| 1 | // Copyright (C) 2015 Konstantin Ritt. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | |
| 4 | #ifndef QT3DCORE_QMATH3D_P_H |
| 5 | #define QT3DCORE_QMATH3D_P_H |
| 6 | |
| 7 | // |
| 8 | // W A R N I N G |
| 9 | // ------------- |
| 10 | // |
| 11 | // This file is not part of the Qt3D API. It exists purely as an |
| 12 | // implementation detail. This header file may change from version to |
| 13 | // version without notice, or even be removed. |
| 14 | // |
| 15 | // We mean it. |
| 16 | // |
| 17 | #include <QtGui/qmatrix4x4.h> |
| 18 | #include <QtGui/qquaternion.h> |
| 19 | #include <QtGui/qvector3d.h> |
| 20 | #include <Qt3DCore/private/sqt_p.h> |
| 21 | |
| 22 | #include <cmath> |
| 23 | |
| 24 | QT_BEGIN_NAMESPACE |
| 25 | |
| 26 | inline void composeQMatrix4x4(const QVector3D &position, const QQuaternion &orientation, const QVector3D &scale, QMatrix4x4 &m) |
| 27 | { |
| 28 | const QMatrix3x3 rot3x3(orientation.toRotationMatrix()); |
| 29 | |
| 30 | // set up final matrix with scale, rotation and translation |
| 31 | m(0, 0) = scale.x() * rot3x3(0, 0); m(0, 1) = scale.y() * rot3x3(0, 1); m(0, 2) = scale.z() * rot3x3(0, 2); m(0, 3) = position.x(); |
| 32 | m(1, 0) = scale.x() * rot3x3(1, 0); m(1, 1) = scale.y() * rot3x3(1, 1); m(1, 2) = scale.z() * rot3x3(1, 2); m(1, 3) = position.y(); |
| 33 | m(2, 0) = scale.x() * rot3x3(2, 0); m(2, 1) = scale.y() * rot3x3(2, 1); m(2, 2) = scale.z() * rot3x3(2, 2); m(2, 3) = position.z(); |
| 34 | // no projection term |
| 35 | m(3, 0) = 0.0f; m(3, 1) = 0.0f; m(3, 2) = 0.0f; m(3, 3) = 1.0f; |
| 36 | } |
| 37 | |
| 38 | inline void decomposeQMatrix3x3(const QMatrix3x3 &m, QMatrix3x3 &Q, QVector3D &D, QVector3D &U) |
| 39 | { |
| 40 | // Factor M = QR = QDU where Q is orthogonal, D is diagonal, |
| 41 | // and U is upper triangular with ones on its diagonal. |
| 42 | // Algorithm uses Gram-Schmidt orthogonalization (the QR algorithm). |
| 43 | // |
| 44 | // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then |
| 45 | // q0 = m0/|m0| |
| 46 | // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0| |
| 47 | // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1| |
| 48 | // |
| 49 | // where |V| indicates length of vector V and A*B indicates dot |
| 50 | // product of vectors A and B. The matrix R has entries |
| 51 | // |
| 52 | // r00 = q0*m0 r01 = q0*m1 r02 = q0*m2 |
| 53 | // r10 = 0 r11 = q1*m1 r12 = q1*m2 |
| 54 | // r20 = 0 r21 = 0 r22 = q2*m2 |
| 55 | // |
| 56 | // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00, |
| 57 | // u02 = r02/r00, and u12 = r12/r11. |
| 58 | |
| 59 | // Q = rotation |
| 60 | // D = scaling |
| 61 | // U = shear |
| 62 | |
| 63 | // D stores the three diagonal entries r00, r11, r22 |
| 64 | // U stores the entries U[0] = u01, U[1] = u02, U[2] = u12 |
| 65 | |
| 66 | // build orthogonal matrix Q |
| 67 | float invLen = 1.0f / std::sqrt(x: m(0, 0) * m(0, 0) + m(1, 0) * m(1, 0) + m(2, 0) * m(2, 0)); |
| 68 | Q(0, 0) = m(0, 0) * invLen; |
| 69 | Q(1, 0) = m(1, 0) * invLen; |
| 70 | Q(2, 0) = m(2, 0) * invLen; |
| 71 | |
| 72 | float dot = Q(0, 0) * m(0, 1) + Q(1, 0) * m(1, 1) + Q(2, 0) * m(2, 1); |
| 73 | Q(0, 1) = m(0, 1) - dot * Q(0, 0); |
| 74 | Q(1, 1) = m(1, 1) - dot * Q(1, 0); |
| 75 | Q(2, 1) = m(2, 1) - dot * Q(2, 0); |
| 76 | invLen = 1.0f / std::sqrt(x: Q(0, 1) * Q(0, 1) + Q(1, 1) * Q(1, 1) + Q(2, 1) * Q(2, 1)); |
| 77 | Q(0, 1) *= invLen; |
| 78 | Q(1, 1) *= invLen; |
| 79 | Q(2, 1) *= invLen; |
| 80 | |
| 81 | dot = Q(0, 0) * m(0, 2) + Q(1, 0) * m(1, 2) + Q(2, 0) * m(2, 2); |
| 82 | Q(0, 2) = m(0, 2) - dot * Q(0, 0); |
| 83 | Q(1, 2) = m(1, 2) - dot * Q(1, 0); |
| 84 | Q(2, 2) = m(2, 2) - dot * Q(2, 0); |
| 85 | dot = Q(0, 1) * m(0, 2) + Q(1, 1) * m(1, 2) + Q(2, 1) * m(2, 2); |
| 86 | Q(0, 2) -= dot * Q(0, 1); |
| 87 | Q(1, 2) -= dot * Q(1, 1); |
| 88 | Q(2, 2) -= dot * Q(2, 1); |
| 89 | invLen = 1.0f / std::sqrt(x: Q(0, 2) * Q(0, 2) + Q(1, 2) * Q(1, 2) + Q(2, 2) * Q(2, 2)); |
| 90 | Q(0, 2) *= invLen; |
| 91 | Q(1, 2) *= invLen; |
| 92 | Q(2, 2) *= invLen; |
| 93 | |
| 94 | // guarantee that orthogonal matrix has determinant 1 (no reflections) |
| 95 | const float det = Q(0, 0) * Q(1, 1) * Q(2, 2) + Q(0, 1) * Q(1, 2) * Q(2, 0) + |
| 96 | Q(0, 2) * Q(1, 0) * Q(2, 1) - Q(0, 2) * Q(1, 1) * Q(2, 0) - |
| 97 | Q(0, 1) * Q(1, 0) * Q(2, 2) - Q(0, 0) * Q(1, 2) * Q(2, 1); |
| 98 | if (det < 0.0f) |
| 99 | Q *= -1.0f; |
| 100 | |
| 101 | // build "right" matrix R |
| 102 | QMatrix3x3 R(Qt::Uninitialized); |
| 103 | R(0, 0) = Q(0, 0) * m(0, 0) + Q(1, 0) * m(1, 0) + Q(2, 0) * m(2, 0); |
| 104 | R(0, 1) = Q(0, 0) * m(0, 1) + Q(1, 0) * m(1, 1) + Q(2, 0) * m(2, 1); |
| 105 | R(1, 1) = Q(0, 1) * m(0, 1) + Q(1, 1) * m(1, 1) + Q(2, 1) * m(2, 1); |
| 106 | R(0, 2) = Q(0, 0) * m(0, 2) + Q(1, 0) * m(1, 2) + Q(2, 0) * m(2, 2); |
| 107 | R(1, 2) = Q(0, 1) * m(0, 2) + Q(1, 1) * m(1, 2) + Q(2, 1) * m(2, 2); |
| 108 | R(2, 2) = Q(0, 2) * m(0, 2) + Q(1, 2) * m(1, 2) + Q(2, 2) * m(2, 2); |
| 109 | |
| 110 | // the scaling component |
| 111 | D[0] = R(0, 0); |
| 112 | D[1] = R(1, 1); |
| 113 | D[2] = R(2, 2); |
| 114 | |
| 115 | // the shear component |
| 116 | U[0] = R(0, 1) / D[0]; |
| 117 | U[1] = R(0, 2) / D[0]; |
| 118 | U[2] = R(1, 2) / D[1]; |
| 119 | } |
| 120 | |
| 121 | inline bool hasScale(const QMatrix4x4 &m) |
| 122 | { |
| 123 | // If the columns are orthonormal and form a right-handed system, then there is no scale |
| 124 | float t(m.determinant()); |
| 125 | if (!qFuzzyIsNull(f: t - 1.0f)) |
| 126 | return true; |
| 127 | t = m(0, 0) * m(0, 0) + m(1, 0) * m(1, 0) + m(2, 0) * m(2, 0); |
| 128 | if (!qFuzzyIsNull(f: t - 1.0f)) |
| 129 | return true; |
| 130 | t = m(0, 1) * m(0, 1) + m(1, 1) * m(1, 1) + m(2, 1) * m(2, 1); |
| 131 | if (!qFuzzyIsNull(f: t - 1.0f)) |
| 132 | return true; |
| 133 | t = m(0, 2) * m(0, 2) + m(1, 2) * m(1, 2) + m(2, 2) * m(2, 2); |
| 134 | if (!qFuzzyIsNull(f: t - 1.0f)) |
| 135 | return true; |
| 136 | return false; |
| 137 | } |
| 138 | |
| 139 | inline void decomposeQMatrix4x4(const QMatrix4x4 &m, QVector3D &position, QQuaternion &orientation, QVector3D &scale) |
| 140 | { |
| 141 | Q_ASSERT(m.isAffine()); |
| 142 | |
| 143 | const QMatrix3x3 m3x3(m.toGenericMatrix<3, 3>()); |
| 144 | |
| 145 | QMatrix3x3 rot3x3(Qt::Uninitialized); |
| 146 | if (hasScale(m)) { |
| 147 | decomposeQMatrix3x3(m: m3x3, Q&: rot3x3, D&: scale, U&: position); |
| 148 | } else { |
| 149 | // we know there is no scaling part; no need for QDU decomposition |
| 150 | scale = QVector3D(1.0f, 1.0f, 1.0f); |
| 151 | rot3x3 = m3x3; |
| 152 | } |
| 153 | orientation = QQuaternion::fromRotationMatrix(rot3x3); |
| 154 | position = QVector3D(m(0, 3), m(1, 3), m(2, 3)); |
| 155 | } |
| 156 | |
| 157 | inline void decomposeQMatrix4x4(const QMatrix4x4 &m, Qt3DCore::Sqt &sqt) |
| 158 | { |
| 159 | Q_ASSERT(m.isAffine()); |
| 160 | |
| 161 | const QMatrix3x3 m3x3(m.toGenericMatrix<3, 3>()); |
| 162 | |
| 163 | QMatrix3x3 rot3x3(Qt::Uninitialized); |
| 164 | if (hasScale(m)) { |
| 165 | decomposeQMatrix3x3(m: m3x3, Q&: rot3x3, D&: sqt.scale, U&: sqt.translation); |
| 166 | } else { |
| 167 | // we know there is no scaling part; no need for QDU decomposition |
| 168 | sqt.scale = QVector3D(1.0f, 1.0f, 1.0f); |
| 169 | rot3x3 = m3x3; |
| 170 | } |
| 171 | sqt.rotation = QQuaternion::fromRotationMatrix(rot3x3); |
| 172 | sqt.translation = QVector3D(m(0, 3), m(1, 3), m(2, 3)); |
| 173 | } |
| 174 | |
| 175 | QT_END_NAMESPACE |
| 176 | |
| 177 | #endif // QT3DCORE_QMATH3D_P_H |
| 178 | |