `*tab_ptr` is set to `NULL` and |
608 | * `*nb_ptr` is set to 0. |
609 | * |
610 | * @param[in,out] tab_ptr Pointer to the array to grow |
611 | * @param[in,out] nb_ptr Pointer to the number of elements in the array |
612 | * @param[in] elem Element to add |
613 | * @see av_dynarray_add_nofree(), av_dynarray2_add() |
614 | */ |
615 | void av_dynarray_add(void *tab_ptr, int *nb_ptr, void *elem); |
616 | |
617 | /** |
618 | * Add an element to a dynamic array. |
619 | * |
620 | * Function has the same functionality as av_dynarray_add(), |
621 | * but it doesn't free memory on fails. It returns error code |
622 | * instead and leave current buffer untouched. |
623 | * |
624 | * @return >=0 on success, negative otherwise |
625 | * @see av_dynarray_add(), av_dynarray2_add() |
626 | */ |
627 | av_warn_unused_result |
628 | int av_dynarray_add_nofree(void *tab_ptr, int *nb_ptr, void *elem); |
629 | |
630 | /** |
631 | * Add an element of size `elem_size` to a dynamic array. |
632 | * |
633 | * The array is reallocated when its number of elements reaches powers of 2. |
634 | * Therefore, the amortized cost of adding an element is constant. |
635 | * |
636 | * In case of success, the pointer to the array is updated in order to |
637 | * point to the new grown array, and the number pointed to by `nb_ptr` |
638 | * is incremented. |
639 | * In case of failure, the array is freed, `*tab_ptr` is set to `NULL` and |
640 | * `*nb_ptr` is set to 0. |
641 | * |
642 | * @param[in,out] tab_ptr Pointer to the array to grow |
643 | * @param[in,out] nb_ptr Pointer to the number of elements in the array |
644 | * @param[in] elem_size Size in bytes of an element in the array |
645 | * @param[in] elem_data Pointer to the data of the element to add. If |
646 | * `NULL`, the space of the newly added element is |
647 | * allocated but left uninitialized. |
648 | * |
649 | * @return Pointer to the data of the element to copy in the newly allocated |
650 | * space |
651 | * @see av_dynarray_add(), av_dynarray_add_nofree() |
652 | */ |
653 | void *av_dynarray2_add(void **tab_ptr, int *nb_ptr, size_t elem_size, |
654 | const uint8_t *elem_data); |
655 | |
656 | /** |
657 | * @} |
658 | */ |
659 | |
660 | /** |
661 | * @defgroup lavu_mem_misc Miscellaneous Functions |
662 | * |
663 | * Other functions related to memory allocation. |
664 | * |
665 | * @{ |
666 | */ |
667 | |
668 | /** |
669 | * Multiply two `size_t` values checking for overflow. |
670 | * |
671 | * @param[in] a,b Operands of multiplication |
672 | * @param[out] r Pointer to the result of the operation |
673 | * @return 0 on success, AVERROR(EINVAL) on overflow |
674 | */ |
675 | static inline int av_size_mult(size_t a, size_t b, size_t *r) |
676 | { |
677 | size_t t = a * b; |
678 | /* Hack inspired from glibc: don't try the division if nelem and elsize |
679 | * are both less than sqrt(SIZE_MAX). */ |
680 | if ((a | b) >= ((size_t)1 << (sizeof(size_t) * 4)) && a && t / a != b) |
681 | return AVERROR(EINVAL); |
682 | *r = t; |
683 | return 0; |
684 | } |
685 | |
686 | /** |
687 | * Set the maximum size that may be allocated in one block. |
688 | * |
689 | * The value specified with this function is effective for all libavutil's @ref |
690 | * lavu_mem_funcs "heap management functions." |
691 | * |
692 | * By default, the max value is defined as `INT_MAX`. |
693 | * |
694 | * @param max Value to be set as the new maximum size |
695 | * |
696 | * @warning Exercise extreme caution when using this function. Don't touch |
697 | * this if you do not understand the full consequence of doing so. |
698 | */ |
699 | void av_max_alloc(size_t max); |
700 | |
701 | /** |
702 | * @} |
703 | * @} |
704 | */ |
705 | |
706 | #endif /* AVUTIL_MEM_H */ |
707 | |