1 | // Copyright (C) 2017 Klaralvdalens Datakonsult AB (KDAB). |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #include "bezierevaluator_p.h" |
5 | #include <private/keyframe_p.h> |
6 | #include <QtCore/qglobal.h> |
7 | #include <QtCore/qdebug.h> |
8 | |
9 | #include <cmath> |
10 | |
11 | QT_BEGIN_NAMESPACE |
12 | |
13 | namespace { |
14 | |
15 | inline double qCbrt(double x) |
16 | { |
17 | // Android is just broken and doesn't define cbrt in std namespace |
18 | #if defined(Q_OS_ANDROID) |
19 | if (x > 0.0) |
20 | return std::pow(x, 1.0 / 3.0); |
21 | else if (x < 0.0) |
22 | return -std::pow(-x, 1.0 / 3.0); |
23 | else |
24 | return 0.0; |
25 | #else |
26 | return std::cbrt(x: x); |
27 | #endif |
28 | } |
29 | |
30 | } // anonymous |
31 | |
32 | namespace Qt3DAnimation { |
33 | namespace Animation { |
34 | |
35 | /*! |
36 | \internal |
37 | |
38 | Evaluates the value of the cubic bezier at time \a time. |
39 | This requires first finding the value of the bezier parameter, u, |
40 | corresponding to the requested time which should itself be |
41 | sandwiched by the provided times and keyframes. |
42 | |
43 | Once u is found, substitute this back into the cubic Bezier |
44 | equation using the y components of the keyframe control points. |
45 | */ |
46 | float BezierEvaluator::valueForTime(float time) const |
47 | { |
48 | const float u = parameterForTime(time); |
49 | |
50 | // Calculate powers of u and (1-u) that we need |
51 | const float u2 = u * u; |
52 | const float u3 = u2 * u; |
53 | const float mu = 1.0f - u; |
54 | const float mu2 = mu * mu; |
55 | const float mu3 = mu2 * mu; |
56 | |
57 | // The cubic Bezier control points |
58 | const float p0 = m_keyframe0.value; |
59 | const float p1 = m_keyframe0.rightControlPoint.y(); |
60 | const float p2 = m_keyframe1.leftControlPoint.y(); |
61 | const float p3 = m_keyframe1.value; |
62 | |
63 | // Evaluate the cubic Bezier function |
64 | return p0 * mu3 + 3.0f * p1 * mu2 * u + 3.0f * p2 * mu * u2 + p3 * u3; |
65 | } |
66 | |
67 | /*! |
68 | \internal |
69 | |
70 | Calculates the value of the Bezier parameter, u, for the |
71 | requested time which is the x coordinate of the Keyframes. |
72 | |
73 | Given 4 ordered control points p0, p1, p2, and p3, the cubic |
74 | Bezier equation is: |
75 | |
76 | x(u) = (1-u)^3 p0 + 3 (1-u)^2 u p1 + 3 (1-u) u^2 p2 + u^3 p3 |
77 | |
78 | To find the value of u that corresponds with a given x |
79 | value (time in the case of keyframes), we can expand the |
80 | above equation, and then collect terms to arrive at: |
81 | |
82 | 0 = a u^3 + b u^2 + c u + d |
83 | |
84 | where |
85 | |
86 | a = p3 - p0 + 3 (p1 - p2) |
87 | b = 3 (p0 - 2 p1 + p2) |
88 | c = 3 (p1 - p0) |
89 | d = p0 - x(u) |
90 | |
91 | We can then use findCubicRoots to locate the single root of |
92 | this cubic equation found in the range [0,1] used for this |
93 | section of the FCurve. This works because the FCurve ensures |
94 | that the function it represents via the Bezier control points |
95 | in the Keyframes is single valued. (as a function of time). |
96 | Time, therefore must be single valued on the interval and |
97 | therefore have a single root for any given time in the interval |
98 | covered by the Keyframes. |
99 | */ |
100 | float BezierEvaluator::parameterForTime(float time) const |
101 | { |
102 | Q_ASSERT(time >= m_time0); |
103 | Q_ASSERT(time <= m_time1); |
104 | |
105 | const float p0 = m_time0; |
106 | const float p1 = m_keyframe0.rightControlPoint.x(); |
107 | const float p2 = m_keyframe1.leftControlPoint.x(); |
108 | const float p3 = m_time1; |
109 | |
110 | const float coeffs[4] = { |
111 | p0 - time, // d |
112 | 3.0f * (p1 - p0), // c |
113 | 3.0f * (p0 - 2.0f * p1 + p2), // b |
114 | p3 - p0 + 3.0f * (p1 - p2) // a |
115 | }; |
116 | |
117 | float roots[3]; |
118 | const int numberOfRoots = findCubicRoots(coefficients: coeffs, roots); |
119 | for (int i = 0; i < numberOfRoots; ++i) { |
120 | if (roots[i] >= -0.01f && roots[i] <= 1.01f) |
121 | return qMin(a: qMax(a: roots[i], b: 0.0f), b: 1.0f); |
122 | } |
123 | |
124 | qWarning() << "Failed to find root of cubic bezier at time" << time |
125 | << "with coeffs: a =" << coeffs[3] << "b =" << coeffs[2] |
126 | << "c =" << coeffs[1] << "d =" << coeffs[0]; |
127 | return 0.0f; |
128 | } |
129 | |
130 | bool almostZero(float value, float threshold=1e-3f) |
131 | { |
132 | // 1e-3 might seem excessively fuzzy, but any smaller value will make the |
133 | // factors a, b, and c large enough to knock out the cubic solver. |
134 | return value > -threshold && value < threshold; |
135 | } |
136 | |
137 | /*! |
138 | \internal |
139 | |
140 | Finds the roots of the cubic equation ax^3 + bx^2 + cx + d = 0 for |
141 | real coefficients and returns the number of roots. The roots are |
142 | put into the \a roots array. The coefficients should be passed in |
143 | as coeffs[0] = d, coeffs[1] = c, coeffs[2] = b, coeffs[3] = a. |
144 | */ |
145 | int BezierEvaluator::findCubicRoots(const float coeffs[4], float roots[3]) |
146 | { |
147 | const float a = coeffs[3]; |
148 | const float b = coeffs[2]; |
149 | const float c = coeffs[1]; |
150 | const float d = coeffs[0]; |
151 | |
152 | // Simple cases with linear, quadratic or invalid equations |
153 | if (almostZero(value: a)) { |
154 | if (almostZero(value: b)) { |
155 | if (almostZero(value: c)) |
156 | return 0; |
157 | |
158 | roots[0] = -d / c; |
159 | return 1; |
160 | } |
161 | const float discriminant = c * c - 4.f * b * d; |
162 | if (discriminant < 0.f) |
163 | return 0; |
164 | |
165 | if (discriminant == 0.f) { |
166 | roots[0] = -c / (2.f * b); |
167 | return 1; |
168 | } |
169 | |
170 | roots[0] = (-c + std::sqrt(x: discriminant)) / (2.f * b); |
171 | roots[1] = (-c - std::sqrt(x: discriminant)) / (2.f * b); |
172 | return 2; |
173 | } |
174 | |
175 | // See https://en.wikipedia.org/wiki/Cubic_function#General_solution_to_the_cubic_equation_with_real_coefficients |
176 | // for a description. We depress the general cubic to a form that can more easily be solved. Solve it and then |
177 | // substitue the results back to get the roots of the original cubic. |
178 | int numberOfRoots = 0; |
179 | const double oneThird = 1.0 / 3.0; |
180 | const double piByThree = M_PI / 3.0; |
181 | |
182 | // Put cubic into normal format: x^3 + Ax^2 + Bx + C = 0 |
183 | const double A = double(b / a); |
184 | const double B = double(c / a); |
185 | const double C = double(d / a); |
186 | |
187 | // Substitute x = y - A/3 to eliminate quadratic term (depressed form): |
188 | // x^3 + px + q = 0 |
189 | const double Asq = A * A; |
190 | const double p = oneThird * (-oneThird * Asq + B); |
191 | const double q = 1.0 / 2.0 * (2.0 / 27.0 * A * Asq - oneThird * A * B + C); |
192 | |
193 | // Use Cardano's formula |
194 | const double pCubed = p * p * p; |
195 | const double discriminant = q * q + pCubed; |
196 | |
197 | if (almostZero(value: discriminant, threshold: 1e-6f)) { |
198 | if (qIsNull(d: q)) { |
199 | // One repeated triple root |
200 | roots[0] = 0.0; |
201 | numberOfRoots = 1; |
202 | } else { |
203 | // One single and one double root |
204 | double u = qCbrt(x: -q); |
205 | roots[0] = 2.0 * u; |
206 | roots[1] = -u; |
207 | numberOfRoots = 2; |
208 | } |
209 | } else if (discriminant < 0) { |
210 | // Three real solutions |
211 | double phi = oneThird * std::acos(x: -q / std::sqrt(x: -pCubed)); |
212 | double t = 2.0 * std::sqrt(x: -p); |
213 | |
214 | roots[0] = t * std::cos(x: phi); |
215 | roots[1] = -t * std::cos(x: phi + piByThree); |
216 | roots[2] = -t * std::cos(x: phi - piByThree); |
217 | numberOfRoots = 3; |
218 | } else { |
219 | // One real solution |
220 | double sqrtDisc = std::sqrt(x: discriminant); |
221 | double u = qCbrt(x: sqrtDisc - q); |
222 | double v = -qCbrt(x: sqrtDisc + q); |
223 | |
224 | roots[0] = u + v; |
225 | numberOfRoots = 1; |
226 | } |
227 | |
228 | // Substitute back in |
229 | const double sub = oneThird * A; |
230 | for (int i = 0; i < numberOfRoots; ++i) { |
231 | roots[i] -= sub; |
232 | // Take care of cases where we are close to zero or one |
233 | if (almostZero(value: roots[i], threshold: 1e-6f)) |
234 | roots[i] = 0.f; |
235 | if (almostZero(value: roots[i] - 1.f, threshold: 1e-6f)) |
236 | roots[i] = 1.f; |
237 | } |
238 | |
239 | return numberOfRoots; |
240 | } |
241 | |
242 | } // namespace Animation |
243 | } // namespace Qt3DAnimation |
244 | |
245 | QT_END_NAMESPACE |
246 | |