1 | // Copyright (C) 2015 Konstantin Ritt. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #ifndef QT3DCORE_QMATH3D_P_H |
5 | #define QT3DCORE_QMATH3D_P_H |
6 | |
7 | // |
8 | // W A R N I N G |
9 | // ------------- |
10 | // |
11 | // This file is not part of the Qt3D API. It exists purely as an |
12 | // implementation detail. This header file may change from version to |
13 | // version without notice, or even be removed. |
14 | // |
15 | // We mean it. |
16 | // |
17 | #include <QtGui/qmatrix4x4.h> |
18 | #include <QtGui/qquaternion.h> |
19 | #include <QtGui/qvector3d.h> |
20 | #include <Qt3DCore/private/sqt_p.h> |
21 | |
22 | #include <cmath> |
23 | |
24 | QT_BEGIN_NAMESPACE |
25 | |
26 | inline void composeQMatrix4x4(const QVector3D &position, const QQuaternion &orientation, const QVector3D &scale, QMatrix4x4 &m) |
27 | { |
28 | const QMatrix3x3 rot3x3(orientation.toRotationMatrix()); |
29 | |
30 | // set up final matrix with scale, rotation and translation |
31 | m(0, 0) = scale.x() * rot3x3(0, 0); m(0, 1) = scale.y() * rot3x3(0, 1); m(0, 2) = scale.z() * rot3x3(0, 2); m(0, 3) = position.x(); |
32 | m(1, 0) = scale.x() * rot3x3(1, 0); m(1, 1) = scale.y() * rot3x3(1, 1); m(1, 2) = scale.z() * rot3x3(1, 2); m(1, 3) = position.y(); |
33 | m(2, 0) = scale.x() * rot3x3(2, 0); m(2, 1) = scale.y() * rot3x3(2, 1); m(2, 2) = scale.z() * rot3x3(2, 2); m(2, 3) = position.z(); |
34 | // no projection term |
35 | m(3, 0) = 0.0f; m(3, 1) = 0.0f; m(3, 2) = 0.0f; m(3, 3) = 1.0f; |
36 | } |
37 | |
38 | inline void decomposeQMatrix3x3(const QMatrix3x3 &m, QMatrix3x3 &Q, QVector3D &D, QVector3D &U) |
39 | { |
40 | // Factor M = QR = QDU where Q is orthogonal, D is diagonal, |
41 | // and U is upper triangular with ones on its diagonal. |
42 | // Algorithm uses Gram-Schmidt orthogonalization (the QR algorithm). |
43 | // |
44 | // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then |
45 | // q0 = m0/|m0| |
46 | // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0| |
47 | // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1| |
48 | // |
49 | // where |V| indicates length of vector V and A*B indicates dot |
50 | // product of vectors A and B. The matrix R has entries |
51 | // |
52 | // r00 = q0*m0 r01 = q0*m1 r02 = q0*m2 |
53 | // r10 = 0 r11 = q1*m1 r12 = q1*m2 |
54 | // r20 = 0 r21 = 0 r22 = q2*m2 |
55 | // |
56 | // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00, |
57 | // u02 = r02/r00, and u12 = r12/r11. |
58 | |
59 | // Q = rotation |
60 | // D = scaling |
61 | // U = shear |
62 | |
63 | // D stores the three diagonal entries r00, r11, r22 |
64 | // U stores the entries U[0] = u01, U[1] = u02, U[2] = u12 |
65 | |
66 | // build orthogonal matrix Q |
67 | float invLen = 1.0f / std::sqrt(x: m(0, 0) * m(0, 0) + m(1, 0) * m(1, 0) + m(2, 0) * m(2, 0)); |
68 | Q(0, 0) = m(0, 0) * invLen; |
69 | Q(1, 0) = m(1, 0) * invLen; |
70 | Q(2, 0) = m(2, 0) * invLen; |
71 | |
72 | float dot = Q(0, 0) * m(0, 1) + Q(1, 0) * m(1, 1) + Q(2, 0) * m(2, 1); |
73 | Q(0, 1) = m(0, 1) - dot * Q(0, 0); |
74 | Q(1, 1) = m(1, 1) - dot * Q(1, 0); |
75 | Q(2, 1) = m(2, 1) - dot * Q(2, 0); |
76 | invLen = 1.0f / std::sqrt(x: Q(0, 1) * Q(0, 1) + Q(1, 1) * Q(1, 1) + Q(2, 1) * Q(2, 1)); |
77 | Q(0, 1) *= invLen; |
78 | Q(1, 1) *= invLen; |
79 | Q(2, 1) *= invLen; |
80 | |
81 | dot = Q(0, 0) * m(0, 2) + Q(1, 0) * m(1, 2) + Q(2, 0) * m(2, 2); |
82 | Q(0, 2) = m(0, 2) - dot * Q(0, 0); |
83 | Q(1, 2) = m(1, 2) - dot * Q(1, 0); |
84 | Q(2, 2) = m(2, 2) - dot * Q(2, 0); |
85 | dot = Q(0, 1) * m(0, 2) + Q(1, 1) * m(1, 2) + Q(2, 1) * m(2, 2); |
86 | Q(0, 2) -= dot * Q(0, 1); |
87 | Q(1, 2) -= dot * Q(1, 1); |
88 | Q(2, 2) -= dot * Q(2, 1); |
89 | invLen = 1.0f / std::sqrt(x: Q(0, 2) * Q(0, 2) + Q(1, 2) * Q(1, 2) + Q(2, 2) * Q(2, 2)); |
90 | Q(0, 2) *= invLen; |
91 | Q(1, 2) *= invLen; |
92 | Q(2, 2) *= invLen; |
93 | |
94 | // guarantee that orthogonal matrix has determinant 1 (no reflections) |
95 | const float det = Q(0, 0) * Q(1, 1) * Q(2, 2) + Q(0, 1) * Q(1, 2) * Q(2, 0) + |
96 | Q(0, 2) * Q(1, 0) * Q(2, 1) - Q(0, 2) * Q(1, 1) * Q(2, 0) - |
97 | Q(0, 1) * Q(1, 0) * Q(2, 2) - Q(0, 0) * Q(1, 2) * Q(2, 1); |
98 | if (det < 0.0f) |
99 | Q *= -1.0f; |
100 | |
101 | // build "right" matrix R |
102 | QMatrix3x3 R(Qt::Uninitialized); |
103 | R(0, 0) = Q(0, 0) * m(0, 0) + Q(1, 0) * m(1, 0) + Q(2, 0) * m(2, 0); |
104 | R(0, 1) = Q(0, 0) * m(0, 1) + Q(1, 0) * m(1, 1) + Q(2, 0) * m(2, 1); |
105 | R(1, 1) = Q(0, 1) * m(0, 1) + Q(1, 1) * m(1, 1) + Q(2, 1) * m(2, 1); |
106 | R(0, 2) = Q(0, 0) * m(0, 2) + Q(1, 0) * m(1, 2) + Q(2, 0) * m(2, 2); |
107 | R(1, 2) = Q(0, 1) * m(0, 2) + Q(1, 1) * m(1, 2) + Q(2, 1) * m(2, 2); |
108 | R(2, 2) = Q(0, 2) * m(0, 2) + Q(1, 2) * m(1, 2) + Q(2, 2) * m(2, 2); |
109 | |
110 | // the scaling component |
111 | D[0] = R(0, 0); |
112 | D[1] = R(1, 1); |
113 | D[2] = R(2, 2); |
114 | |
115 | // the shear component |
116 | U[0] = R(0, 1) / D[0]; |
117 | U[1] = R(0, 2) / D[0]; |
118 | U[2] = R(1, 2) / D[1]; |
119 | } |
120 | |
121 | inline bool hasScale(const QMatrix4x4 &m) |
122 | { |
123 | // If the columns are orthonormal and form a right-handed system, then there is no scale |
124 | float t(m.determinant()); |
125 | if (!qFuzzyIsNull(f: t - 1.0f)) |
126 | return true; |
127 | t = m(0, 0) * m(0, 0) + m(1, 0) * m(1, 0) + m(2, 0) * m(2, 0); |
128 | if (!qFuzzyIsNull(f: t - 1.0f)) |
129 | return true; |
130 | t = m(0, 1) * m(0, 1) + m(1, 1) * m(1, 1) + m(2, 1) * m(2, 1); |
131 | if (!qFuzzyIsNull(f: t - 1.0f)) |
132 | return true; |
133 | t = m(0, 2) * m(0, 2) + m(1, 2) * m(1, 2) + m(2, 2) * m(2, 2); |
134 | if (!qFuzzyIsNull(f: t - 1.0f)) |
135 | return true; |
136 | return false; |
137 | } |
138 | |
139 | inline void decomposeQMatrix4x4(const QMatrix4x4 &m, QVector3D &position, QQuaternion &orientation, QVector3D &scale) |
140 | { |
141 | Q_ASSERT(m.isAffine()); |
142 | |
143 | const QMatrix3x3 m3x3(m.toGenericMatrix<3, 3>()); |
144 | |
145 | QMatrix3x3 rot3x3(Qt::Uninitialized); |
146 | if (hasScale(m)) { |
147 | decomposeQMatrix3x3(m: m3x3, Q&: rot3x3, D&: scale, U&: position); |
148 | } else { |
149 | // we know there is no scaling part; no need for QDU decomposition |
150 | scale = QVector3D(1.0f, 1.0f, 1.0f); |
151 | rot3x3 = m3x3; |
152 | } |
153 | orientation = QQuaternion::fromRotationMatrix(rot3x3); |
154 | position = QVector3D(m(0, 3), m(1, 3), m(2, 3)); |
155 | } |
156 | |
157 | inline void decomposeQMatrix4x4(const QMatrix4x4 &m, Qt3DCore::Sqt &sqt) |
158 | { |
159 | Q_ASSERT(m.isAffine()); |
160 | |
161 | const QMatrix3x3 m3x3(m.toGenericMatrix<3, 3>()); |
162 | |
163 | QMatrix3x3 rot3x3(Qt::Uninitialized); |
164 | if (hasScale(m)) { |
165 | decomposeQMatrix3x3(m: m3x3, Q&: rot3x3, D&: sqt.scale, U&: sqt.translation); |
166 | } else { |
167 | // we know there is no scaling part; no need for QDU decomposition |
168 | sqt.scale = QVector3D(1.0f, 1.0f, 1.0f); |
169 | rot3x3 = m3x3; |
170 | } |
171 | sqt.rotation = QQuaternion::fromRotationMatrix(rot3x3); |
172 | sqt.translation = QVector3D(m(0, 3), m(1, 3), m(2, 3)); |
173 | } |
174 | |
175 | QT_END_NAMESPACE |
176 | |
177 | #endif // QT3DCORE_QMATH3D_P_H |
178 | |