| 1 | // Copyright (C) 2024 Jarek Kobus |
| 2 | // Copyright (C) 2024 The Qt Company Ltd. |
| 3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 4 | |
| 5 | #include "tasktree.h" |
| 6 | |
| 7 | #include "barrier.h" |
| 8 | |
| 9 | #include <QtCore/QDebug> |
| 10 | #include <QtCore/QEventLoop> |
| 11 | #include <QtCore/QFutureWatcher> |
| 12 | #include <QtCore/QHash> |
| 13 | #include <QtCore/QMetaEnum> |
| 14 | #include <QtCore/QMutex> |
| 15 | #include <QtCore/QPointer> |
| 16 | #include <QtCore/QPromise> |
| 17 | #include <QtCore/QSet> |
| 18 | #include <QtCore/QTime> |
| 19 | #include <QtCore/QTimer> |
| 20 | |
| 21 | using namespace Qt::StringLiterals; |
| 22 | using namespace std::chrono; |
| 23 | |
| 24 | QT_BEGIN_NAMESPACE |
| 25 | |
| 26 | namespace Tasking { |
| 27 | |
| 28 | // That's cut down qtcassert.{c,h} to avoid the dependency. |
| 29 | #define QT_STRING(cond) qDebug("SOFT ASSERT: \"%s\" in %s: %s", cond, __FILE__, QT_STRINGIFY(__LINE__)) |
| 30 | #define QT_ASSERT(cond, action) if (Q_LIKELY(cond)) {} else { QT_STRING(#cond); action; } do {} while (0) |
| 31 | #define QT_CHECK(cond) if (cond) {} else { QT_STRING(#cond); } do {} while (0) |
| 32 | |
| 33 | class Guard |
| 34 | { |
| 35 | Q_DISABLE_COPY(Guard) |
| 36 | public: |
| 37 | Guard() = default; |
| 38 | ~Guard() { QT_CHECK(m_lockCount == 0); } |
| 39 | bool isLocked() const { return m_lockCount; } |
| 40 | private: |
| 41 | int m_lockCount = 0; |
| 42 | friend class GuardLocker; |
| 43 | }; |
| 44 | |
| 45 | class GuardLocker |
| 46 | { |
| 47 | Q_DISABLE_COPY(GuardLocker) |
| 48 | public: |
| 49 | GuardLocker(Guard &guard) : m_guard(guard) { ++m_guard.m_lockCount; } |
| 50 | ~GuardLocker() { --m_guard.m_lockCount; } |
| 51 | private: |
| 52 | Guard &m_guard; |
| 53 | }; |
| 54 | |
| 55 | /*! |
| 56 | \module TaskingSolution |
| 57 | \title Tasking Solution |
| 58 | \ingroup solutions-modules |
| 59 | \brief Contains a general purpose Tasking solution. |
| 60 | |
| 61 | The Tasking solution depends on Qt only, and doesn't depend on any \QC specific code. |
| 62 | */ |
| 63 | |
| 64 | /*! |
| 65 | \namespace Tasking |
| 66 | \inmodule TaskingSolution |
| 67 | \brief The Tasking namespace encloses all classes and global functions of the Tasking solution. |
| 68 | */ |
| 69 | |
| 70 | /*! |
| 71 | \class Tasking::TaskInterface |
| 72 | \inheaderfile solutions/tasking/tasktree.h |
| 73 | \inmodule TaskingSolution |
| 74 | \brief TaskInterface is the abstract base class for implementing custom task adapters. |
| 75 | \reentrant |
| 76 | |
| 77 | To implement a custom task adapter, derive your adapter from the |
| 78 | \c TaskAdapter<Task> class template. TaskAdapter automatically creates and destroys |
| 79 | the custom task instance and associates the adapter with a given \c Task type. |
| 80 | */ |
| 81 | |
| 82 | /*! |
| 83 | \fn virtual void TaskInterface::start() |
| 84 | |
| 85 | This method is called by the running TaskTree for starting the \c Task instance. |
| 86 | Reimplement this method in \c TaskAdapter<Task>'s subclass in order to start the |
| 87 | associated task. |
| 88 | |
| 89 | Use TaskAdapter::task() to access the associated \c Task instance. |
| 90 | |
| 91 | \sa done(), TaskAdapter::task() |
| 92 | */ |
| 93 | |
| 94 | /*! |
| 95 | \fn void TaskInterface::done(DoneResult result) |
| 96 | |
| 97 | Emit this signal from the \c TaskAdapter<Task>'s subclass, when the \c Task is finished. |
| 98 | Pass DoneResult::Success as a \a result argument when the task finishes with success; |
| 99 | otherwise, when an error occurs, pass DoneResult::Error. |
| 100 | */ |
| 101 | |
| 102 | /*! |
| 103 | \class Tasking::TaskAdapter |
| 104 | \inheaderfile solutions/tasking/tasktree.h |
| 105 | \inmodule TaskingSolution |
| 106 | \brief A class template for implementing custom task adapters. |
| 107 | \reentrant |
| 108 | |
| 109 | The TaskAdapter class template is responsible for creating a task of the \c Task type, |
| 110 | starting it, and reporting success or an error when the task is finished. |
| 111 | It also associates the adapter with a given \c Task type. |
| 112 | |
| 113 | Reimplement this class with the actual \c Task type to adapt the task's interface |
| 114 | into the general TaskTree's interface for managing the \c Task instances. |
| 115 | |
| 116 | Each subclass needs to provide a public default constructor, |
| 117 | implement the start() method, and emit the done() signal when the task is finished. |
| 118 | Use task() to access the associated \c Task instance. |
| 119 | |
| 120 | To use your task adapter inside the task tree, create an alias to the |
| 121 | Tasking::CustomTask template passing your task adapter as a template parameter: |
| 122 | \code |
| 123 | // Defines actual worker |
| 124 | class Worker {...}; |
| 125 | |
| 126 | // Adapts Worker's interface to work with task tree |
| 127 | class WorkerTaskAdapter : public TaskAdapter<Worker> {...}; |
| 128 | |
| 129 | // Defines WorkerTask as a new custom task type to be placed inside Group items |
| 130 | using WorkerTask = CustomTask<WorkerTaskAdapter>; |
| 131 | \endcode |
| 132 | |
| 133 | Optionally, you may pass a custom \c Deleter for the associated \c Task |
| 134 | as a second template parameter of your \c TaskAdapter subclass. |
| 135 | When the \c Deleter parameter is omitted, the \c std::default_delete<Task> is used by default. |
| 136 | The custom \c Deleter is useful when the destructor of the running \c Task |
| 137 | may potentially block the caller thread. Instead of blocking, the custom deleter may move |
| 138 | the running task into a separate thread and implement the blocking destruction there. |
| 139 | In this way, the fast destruction (seen from the caller thread) of the running task |
| 140 | with a blocking destructor may be achieved. |
| 141 | |
| 142 | For more information on implementing the custom task adapters, refer to \l {Task Adapters}. |
| 143 | |
| 144 | \sa start(), done(), task() |
| 145 | */ |
| 146 | |
| 147 | /*! |
| 148 | \fn template <typename Task, typename Deleter = std::default_delete<Task>> TaskAdapter<Task, Deleter>::TaskAdapter<Task, Deleter>() |
| 149 | |
| 150 | Creates a task adapter for the given \c Task type. |
| 151 | |
| 152 | Internally, it creates an instance of \c Task, which is accessible via the task() method. |
| 153 | The optionally provided \c Deleter is used instead of the \c Task destructor. |
| 154 | When \c Deleter is omitted, the \c std::default_delete<Task> is used by default. |
| 155 | |
| 156 | \sa task() |
| 157 | */ |
| 158 | |
| 159 | /*! |
| 160 | \fn template <typename Task, typename Deleter = std::default_delete<Task>> Task *TaskAdapter<Task, Deleter>::task() |
| 161 | |
| 162 | Returns the pointer to the associated \c Task instance. |
| 163 | */ |
| 164 | |
| 165 | /*! |
| 166 | \fn template <typename Task, typename Deleter = std::default_delete<Task>> Task *TaskAdapter<Task, Deleter>::task() const |
| 167 | \overload |
| 168 | |
| 169 | Returns the \c const pointer to the associated \c Task instance. |
| 170 | */ |
| 171 | |
| 172 | /*! |
| 173 | \class Tasking::Storage |
| 174 | \inheaderfile solutions/tasking/tasktree.h |
| 175 | \inmodule TaskingSolution |
| 176 | \brief A class template for custom data exchange in the running task tree. |
| 177 | \reentrant |
| 178 | |
| 179 | The Storage class template is responsible for dynamically creating and destructing objects |
| 180 | of the custom \c StorageStruct type. The creation and destruction are managed by the |
| 181 | running task tree. If a Storage object is placed inside a \l {Tasking::Group} {Group} element, |
| 182 | the running task tree creates the \c StorageStruct object when the group is started and before |
| 183 | the group's setup handler is called. Later, whenever any handler inside this group is called, |
| 184 | the task tree activates the previously created instance of the \c StorageStruct object. |
| 185 | This includes all tasks' and groups' setup and done handlers inside the group where the |
| 186 | Storage object was placed, also within the nested groups. |
| 187 | When a copy of the Storage object is passed to the handler via the lambda capture, |
| 188 | the handler may access the instance activated by the running task tree via the |
| 189 | \l {Tasking::Storage::operator->()} {operator->()}, |
| 190 | \l {Tasking::Storage::operator*()} {operator*()}, or activeStorage() method. |
| 191 | If two handlers capture the same Storage object, one of them may store a custom data there, |
| 192 | and the other may read it afterwards. |
| 193 | When the group is finished, the previously created instance of the \c StorageStruct |
| 194 | object is destroyed after the group's done handler is called. |
| 195 | |
| 196 | An example of data exchange between tasks: |
| 197 | |
| 198 | \code |
| 199 | const Storage<QString> storage; |
| 200 | |
| 201 | const auto onFirstDone = [storage](const Task &task) { |
| 202 | // Assings QString, taken from the first task result, to the active QString instance |
| 203 | // of the Storage object. |
| 204 | *storage = task.getResultAsString(); |
| 205 | }; |
| 206 | |
| 207 | const auto onSecondSetup = [storage](Task &task) { |
| 208 | // Reads QString from the active QString instance of the Storage object and use it to |
| 209 | // configure the second task before start. |
| 210 | task.configureWithString(*storage); |
| 211 | }; |
| 212 | |
| 213 | const Group root { |
| 214 | // The running task tree creates QString instance when root in entered |
| 215 | storage, |
| 216 | // The done handler of the first task stores the QString in the storage |
| 217 | TaskItem(..., onFirstDone), |
| 218 | // The setup handler of the second task reads the QString from the storage |
| 219 | TaskItem(onSecondSetup, ...) |
| 220 | }; |
| 221 | \endcode |
| 222 | |
| 223 | Since the root group executes its tasks sequentially, the \c onFirstDone handler |
| 224 | is always called before the \c onSecondSetup handler. This means that the QString data, |
| 225 | read from the \c storage inside the \c onSecondSetup handler's body, |
| 226 | has already been set by the \c onFirstDone handler. |
| 227 | You can always rely on it in \l {Tasking::sequential} {sequential} execution mode. |
| 228 | |
| 229 | The Storage internals are shared between all of its copies. That is why the copies of the |
| 230 | Storage object inside the handlers' lambda captures still refer to the same Storage instance. |
| 231 | You may place multiple Storage objects inside one \l {Tasking::Group} {Group} element, |
| 232 | provided that they do not include copies of the same Storage object. |
| 233 | Otherwise, an assert is triggered at runtime that includes an error message. |
| 234 | However, you can place copies of the same Storage object in different |
| 235 | \l {Tasking::Group} {Group} elements of the same recipe. In this case, the running task |
| 236 | tree will create multiple instances of the \c StorageStruct objects (one for each copy) |
| 237 | and storage shadowing will take place. Storage shadowing works in a similar way |
| 238 | to C++ variable shadowing inside the nested blocks of code: |
| 239 | |
| 240 | \code |
| 241 | Storage<QString> storage; |
| 242 | |
| 243 | const Group root { |
| 244 | storage, // Top copy, 1st instance of StorageStruct |
| 245 | onGroupSetup([storage] { ... }), // Top copy is active |
| 246 | Group { |
| 247 | storage, // Nested copy, 2nd instance of StorageStruct, |
| 248 | // shadows Top copy |
| 249 | onGroupSetup([storage] { ... }), // Nested copy is active |
| 250 | }, |
| 251 | Group { |
| 252 | onGroupSetup([storage] { ... }), // Top copy is active |
| 253 | } |
| 254 | }; |
| 255 | \endcode |
| 256 | |
| 257 | The Storage objects may also be used for passing the initial data to the executed task tree, |
| 258 | and for reading the final data out of the task tree before it finishes. |
| 259 | To do this, use \l {TaskTree::onStorageSetup()} {onStorageSetup()} or |
| 260 | \l {TaskTree::onStorageDone()} {onStorageDone()}, respectively. |
| 261 | |
| 262 | \note If you use an unreachable Storage object inside the handler, |
| 263 | because you forgot to place the storage in the recipe, |
| 264 | or placed it, but not in any handler's ancestor group, |
| 265 | you may expect a crash, preceded by the following message: |
| 266 | \e {The referenced storage is not reachable in the running tree. |
| 267 | A nullptr will be returned which might lead to a crash in the calling code. |
| 268 | It is possible that no storage was added to the tree, |
| 269 | or the storage is not reachable from where it is referenced.} |
| 270 | */ |
| 271 | |
| 272 | /*! |
| 273 | \fn template <typename StorageStruct> Storage<StorageStruct>::Storage<StorageStruct>() |
| 274 | |
| 275 | Creates a storage for the given \c StorageStruct type. |
| 276 | |
| 277 | \note All copies of \c this object are considered to be the same Storage instance. |
| 278 | */ |
| 279 | |
| 280 | /*! |
| 281 | \fn template <typename StorageStruct> StorageStruct &Storage<StorageStruct>::operator*() const noexcept |
| 282 | |
| 283 | Returns a \e reference to the active \c StorageStruct object, created by the running task tree. |
| 284 | Use this function only from inside the handler body of any GroupItem element placed |
| 285 | in the recipe, otherwise you may expect a crash. |
| 286 | Make sure that Storage is placed in any group ancestor of the handler's group item. |
| 287 | |
| 288 | \note The returned reference is valid as long as the group that created this instance |
| 289 | is still running. |
| 290 | |
| 291 | \sa activeStorage(), operator->() |
| 292 | */ |
| 293 | |
| 294 | /*! |
| 295 | \fn template <typename StorageStruct> StorageStruct *Storage<StorageStruct>::operator->() const noexcept |
| 296 | |
| 297 | Returns a \e pointer to the active \c StorageStruct object, created by the running task tree. |
| 298 | Use this function only from inside the handler body of any GroupItem element placed |
| 299 | in the recipe, otherwise you may expect a crash. |
| 300 | Make sure that Storage is placed in any group ancestor of the handler's group item. |
| 301 | |
| 302 | \note The returned pointer is valid as long as the group that created this instance |
| 303 | is still running. |
| 304 | |
| 305 | \sa activeStorage(), operator*() |
| 306 | */ |
| 307 | |
| 308 | /*! |
| 309 | \fn template <typename StorageStruct> StorageStruct *Storage<StorageStruct>::activeStorage() const |
| 310 | |
| 311 | Returns a \e pointer to the active \c StorageStruct object, created by the running task tree. |
| 312 | Use this function only from inside the handler body of any GroupItem element placed |
| 313 | in the recipe, otherwise you may expect a crash. |
| 314 | Make sure that Storage is placed in any group ancestor of the handler's group item. |
| 315 | |
| 316 | \note The returned pointer is valid as long as the group that created this instance |
| 317 | is still running. |
| 318 | |
| 319 | \sa operator->(), operator*() |
| 320 | */ |
| 321 | |
| 322 | /*! |
| 323 | \class Tasking::GroupItem |
| 324 | \inheaderfile solutions/tasking/tasktree.h |
| 325 | \inmodule TaskingSolution |
| 326 | \brief GroupItem represents the basic element that may be a part of any Group. |
| 327 | \reentrant |
| 328 | |
| 329 | GroupItem is a basic element that may be a part of any \l {Tasking::Group} {Group}. |
| 330 | It encapsulates the functionality provided by any GroupItem's subclass. |
| 331 | It is a value type and it is safe to copy the GroupItem instance, |
| 332 | even when it is originally created via the subclass' constructor. |
| 333 | |
| 334 | There are four main kinds of GroupItem: |
| 335 | \table |
| 336 | \header |
| 337 | \li GroupItem Kind |
| 338 | \li Brief Description |
| 339 | \row |
| 340 | \li \l CustomTask |
| 341 | \li Defines asynchronous task type and task's start, done, and error handlers. |
| 342 | Aliased with a unique task name, such as, \c ConcurrentCallTask<ResultType> |
| 343 | or \c NetworkQueryTask. Asynchronous tasks are the main reason for using a task tree. |
| 344 | \row |
| 345 | \li \l {Tasking::Group} {Group} |
| 346 | \li A container for other group items. Since the group is of the GroupItem type, |
| 347 | it's possible to nest it inside another group. The group is seen by its parent |
| 348 | as a single asynchronous task. |
| 349 | \row |
| 350 | \li GroupItem containing \l {Tasking::Storage} {Storage} |
| 351 | \li Enables the child tasks of a group to exchange data. When GroupItem containing |
| 352 | \l {Tasking::Storage} {Storage} is placed inside a group, the task tree instantiates |
| 353 | the storage's data object just before the group is entered, |
| 354 | and destroys it just after the group is left. |
| 355 | \row |
| 356 | \li Other group control items |
| 357 | \li The items returned by \l {Tasking::parallelLimit()} {parallelLimit()} or |
| 358 | \l {Tasking::workflowPolicy()} {workflowPolicy()} influence the group's behavior. |
| 359 | The items returned by \l {Tasking::onGroupSetup()} {onGroupSetup()} or |
| 360 | \l {Tasking::onGroupDone()} {onGroupDone()} define custom handlers called when |
| 361 | the group starts or ends execution. |
| 362 | \endtable |
| 363 | */ |
| 364 | |
| 365 | /*! |
| 366 | \fn template <typename StorageStruct> GroupItem::GroupItem(const Storage<StorageStruct> &storage) |
| 367 | |
| 368 | Constructs a \c GroupItem element holding the \a storage object. |
| 369 | |
| 370 | When the \l {Tasking::Group} {Group} element containing \e this GroupItem is entered |
| 371 | by the running task tree, an instance of the \c StorageStruct is created dynamically. |
| 372 | |
| 373 | When that group is about to be left after its execution, the previously instantiated |
| 374 | \c StorageStruct is deleted. |
| 375 | |
| 376 | The dynamically created instance of \c StorageStruct is accessible from inside any |
| 377 | handler body of the parent \l {Tasking::Group} {Group} element, |
| 378 | including nested groups and its tasks, via the |
| 379 | \l {Tasking::Storage::operator->()} {Storage::operator->()}, |
| 380 | \l {Tasking::Storage::operator*()} {Storage::operator*()}, or Storage::activeStorage() method. |
| 381 | |
| 382 | \sa {Tasking::Storage} {Storage} |
| 383 | */ |
| 384 | |
| 385 | /*! |
| 386 | \fn GroupItem::GroupItem(const QList<GroupItem> &items) |
| 387 | |
| 388 | Constructs a \c GroupItem element with a given list of \a items. |
| 389 | |
| 390 | When this \c GroupItem element is parsed by the TaskTree, it is simply replaced with |
| 391 | its \a items. |
| 392 | |
| 393 | This constructor is useful when constructing a \l {Tasking::Group} {Group} element with |
| 394 | lists of \c GroupItem elements: |
| 395 | |
| 396 | \code |
| 397 | static QList<GroupItems> getItems(); |
| 398 | |
| 399 | ... |
| 400 | |
| 401 | const Group root { |
| 402 | parallel, |
| 403 | finishAllAndSuccess, |
| 404 | getItems(), // OK, getItems() list is wrapped into a single GroupItem element |
| 405 | onGroupSetup(...), |
| 406 | onGroupDone(...) |
| 407 | }; |
| 408 | \endcode |
| 409 | |
| 410 | If you want to create a subtree, use \l {Tasking::Group} {Group} instead. |
| 411 | |
| 412 | \note Don't confuse this \c GroupItem with the \l {Tasking::Group} {Group} element, as |
| 413 | \l {Tasking::Group} {Group} keeps its children nested |
| 414 | after being parsed by the task tree, while this \c GroupItem does not. |
| 415 | |
| 416 | \sa {Tasking::Group} {Group} |
| 417 | */ |
| 418 | |
| 419 | /*! |
| 420 | \fn GroupItem::GroupItem(std::initializer_list<GroupItem> items) |
| 421 | \overload |
| 422 | \sa GroupItem(const QList<Tasking::GroupItem> &items) |
| 423 | */ |
| 424 | |
| 425 | /*! |
| 426 | \class Tasking::Group |
| 427 | \inheaderfile solutions/tasking/tasktree.h |
| 428 | \inmodule TaskingSolution |
| 429 | \brief Group represents the basic element for composing declarative recipes describing |
| 430 | how to execute and handle a nested tree of asynchronous tasks. |
| 431 | \reentrant |
| 432 | |
| 433 | Group is a container for other group items. It encloses child tasks into one unit, |
| 434 | which is seen by the group's parent as a single, asynchronous task. |
| 435 | Since Group is of the GroupItem type, it may also be a child of Group. |
| 436 | |
| 437 | Insert child tasks into the group by using aliased custom task names, such as, |
| 438 | \c ConcurrentCallTask<ResultType> or \c NetworkQueryTask: |
| 439 | |
| 440 | \code |
| 441 | const Group group { |
| 442 | NetworkQueryTask(...), |
| 443 | ConcurrentCallTask<int>(...) |
| 444 | }; |
| 445 | \endcode |
| 446 | |
| 447 | The group's behavior may be customized by inserting the items returned by |
| 448 | \l {Tasking::parallelLimit()} {parallelLimit()} or |
| 449 | \l {Tasking::workflowPolicy()} {workflowPolicy()} functions: |
| 450 | |
| 451 | \code |
| 452 | const Group group { |
| 453 | parallel, |
| 454 | continueOnError, |
| 455 | NetworkQueryTask(...), |
| 456 | NetworkQueryTask(...) |
| 457 | }; |
| 458 | \endcode |
| 459 | |
| 460 | The group may contain nested groups: |
| 461 | |
| 462 | \code |
| 463 | const Group group { |
| 464 | finishAllAndSuccess, |
| 465 | NetworkQueryTask(...), |
| 466 | Group { |
| 467 | NetworkQueryTask(...), |
| 468 | Group { |
| 469 | parallel, |
| 470 | NetworkQueryTask(...), |
| 471 | NetworkQueryTask(...), |
| 472 | } |
| 473 | ConcurrentCallTask<QString>(...) |
| 474 | } |
| 475 | }; |
| 476 | \endcode |
| 477 | |
| 478 | The group may dynamically instantiate a custom storage structure, which may be used for |
| 479 | inter-task data exchange: |
| 480 | |
| 481 | \code |
| 482 | struct MyCustomStruct { QByteArray data; }; |
| 483 | |
| 484 | Storage<MyCustomStruct> storage; |
| 485 | |
| 486 | const auto onFirstSetup = [](NetworkQuery &task) { ... }; |
| 487 | const auto onFirstDone = [storage](const NetworkQuery &task) { |
| 488 | // storage-> gives a pointer to MyCustomStruct instance, |
| 489 | // created dynamically by the running task tree. |
| 490 | storage->data = task.reply()->readAll(); |
| 491 | }; |
| 492 | const auto onSecondSetup = [storage](ConcurrentCall<QImage> &task) { |
| 493 | // storage-> gives a pointer to MyCustomStruct. Since the group is sequential, |
| 494 | // the stored MyCustomStruct was already updated inside the onFirstDone handler. |
| 495 | const QByteArray storedData = storage->data; |
| 496 | }; |
| 497 | |
| 498 | const Group group { |
| 499 | // When the group is entered by a running task tree, it creates MyCustomStruct |
| 500 | // instance dynamically. It is later accessible from all handlers via |
| 501 | // the *storage or storage-> operators. |
| 502 | sequential, |
| 503 | storage, |
| 504 | NetworkQueryTask(onFirstSetup, onFirstDone, CallDoneIf::Success), |
| 505 | ConcurrentCallTask<QImage>(onSecondSetup) |
| 506 | }; |
| 507 | \endcode |
| 508 | */ |
| 509 | |
| 510 | /*! |
| 511 | \fn Group::Group(const QList<GroupItem> &children) |
| 512 | |
| 513 | Constructs a group with a given list of \a children. |
| 514 | |
| 515 | This constructor is useful when the child items of the group are not known at compile time, |
| 516 | but later, at runtime: |
| 517 | |
| 518 | \code |
| 519 | const QStringList sourceList = ...; |
| 520 | |
| 521 | QList<GroupItem> groupItems { parallel }; |
| 522 | |
| 523 | for (const QString &source : sourceList) { |
| 524 | const NetworkQueryTask task(...); // use source for setup handler |
| 525 | groupItems << task; |
| 526 | } |
| 527 | |
| 528 | const Group group(groupItems); |
| 529 | \endcode |
| 530 | */ |
| 531 | |
| 532 | /*! |
| 533 | \fn Group::Group(std::initializer_list<GroupItem> children) |
| 534 | |
| 535 | Constructs a group from \c std::initializer_list given by \a children. |
| 536 | |
| 537 | This constructor is useful when all child items of the group are known at compile time: |
| 538 | |
| 539 | \code |
| 540 | const Group group { |
| 541 | finishAllAndSuccess, |
| 542 | NetworkQueryTask(...), |
| 543 | Group { |
| 544 | NetworkQueryTask(...), |
| 545 | Group { |
| 546 | parallel, |
| 547 | NetworkQueryTask(...), |
| 548 | NetworkQueryTask(...), |
| 549 | } |
| 550 | ConcurrentCallTask<QString>(...) |
| 551 | } |
| 552 | }; |
| 553 | \endcode |
| 554 | */ |
| 555 | |
| 556 | /*! |
| 557 | \class Tasking::Sync |
| 558 | \inheaderfile solutions/tasking/tasktree.h |
| 559 | \inmodule TaskingSolution |
| 560 | \brief Synchronously executes a custom handler between other tasks. |
| 561 | \reentrant |
| 562 | |
| 563 | \c Sync is useful when you want to execute an additional handler between other tasks. |
| 564 | \c Sync is seen by its parent \l {Tasking::Group} {Group} as any other task. |
| 565 | Avoid long-running execution of the \c Sync's handler body, since it is executed |
| 566 | synchronously from the caller thread. If that is unavoidable, consider using |
| 567 | \c ConcurrentCallTask instead. |
| 568 | */ |
| 569 | |
| 570 | /*! |
| 571 | \fn template <typename Handler> Sync::Sync(Handler &&handler) |
| 572 | |
| 573 | Constructs an element that executes a passed \a handler synchronously. |
| 574 | The \c Handler is of the \c std::function<DoneResult()> type. |
| 575 | The DoneResult value, returned by the \a handler, is considered during parent group's |
| 576 | \l {workflowPolicy} {workflow policy} resolution. |
| 577 | Optionally, the shortened form of \c std::function<void()> is also accepted. |
| 578 | In this case, it's assumed that the return value is DoneResult::Success. |
| 579 | |
| 580 | The passed \a handler executes synchronously from the caller thread, so avoid a long-running |
| 581 | execution of the handler body. Otherwise, consider using \c ConcurrentCallTask. |
| 582 | |
| 583 | \note The \c Sync element is not counted as a task when reporting task tree progress, |
| 584 | and is not included in TaskTree::taskCount() or TaskTree::progressMaximum(). |
| 585 | */ |
| 586 | |
| 587 | /*! |
| 588 | \class Tasking::CustomTask |
| 589 | \inheaderfile solutions/tasking/tasktree.h |
| 590 | \inmodule TaskingSolution |
| 591 | \brief A class template used for declaring custom task items and defining their setup |
| 592 | and done handlers. |
| 593 | \reentrant |
| 594 | |
| 595 | Describes custom task items within task tree recipes. |
| 596 | |
| 597 | Custom task names are aliased with unique names using the \c CustomTask template |
| 598 | with a given TaskAdapter subclass as a template parameter. |
| 599 | For example, \c ConcurrentCallTask<T> is an alias to the \c CustomTask that is defined |
| 600 | to work with \c ConcurrentCall<T> as an associated task class. |
| 601 | The following table contains example custom tasks and their associated task classes: |
| 602 | |
| 603 | \table |
| 604 | \header |
| 605 | \li Aliased Task Name (Tasking Namespace) |
| 606 | \li Associated Task Class |
| 607 | \li Brief Description |
| 608 | \row |
| 609 | \li ConcurrentCallTask<ReturnType> |
| 610 | \li ConcurrentCall<ReturnType> |
| 611 | \li Starts an asynchronous task. Runs in a separate thread. |
| 612 | \row |
| 613 | \li NetworkQueryTask |
| 614 | \li NetworkQuery |
| 615 | \li Sends a network query. |
| 616 | \row |
| 617 | \li TaskTreeTask |
| 618 | \li TaskTree |
| 619 | \li Starts a nested task tree. |
| 620 | \row |
| 621 | \li TimeoutTask |
| 622 | \li \c std::chrono::milliseconds |
| 623 | \li Starts a timer. |
| 624 | \row |
| 625 | \li WaitForBarrierTask |
| 626 | \li MultiBarrier<Limit> |
| 627 | \li Starts an asynchronous task waiting for the barrier to pass. |
| 628 | \endtable |
| 629 | */ |
| 630 | |
| 631 | /*! |
| 632 | \typealias Tasking::CustomTask::Task |
| 633 | |
| 634 | Type alias for the task type associated with the custom task's \c Adapter. |
| 635 | */ |
| 636 | |
| 637 | /*! |
| 638 | \typealias Tasking::CustomTask::Deleter |
| 639 | |
| 640 | Type alias for the task's type deleter associated with the custom task's \c Adapter. |
| 641 | */ |
| 642 | |
| 643 | /*! |
| 644 | \typealias Tasking::CustomTask::TaskSetupHandler |
| 645 | |
| 646 | Type alias for \c std::function<SetupResult(Task &)>. |
| 647 | |
| 648 | The \c TaskSetupHandler is an optional argument of a custom task element's constructor. |
| 649 | Any function with the above signature, when passed as a task setup handler, |
| 650 | will be called by the running task tree after the task is created and before it is started. |
| 651 | |
| 652 | Inside the body of the handler, you may configure the task according to your needs. |
| 653 | The additional parameters, including storages, may be passed to the handler |
| 654 | via the lambda capture. |
| 655 | You can decide dynamically whether the task should be started or skipped with |
| 656 | success or an error. |
| 657 | |
| 658 | \note Do not start the task inside the start handler by yourself. Leave it for TaskTree, |
| 659 | otherwise the behavior is undefined. |
| 660 | |
| 661 | The return value of the handler instructs the running task tree on how to proceed |
| 662 | after the handler's invocation is finished. The return value of SetupResult::Continue |
| 663 | instructs the task tree to continue running, that is, to execute the associated \c Task. |
| 664 | The return value of SetupResult::StopWithSuccess or SetupResult::StopWithError |
| 665 | instructs the task tree to skip the task's execution and finish it immediately with |
| 666 | success or an error, respectively. |
| 667 | |
| 668 | When the return type is either SetupResult::StopWithSuccess or SetupResult::StopWithError, |
| 669 | the task's done handler (if provided) isn't called afterwards. |
| 670 | |
| 671 | The constructor of a custom task accepts also functions in the shortened form of |
| 672 | \c std::function<void(Task &)>, that is, the return value is \c void. |
| 673 | In this case, it's assumed that the return value is SetupResult::Continue. |
| 674 | |
| 675 | \sa CustomTask(), TaskDoneHandler, GroupSetupHandler |
| 676 | */ |
| 677 | |
| 678 | /*! |
| 679 | \typealias Tasking::CustomTask::TaskDoneHandler |
| 680 | |
| 681 | Type alias for \c std::function<DoneResult(const Task &, DoneWith)> or DoneResult. |
| 682 | |
| 683 | The \c TaskDoneHandler is an optional argument of a custom task element's constructor. |
| 684 | Any function with the above signature, when passed as a task done handler, |
| 685 | will be called by the running task tree after the task execution finished and before |
| 686 | the final result of the execution is reported back to the parent group. |
| 687 | |
| 688 | Inside the body of the handler you may retrieve the final data from the finished task. |
| 689 | The additional parameters, including storages, may be passed to the handler |
| 690 | via the lambda capture. |
| 691 | It is also possible to decide dynamically whether the task should finish with its return |
| 692 | value, or the final result should be tweaked. |
| 693 | |
| 694 | The DoneWith argument is optional and your done handler may omit it. |
| 695 | When provided, it holds the info about the final result of a task that will be |
| 696 | reported to its parent. |
| 697 | |
| 698 | If you do not plan to read any data from the finished task, |
| 699 | you may omit the \c {const Task &} argument. |
| 700 | |
| 701 | The returned DoneResult value is optional and your handler may return \c void instead. |
| 702 | In this case, the final result of the task will be equal to the value indicated by |
| 703 | the DoneWith argument. When the handler returns the DoneResult value, |
| 704 | the task's final result may be tweaked inside the done handler's body by the returned value. |
| 705 | |
| 706 | For a \c TaskDoneHandler of the DoneResult type, no additional handling is executed, |
| 707 | and the task finishes unconditionally with the passed value of DoneResult. |
| 708 | |
| 709 | \sa CustomTask(), TaskSetupHandler, GroupDoneHandler |
| 710 | */ |
| 711 | |
| 712 | /*! |
| 713 | \fn template <typename Adapter> template <typename SetupHandler = TaskSetupHandler, typename DoneHandler = TaskDoneHandler> CustomTask<Adapter>::CustomTask(SetupHandler &&setup = TaskSetupHandler(), DoneHandler &&done = TaskDoneHandler(), CallDoneIf callDoneIf = CallDoneIf::SuccessOrError) |
| 714 | |
| 715 | Constructs a \c CustomTask instance and attaches the \a setup and \a done handlers to the task. |
| 716 | When the running task tree is about to start the task, |
| 717 | it instantiates the associated \l Task object, invokes \a setup handler with a \e reference |
| 718 | to the created task, and starts it. When the running task finishes, |
| 719 | the task tree invokes a \a done handler, with a \c const \e reference to the created task. |
| 720 | |
| 721 | The passed \a setup handler is of the \l TaskSetupHandler type. For example: |
| 722 | |
| 723 | \code |
| 724 | static void parseAndLog(const QString &input); |
| 725 | |
| 726 | ... |
| 727 | |
| 728 | const QString input = ...; |
| 729 | |
| 730 | const auto onFirstSetup = [input](ConcurrentCall<void> &task) { |
| 731 | if (input == "Skip") |
| 732 | return SetupResult::StopWithSuccess; // This task won't start, the next one will |
| 733 | if (input == "Error") |
| 734 | return SetupResult::StopWithError; // This task and the next one won't start |
| 735 | task.setConcurrentCallData(parseAndLog, input); |
| 736 | // This task will start, and the next one will start after this one finished with success |
| 737 | return SetupResult::Continue; |
| 738 | }; |
| 739 | |
| 740 | const auto onSecondSetup = [input](ConcurrentCall<void> &task) { |
| 741 | task.setConcurrentCallData(parseAndLog, input); |
| 742 | }; |
| 743 | |
| 744 | const Group group { |
| 745 | ConcurrentCallTask<void>(onFirstSetup), |
| 746 | ConcurrentCallTask<void>(onSecondSetup) |
| 747 | }; |
| 748 | \endcode |
| 749 | |
| 750 | The \a done handler is of the \l TaskDoneHandler type. |
| 751 | By default, the \a done handler is invoked whenever the task finishes. |
| 752 | Pass a non-default value for the \a callDoneIf argument when you want the handler to be called |
| 753 | only on a successful or failed execution. |
| 754 | |
| 755 | \sa TaskSetupHandler, TaskDoneHandler |
| 756 | */ |
| 757 | |
| 758 | /*! |
| 759 | \enum Tasking::WorkflowPolicy |
| 760 | |
| 761 | This enum describes the possible behavior of the Group element when any group's child task |
| 762 | finishes its execution. It's also used when the running Group is canceled. |
| 763 | |
| 764 | \value StopOnError |
| 765 | Default. Corresponds to the stopOnError global element. |
| 766 | If any child task finishes with an error, the group stops and finishes with an error. |
| 767 | If all child tasks finished with success, the group finishes with success. |
| 768 | If a group is empty, it finishes with success. |
| 769 | \value ContinueOnError |
| 770 | Corresponds to the continueOnError global element. |
| 771 | Similar to stopOnError, but in case any child finishes with an error, |
| 772 | the execution continues until all tasks finish, and the group reports an error |
| 773 | afterwards, even when some other tasks in the group finished with success. |
| 774 | If all child tasks finish successfully, the group finishes with success. |
| 775 | If a group is empty, it finishes with success. |
| 776 | \value StopOnSuccess |
| 777 | Corresponds to the stopOnSuccess global element. |
| 778 | If any child task finishes with success, the group stops and finishes with success. |
| 779 | If all child tasks finished with an error, the group finishes with an error. |
| 780 | If a group is empty, it finishes with an error. |
| 781 | \value ContinueOnSuccess |
| 782 | Corresponds to the continueOnSuccess global element. |
| 783 | Similar to stopOnSuccess, but in case any child finishes successfully, |
| 784 | the execution continues until all tasks finish, and the group reports success |
| 785 | afterwards, even when some other tasks in the group finished with an error. |
| 786 | If all child tasks finish with an error, the group finishes with an error. |
| 787 | If a group is empty, it finishes with an error. |
| 788 | \value StopOnSuccessOrError |
| 789 | Corresponds to the stopOnSuccessOrError global element. |
| 790 | The group starts as many tasks as it can. When any task finishes, |
| 791 | the group stops and reports the task's result. |
| 792 | Useful only in parallel mode. |
| 793 | In sequential mode, only the first task is started, and when finished, |
| 794 | the group finishes too, so the other tasks are always skipped. |
| 795 | If a group is empty, it finishes with an error. |
| 796 | \value FinishAllAndSuccess |
| 797 | Corresponds to the finishAllAndSuccess global element. |
| 798 | The group executes all tasks and ignores their return results. When all |
| 799 | tasks finished, the group finishes with success. |
| 800 | If a group is empty, it finishes with success. |
| 801 | \value FinishAllAndError |
| 802 | Corresponds to the finishAllAndError global element. |
| 803 | The group executes all tasks and ignores their return results. When all |
| 804 | tasks finished, the group finishes with an error. |
| 805 | If a group is empty, it finishes with an error. |
| 806 | |
| 807 | Whenever a child task's result causes the Group to stop, that is, |
| 808 | in case of StopOnError, StopOnSuccess, or StopOnSuccessOrError policies, |
| 809 | the Group cancels the other running child tasks (if any - for example in parallel mode), |
| 810 | and skips executing tasks it has not started yet (for example, in the sequential mode - |
| 811 | those, that are placed after the failed task). Both canceling and skipping child tasks |
| 812 | may happen when parallelLimit() is used. |
| 813 | |
| 814 | The table below summarizes the differences between various workflow policies: |
| 815 | |
| 816 | \table |
| 817 | \header |
| 818 | \li \l WorkflowPolicy |
| 819 | \li Executes all child tasks |
| 820 | \li Result |
| 821 | \li Result when the group is empty |
| 822 | \row |
| 823 | \li StopOnError |
| 824 | \li Stops when any child task finished with an error and reports an error |
| 825 | \li An error when at least one child task failed, success otherwise |
| 826 | \li Success |
| 827 | \row |
| 828 | \li ContinueOnError |
| 829 | \li Yes |
| 830 | \li An error when at least one child task failed, success otherwise |
| 831 | \li Success |
| 832 | \row |
| 833 | \li StopOnSuccess |
| 834 | \li Stops when any child task finished with success and reports success |
| 835 | \li Success when at least one child task succeeded, an error otherwise |
| 836 | \li An error |
| 837 | \row |
| 838 | \li ContinueOnSuccess |
| 839 | \li Yes |
| 840 | \li Success when at least one child task succeeded, an error otherwise |
| 841 | \li An error |
| 842 | \row |
| 843 | \li StopOnSuccessOrError |
| 844 | \li Stops when any child task finished and reports child task's result |
| 845 | \li Success or an error, depending on the finished child task's result |
| 846 | \li An error |
| 847 | \row |
| 848 | \li FinishAllAndSuccess |
| 849 | \li Yes |
| 850 | \li Success |
| 851 | \li Success |
| 852 | \row |
| 853 | \li FinishAllAndError |
| 854 | \li Yes |
| 855 | \li An error |
| 856 | \li An error |
| 857 | \endtable |
| 858 | |
| 859 | If a child of a group is also a group, the child group runs its tasks according to its own |
| 860 | workflow policy. When a parent group stops the running child group because |
| 861 | of parent group's workflow policy, that is, when the StopOnError, StopOnSuccess, |
| 862 | or StopOnSuccessOrError policy was used for the parent, |
| 863 | the child group's result is reported according to the |
| 864 | \b Result column and to the \b {child group's workflow policy} row in the table above. |
| 865 | */ |
| 866 | |
| 867 | /*! |
| 868 | \variable Tasking::nullItem |
| 869 | |
| 870 | A convenient global group's element indicating a no-op item. |
| 871 | |
| 872 | This is useful in conditional expressions to indicate the absence of an optional element: |
| 873 | |
| 874 | \code |
| 875 | const ExecutableItem task = ...; |
| 876 | const std::optional<ExecutableItem> optionalTask = ...; |
| 877 | |
| 878 | Group group { |
| 879 | task, |
| 880 | optionalTask ? *optionalTask : nullItem |
| 881 | }; |
| 882 | \endcode |
| 883 | */ |
| 884 | |
| 885 | /*! |
| 886 | \variable Tasking::successItem |
| 887 | |
| 888 | A convenient global executable element containing an empty, successful, synchronous task. |
| 889 | |
| 890 | This is useful in if-statements to indicate that a branch ends with success: |
| 891 | |
| 892 | \code |
| 893 | const ExecutableItem conditionalTask = ...; |
| 894 | |
| 895 | Group group { |
| 896 | stopOnDone, |
| 897 | If (conditionalTask) >> Then { |
| 898 | ... |
| 899 | } >> Else { |
| 900 | successItem |
| 901 | }, |
| 902 | nextTask |
| 903 | }; |
| 904 | \endcode |
| 905 | |
| 906 | In the above example, if the \c conditionalTask finishes with an error, the \c Else branch |
| 907 | is chosen, which finishes immediately with success. This causes the \c nextTask to be skipped |
| 908 | (because of the stopOnDone workflow policy of the \c group) |
| 909 | and the \c group finishes with success. |
| 910 | |
| 911 | \sa errorItem |
| 912 | */ |
| 913 | |
| 914 | /*! |
| 915 | \variable Tasking::errorItem |
| 916 | |
| 917 | A convenient global executable element containing an empty, erroneous, synchronous task. |
| 918 | |
| 919 | This is useful in if-statements to indicate that a branch ends with an error: |
| 920 | |
| 921 | \code |
| 922 | const ExecutableItem conditionalTask = ...; |
| 923 | |
| 924 | Group group { |
| 925 | stopOnError, |
| 926 | If (conditionalTask) >> Then { |
| 927 | ... |
| 928 | } >> Else { |
| 929 | errorItem |
| 930 | }, |
| 931 | nextTask |
| 932 | }; |
| 933 | \endcode |
| 934 | |
| 935 | In the above example, if the \c conditionalTask finishes with an error, the \c Else branch |
| 936 | is chosen, which finishes immediately with an error. This causes the \c nextTask to be skipped |
| 937 | (because of the stopOnError workflow policy of the \c group) |
| 938 | and the \c group finishes with an error. |
| 939 | |
| 940 | \sa successItem |
| 941 | */ |
| 942 | |
| 943 | /*! |
| 944 | \variable Tasking::sequential |
| 945 | A convenient global group's element describing the sequential execution mode. |
| 946 | |
| 947 | This is the default execution mode of the Group element. |
| 948 | |
| 949 | When a Group has no execution mode, it runs in the sequential mode. |
| 950 | All the direct child tasks of a group are started in a chain, so that when one task finishes, |
| 951 | the next one starts. This enables you to pass the results from the previous task |
| 952 | as input to the next task before it starts. This mode guarantees that the next task |
| 953 | is started only after the previous task finishes. |
| 954 | |
| 955 | \sa parallel, parallelLimit() |
| 956 | */ |
| 957 | |
| 958 | /*! |
| 959 | \variable Tasking::parallel |
| 960 | A convenient global group's element describing the parallel execution mode. |
| 961 | |
| 962 | All the direct child tasks of a group are started after the group is started, |
| 963 | without waiting for the previous child tasks to finish. |
| 964 | In this mode, all child tasks run simultaneously. |
| 965 | |
| 966 | \sa sequential, parallelLimit() |
| 967 | */ |
| 968 | |
| 969 | /*! |
| 970 | \variable Tasking::parallelIdealThreadCountLimit |
| 971 | A convenient global group's element describing the parallel execution mode with a limited |
| 972 | number of tasks running simultanously. The limit is equal to the ideal number of threads |
| 973 | excluding the calling thread. |
| 974 | |
| 975 | This is a shortcut to: |
| 976 | \code |
| 977 | parallelLimit(qMax(QThread::idealThreadCount() - 1, 1)) |
| 978 | \endcode |
| 979 | |
| 980 | \sa parallel, parallelLimit() |
| 981 | */ |
| 982 | |
| 983 | /*! |
| 984 | \variable Tasking::stopOnError |
| 985 | A convenient global group's element describing the StopOnError workflow policy. |
| 986 | |
| 987 | This is the default workflow policy of the Group element. |
| 988 | */ |
| 989 | |
| 990 | /*! |
| 991 | \variable Tasking::continueOnError |
| 992 | A convenient global group's element describing the ContinueOnError workflow policy. |
| 993 | */ |
| 994 | |
| 995 | /*! |
| 996 | \variable Tasking::stopOnSuccess |
| 997 | A convenient global group's element describing the StopOnSuccess workflow policy. |
| 998 | */ |
| 999 | |
| 1000 | /*! |
| 1001 | \variable Tasking::continueOnSuccess |
| 1002 | A convenient global group's element describing the ContinueOnSuccess workflow policy. |
| 1003 | */ |
| 1004 | |
| 1005 | /*! |
| 1006 | \variable Tasking::stopOnSuccessOrError |
| 1007 | A convenient global group's element describing the StopOnSuccessOrError workflow policy. |
| 1008 | */ |
| 1009 | |
| 1010 | /*! |
| 1011 | \variable Tasking::finishAllAndSuccess |
| 1012 | A convenient global group's element describing the FinishAllAndSuccess workflow policy. |
| 1013 | */ |
| 1014 | |
| 1015 | /*! |
| 1016 | \variable Tasking::finishAllAndError |
| 1017 | A convenient global group's element describing the FinishAllAndError workflow policy. |
| 1018 | */ |
| 1019 | |
| 1020 | /*! |
| 1021 | \enum Tasking::SetupResult |
| 1022 | |
| 1023 | This enum is optionally returned from the group's or task's setup handler function. |
| 1024 | It instructs the running task tree on how to proceed after the setup handler's execution |
| 1025 | finished. |
| 1026 | \value Continue |
| 1027 | Default. The group's or task's execution continues normally. |
| 1028 | When a group's or task's setup handler returns void, it's assumed that |
| 1029 | it returned Continue. |
| 1030 | \value StopWithSuccess |
| 1031 | The group's or task's execution stops immediately with success. |
| 1032 | When returned from the group's setup handler, all child tasks are skipped, |
| 1033 | and the group's onGroupDone() handler is invoked with DoneWith::Success. |
| 1034 | The group reports success to its parent. The group's workflow policy is ignored. |
| 1035 | When returned from the task's setup handler, the task isn't started, |
| 1036 | its done handler isn't invoked, and the task reports success to its parent. |
| 1037 | \value StopWithError |
| 1038 | The group's or task's execution stops immediately with an error. |
| 1039 | When returned from the group's setup handler, all child tasks are skipped, |
| 1040 | and the group's onGroupDone() handler is invoked with DoneWith::Error. |
| 1041 | The group reports an error to its parent. The group's workflow policy is ignored. |
| 1042 | When returned from the task's setup handler, the task isn't started, |
| 1043 | its error handler isn't invoked, and the task reports an error to its parent. |
| 1044 | */ |
| 1045 | |
| 1046 | /*! |
| 1047 | \enum Tasking::DoneResult |
| 1048 | |
| 1049 | This enum is optionally returned from the group's or task's done handler function. |
| 1050 | When the done handler doesn't return any value, that is, its return type is \c void, |
| 1051 | its final return value is automatically deduced by the running task tree and reported |
| 1052 | to its parent group. |
| 1053 | |
| 1054 | When the done handler returns the DoneResult, you can tweak the final return value |
| 1055 | inside the handler. |
| 1056 | |
| 1057 | When the DoneResult is returned by the group's done handler, the group's workflow policy |
| 1058 | is ignored. |
| 1059 | |
| 1060 | This enum is also used inside the TaskInterface::done() signal and it indicates whether |
| 1061 | the task finished with success or an error. |
| 1062 | |
| 1063 | \value Success |
| 1064 | The group's or task's execution ends with success. |
| 1065 | \value Error |
| 1066 | The group's or task's execution ends with an error. |
| 1067 | */ |
| 1068 | |
| 1069 | /*! |
| 1070 | \enum Tasking::DoneWith |
| 1071 | |
| 1072 | This enum is an optional argument for the group's or task's done handler. |
| 1073 | It indicates whether the group or task finished with success or an error, or it was canceled. |
| 1074 | |
| 1075 | It is also used as an argument inside the TaskTree::done() signal, |
| 1076 | indicating the final result of the TaskTree execution. |
| 1077 | |
| 1078 | \value Success |
| 1079 | The group's or task's execution ended with success. |
| 1080 | \value Error |
| 1081 | The group's or task's execution ended with an error. |
| 1082 | \value Cancel |
| 1083 | The group's or task's execution was canceled. This happens when the user calls |
| 1084 | TaskTree::cancel() for the running task tree or when the group's workflow policy |
| 1085 | results in canceling some of its running children. |
| 1086 | Tweaking the done handler's final result by returning Tasking::DoneResult from |
| 1087 | the handler is no-op when the group's or task's execution was canceled. |
| 1088 | */ |
| 1089 | |
| 1090 | /*! |
| 1091 | \enum Tasking::CallDoneIf |
| 1092 | |
| 1093 | This enum is an optional argument for the \l onGroupDone() element or custom task's constructor. |
| 1094 | It instructs the task tree on when the group's or task's done handler should be invoked. |
| 1095 | |
| 1096 | \value SuccessOrError |
| 1097 | The done handler is always invoked. |
| 1098 | \value Success |
| 1099 | The done handler is invoked only after successful execution, |
| 1100 | that is, when DoneWith::Success. |
| 1101 | \value Error |
| 1102 | The done handler is invoked only after failed execution, |
| 1103 | that is, when DoneWith::Error or when DoneWith::Cancel. |
| 1104 | */ |
| 1105 | |
| 1106 | /*! |
| 1107 | \typealias Tasking::GroupItem::GroupSetupHandler |
| 1108 | |
| 1109 | Type alias for \c std::function<SetupResult()>. |
| 1110 | |
| 1111 | The \c GroupSetupHandler is an argument of the onGroupSetup() element. |
| 1112 | Any function with the above signature, when passed as a group setup handler, |
| 1113 | will be called by the running task tree when the group execution starts. |
| 1114 | |
| 1115 | The return value of the handler instructs the running group on how to proceed |
| 1116 | after the handler's invocation is finished. The default return value of SetupResult::Continue |
| 1117 | instructs the group to continue running, that is, to start executing its child tasks. |
| 1118 | The return value of SetupResult::StopWithSuccess or SetupResult::StopWithError |
| 1119 | instructs the group to skip the child tasks' execution and finish immediately with |
| 1120 | success or an error, respectively. |
| 1121 | |
| 1122 | When the return type is either SetupResult::StopWithSuccess or SetupResult::StopWithError, |
| 1123 | the group's done handler (if provided) is called synchronously immediately afterwards. |
| 1124 | |
| 1125 | \note Even if the group setup handler returns StopWithSuccess or StopWithError, |
| 1126 | the group's done handler is invoked. This behavior differs from that of task done handler |
| 1127 | and might change in the future. |
| 1128 | |
| 1129 | The onGroupSetup() element accepts also functions in the shortened form of |
| 1130 | \c std::function<void()>, that is, the return value is \c void. |
| 1131 | In this case, it's assumed that the return value is SetupResult::Continue. |
| 1132 | |
| 1133 | \sa onGroupSetup(), GroupDoneHandler, CustomTask::TaskSetupHandler |
| 1134 | */ |
| 1135 | |
| 1136 | /*! |
| 1137 | \typealias Tasking::GroupItem::GroupDoneHandler |
| 1138 | |
| 1139 | Type alias for \c std::function<DoneResult(DoneWith)> or DoneResult. |
| 1140 | |
| 1141 | The \c GroupDoneHandler is an argument of the onGroupDone() element. |
| 1142 | Any function with the above signature, when passed as a group done handler, |
| 1143 | will be called by the running task tree when the group execution ends. |
| 1144 | |
| 1145 | The DoneWith argument is optional and your done handler may omit it. |
| 1146 | When provided, it holds the info about the final result of a group that will be |
| 1147 | reported to its parent. |
| 1148 | |
| 1149 | The returned DoneResult value is optional and your handler may return \c void instead. |
| 1150 | In this case, the final result of the group will be equal to the value indicated by |
| 1151 | the DoneWith argument. When the handler returns the DoneResult value, |
| 1152 | the group's final result may be tweaked inside the done handler's body by the returned value. |
| 1153 | |
| 1154 | For a \c GroupDoneHandler of the DoneResult type, no additional handling is executed, |
| 1155 | and the group finishes unconditionally with the passed value of DoneResult, |
| 1156 | ignoring the group's workflow policy. |
| 1157 | |
| 1158 | \sa onGroupDone(), GroupSetupHandler, CustomTask::TaskDoneHandler |
| 1159 | */ |
| 1160 | |
| 1161 | /*! |
| 1162 | \fn template <typename Handler> GroupItem onGroupSetup(Handler &&handler) |
| 1163 | |
| 1164 | Constructs a group's element holding the group setup handler. |
| 1165 | The \a handler is invoked whenever the group starts. |
| 1166 | |
| 1167 | The passed \a handler is either of the \c std::function<SetupResult()> or the |
| 1168 | \c std::function<void()> type. For more information on a possible handler type, refer to |
| 1169 | \l {GroupItem::GroupSetupHandler}. |
| 1170 | |
| 1171 | When the \a handler is invoked, none of the group's child tasks are running yet. |
| 1172 | |
| 1173 | If a group contains the Storage elements, the \a handler is invoked |
| 1174 | after the storages are constructed, so that the \a handler may already |
| 1175 | perform some initial modifications to the active storages. |
| 1176 | |
| 1177 | \sa GroupItem::GroupSetupHandler, onGroupDone() |
| 1178 | */ |
| 1179 | |
| 1180 | /*! |
| 1181 | \fn template <typename Handler> GroupItem onGroupDone(Handler &&handler, CallDoneIf callDoneIf = CallDoneIf::SuccessOrError) |
| 1182 | |
| 1183 | Constructs a group's element holding the group done handler. |
| 1184 | By default, the \a handler is invoked whenever the group finishes. |
| 1185 | Pass a non-default value for the \a callDoneIf argument when you want the handler to be called |
| 1186 | only on a successful or failed execution. |
| 1187 | Depending on the group's workflow policy, this handler may also be called |
| 1188 | when the running group is canceled (e.g. when stopOnError element was used). |
| 1189 | |
| 1190 | The passed \a handler is of the \c std::function<DoneResult(DoneWith)> type. |
| 1191 | Optionally, each of the return DoneResult type or the argument DoneWith type may be omitted |
| 1192 | (that is, its return type may be \c void). For more information on a possible handler type, |
| 1193 | refer to \l {GroupItem::GroupDoneHandler}. |
| 1194 | |
| 1195 | When the \a handler is invoked, all of the group's child tasks are already finished. |
| 1196 | |
| 1197 | If a group contains the Storage elements, the \a handler is invoked |
| 1198 | before the storages are destructed, so that the \a handler may still |
| 1199 | perform a last read of the active storages' data. |
| 1200 | |
| 1201 | \sa GroupItem::GroupDoneHandler, onGroupSetup() |
| 1202 | */ |
| 1203 | |
| 1204 | /*! |
| 1205 | Constructs a group's element describing the \l{Execution Mode}{execution mode}. |
| 1206 | |
| 1207 | The execution mode element in a Group specifies how the direct child tasks of |
| 1208 | the Group are started. |
| 1209 | |
| 1210 | For convenience, when appropriate, the \l sequential or \l parallel global elements |
| 1211 | may be used instead. |
| 1212 | |
| 1213 | The \a limit defines the maximum number of direct child tasks running in parallel: |
| 1214 | |
| 1215 | \list |
| 1216 | \li When \a limit equals to 0, there is no limit, and all direct child tasks are started |
| 1217 | together, in the oder in which they appear in a group. This means the fully parallel |
| 1218 | execution, and the \l parallel element may be used instead. |
| 1219 | |
| 1220 | \li When \a limit equals to 1, it means that only one child task may run at the time. |
| 1221 | This means the sequential execution, and the \l sequential element may be used instead. |
| 1222 | In this case, child tasks run in chain, so the next child task starts after |
| 1223 | the previous child task has finished. |
| 1224 | |
| 1225 | \li When other positive number is passed as \a limit, the group's child tasks run |
| 1226 | in parallel, but with a limited number of tasks running simultanously. |
| 1227 | The \e limit defines the maximum number of tasks running in parallel in a group. |
| 1228 | When the group is started, the first batch of tasks is started |
| 1229 | (the number of tasks in a batch equals to the passed \a limit, at most), |
| 1230 | while the others are kept waiting. When any running task finishes, |
| 1231 | the group starts the next remaining one, so that the \e limit of simultaneously |
| 1232 | running tasks inside a group isn't exceeded. This repeats on every child task's |
| 1233 | finish until all child tasks are started. This enables you to limit the maximum |
| 1234 | number of tasks that run simultaneously, for example if running too many processes might |
| 1235 | block the machine for a long time. |
| 1236 | \endlist |
| 1237 | |
| 1238 | In all execution modes, a group starts tasks in the oder in which they appear. |
| 1239 | |
| 1240 | If a child of a group is also a group, the child group runs its tasks according |
| 1241 | to its own execution mode. |
| 1242 | |
| 1243 | \sa sequential, parallel |
| 1244 | */ |
| 1245 | GroupItem ParallelLimitFunctor::operator()(int limit) const |
| 1246 | { |
| 1247 | return GroupItem({.m_groupHandler: {}, .m_parallelLimit: limit}); |
| 1248 | } |
| 1249 | |
| 1250 | /*! |
| 1251 | Constructs a group's \l {Workflow Policy} {workflow policy} element for a given \a policy. |
| 1252 | |
| 1253 | For convenience, global elements may be used instead. |
| 1254 | |
| 1255 | \sa stopOnError, continueOnError, stopOnSuccess, continueOnSuccess, stopOnSuccessOrError, |
| 1256 | finishAllAndSuccess, finishAllAndError, WorkflowPolicy |
| 1257 | */ |
| 1258 | GroupItem WorkflowPolicyFunctor::operator()(WorkflowPolicy policy) const |
| 1259 | { |
| 1260 | return GroupItem({.m_groupHandler: {}, .m_parallelLimit: {}, .m_workflowPolicy: policy}); |
| 1261 | } |
| 1262 | |
| 1263 | const ParallelLimitFunctor parallelLimit = ParallelLimitFunctor(); |
| 1264 | const WorkflowPolicyFunctor workflowPolicy = WorkflowPolicyFunctor(); |
| 1265 | |
| 1266 | const GroupItem sequential = parallelLimit(1); |
| 1267 | const GroupItem parallel = parallelLimit(0); |
| 1268 | const GroupItem parallelIdealThreadCountLimit = parallelLimit(qMax(a: QThread::idealThreadCount() - 1, b: 1)); |
| 1269 | |
| 1270 | const GroupItem stopOnError = workflowPolicy(WorkflowPolicy::StopOnError); |
| 1271 | const GroupItem continueOnError = workflowPolicy(WorkflowPolicy::ContinueOnError); |
| 1272 | const GroupItem stopOnSuccess = workflowPolicy(WorkflowPolicy::StopOnSuccess); |
| 1273 | const GroupItem continueOnSuccess = workflowPolicy(WorkflowPolicy::ContinueOnSuccess); |
| 1274 | const GroupItem stopOnSuccessOrError = workflowPolicy(WorkflowPolicy::StopOnSuccessOrError); |
| 1275 | const GroupItem finishAllAndSuccess = workflowPolicy(WorkflowPolicy::FinishAllAndSuccess); |
| 1276 | const GroupItem finishAllAndError = workflowPolicy(WorkflowPolicy::FinishAllAndError); |
| 1277 | |
| 1278 | // Keep below the above in order to avoid static initialization fiasco. |
| 1279 | const GroupItem nullItem = GroupItem({}); |
| 1280 | const ExecutableItem successItem = Group { finishAllAndSuccess }; |
| 1281 | const ExecutableItem errorItem = Group { finishAllAndError }; |
| 1282 | |
| 1283 | // Please note the thread_local keyword below guarantees a separate instance per thread. |
| 1284 | // The s_activeTaskTrees is currently used internally only and is not exposed in the public API. |
| 1285 | // It serves for withLog() implementation now. Add a note here when a new usage is introduced. |
| 1286 | static thread_local QList<TaskTree *> s_activeTaskTrees = {}; |
| 1287 | |
| 1288 | static TaskTree *activeTaskTree() |
| 1289 | { |
| 1290 | QT_ASSERT(s_activeTaskTrees.size(), return nullptr); |
| 1291 | return s_activeTaskTrees.back(); |
| 1292 | } |
| 1293 | |
| 1294 | DoneResult toDoneResult(bool success) |
| 1295 | { |
| 1296 | return success ? DoneResult::Success : DoneResult::Error; |
| 1297 | } |
| 1298 | |
| 1299 | static SetupResult toSetupResult(bool success) |
| 1300 | { |
| 1301 | return success ? SetupResult::StopWithSuccess : SetupResult::StopWithError; |
| 1302 | } |
| 1303 | |
| 1304 | static DoneResult toDoneResult(DoneWith doneWith) |
| 1305 | { |
| 1306 | return doneWith == DoneWith::Success ? DoneResult::Success : DoneResult::Error; |
| 1307 | } |
| 1308 | |
| 1309 | static DoneWith toDoneWith(DoneResult result) |
| 1310 | { |
| 1311 | return result == DoneResult::Success ? DoneWith::Success : DoneWith::Error; |
| 1312 | } |
| 1313 | |
| 1314 | class LoopThreadData |
| 1315 | { |
| 1316 | Q_DISABLE_COPY_MOVE(LoopThreadData) |
| 1317 | |
| 1318 | public: |
| 1319 | LoopThreadData() = default; |
| 1320 | void pushIteration(int index) |
| 1321 | { |
| 1322 | m_activeLoopStack.push_back(t: index); |
| 1323 | } |
| 1324 | void popIteration() |
| 1325 | { |
| 1326 | QT_ASSERT(m_activeLoopStack.size(), return); |
| 1327 | m_activeLoopStack.pop_back(); |
| 1328 | } |
| 1329 | int iteration() const |
| 1330 | { |
| 1331 | QT_ASSERT(m_activeLoopStack.size(), qWarning( |
| 1332 | "The referenced loop is not reachable in the running tree. " |
| 1333 | "A -1 will be returned which might lead to a crash in the calling code. " |
| 1334 | "It is possible that no loop was added to the tree, " |
| 1335 | "or the loop is not reachable from where it is referenced." ); return -1); |
| 1336 | return m_activeLoopStack.last(); |
| 1337 | } |
| 1338 | |
| 1339 | private: |
| 1340 | QList<int> m_activeLoopStack; |
| 1341 | }; |
| 1342 | |
| 1343 | class LoopData |
| 1344 | { |
| 1345 | public: |
| 1346 | LoopThreadData &threadData() { |
| 1347 | QMutexLocker lock(&m_threadDataMutex); |
| 1348 | return m_threadDataMap.try_emplace(k: QThread::currentThread()).first->second; |
| 1349 | } |
| 1350 | |
| 1351 | const std::optional<int> m_loopCount = {}; |
| 1352 | const Loop::ValueGetter m_valueGetter = {}; |
| 1353 | const Loop::Condition m_condition = {}; |
| 1354 | QMutex m_threadDataMutex = {}; |
| 1355 | // Use std::map on purpose, so that it doesn't invalidate references on modifications. |
| 1356 | // Don't optimize it by using std::unordered_map. |
| 1357 | std::map<QThread *, LoopThreadData> m_threadDataMap = {}; |
| 1358 | }; |
| 1359 | |
| 1360 | Loop::Loop() |
| 1361 | : m_loopData(new LoopData) |
| 1362 | {} |
| 1363 | |
| 1364 | Loop::Loop(int count, const ValueGetter &valueGetter) |
| 1365 | : m_loopData(new LoopData{.m_loopCount: count, .m_valueGetter: valueGetter}) |
| 1366 | {} |
| 1367 | |
| 1368 | Loop::Loop(const Condition &condition) |
| 1369 | : m_loopData(new LoopData{.m_loopCount: {}, .m_valueGetter: {}, .m_condition: condition}) |
| 1370 | {} |
| 1371 | |
| 1372 | int Loop::iteration() const |
| 1373 | { |
| 1374 | return m_loopData->threadData().iteration(); |
| 1375 | } |
| 1376 | |
| 1377 | const void *Loop::valuePtr() const |
| 1378 | { |
| 1379 | return m_loopData->m_valueGetter(iteration()); |
| 1380 | } |
| 1381 | |
| 1382 | using StoragePtr = void *; |
| 1383 | |
| 1384 | static constexpr QLatin1StringView s_activeStorageWarning = |
| 1385 | "The referenced storage is not reachable in the running tree. " |
| 1386 | "A nullptr will be returned which might lead to a crash in the calling code. " |
| 1387 | "It is possible that no storage was added to the tree, " |
| 1388 | "or the storage is not reachable from where it is referenced."_L1 ; |
| 1389 | |
| 1390 | class StorageThreadData |
| 1391 | { |
| 1392 | Q_DISABLE_COPY_MOVE(StorageThreadData) |
| 1393 | |
| 1394 | public: |
| 1395 | StorageThreadData() = default; |
| 1396 | void pushStorage(StoragePtr storagePtr) |
| 1397 | { |
| 1398 | m_activeStorageStack.push_back(t: {storagePtr, activeTaskTree()}); |
| 1399 | } |
| 1400 | void popStorage() |
| 1401 | { |
| 1402 | QT_ASSERT(m_activeStorageStack.size(), return); |
| 1403 | m_activeStorageStack.pop_back(); |
| 1404 | } |
| 1405 | StoragePtr activeStorage() const |
| 1406 | { |
| 1407 | QT_ASSERT(m_activeStorageStack.size(), |
| 1408 | qWarning().noquote() << s_activeStorageWarning; return nullptr); |
| 1409 | const QPair<StoragePtr, TaskTree *> &top = m_activeStorageStack.last(); |
| 1410 | QT_ASSERT(top.second == activeTaskTree(), |
| 1411 | qWarning().noquote() << s_activeStorageWarning; return nullptr); |
| 1412 | return top.first; |
| 1413 | } |
| 1414 | |
| 1415 | private: |
| 1416 | QList<QPair<StoragePtr, TaskTree *>> m_activeStorageStack; |
| 1417 | }; |
| 1418 | |
| 1419 | class StorageData |
| 1420 | { |
| 1421 | public: |
| 1422 | StorageThreadData &threadData() { |
| 1423 | QMutexLocker lock(&m_threadDataMutex); |
| 1424 | return m_threadDataMap.try_emplace(k: QThread::currentThread()).first->second; |
| 1425 | } |
| 1426 | |
| 1427 | const StorageBase::StorageConstructor m_constructor = {}; |
| 1428 | const StorageBase::StorageDestructor m_destructor = {}; |
| 1429 | QMutex m_threadDataMutex = {}; |
| 1430 | // Use std::map on purpose, so that it doesn't invalidate references on modifications. |
| 1431 | // Don't optimize it by using std::unordered_map. |
| 1432 | std::map<QThread *, StorageThreadData> m_threadDataMap = {}; |
| 1433 | }; |
| 1434 | |
| 1435 | StorageBase::StorageBase(const StorageConstructor &ctor, const StorageDestructor &dtor) |
| 1436 | : m_storageData(new StorageData{.m_constructor: ctor, .m_destructor: dtor}) |
| 1437 | {} |
| 1438 | |
| 1439 | void *StorageBase::activeStorageVoid() const |
| 1440 | { |
| 1441 | return m_storageData->threadData().activeStorage(); |
| 1442 | } |
| 1443 | |
| 1444 | void GroupItem::addChildren(const QList<GroupItem> &children) |
| 1445 | { |
| 1446 | QT_ASSERT(m_type == Type::Group || m_type == Type::List, |
| 1447 | qWarning("Only Group or List may have children, skipping..." ); return); |
| 1448 | if (m_type == Type::List) { |
| 1449 | m_children.append(l: children); |
| 1450 | return; |
| 1451 | } |
| 1452 | for (const GroupItem &child : children) { |
| 1453 | switch (child.m_type) { |
| 1454 | case Type::List: |
| 1455 | addChildren(children: child.m_children); |
| 1456 | break; |
| 1457 | case Type::Group: |
| 1458 | m_children.append(t: child); |
| 1459 | break; |
| 1460 | case Type::GroupData: |
| 1461 | if (child.m_groupData.m_groupHandler.m_setupHandler) { |
| 1462 | QT_ASSERT(!m_groupData.m_groupHandler.m_setupHandler, |
| 1463 | qWarning("Group setup handler redefinition, overriding..." )); |
| 1464 | m_groupData.m_groupHandler.m_setupHandler |
| 1465 | = child.m_groupData.m_groupHandler.m_setupHandler; |
| 1466 | } |
| 1467 | if (child.m_groupData.m_groupHandler.m_doneHandler) { |
| 1468 | QT_ASSERT(!m_groupData.m_groupHandler.m_doneHandler, |
| 1469 | qWarning("Group done handler redefinition, overriding..." )); |
| 1470 | m_groupData.m_groupHandler.m_doneHandler |
| 1471 | = child.m_groupData.m_groupHandler.m_doneHandler; |
| 1472 | m_groupData.m_groupHandler.m_callDoneIf |
| 1473 | = child.m_groupData.m_groupHandler.m_callDoneIf; |
| 1474 | } |
| 1475 | if (child.m_groupData.m_parallelLimit) { |
| 1476 | QT_ASSERT(!m_groupData.m_parallelLimit, |
| 1477 | qWarning("Group execution mode redefinition, overriding..." )); |
| 1478 | m_groupData.m_parallelLimit = child.m_groupData.m_parallelLimit; |
| 1479 | } |
| 1480 | if (child.m_groupData.m_workflowPolicy) { |
| 1481 | QT_ASSERT(!m_groupData.m_workflowPolicy, |
| 1482 | qWarning("Group workflow policy redefinition, overriding..." )); |
| 1483 | m_groupData.m_workflowPolicy = child.m_groupData.m_workflowPolicy; |
| 1484 | } |
| 1485 | if (child.m_groupData.m_loop) { |
| 1486 | QT_ASSERT(!m_groupData.m_loop, |
| 1487 | qWarning("Group loop redefinition, overriding..." )); |
| 1488 | m_groupData.m_loop = child.m_groupData.m_loop; |
| 1489 | } |
| 1490 | break; |
| 1491 | case Type::TaskHandler: |
| 1492 | QT_ASSERT(child.m_taskHandler.m_createHandler, |
| 1493 | qWarning("Task create handler can't be null, skipping..." ); return); |
| 1494 | m_children.append(t: child); |
| 1495 | break; |
| 1496 | case Type::Storage: |
| 1497 | // Check for duplicates, as can't have the same storage twice on the same level. |
| 1498 | for (const StorageBase &storage : child.m_storageList) { |
| 1499 | if (m_storageList.contains(t: storage)) { |
| 1500 | QT_ASSERT(false, qWarning("Can't add the same storage into one Group twice, " |
| 1501 | "skipping..." )); |
| 1502 | continue; |
| 1503 | } |
| 1504 | m_storageList.append(t: storage); |
| 1505 | } |
| 1506 | break; |
| 1507 | } |
| 1508 | } |
| 1509 | } |
| 1510 | |
| 1511 | /*! |
| 1512 | \class Tasking::ExecutableItem |
| 1513 | \inheaderfile solutions/tasking/tasktree.h |
| 1514 | \inmodule TaskingSolution |
| 1515 | \brief Base class for executable task items. |
| 1516 | \reentrant |
| 1517 | |
| 1518 | \c ExecutableItem provides an additional interface for items containing executable tasks. |
| 1519 | Use withTimeout() to attach a timeout to a task. |
| 1520 | Use withLog() to include debugging information about the task startup and the execution result. |
| 1521 | */ |
| 1522 | |
| 1523 | /*! |
| 1524 | Attaches \c TimeoutTask to a copy of \c this ExecutableItem, elapsing after \a timeout |
| 1525 | in milliseconds, with an optionally provided timeout \a handler, and returns the coupled item. |
| 1526 | |
| 1527 | When the ExecutableItem finishes before \a timeout passes, the returned item finishes |
| 1528 | immediately with the task's result. Otherwise, \a handler is invoked (if provided), |
| 1529 | the task is canceled, and the returned item finishes with an error. |
| 1530 | */ |
| 1531 | ExecutableItem ExecutableItem::withTimeout(milliseconds timeout, |
| 1532 | const std::function<void()> &handler) const |
| 1533 | { |
| 1534 | const auto onSetup = [timeout](milliseconds &timeoutData) { timeoutData = timeout; }; |
| 1535 | return Group { |
| 1536 | parallel, |
| 1537 | stopOnSuccessOrError, |
| 1538 | Group { |
| 1539 | finishAllAndError, |
| 1540 | handler ? TimeoutTask(onSetup, [handler] { handler(); }, CallDoneIf::Success) |
| 1541 | : TimeoutTask(onSetup) |
| 1542 | }, |
| 1543 | *this |
| 1544 | }; |
| 1545 | } |
| 1546 | |
| 1547 | static QString currentTime() { return QTime::currentTime().toString(f: Qt::ISODateWithMs); } |
| 1548 | |
| 1549 | static QString (const QString &logName) |
| 1550 | { |
| 1551 | return QString::fromLatin1(ba: "TASK TREE LOG [%1] \"%2\"" ).arg(args: currentTime(), args: logName); |
| 1552 | }; |
| 1553 | |
| 1554 | /*! |
| 1555 | Attaches a custom debug printout to a copy of \c this ExecutableItem, |
| 1556 | issued on task startup and after the task is finished, and returns the coupled item. |
| 1557 | |
| 1558 | The debug printout includes a timestamp of the event (start or finish) |
| 1559 | and \a logName to identify the specific task in the debug log. |
| 1560 | |
| 1561 | The finish printout contains the additional information whether the execution was |
| 1562 | synchronous or asynchronous, its result (the value described by the DoneWith enum), |
| 1563 | and the total execution time in milliseconds. |
| 1564 | */ |
| 1565 | ExecutableItem ExecutableItem::withLog(const QString &logName) const |
| 1566 | { |
| 1567 | struct LogStorage |
| 1568 | { |
| 1569 | time_point<system_clock, nanoseconds> start; |
| 1570 | int asyncCount = 0; |
| 1571 | }; |
| 1572 | const Storage<LogStorage> storage; |
| 1573 | return Group { |
| 1574 | storage, |
| 1575 | onGroupSetup(handler: [storage, logName] { |
| 1576 | storage->start = system_clock::now(); |
| 1577 | storage->asyncCount = activeTaskTree()->asyncCount(); |
| 1578 | qDebug().noquote().nospace() << logHeader(logName) << " started." ; |
| 1579 | }), |
| 1580 | *this, |
| 1581 | onGroupDone(handler: [storage, logName](DoneWith result) { |
| 1582 | const auto elapsed = duration_cast<milliseconds>(d: system_clock::now() - storage->start); |
| 1583 | const int asyncCountDiff = activeTaskTree()->asyncCount() - storage->asyncCount; |
| 1584 | QT_CHECK(asyncCountDiff >= 0); |
| 1585 | const QMetaEnum doneWithEnum = QMetaEnum::fromType<DoneWith>(); |
| 1586 | const QString syncType = asyncCountDiff ? QString::fromLatin1(ba: "asynchronously" ) |
| 1587 | : QString::fromLatin1(ba: "synchronously" ); |
| 1588 | qDebug().noquote().nospace() << logHeader(logName) << " finished " << syncType |
| 1589 | << " with " << doneWithEnum.valueToKey(value: int(result)) |
| 1590 | << " within " << elapsed.count() << "ms." ; |
| 1591 | }) |
| 1592 | }; |
| 1593 | } |
| 1594 | |
| 1595 | /*! |
| 1596 | \fn ExecutableItem ExecutableItem::operator!(const ExecutableItem &item) |
| 1597 | |
| 1598 | Returns an ExecutableItem with the DoneResult of \a item negated. |
| 1599 | |
| 1600 | If \a item reports DoneResult::Success, the returned item reports DoneResult::Error. |
| 1601 | If \a item reports DoneResult::Error, the returned item reports DoneResult::Success. |
| 1602 | |
| 1603 | The returned item is equivalent to: |
| 1604 | \code |
| 1605 | Group { |
| 1606 | item, |
| 1607 | onGroupDone([](DoneWith doneWith) { return toDoneResult(doneWith == DoneWith::Error); }) |
| 1608 | } |
| 1609 | \endcode |
| 1610 | |
| 1611 | \sa operator&&(), operator||() |
| 1612 | */ |
| 1613 | ExecutableItem operator!(const ExecutableItem &item) |
| 1614 | { |
| 1615 | return Group { |
| 1616 | item, |
| 1617 | onGroupDone(handler: [](DoneWith doneWith) { return toDoneResult(success: doneWith == DoneWith::Error); }) |
| 1618 | }; |
| 1619 | } |
| 1620 | |
| 1621 | /*! |
| 1622 | \fn ExecutableItem ExecutableItem::operator&&(const ExecutableItem &first, const ExecutableItem &second) |
| 1623 | |
| 1624 | Returns an ExecutableItem with \a first and \a second tasks merged with conjunction. |
| 1625 | |
| 1626 | Both \a first and \a second tasks execute in sequence. |
| 1627 | If both tasks report DoneResult::Success, the returned item reports DoneResult::Success. |
| 1628 | Otherwise, the returned item reports DoneResult::Error. |
| 1629 | |
| 1630 | The returned item is |
| 1631 | \l {https://en.wikipedia.org/wiki/Short-circuit_evaluation}{short-circuiting}: |
| 1632 | if the \a first task reports DoneResult::Error, the \a second task is skipped, |
| 1633 | and the returned item reports DoneResult::Error immediately. |
| 1634 | |
| 1635 | The returned item is equivalent to: |
| 1636 | \code |
| 1637 | Group { stopOnError, first, second } |
| 1638 | \endcode |
| 1639 | |
| 1640 | \note Parallel execution of conjunction in a short-circuit manner can be achieved with the |
| 1641 | following code: \c {Group { parallel, stopOnError, first, second }}. In this case: |
| 1642 | if the \e {first finished} task reports DoneResult::Error, |
| 1643 | the \e other task is canceled, and the group reports DoneResult::Error immediately. |
| 1644 | |
| 1645 | \sa operator||(), operator!() |
| 1646 | */ |
| 1647 | ExecutableItem operator&&(const ExecutableItem &first, const ExecutableItem &second) |
| 1648 | { |
| 1649 | return Group { stopOnError, first, second }; |
| 1650 | } |
| 1651 | |
| 1652 | /*! |
| 1653 | \fn ExecutableItem ExecutableItem::operator||(const ExecutableItem &first, const ExecutableItem &second) |
| 1654 | |
| 1655 | Returns an ExecutableItem with \a first and \a second tasks merged with disjunction. |
| 1656 | |
| 1657 | Both \a first and \a second tasks execute in sequence. |
| 1658 | If both tasks report DoneResult::Error, the returned item reports DoneResult::Error. |
| 1659 | Otherwise, the returned item reports DoneResult::Success. |
| 1660 | |
| 1661 | The returned item is |
| 1662 | \l {https://en.wikipedia.org/wiki/Short-circuit_evaluation}{short-circuiting}: |
| 1663 | if the \a first task reports DoneResult::Success, the \a second task is skipped, |
| 1664 | and the returned item reports DoneResult::Success immediately. |
| 1665 | |
| 1666 | The returned item is equivalent to: |
| 1667 | \code |
| 1668 | Group { stopOnSuccess, first, second } |
| 1669 | \endcode |
| 1670 | |
| 1671 | \note Parallel execution of disjunction in a short-circuit manner can be achieved with the |
| 1672 | following code: \c {Group { parallel, stopOnSuccess, first, second }}. In this case: |
| 1673 | if the \e {first finished} task reports DoneResult::Success, |
| 1674 | the \e other task is canceled, and the group reports DoneResult::Success immediately. |
| 1675 | |
| 1676 | \sa operator&&(), operator!() |
| 1677 | */ |
| 1678 | ExecutableItem operator||(const ExecutableItem &first, const ExecutableItem &second) |
| 1679 | { |
| 1680 | return Group { stopOnSuccess, first, second }; |
| 1681 | } |
| 1682 | |
| 1683 | /*! |
| 1684 | \fn ExecutableItem ExecutableItem::operator&&(const ExecutableItem &item, DoneResult result) |
| 1685 | \overload ExecutableItem::operator&&() |
| 1686 | |
| 1687 | Returns the \a item task if the \a result is DoneResult::Success; otherwise returns |
| 1688 | the \a item task with its done result tweaked to DoneResult::Error. |
| 1689 | |
| 1690 | The \c {task && DoneResult::Error} is an eqivalent to tweaking the task's done result |
| 1691 | into DoneResult::Error unconditionally. |
| 1692 | */ |
| 1693 | ExecutableItem operator&&(const ExecutableItem &item, DoneResult result) |
| 1694 | { |
| 1695 | if (result == DoneResult::Success) |
| 1696 | return item; |
| 1697 | return Group { finishAllAndError, item }; |
| 1698 | } |
| 1699 | |
| 1700 | /*! |
| 1701 | \fn ExecutableItem ExecutableItem::operator||(const ExecutableItem &item, DoneResult result) |
| 1702 | \overload ExecutableItem::operator||() |
| 1703 | |
| 1704 | Returns the \a item task if the \a result is DoneResult::Error; otherwise returns |
| 1705 | the \a item task with its done result tweaked to DoneResult::Success. |
| 1706 | |
| 1707 | The \c {task || DoneResult::Success} is an eqivalent to tweaking the task's done result |
| 1708 | into DoneResult::Success unconditionally. |
| 1709 | */ |
| 1710 | ExecutableItem operator||(const ExecutableItem &item, DoneResult result) |
| 1711 | { |
| 1712 | if (result == DoneResult::Error) |
| 1713 | return item; |
| 1714 | return Group { finishAllAndSuccess, item }; |
| 1715 | } |
| 1716 | |
| 1717 | ExecutableItem ExecutableItem::withCancelImpl( |
| 1718 | const std::function<void(QObject *, const std::function<void()> &)> &connectWrapper) const |
| 1719 | { |
| 1720 | const auto onSetup = [connectWrapper](Barrier &barrier) { |
| 1721 | connectWrapper(&barrier, [barrierPtr = &barrier] { barrierPtr->advance(); }); |
| 1722 | }; |
| 1723 | return Group { |
| 1724 | parallel, |
| 1725 | stopOnSuccessOrError, |
| 1726 | Group { |
| 1727 | finishAllAndError, |
| 1728 | BarrierTask(onSetup) |
| 1729 | }, |
| 1730 | *this |
| 1731 | }; |
| 1732 | } |
| 1733 | |
| 1734 | class TaskTreePrivate; |
| 1735 | class TaskNode; |
| 1736 | class RuntimeContainer; |
| 1737 | class RuntimeIteration; |
| 1738 | class RuntimeTask; |
| 1739 | |
| 1740 | class ExecutionContextActivator |
| 1741 | { |
| 1742 | public: |
| 1743 | ExecutionContextActivator(RuntimeIteration *iteration) { |
| 1744 | activateTaskTree(iteration); |
| 1745 | activateContext(iteration); |
| 1746 | } |
| 1747 | ExecutionContextActivator(RuntimeContainer *container) { |
| 1748 | activateTaskTree(container); |
| 1749 | activateContext(container); |
| 1750 | } |
| 1751 | ~ExecutionContextActivator() { |
| 1752 | for (int i = m_activeStorages.size() - 1; i >= 0; --i) // iterate in reverse order |
| 1753 | m_activeStorages[i].m_storageData->threadData().popStorage(); |
| 1754 | for (int i = m_activeLoops.size() - 1; i >= 0; --i) // iterate in reverse order |
| 1755 | m_activeLoops[i].m_loopData->threadData().popIteration(); |
| 1756 | QT_ASSERT(s_activeTaskTrees.size(), return); |
| 1757 | s_activeTaskTrees.pop_back(); |
| 1758 | } |
| 1759 | |
| 1760 | private: |
| 1761 | void activateTaskTree(RuntimeIteration *iteration); |
| 1762 | void activateTaskTree(RuntimeContainer *container); |
| 1763 | void activateContext(RuntimeIteration *iteration); |
| 1764 | void activateContext(RuntimeContainer *container); |
| 1765 | QList<Loop> m_activeLoops; |
| 1766 | QList<StorageBase> m_activeStorages; |
| 1767 | }; |
| 1768 | |
| 1769 | class ContainerNode |
| 1770 | { |
| 1771 | Q_DISABLE_COPY(ContainerNode) |
| 1772 | |
| 1773 | public: |
| 1774 | ContainerNode(ContainerNode &&other) = default; |
| 1775 | ContainerNode(TaskTreePrivate *taskTreePrivate, const GroupItem &task); |
| 1776 | |
| 1777 | TaskTreePrivate *const m_taskTreePrivate = nullptr; |
| 1778 | |
| 1779 | const GroupItem::GroupHandler m_groupHandler; |
| 1780 | const int m_parallelLimit = 1; |
| 1781 | const WorkflowPolicy m_workflowPolicy = WorkflowPolicy::StopOnError; |
| 1782 | const std::optional<Loop> m_loop; |
| 1783 | const QList<StorageBase> m_storageList; |
| 1784 | std::vector<TaskNode> m_children; |
| 1785 | const int m_taskCount = 0; |
| 1786 | }; |
| 1787 | |
| 1788 | class TaskNode |
| 1789 | { |
| 1790 | Q_DISABLE_COPY(TaskNode) |
| 1791 | |
| 1792 | public: |
| 1793 | TaskNode(TaskNode &&other) = default; |
| 1794 | TaskNode(TaskTreePrivate *taskTreePrivate, const GroupItem &task) |
| 1795 | : m_taskHandler(task.m_taskHandler) |
| 1796 | , m_container(taskTreePrivate, task) |
| 1797 | {} |
| 1798 | |
| 1799 | bool isTask() const { return bool(m_taskHandler.m_createHandler); } |
| 1800 | int taskCount() const { return isTask() ? 1 : m_container.m_taskCount; } |
| 1801 | |
| 1802 | const GroupItem::TaskHandler m_taskHandler; |
| 1803 | ContainerNode m_container; |
| 1804 | }; |
| 1805 | |
| 1806 | class TaskTreePrivate |
| 1807 | { |
| 1808 | Q_DISABLE_COPY_MOVE(TaskTreePrivate) |
| 1809 | |
| 1810 | public: |
| 1811 | explicit TaskTreePrivate(TaskTree *taskTree); |
| 1812 | ~TaskTreePrivate(); |
| 1813 | |
| 1814 | void start(); |
| 1815 | void stop(); |
| 1816 | void bumpAsyncCount(); |
| 1817 | void advanceProgress(int byValue); |
| 1818 | void emitDone(DoneWith result); |
| 1819 | void callSetupHandler(StorageBase storage, StoragePtr storagePtr) { |
| 1820 | callStorageHandler(storage, storagePtr, ptr: &StorageHandler::m_setupHandler); |
| 1821 | } |
| 1822 | void callDoneHandler(StorageBase storage, StoragePtr storagePtr) { |
| 1823 | callStorageHandler(storage, storagePtr, ptr: &StorageHandler::m_doneHandler); |
| 1824 | } |
| 1825 | struct StorageHandler { |
| 1826 | StorageBase::StorageHandler m_setupHandler = {}; |
| 1827 | StorageBase::StorageHandler m_doneHandler = {}; |
| 1828 | }; |
| 1829 | typedef StorageBase::StorageHandler StorageHandler::*HandlerPtr; // ptr to class member |
| 1830 | void callStorageHandler(StorageBase storage, StoragePtr storagePtr, HandlerPtr ptr) |
| 1831 | { |
| 1832 | const auto it = m_storageHandlers.constFind(key: storage); |
| 1833 | if (it == m_storageHandlers.constEnd()) |
| 1834 | return; |
| 1835 | const StorageHandler storageHandler = *it; |
| 1836 | if (storageHandler.*ptr) { |
| 1837 | GuardLocker locker(m_guard); |
| 1838 | (storageHandler.*ptr)(storagePtr); |
| 1839 | } |
| 1840 | } |
| 1841 | |
| 1842 | // Node related methods |
| 1843 | |
| 1844 | // If returned value != Continue, childDone() needs to be called in parent container (in caller) |
| 1845 | // in order to unwind properly. |
| 1846 | SetupResult start(RuntimeTask *node); |
| 1847 | void stop(RuntimeTask *node); |
| 1848 | bool invokeDoneHandler(RuntimeTask *node, DoneWith doneWith); |
| 1849 | |
| 1850 | // Container related methods |
| 1851 | |
| 1852 | SetupResult start(RuntimeContainer *container); |
| 1853 | SetupResult continueStart(RuntimeContainer *container, SetupResult startAction); |
| 1854 | SetupResult startChildren(RuntimeContainer *container); |
| 1855 | SetupResult childDone(RuntimeIteration *iteration, bool success); |
| 1856 | void stop(RuntimeContainer *container); |
| 1857 | bool invokeDoneHandler(RuntimeContainer *container, DoneWith doneWith); |
| 1858 | bool invokeLoopHandler(RuntimeContainer *container); |
| 1859 | |
| 1860 | template <typename Container, typename Handler, typename ...Args, |
| 1861 | typename ReturnType = std::invoke_result_t<Handler, Args...>> |
| 1862 | ReturnType invokeHandler(Container *container, Handler &&handler, Args &&...args) |
| 1863 | { |
| 1864 | ExecutionContextActivator activator(container); |
| 1865 | GuardLocker locker(m_guard); |
| 1866 | return std::invoke(std::forward<Handler>(handler), std::forward<Args>(args)...); |
| 1867 | } |
| 1868 | |
| 1869 | static int effectiveLoopCount(const std::optional<Loop> &loop) |
| 1870 | { |
| 1871 | return loop && loop->m_loopData->m_loopCount ? *loop->m_loopData->m_loopCount : 1; |
| 1872 | } |
| 1873 | |
| 1874 | TaskTree *q = nullptr; |
| 1875 | Guard m_guard; |
| 1876 | int m_progressValue = 0; |
| 1877 | int m_asyncCount = 0; |
| 1878 | QSet<StorageBase> m_storages; |
| 1879 | QHash<StorageBase, StorageHandler> m_storageHandlers; |
| 1880 | std::optional<TaskNode> m_root; |
| 1881 | std::unique_ptr<RuntimeTask> m_runtimeRoot; // Keep me last in order to destruct first |
| 1882 | }; |
| 1883 | |
| 1884 | static bool initialSuccessBit(WorkflowPolicy workflowPolicy) |
| 1885 | { |
| 1886 | switch (workflowPolicy) { |
| 1887 | case WorkflowPolicy::StopOnError: |
| 1888 | case WorkflowPolicy::ContinueOnError: |
| 1889 | case WorkflowPolicy::FinishAllAndSuccess: |
| 1890 | return true; |
| 1891 | case WorkflowPolicy::StopOnSuccess: |
| 1892 | case WorkflowPolicy::ContinueOnSuccess: |
| 1893 | case WorkflowPolicy::StopOnSuccessOrError: |
| 1894 | case WorkflowPolicy::FinishAllAndError: |
| 1895 | return false; |
| 1896 | } |
| 1897 | QT_CHECK(false); |
| 1898 | return false; |
| 1899 | } |
| 1900 | |
| 1901 | static bool isProgressive(RuntimeContainer *container); |
| 1902 | |
| 1903 | class RuntimeIteration |
| 1904 | { |
| 1905 | Q_DISABLE_COPY(RuntimeIteration) |
| 1906 | |
| 1907 | public: |
| 1908 | RuntimeIteration(int index, RuntimeContainer *container); |
| 1909 | ~RuntimeIteration(); |
| 1910 | std::optional<Loop> loop() const; |
| 1911 | void deleteChild(RuntimeTask *node); |
| 1912 | |
| 1913 | const int m_iterationIndex = 0; |
| 1914 | const bool m_isProgressive = true; |
| 1915 | RuntimeContainer *m_container = nullptr; |
| 1916 | int m_doneCount = 0; |
| 1917 | std::vector<std::unique_ptr<RuntimeTask>> m_children = {}; // Owning. |
| 1918 | }; |
| 1919 | |
| 1920 | class RuntimeContainer |
| 1921 | { |
| 1922 | Q_DISABLE_COPY(RuntimeContainer) |
| 1923 | |
| 1924 | public: |
| 1925 | RuntimeContainer(const ContainerNode &taskContainer, RuntimeTask *parentTask) |
| 1926 | : m_containerNode(taskContainer) |
| 1927 | , m_parentTask(parentTask) |
| 1928 | , m_storages(createStorages(container: taskContainer)) |
| 1929 | , m_successBit(initialSuccessBit(workflowPolicy: taskContainer.m_workflowPolicy)) |
| 1930 | , m_shouldIterate(taskContainer.m_loop) |
| 1931 | {} |
| 1932 | |
| 1933 | ~RuntimeContainer() |
| 1934 | { |
| 1935 | for (int i = m_containerNode.m_storageList.size() - 1; i >= 0; --i) { // iterate in reverse order |
| 1936 | const StorageBase storage = m_containerNode.m_storageList[i]; |
| 1937 | StoragePtr storagePtr = m_storages.value(i); |
| 1938 | if (m_callStorageDoneHandlersOnDestruction) |
| 1939 | m_containerNode.m_taskTreePrivate->callDoneHandler(storage, storagePtr); |
| 1940 | storage.m_storageData->m_destructor(storagePtr); |
| 1941 | } |
| 1942 | } |
| 1943 | |
| 1944 | static QList<StoragePtr> createStorages(const ContainerNode &container); |
| 1945 | bool isStarting() const { return m_startGuard.isLocked(); } |
| 1946 | RuntimeIteration *parentIteration() const; |
| 1947 | bool updateSuccessBit(bool success); |
| 1948 | void deleteFinishedIterations(); |
| 1949 | int progressiveLoopCount() const |
| 1950 | { |
| 1951 | return m_containerNode.m_taskTreePrivate->effectiveLoopCount(loop: m_containerNode.m_loop); |
| 1952 | } |
| 1953 | |
| 1954 | const ContainerNode &m_containerNode; // Not owning. |
| 1955 | RuntimeTask *m_parentTask = nullptr; // Not owning. |
| 1956 | const QList<StoragePtr> m_storages; // Owning. |
| 1957 | |
| 1958 | bool m_successBit = true; |
| 1959 | bool m_callStorageDoneHandlersOnDestruction = false; |
| 1960 | Guard m_startGuard; |
| 1961 | |
| 1962 | int m_iterationCount = 0; |
| 1963 | int m_nextToStart = 0; |
| 1964 | int m_runningChildren = 0; |
| 1965 | bool m_shouldIterate = true; |
| 1966 | std::vector<std::unique_ptr<RuntimeIteration>> m_iterations; // Owning. |
| 1967 | }; |
| 1968 | |
| 1969 | class RuntimeTask |
| 1970 | { |
| 1971 | public: |
| 1972 | ~RuntimeTask() |
| 1973 | { |
| 1974 | if (m_task) { |
| 1975 | // Ensures the running task's d'tor doesn't emit done() signal. QTCREATORBUG-30204. |
| 1976 | QObject::disconnect(sender: m_task.get(), signal: &TaskInterface::done, |
| 1977 | receiver: m_taskNode.m_container.m_taskTreePrivate->q, zero: nullptr); |
| 1978 | } |
| 1979 | } |
| 1980 | |
| 1981 | const TaskNode &m_taskNode; // Not owning. |
| 1982 | RuntimeIteration *m_parentIteration = nullptr; // Not owning. |
| 1983 | std::optional<RuntimeContainer> m_container = {}; // Owning. |
| 1984 | std::unique_ptr<TaskInterface> m_task = {}; // Owning. |
| 1985 | }; |
| 1986 | |
| 1987 | RuntimeIteration::~RuntimeIteration() = default; |
| 1988 | |
| 1989 | TaskTreePrivate::TaskTreePrivate(TaskTree *taskTree) |
| 1990 | : q(taskTree) {} |
| 1991 | TaskTreePrivate::~TaskTreePrivate() = default; |
| 1992 | |
| 1993 | static bool isProgressive(RuntimeContainer *container) |
| 1994 | { |
| 1995 | RuntimeIteration *iteration = container->m_parentTask->m_parentIteration; |
| 1996 | return iteration ? iteration->m_isProgressive : true; |
| 1997 | } |
| 1998 | |
| 1999 | void ExecutionContextActivator::activateTaskTree(RuntimeIteration *iteration) |
| 2000 | { |
| 2001 | activateTaskTree(container: iteration->m_container); |
| 2002 | } |
| 2003 | |
| 2004 | void ExecutionContextActivator::activateTaskTree(RuntimeContainer *container) |
| 2005 | { |
| 2006 | s_activeTaskTrees.push_back(t: container->m_containerNode.m_taskTreePrivate->q); |
| 2007 | } |
| 2008 | |
| 2009 | void ExecutionContextActivator::activateContext(RuntimeIteration *iteration) |
| 2010 | { |
| 2011 | std::optional<Loop> loop = iteration->loop(); |
| 2012 | if (loop) { |
| 2013 | loop->m_loopData->threadData().pushIteration(index: iteration->m_iterationIndex); |
| 2014 | m_activeLoops.append(t: *loop); |
| 2015 | } |
| 2016 | activateContext(container: iteration->m_container); |
| 2017 | } |
| 2018 | |
| 2019 | void ExecutionContextActivator::activateContext(RuntimeContainer *container) |
| 2020 | { |
| 2021 | const ContainerNode &containerNode = container->m_containerNode; |
| 2022 | for (int i = 0; i < containerNode.m_storageList.size(); ++i) { |
| 2023 | const StorageBase &storage = containerNode.m_storageList[i]; |
| 2024 | if (m_activeStorages.contains(t: storage)) |
| 2025 | continue; // Storage shadowing: The storage is already active, skipping it... |
| 2026 | m_activeStorages.append(t: storage); |
| 2027 | storage.m_storageData->threadData().pushStorage(storagePtr: container->m_storages.value(i)); |
| 2028 | } |
| 2029 | // Go to the parent after activating this storages so that storage shadowing works |
| 2030 | // in the direction from child to parent root. |
| 2031 | if (container->parentIteration()) |
| 2032 | activateContext(iteration: container->parentIteration()); |
| 2033 | } |
| 2034 | |
| 2035 | void TaskTreePrivate::start() |
| 2036 | { |
| 2037 | QT_ASSERT(m_root, return); |
| 2038 | QT_ASSERT(!m_runtimeRoot, return); |
| 2039 | m_asyncCount = 0; |
| 2040 | m_progressValue = 0; |
| 2041 | { |
| 2042 | GuardLocker locker(m_guard); |
| 2043 | emit q->started(); |
| 2044 | emit q->asyncCountChanged(count: m_asyncCount); |
| 2045 | emit q->progressValueChanged(value: m_progressValue); |
| 2046 | } |
| 2047 | // TODO: check storage handlers for not existing storages in tree |
| 2048 | for (auto it = m_storageHandlers.cbegin(); it != m_storageHandlers.cend(); ++it) { |
| 2049 | QT_ASSERT(m_storages.contains(it.key()), qWarning("The registered storage doesn't " |
| 2050 | "exist in task tree. Its handlers will never be called." )); |
| 2051 | } |
| 2052 | m_runtimeRoot.reset(p: new RuntimeTask{.m_taskNode: *m_root}); |
| 2053 | start(node: m_runtimeRoot.get()); |
| 2054 | bumpAsyncCount(); |
| 2055 | } |
| 2056 | |
| 2057 | void TaskTreePrivate::stop() |
| 2058 | { |
| 2059 | QT_ASSERT(m_root, return); |
| 2060 | if (!m_runtimeRoot) |
| 2061 | return; |
| 2062 | stop(node: m_runtimeRoot.get()); |
| 2063 | m_runtimeRoot.reset(); |
| 2064 | emitDone(result: DoneWith::Cancel); |
| 2065 | } |
| 2066 | |
| 2067 | void TaskTreePrivate::bumpAsyncCount() |
| 2068 | { |
| 2069 | if (!m_runtimeRoot) |
| 2070 | return; |
| 2071 | ++m_asyncCount; |
| 2072 | GuardLocker locker(m_guard); |
| 2073 | emit q->asyncCountChanged(count: m_asyncCount); |
| 2074 | } |
| 2075 | |
| 2076 | void TaskTreePrivate::advanceProgress(int byValue) |
| 2077 | { |
| 2078 | if (byValue == 0) |
| 2079 | return; |
| 2080 | QT_CHECK(byValue > 0); |
| 2081 | QT_CHECK(m_progressValue + byValue <= m_root->taskCount()); |
| 2082 | m_progressValue += byValue; |
| 2083 | GuardLocker locker(m_guard); |
| 2084 | emit q->progressValueChanged(value: m_progressValue); |
| 2085 | } |
| 2086 | |
| 2087 | void TaskTreePrivate::emitDone(DoneWith result) |
| 2088 | { |
| 2089 | QT_CHECK(m_progressValue == m_root->taskCount()); |
| 2090 | GuardLocker locker(m_guard); |
| 2091 | emit q->done(result); |
| 2092 | } |
| 2093 | |
| 2094 | RuntimeIteration::RuntimeIteration(int index, RuntimeContainer *container) |
| 2095 | : m_iterationIndex(index) |
| 2096 | , m_isProgressive(index < container->progressiveLoopCount() && isProgressive(container)) |
| 2097 | , m_container(container) |
| 2098 | {} |
| 2099 | |
| 2100 | std::optional<Loop> RuntimeIteration::loop() const |
| 2101 | { |
| 2102 | return m_container->m_containerNode.m_loop; |
| 2103 | } |
| 2104 | |
| 2105 | void RuntimeIteration::deleteChild(RuntimeTask *task) |
| 2106 | { |
| 2107 | const auto it = std::find_if(first: m_children.cbegin(), last: m_children.cend(), pred: [task](const auto &ptr) { |
| 2108 | return ptr.get() == task; |
| 2109 | }); |
| 2110 | if (it != m_children.cend()) |
| 2111 | m_children.erase(position: it); |
| 2112 | } |
| 2113 | |
| 2114 | static std::vector<TaskNode> createChildren(TaskTreePrivate *taskTreePrivate, |
| 2115 | const QList<GroupItem> &children) |
| 2116 | { |
| 2117 | std::vector<TaskNode> result; |
| 2118 | result.reserve(n: children.size()); |
| 2119 | for (const GroupItem &child : children) |
| 2120 | result.emplace_back(args&: taskTreePrivate, args: child); |
| 2121 | return result; |
| 2122 | } |
| 2123 | |
| 2124 | ContainerNode::ContainerNode(TaskTreePrivate *taskTreePrivate, const GroupItem &task) |
| 2125 | : m_taskTreePrivate(taskTreePrivate) |
| 2126 | , m_groupHandler(task.m_groupData.m_groupHandler) |
| 2127 | , m_parallelLimit(task.m_groupData.m_parallelLimit.value_or(u: 1)) |
| 2128 | , m_workflowPolicy(task.m_groupData.m_workflowPolicy.value_or(u: WorkflowPolicy::StopOnError)) |
| 2129 | , m_loop(task.m_groupData.m_loop) |
| 2130 | , m_storageList(task.m_storageList) |
| 2131 | , m_children(createChildren(taskTreePrivate, children: task.m_children)) |
| 2132 | , m_taskCount(std::accumulate(first: m_children.cbegin(), last: m_children.cend(), init: 0, |
| 2133 | binary_op: [](int r, const TaskNode &n) { return r + n.taskCount(); }) |
| 2134 | * taskTreePrivate->effectiveLoopCount(loop: m_loop)) |
| 2135 | { |
| 2136 | for (const StorageBase &storage : m_storageList) |
| 2137 | m_taskTreePrivate->m_storages << storage; |
| 2138 | } |
| 2139 | |
| 2140 | QList<StoragePtr> RuntimeContainer::createStorages(const ContainerNode &container) |
| 2141 | { |
| 2142 | QList<StoragePtr> storages; |
| 2143 | for (const StorageBase &storage : container.m_storageList) { |
| 2144 | StoragePtr storagePtr = storage.m_storageData->m_constructor(); |
| 2145 | storages.append(t: storagePtr); |
| 2146 | container.m_taskTreePrivate->callSetupHandler(storage, storagePtr); |
| 2147 | } |
| 2148 | return storages; |
| 2149 | } |
| 2150 | |
| 2151 | RuntimeIteration *RuntimeContainer::parentIteration() const |
| 2152 | { |
| 2153 | return m_parentTask->m_parentIteration; |
| 2154 | } |
| 2155 | |
| 2156 | bool RuntimeContainer::updateSuccessBit(bool success) |
| 2157 | { |
| 2158 | if (m_containerNode.m_workflowPolicy == WorkflowPolicy::FinishAllAndSuccess |
| 2159 | || m_containerNode.m_workflowPolicy == WorkflowPolicy::FinishAllAndError |
| 2160 | || m_containerNode.m_workflowPolicy == WorkflowPolicy::StopOnSuccessOrError) { |
| 2161 | if (m_containerNode.m_workflowPolicy == WorkflowPolicy::StopOnSuccessOrError) |
| 2162 | m_successBit = success; |
| 2163 | return m_successBit; |
| 2164 | } |
| 2165 | |
| 2166 | const bool donePolicy = m_containerNode.m_workflowPolicy == WorkflowPolicy::StopOnSuccess |
| 2167 | || m_containerNode.m_workflowPolicy == WorkflowPolicy::ContinueOnSuccess; |
| 2168 | m_successBit = donePolicy ? (m_successBit || success) : (m_successBit && success); |
| 2169 | return m_successBit; |
| 2170 | } |
| 2171 | |
| 2172 | void RuntimeContainer::deleteFinishedIterations() |
| 2173 | { |
| 2174 | for (auto it = m_iterations.cbegin(); it != m_iterations.cend(); ) { |
| 2175 | if (it->get()->m_doneCount == int(m_containerNode.m_children.size())) |
| 2176 | it = m_iterations.erase(position: it); |
| 2177 | else |
| 2178 | ++it; |
| 2179 | } |
| 2180 | } |
| 2181 | |
| 2182 | SetupResult TaskTreePrivate::start(RuntimeContainer *container) |
| 2183 | { |
| 2184 | const ContainerNode &containerNode = container->m_containerNode; |
| 2185 | SetupResult startAction = SetupResult::Continue; |
| 2186 | if (containerNode.m_groupHandler.m_setupHandler) { |
| 2187 | startAction = invokeHandler(container, handler: containerNode.m_groupHandler.m_setupHandler); |
| 2188 | if (startAction != SetupResult::Continue) { |
| 2189 | if (isProgressive(container)) |
| 2190 | advanceProgress(byValue: containerNode.m_taskCount); |
| 2191 | // Non-Continue SetupResult takes precedence over the workflow policy. |
| 2192 | container->m_successBit = startAction == SetupResult::StopWithSuccess; |
| 2193 | } |
| 2194 | } |
| 2195 | return continueStart(container, startAction); |
| 2196 | } |
| 2197 | |
| 2198 | SetupResult TaskTreePrivate::continueStart(RuntimeContainer *container, SetupResult startAction) |
| 2199 | { |
| 2200 | const SetupResult groupAction = startAction == SetupResult::Continue ? startChildren(container) |
| 2201 | : startAction; |
| 2202 | if (groupAction == SetupResult::Continue) |
| 2203 | return groupAction; |
| 2204 | |
| 2205 | const bool bit = container->updateSuccessBit(success: groupAction == SetupResult::StopWithSuccess); |
| 2206 | RuntimeIteration *parentIteration = container->parentIteration(); |
| 2207 | RuntimeTask *parentTask = container->m_parentTask; |
| 2208 | QT_CHECK(parentTask); |
| 2209 | const bool result = invokeDoneHandler(container, doneWith: bit ? DoneWith::Success : DoneWith::Error); |
| 2210 | if (parentIteration) { |
| 2211 | parentIteration->deleteChild(task: parentTask); |
| 2212 | if (!parentIteration->m_container->isStarting()) |
| 2213 | childDone(iteration: parentIteration, success: result); |
| 2214 | } else { |
| 2215 | QT_CHECK(m_runtimeRoot.get() == parentTask); |
| 2216 | m_runtimeRoot.reset(); |
| 2217 | emitDone(result: result ? DoneWith::Success : DoneWith::Error); |
| 2218 | } |
| 2219 | return toSetupResult(success: result); |
| 2220 | } |
| 2221 | |
| 2222 | SetupResult TaskTreePrivate::startChildren(RuntimeContainer *container) |
| 2223 | { |
| 2224 | const ContainerNode &containerNode = container->m_containerNode; |
| 2225 | const int childCount = int(containerNode.m_children.size()); |
| 2226 | |
| 2227 | if (container->m_iterationCount == 0) { |
| 2228 | if (container->m_shouldIterate && !invokeLoopHandler(container)) { |
| 2229 | if (isProgressive(container)) |
| 2230 | advanceProgress(byValue: containerNode.m_taskCount); |
| 2231 | return toSetupResult(success: container->m_successBit); |
| 2232 | } |
| 2233 | container->m_iterations.emplace_back( |
| 2234 | args: std::make_unique<RuntimeIteration>(args&: container->m_iterationCount, args&: container)); |
| 2235 | ++container->m_iterationCount; |
| 2236 | } |
| 2237 | |
| 2238 | GuardLocker locker(container->m_startGuard); |
| 2239 | |
| 2240 | while (containerNode.m_parallelLimit == 0 |
| 2241 | || container->m_runningChildren < containerNode.m_parallelLimit) { |
| 2242 | container->deleteFinishedIterations(); |
| 2243 | if (container->m_nextToStart == childCount) { |
| 2244 | if (invokeLoopHandler(container)) { |
| 2245 | container->m_nextToStart = 0; |
| 2246 | container->m_iterations.emplace_back( |
| 2247 | args: std::make_unique<RuntimeIteration>(args&: container->m_iterationCount, args&: container)); |
| 2248 | ++container->m_iterationCount; |
| 2249 | } else if (container->m_iterations.empty()) { |
| 2250 | return toSetupResult(success: container->m_successBit); |
| 2251 | } else { |
| 2252 | return SetupResult::Continue; |
| 2253 | } |
| 2254 | } |
| 2255 | if (containerNode.m_children.size() == 0) // Empty loop body. |
| 2256 | continue; |
| 2257 | |
| 2258 | RuntimeIteration *iteration = container->m_iterations.back().get(); |
| 2259 | RuntimeTask *newTask = new RuntimeTask{.m_taskNode: containerNode.m_children.at(n: container->m_nextToStart), |
| 2260 | .m_parentIteration: iteration}; |
| 2261 | iteration->m_children.emplace_back(args&: newTask); |
| 2262 | ++container->m_runningChildren; |
| 2263 | ++container->m_nextToStart; |
| 2264 | |
| 2265 | const SetupResult startAction = start(node: newTask); |
| 2266 | if (startAction == SetupResult::Continue) |
| 2267 | continue; |
| 2268 | |
| 2269 | const SetupResult finalizeAction = childDone(iteration, |
| 2270 | success: startAction == SetupResult::StopWithSuccess); |
| 2271 | if (finalizeAction != SetupResult::Continue) |
| 2272 | return finalizeAction; |
| 2273 | } |
| 2274 | return SetupResult::Continue; |
| 2275 | } |
| 2276 | |
| 2277 | SetupResult TaskTreePrivate::childDone(RuntimeIteration *iteration, bool success) |
| 2278 | { |
| 2279 | RuntimeContainer *container = iteration->m_container; |
| 2280 | const WorkflowPolicy &workflowPolicy = container->m_containerNode.m_workflowPolicy; |
| 2281 | const bool shouldStop = workflowPolicy == WorkflowPolicy::StopOnSuccessOrError |
| 2282 | || (workflowPolicy == WorkflowPolicy::StopOnSuccess && success) |
| 2283 | || (workflowPolicy == WorkflowPolicy::StopOnError && !success); |
| 2284 | ++iteration->m_doneCount; |
| 2285 | --container->m_runningChildren; |
| 2286 | if (shouldStop) |
| 2287 | stop(container); |
| 2288 | |
| 2289 | const bool updatedSuccess = container->updateSuccessBit(success); |
| 2290 | const SetupResult startAction = shouldStop ? toSetupResult(success: updatedSuccess) |
| 2291 | : SetupResult::Continue; |
| 2292 | |
| 2293 | if (container->isStarting()) |
| 2294 | return startAction; |
| 2295 | return continueStart(container, startAction); |
| 2296 | } |
| 2297 | |
| 2298 | void TaskTreePrivate::stop(RuntimeContainer *container) |
| 2299 | { |
| 2300 | const ContainerNode &containerNode = container->m_containerNode; |
| 2301 | for (auto &iteration : container->m_iterations) { |
| 2302 | for (auto &child : iteration->m_children) { |
| 2303 | ++iteration->m_doneCount; |
| 2304 | stop(node: child.get()); |
| 2305 | } |
| 2306 | |
| 2307 | if (iteration->m_isProgressive) { |
| 2308 | int skippedTaskCount = 0; |
| 2309 | for (int i = iteration->m_doneCount; i < int(containerNode.m_children.size()); ++i) |
| 2310 | skippedTaskCount += containerNode.m_children.at(n: i).taskCount(); |
| 2311 | advanceProgress(byValue: skippedTaskCount); |
| 2312 | } |
| 2313 | } |
| 2314 | const int skippedIterations = container->progressiveLoopCount() - container->m_iterationCount; |
| 2315 | if (skippedIterations > 0) { |
| 2316 | advanceProgress(byValue: container->m_containerNode.m_taskCount / container->progressiveLoopCount() |
| 2317 | * skippedIterations); |
| 2318 | } |
| 2319 | } |
| 2320 | |
| 2321 | static bool shouldCall(CallDoneIf callDoneIf, DoneWith result) |
| 2322 | { |
| 2323 | if (result == DoneWith::Success) |
| 2324 | return callDoneIf != CallDoneIf::Error; |
| 2325 | return callDoneIf != CallDoneIf::Success; |
| 2326 | } |
| 2327 | |
| 2328 | bool TaskTreePrivate::invokeDoneHandler(RuntimeContainer *container, DoneWith doneWith) |
| 2329 | { |
| 2330 | DoneResult result = toDoneResult(doneWith); |
| 2331 | const GroupItem::GroupHandler &groupHandler = container->m_containerNode.m_groupHandler; |
| 2332 | if (groupHandler.m_doneHandler && shouldCall(callDoneIf: groupHandler.m_callDoneIf, result: doneWith)) |
| 2333 | result = invokeHandler(container, handler: groupHandler.m_doneHandler, args&: doneWith); |
| 2334 | container->m_callStorageDoneHandlersOnDestruction = true; |
| 2335 | // TODO: is it needed? |
| 2336 | container->m_parentTask->m_container.reset(); |
| 2337 | return result == DoneResult::Success; |
| 2338 | } |
| 2339 | |
| 2340 | bool TaskTreePrivate::invokeLoopHandler(RuntimeContainer *container) |
| 2341 | { |
| 2342 | if (container->m_shouldIterate) { |
| 2343 | const LoopData *loopData = container->m_containerNode.m_loop->m_loopData.get(); |
| 2344 | if (loopData->m_loopCount) { |
| 2345 | container->m_shouldIterate = container->m_iterationCount < loopData->m_loopCount; |
| 2346 | } else if (loopData->m_condition) { |
| 2347 | container->m_shouldIterate = invokeHandler(container, handler: loopData->m_condition, |
| 2348 | args&: container->m_iterationCount); |
| 2349 | } |
| 2350 | } |
| 2351 | return container->m_shouldIterate; |
| 2352 | } |
| 2353 | |
| 2354 | SetupResult TaskTreePrivate::start(RuntimeTask *node) |
| 2355 | { |
| 2356 | if (!node->m_taskNode.isTask()) { |
| 2357 | node->m_container.emplace(args: node->m_taskNode.m_container, args&: node); |
| 2358 | return start(container: &*node->m_container); |
| 2359 | } |
| 2360 | |
| 2361 | const GroupItem::TaskHandler &handler = node->m_taskNode.m_taskHandler; |
| 2362 | node->m_task.reset(p: handler.m_createHandler()); |
| 2363 | const SetupResult startAction = handler.m_setupHandler |
| 2364 | ? invokeHandler(container: node->m_parentIteration, handler: handler.m_setupHandler, args&: *node->m_task.get()) |
| 2365 | : SetupResult::Continue; |
| 2366 | if (startAction != SetupResult::Continue) { |
| 2367 | if (node->m_parentIteration->m_isProgressive) |
| 2368 | advanceProgress(byValue: 1); |
| 2369 | node->m_parentIteration->deleteChild(task: node); |
| 2370 | return startAction; |
| 2371 | } |
| 2372 | const std::shared_ptr<SetupResult> unwindAction |
| 2373 | = std::make_shared<SetupResult>(args: SetupResult::Continue); |
| 2374 | QObject::connect(sender: node->m_task.get(), signal: &TaskInterface::done, |
| 2375 | context: q, slot: [this, node, unwindAction](DoneResult doneResult) { |
| 2376 | const bool result = invokeDoneHandler(node, doneWith: toDoneWith(result: doneResult)); |
| 2377 | QObject::disconnect(sender: node->m_task.get(), signal: &TaskInterface::done, receiver: q, zero: nullptr); |
| 2378 | node->m_task.release()->deleteLater(); |
| 2379 | RuntimeIteration *parentIteration = node->m_parentIteration; |
| 2380 | parentIteration->deleteChild(task: node); |
| 2381 | if (parentIteration->m_container->isStarting()) { |
| 2382 | *unwindAction = toSetupResult(success: result); |
| 2383 | } else { |
| 2384 | childDone(iteration: parentIteration, success: result); |
| 2385 | bumpAsyncCount(); |
| 2386 | } |
| 2387 | }); |
| 2388 | |
| 2389 | node->m_task->start(); |
| 2390 | return *unwindAction; |
| 2391 | } |
| 2392 | |
| 2393 | void TaskTreePrivate::stop(RuntimeTask *node) |
| 2394 | { |
| 2395 | if (!node->m_task) { |
| 2396 | if (!node->m_container) |
| 2397 | return; |
| 2398 | stop(container: &*node->m_container); |
| 2399 | node->m_container->updateSuccessBit(success: false); |
| 2400 | invokeDoneHandler(container: &*node->m_container, doneWith: DoneWith::Cancel); |
| 2401 | return; |
| 2402 | } |
| 2403 | |
| 2404 | invokeDoneHandler(node, doneWith: DoneWith::Cancel); |
| 2405 | node->m_task.reset(); |
| 2406 | } |
| 2407 | |
| 2408 | bool TaskTreePrivate::invokeDoneHandler(RuntimeTask *node, DoneWith doneWith) |
| 2409 | { |
| 2410 | DoneResult result = toDoneResult(doneWith); |
| 2411 | const GroupItem::TaskHandler &handler = node->m_taskNode.m_taskHandler; |
| 2412 | if (handler.m_doneHandler && shouldCall(callDoneIf: handler.m_callDoneIf, result: doneWith)) { |
| 2413 | result = invokeHandler(container: node->m_parentIteration, |
| 2414 | handler: handler.m_doneHandler, args&: *node->m_task.get(), args&: doneWith); |
| 2415 | } |
| 2416 | if (node->m_parentIteration->m_isProgressive) |
| 2417 | advanceProgress(byValue: 1); |
| 2418 | return result == DoneResult::Success; |
| 2419 | } |
| 2420 | |
| 2421 | /*! |
| 2422 | \class Tasking::TaskTree |
| 2423 | \inheaderfile solutions/tasking/tasktree.h |
| 2424 | \inmodule TaskingSolution |
| 2425 | \brief The TaskTree class runs an async task tree structure defined in a declarative way. |
| 2426 | \reentrant |
| 2427 | |
| 2428 | Use the Tasking namespace to build extensible, declarative task tree |
| 2429 | structures that contain possibly asynchronous tasks, such as QProcess, |
| 2430 | NetworkQuery, or ConcurrentCall<ReturnType>. TaskTree structures enable you |
| 2431 | to create a sophisticated mixture of a parallel or sequential flow of tasks |
| 2432 | in the form of a tree and to run it any time later. |
| 2433 | |
| 2434 | \section1 Root Element and Tasks |
| 2435 | |
| 2436 | The TaskTree has a mandatory Group root element, which may contain |
| 2437 | any number of tasks of various types, such as QProcessTask, NetworkQueryTask, |
| 2438 | or ConcurrentCallTask<ReturnType>: |
| 2439 | |
| 2440 | \code |
| 2441 | using namespace Tasking; |
| 2442 | |
| 2443 | const Group root { |
| 2444 | QProcessTask(...), |
| 2445 | NetworkQueryTask(...), |
| 2446 | ConcurrentCallTask<int>(...) |
| 2447 | }; |
| 2448 | |
| 2449 | TaskTree *taskTree = new TaskTree(root); |
| 2450 | connect(taskTree, &TaskTree::done, ...); // finish handler |
| 2451 | taskTree->start(); |
| 2452 | \endcode |
| 2453 | |
| 2454 | The task tree above has a top level element of the Group type that contains |
| 2455 | tasks of the QProcessTask, NetworkQueryTask, and ConcurrentCallTask<int> type. |
| 2456 | After taskTree->start() is called, the tasks are run in a chain, starting |
| 2457 | with QProcessTask. When the QProcessTask finishes successfully, the NetworkQueryTask |
| 2458 | task is started. Finally, when the network task finishes successfully, the |
| 2459 | ConcurrentCallTask<int> task is started. |
| 2460 | |
| 2461 | When the last running task finishes with success, the task tree is considered |
| 2462 | to have run successfully and the done() signal is emitted with DoneWith::Success. |
| 2463 | When a task finishes with an error, the execution of the task tree is stopped |
| 2464 | and the remaining tasks are skipped. The task tree finishes with an error and |
| 2465 | sends the TaskTree::done() signal with DoneWith::Error. |
| 2466 | |
| 2467 | \section1 Groups |
| 2468 | |
| 2469 | The parent of the Group sees it as a single task. Like other tasks, |
| 2470 | the group can be started and it can finish with success or an error. |
| 2471 | The Group elements can be nested to create a tree structure: |
| 2472 | |
| 2473 | \code |
| 2474 | const Group root { |
| 2475 | Group { |
| 2476 | parallel, |
| 2477 | QProcessTask(...), |
| 2478 | ConcurrentCallTask<int>(...) |
| 2479 | }, |
| 2480 | NetworkQueryTask(...) |
| 2481 | }; |
| 2482 | \endcode |
| 2483 | |
| 2484 | The example above differs from the first example in that the root element has |
| 2485 | a subgroup that contains the QProcessTask and ConcurrentCallTask<int>. The subgroup is a |
| 2486 | sibling element of the NetworkQueryTask in the root. The subgroup contains an |
| 2487 | additional \e parallel element that instructs its Group to execute its tasks |
| 2488 | in parallel. |
| 2489 | |
| 2490 | So, when the tree above is started, the QProcessTask and ConcurrentCallTask<int> start |
| 2491 | immediately and run in parallel. Since the root group doesn't contain a |
| 2492 | \e parallel element, its direct child tasks are run in sequence. Thus, the |
| 2493 | NetworkQueryTask starts when the whole subgroup finishes. The group is |
| 2494 | considered as finished when all its tasks have finished. The order in which |
| 2495 | the tasks finish is not relevant. |
| 2496 | |
| 2497 | So, depending on which task lasts longer (QProcessTask or ConcurrentCallTask<int>), the |
| 2498 | following scenarios can take place: |
| 2499 | |
| 2500 | \table |
| 2501 | \header |
| 2502 | \li Scenario 1 |
| 2503 | \li Scenario 2 |
| 2504 | \row |
| 2505 | \li Root Group starts |
| 2506 | \li Root Group starts |
| 2507 | \row |
| 2508 | \li Sub Group starts |
| 2509 | \li Sub Group starts |
| 2510 | \row |
| 2511 | \li QProcessTask starts |
| 2512 | \li QProcessTask starts |
| 2513 | \row |
| 2514 | \li ConcurrentCallTask<int> starts |
| 2515 | \li ConcurrentCallTask<int> starts |
| 2516 | \row |
| 2517 | \li ... |
| 2518 | \li ... |
| 2519 | \row |
| 2520 | \li \b {QProcessTask finishes} |
| 2521 | \li \b {ConcurrentCallTask<int> finishes} |
| 2522 | \row |
| 2523 | \li ... |
| 2524 | \li ... |
| 2525 | \row |
| 2526 | \li \b {ConcurrentCallTask<int> finishes} |
| 2527 | \li \b {QProcessTask finishes} |
| 2528 | \row |
| 2529 | \li Sub Group finishes |
| 2530 | \li Sub Group finishes |
| 2531 | \row |
| 2532 | \li NetworkQueryTask starts |
| 2533 | \li NetworkQueryTask starts |
| 2534 | \row |
| 2535 | \li ... |
| 2536 | \li ... |
| 2537 | \row |
| 2538 | \li NetworkQueryTask finishes |
| 2539 | \li NetworkQueryTask finishes |
| 2540 | \row |
| 2541 | \li Root Group finishes |
| 2542 | \li Root Group finishes |
| 2543 | \endtable |
| 2544 | |
| 2545 | The differences between the scenarios are marked with bold. Three dots mean |
| 2546 | that an unspecified amount of time passes between previous and next events |
| 2547 | (a task or tasks continue to run). No dots between events |
| 2548 | means that they occur synchronously. |
| 2549 | |
| 2550 | The presented scenarios assume that all tasks run successfully. If a task |
| 2551 | fails during execution, the task tree finishes with an error. In particular, |
| 2552 | when QProcessTask finishes with an error while ConcurrentCallTask<int> is still being executed, |
| 2553 | the ConcurrentCallTask<int> is automatically canceled, the subgroup finishes with an error, |
| 2554 | the NetworkQueryTask is skipped, and the tree finishes with an error. |
| 2555 | |
| 2556 | \section1 Task Types |
| 2557 | |
| 2558 | Each task type is associated with its corresponding task class that executes |
| 2559 | the task. For example, a QProcessTask inside a task tree is associated with |
| 2560 | the QProcess class that executes the process. The associated objects are |
| 2561 | automatically created, started, and destructed exclusively by the task tree |
| 2562 | at the appropriate time. |
| 2563 | |
| 2564 | If a root group consists of five sequential QProcessTask tasks, and the task tree |
| 2565 | executes the group, it creates an instance of QProcess for the first |
| 2566 | QProcessTask and starts it. If the QProcess instance finishes successfully, |
| 2567 | the task tree destructs it and creates a new QProcess instance for the |
| 2568 | second QProcessTask, and so on. If the first task finishes with an error, the task |
| 2569 | tree stops creating QProcess instances, and the root group finishes with an |
| 2570 | error. |
| 2571 | |
| 2572 | The following table shows examples of task types and their corresponding task |
| 2573 | classes: |
| 2574 | |
| 2575 | \table |
| 2576 | \header |
| 2577 | \li Task Type (Tasking Namespace) |
| 2578 | \li Associated Task Class |
| 2579 | \li Brief Description |
| 2580 | \row |
| 2581 | \li QProcessTask |
| 2582 | \li QProcess |
| 2583 | \li Starts process. |
| 2584 | \row |
| 2585 | \li ConcurrentCallTask<ReturnType> |
| 2586 | \li Tasking::ConcurrentCall<ReturnType> |
| 2587 | \li Starts asynchronous task, runs in separate thread. |
| 2588 | \row |
| 2589 | \li TaskTreeTask |
| 2590 | \li Tasking::TaskTree |
| 2591 | \li Starts nested task tree. |
| 2592 | \row |
| 2593 | \li NetworkQueryTask |
| 2594 | \li NetworkQuery |
| 2595 | \li Starts network download. |
| 2596 | \endtable |
| 2597 | |
| 2598 | \section1 Task Handlers |
| 2599 | |
| 2600 | Use Task handlers to set up a task for execution and to enable reading |
| 2601 | the output data from the task when it finishes with success or an error. |
| 2602 | |
| 2603 | \section2 Task's Start Handler |
| 2604 | |
| 2605 | When a corresponding task class object is created and before it's started, |
| 2606 | the task tree invokes an optionally user-provided setup handler. The setup |
| 2607 | handler should always take a \e reference to the associated task class object: |
| 2608 | |
| 2609 | \code |
| 2610 | const auto onSetup = [](QProcess &process) { |
| 2611 | process.setCommand({"sleep", {"3"}}); |
| 2612 | }; |
| 2613 | const Group root { |
| 2614 | QProcessTask(onSetup) |
| 2615 | }; |
| 2616 | \endcode |
| 2617 | |
| 2618 | You can modify the passed QProcess in the setup handler, so that the task |
| 2619 | tree can start the process according to your configuration. |
| 2620 | You should not call \c {process.start();} in the setup handler, |
| 2621 | as the task tree calls it when needed. The setup handler is optional. When used, |
| 2622 | it must be the first argument of the task's constructor. |
| 2623 | |
| 2624 | Optionally, the setup handler may return a SetupResult. The returned |
| 2625 | SetupResult influences the further start behavior of a given task. The |
| 2626 | possible values are: |
| 2627 | |
| 2628 | \table |
| 2629 | \header |
| 2630 | \li SetupResult Value |
| 2631 | \li Brief Description |
| 2632 | \row |
| 2633 | \li Continue |
| 2634 | \li The task will be started normally. This is the default behavior when the |
| 2635 | setup handler doesn't return SetupResult (that is, its return type is |
| 2636 | void). |
| 2637 | \row |
| 2638 | \li StopWithSuccess |
| 2639 | \li The task won't be started and it will report success to its parent. |
| 2640 | \row |
| 2641 | \li StopWithError |
| 2642 | \li The task won't be started and it will report an error to its parent. |
| 2643 | \endtable |
| 2644 | |
| 2645 | This is useful for running a task only when a condition is met and the data |
| 2646 | needed to evaluate this condition is not known until previously started tasks |
| 2647 | finish. In this way, the setup handler dynamically decides whether to start the |
| 2648 | corresponding task normally or skip it and report success or an error. |
| 2649 | For more information about inter-task data exchange, see \l Storage. |
| 2650 | |
| 2651 | \section2 Task's Done Handler |
| 2652 | |
| 2653 | When a running task finishes, the task tree invokes an optionally provided done handler. |
| 2654 | The handler should take a \c const \e reference to the associated task class object: |
| 2655 | |
| 2656 | \code |
| 2657 | const auto onSetup = [](QProcess &process) { |
| 2658 | process.setCommand({"sleep", {"3"}}); |
| 2659 | }; |
| 2660 | const auto onDone = [](const QProcess &process, DoneWith result) { |
| 2661 | if (result == DoneWith::Success) |
| 2662 | qDebug() << "Success" << process.cleanedStdOut(); |
| 2663 | else |
| 2664 | qDebug() << "Failure" << process.cleanedStdErr(); |
| 2665 | }; |
| 2666 | const Group root { |
| 2667 | QProcessTask(onSetup, onDone) |
| 2668 | }; |
| 2669 | \endcode |
| 2670 | |
| 2671 | The done handler may collect output data from QProcess, and store it |
| 2672 | for further processing or perform additional actions. |
| 2673 | |
| 2674 | \note If the task setup handler returns StopWithSuccess or StopWithError, |
| 2675 | the done handler is not invoked. |
| 2676 | |
| 2677 | \section1 Group Handlers |
| 2678 | |
| 2679 | Similarly to task handlers, group handlers enable you to set up a group to |
| 2680 | execute and to apply more actions when the whole group finishes with |
| 2681 | success or an error. |
| 2682 | |
| 2683 | \section2 Group's Start Handler |
| 2684 | |
| 2685 | The task tree invokes the group start handler before it starts the child |
| 2686 | tasks. The group handler doesn't take any arguments: |
| 2687 | |
| 2688 | \code |
| 2689 | const auto onSetup = [] { |
| 2690 | qDebug() << "Entering the group"; |
| 2691 | }; |
| 2692 | const Group root { |
| 2693 | onGroupSetup(onSetup), |
| 2694 | QProcessTask(...) |
| 2695 | }; |
| 2696 | \endcode |
| 2697 | |
| 2698 | The group setup handler is optional. To define a group setup handler, add an |
| 2699 | onGroupSetup() element to a group. The argument of onGroupSetup() is a user |
| 2700 | handler. If you add more than one onGroupSetup() element to a group, an assert |
| 2701 | is triggered at runtime that includes an error message. |
| 2702 | |
| 2703 | Like the task's start handler, the group start handler may return SetupResult. |
| 2704 | The returned SetupResult value affects the start behavior of the |
| 2705 | whole group. If you do not specify a group start handler or its return type |
| 2706 | is void, the default group's action is SetupResult::Continue, so that all |
| 2707 | tasks are started normally. Otherwise, when the start handler returns |
| 2708 | SetupResult::StopWithSuccess or SetupResult::StopWithError, the tasks are not |
| 2709 | started (they are skipped) and the group itself reports success or failure, |
| 2710 | depending on the returned value, respectively. |
| 2711 | |
| 2712 | \code |
| 2713 | const Group root { |
| 2714 | onGroupSetup([] { qDebug() << "Root setup"; }), |
| 2715 | Group { |
| 2716 | onGroupSetup([] { qDebug() << "Group 1 setup"; return SetupResult::Continue; }), |
| 2717 | QProcessTask(...) // Process 1 |
| 2718 | }, |
| 2719 | Group { |
| 2720 | onGroupSetup([] { qDebug() << "Group 2 setup"; return SetupResult::StopWithSuccess; }), |
| 2721 | QProcessTask(...) // Process 2 |
| 2722 | }, |
| 2723 | Group { |
| 2724 | onGroupSetup([] { qDebug() << "Group 3 setup"; return SetupResult::StopWithError; }), |
| 2725 | QProcessTask(...) // Process 3 |
| 2726 | }, |
| 2727 | QProcessTask(...) // Process 4 |
| 2728 | }; |
| 2729 | \endcode |
| 2730 | |
| 2731 | In the above example, all subgroups of a root group define their setup handlers. |
| 2732 | The following scenario assumes that all started processes finish with success: |
| 2733 | |
| 2734 | \table |
| 2735 | \header |
| 2736 | \li Scenario |
| 2737 | \li Comment |
| 2738 | \row |
| 2739 | \li Root Group starts |
| 2740 | \li Doesn't return SetupResult, so its tasks are executed. |
| 2741 | \row |
| 2742 | \li Group 1 starts |
| 2743 | \li Returns Continue, so its tasks are executed. |
| 2744 | \row |
| 2745 | \li Process 1 starts |
| 2746 | \li |
| 2747 | \row |
| 2748 | \li ... |
| 2749 | \li ... |
| 2750 | \row |
| 2751 | \li Process 1 finishes (success) |
| 2752 | \li |
| 2753 | \row |
| 2754 | \li Group 1 finishes (success) |
| 2755 | \li |
| 2756 | \row |
| 2757 | \li Group 2 starts |
| 2758 | \li Returns StopWithSuccess, so Process 2 is skipped and Group 2 reports |
| 2759 | success. |
| 2760 | \row |
| 2761 | \li Group 2 finishes (success) |
| 2762 | \li |
| 2763 | \row |
| 2764 | \li Group 3 starts |
| 2765 | \li Returns StopWithError, so Process 3 is skipped and Group 3 reports |
| 2766 | an error. |
| 2767 | \row |
| 2768 | \li Group 3 finishes (error) |
| 2769 | \li |
| 2770 | \row |
| 2771 | \li Root Group finishes (error) |
| 2772 | \li Group 3, which is a direct child of the root group, finished with an |
| 2773 | error, so the root group stops executing, skips Process 4, which has |
| 2774 | not started yet, and reports an error. |
| 2775 | \endtable |
| 2776 | |
| 2777 | \section2 Groups's Done Handler |
| 2778 | |
| 2779 | A Group's done handler is executed after the successful or failed execution of its tasks. |
| 2780 | The final value reported by the group depends on its \l {Workflow Policy}. |
| 2781 | The handler can apply other necessary actions. |
| 2782 | The done handler is defined inside the onGroupDone() element of a group. |
| 2783 | It may take the optional DoneWith argument, indicating the successful or failed execution: |
| 2784 | |
| 2785 | \code |
| 2786 | const Group root { |
| 2787 | onGroupSetup([] { qDebug() << "Root setup"; }), |
| 2788 | QProcessTask(...), |
| 2789 | onGroupDone([](DoneWith result) { |
| 2790 | if (result == DoneWith::Success) |
| 2791 | qDebug() << "Root finished with success"; |
| 2792 | else |
| 2793 | qDebug() << "Root finished with an error"; |
| 2794 | }) |
| 2795 | }; |
| 2796 | \endcode |
| 2797 | |
| 2798 | The group done handler is optional. If you add more than one onGroupDone() to a group, |
| 2799 | an assert is triggered at runtime that includes an error message. |
| 2800 | |
| 2801 | \note Even if the group setup handler returns StopWithSuccess or StopWithError, |
| 2802 | the group's done handler is invoked. This behavior differs from that of task done handler |
| 2803 | and might change in the future. |
| 2804 | |
| 2805 | \section1 Other Group Elements |
| 2806 | |
| 2807 | A group can contain other elements that describe the processing flow, such as |
| 2808 | the execution mode or workflow policy. It can also contain storage elements |
| 2809 | that are responsible for collecting and sharing custom common data gathered |
| 2810 | during group execution. |
| 2811 | |
| 2812 | \section2 Execution Mode |
| 2813 | |
| 2814 | The execution mode element in a Group specifies how the direct child tasks of |
| 2815 | the Group are started. The most common execution modes are \l sequential and |
| 2816 | \l parallel. It's also possible to specify the limit of tasks running |
| 2817 | in parallel by using the parallelLimit() function. |
| 2818 | |
| 2819 | In all execution modes, a group starts tasks in the oder in which they appear. |
| 2820 | |
| 2821 | If a child of a group is also a group, the child group runs its tasks |
| 2822 | according to its own execution mode. |
| 2823 | |
| 2824 | \section2 Workflow Policy |
| 2825 | |
| 2826 | The workflow policy element in a Group specifies how the group should behave |
| 2827 | when any of its \e direct child's tasks finish. For a detailed description of possible |
| 2828 | policies, refer to WorkflowPolicy. |
| 2829 | |
| 2830 | If a child of a group is also a group, the child group runs its tasks |
| 2831 | according to its own workflow policy. |
| 2832 | |
| 2833 | \section2 Storage |
| 2834 | |
| 2835 | Use the \l {Tasking::Storage} {Storage} element to exchange information between tasks. |
| 2836 | Especially, in the sequential execution mode, when a task needs data from another, |
| 2837 | already finished task, before it can start. For example, a task tree that copies data by reading |
| 2838 | it from a source and writing it to a destination might look as follows: |
| 2839 | |
| 2840 | \code |
| 2841 | static QByteArray load(const QString &fileName) { ... } |
| 2842 | static void save(const QString &fileName, const QByteArray &array) { ... } |
| 2843 | |
| 2844 | static Group copyRecipe(const QString &source, const QString &destination) |
| 2845 | { |
| 2846 | struct CopyStorage { // [1] custom inter-task struct |
| 2847 | QByteArray content; // [2] custom inter-task data |
| 2848 | }; |
| 2849 | |
| 2850 | // [3] instance of custom inter-task struct manageable by task tree |
| 2851 | const Storage<CopyStorage> storage; |
| 2852 | |
| 2853 | const auto onLoaderSetup = [source](ConcurrentCall<QByteArray> &async) { |
| 2854 | async.setConcurrentCallData(&load, source); |
| 2855 | }; |
| 2856 | // [4] runtime: task tree activates the instance from [7] before invoking handler |
| 2857 | const auto onLoaderDone = [storage](const ConcurrentCall<QByteArray> &async) { |
| 2858 | storage->content = async.result(); // [5] loader stores the result in storage |
| 2859 | }; |
| 2860 | |
| 2861 | // [4] runtime: task tree activates the instance from [7] before invoking handler |
| 2862 | const auto onSaverSetup = [storage, destination](ConcurrentCall<void> &async) { |
| 2863 | const QByteArray content = storage->content; // [6] saver takes data from storage |
| 2864 | async.setConcurrentCallData(&save, destination, content); |
| 2865 | }; |
| 2866 | const auto onSaverDone = [](const ConcurrentCall<void> &async) { |
| 2867 | qDebug() << "Save done successfully"; |
| 2868 | }; |
| 2869 | |
| 2870 | const Group root { |
| 2871 | // [7] runtime: task tree creates an instance of CopyStorage when root is entered |
| 2872 | storage, |
| 2873 | ConcurrentCallTask<QByteArray>(onLoaderSetup, onLoaderDone, CallDoneIf::Success), |
| 2874 | ConcurrentCallTask<void>(onSaverSetup, onSaverDone, CallDoneIf::Success) |
| 2875 | }; |
| 2876 | return root; |
| 2877 | } |
| 2878 | |
| 2879 | const QString source = ...; |
| 2880 | const QString destination = ...; |
| 2881 | TaskTree taskTree(copyRecipe(source, destination)); |
| 2882 | connect(&taskTree, &TaskTree::done, |
| 2883 | &taskTree, [](DoneWith result) { |
| 2884 | if (result == DoneWith::Success) |
| 2885 | qDebug() << "The copying finished successfully."; |
| 2886 | }); |
| 2887 | tasktree.start(); |
| 2888 | \endcode |
| 2889 | |
| 2890 | In the example above, the inter-task data consists of a QByteArray content |
| 2891 | variable [2] enclosed in a \c CopyStorage custom struct [1]. If the loader |
| 2892 | finishes successfully, it stores the data in a \c CopyStorage::content |
| 2893 | variable [5]. The saver then uses the variable to configure the saving task [6]. |
| 2894 | |
| 2895 | To enable a task tree to manage the \c CopyStorage struct, an instance of |
| 2896 | \l {Tasking::Storage} {Storage}<\c CopyStorage> is created [3]. If a copy of this object is |
| 2897 | inserted as the group's child item [7], an instance of the \c CopyStorage struct is |
| 2898 | created dynamically when the task tree enters this group. When the task |
| 2899 | tree leaves this group, the existing instance of the \c CopyStorage struct is |
| 2900 | destructed as it's no longer needed. |
| 2901 | |
| 2902 | If several task trees holding a copy of the common |
| 2903 | \l {Tasking::Storage} {Storage}<\c CopyStorage> instance run simultaneously |
| 2904 | (including the case when the task trees are run in different threads), |
| 2905 | each task tree contains its own copy of the \c CopyStorage struct. |
| 2906 | |
| 2907 | You can access \c CopyStorage from any handler in the group with a storage object. |
| 2908 | This includes all handlers of all descendant tasks of the group with |
| 2909 | a storage object. To access the custom struct in a handler, pass the |
| 2910 | copy of the \l {Tasking::Storage} {Storage}<\c CopyStorage> object to the handler |
| 2911 | (for example, in a lambda capture) [4]. |
| 2912 | |
| 2913 | When the task tree invokes a handler in a subtree containing the storage [7], |
| 2914 | the task tree activates its own \c CopyStorage instance inside the |
| 2915 | \l {Tasking::Storage} {Storage}<\c CopyStorage> object. Therefore, the \c CopyStorage struct |
| 2916 | may be accessed only from within the handler body. To access the currently active |
| 2917 | \c CopyStorage from within \l {Tasking::Storage} {Storage}<\c CopyStorage>, use the |
| 2918 | \l {Tasking::Storage::operator->()} {Storage::operator->()}, |
| 2919 | \l {Tasking::Storage::operator*()} {Storage::operator*()}, or Storage::activeStorage() method. |
| 2920 | |
| 2921 | The following list summarizes how to employ a Storage object into the task |
| 2922 | tree: |
| 2923 | \list 1 |
| 2924 | \li Define the custom structure \c MyStorage with custom data [1], [2] |
| 2925 | \li Create an instance of the \l {Tasking::Storage} {Storage}<\c MyStorage> storage [3] |
| 2926 | \li Pass the \l {Tasking::Storage} {Storage}<\c MyStorage> instance to handlers [4] |
| 2927 | \li Access the \c MyStorage instance in handlers [5], [6] |
| 2928 | \li Insert the \l {Tasking::Storage} {Storage}<\c MyStorage> instance into a group [7] |
| 2929 | \endlist |
| 2930 | |
| 2931 | \section1 TaskTree class |
| 2932 | |
| 2933 | TaskTree executes the tree structure of asynchronous tasks according to the |
| 2934 | recipe described by the Group root element. |
| 2935 | |
| 2936 | As TaskTree is also an asynchronous task, it can be a part of another TaskTree. |
| 2937 | To place a nested TaskTree inside another TaskTree, insert the TaskTreeTask |
| 2938 | element into another Group element. |
| 2939 | |
| 2940 | TaskTree reports progress of completed tasks when running. The progress value |
| 2941 | is increased when a task finishes or is skipped or canceled. |
| 2942 | When TaskTree is finished and the TaskTree::done() signal is emitted, |
| 2943 | the current value of the progress equals the maximum progress value. |
| 2944 | Maximum progress equals the total number of asynchronous tasks in a tree. |
| 2945 | A nested TaskTree is counted as a single task, and its child tasks are not |
| 2946 | counted in the top level tree. Groups themselves are not counted as tasks, |
| 2947 | but their tasks are counted. \l {Tasking::Sync} {Sync} tasks are not asynchronous, |
| 2948 | so they are not counted as tasks. |
| 2949 | |
| 2950 | To set additional initial data for the running tree, modify the storage |
| 2951 | instances in a tree when it creates them by installing a storage setup |
| 2952 | handler: |
| 2953 | |
| 2954 | \code |
| 2955 | Storage<CopyStorage> storage; |
| 2956 | const Group root = ...; // storage placed inside root's group and inside handlers |
| 2957 | TaskTree taskTree(root); |
| 2958 | auto initStorage = [](CopyStorage &storage) { |
| 2959 | storage.content = "initial content"; |
| 2960 | }; |
| 2961 | taskTree.onStorageSetup(storage, initStorage); |
| 2962 | taskTree.start(); |
| 2963 | \endcode |
| 2964 | |
| 2965 | When the running task tree creates a \c CopyStorage instance, and before any |
| 2966 | handler inside a tree is called, the task tree calls the initStorage handler, |
| 2967 | to enable setting up initial data of the storage, unique to this particular |
| 2968 | run of taskTree. |
| 2969 | |
| 2970 | Similarly, to collect some additional result data from the running tree, |
| 2971 | read it from storage instances in the tree when they are about to be |
| 2972 | destroyed. To do this, install a storage done handler: |
| 2973 | |
| 2974 | \code |
| 2975 | Storage<CopyStorage> storage; |
| 2976 | const Group root = ...; // storage placed inside root's group and inside handlers |
| 2977 | TaskTree taskTree(root); |
| 2978 | auto collectStorage = [](const CopyStorage &storage) { |
| 2979 | qDebug() << "final content" << storage.content; |
| 2980 | }; |
| 2981 | taskTree.onStorageDone(storage, collectStorage); |
| 2982 | taskTree.start(); |
| 2983 | \endcode |
| 2984 | |
| 2985 | When the running task tree is about to destroy a \c CopyStorage instance, the |
| 2986 | task tree calls the collectStorage handler, to enable reading the final data |
| 2987 | from the storage, unique to this particular run of taskTree. |
| 2988 | |
| 2989 | \section1 Task Adapters |
| 2990 | |
| 2991 | To extend a TaskTree with a new task type, implement a simple adapter class |
| 2992 | derived from the TaskAdapter class template. The following class is an |
| 2993 | adapter for a single shot timer, which may be considered as a new asynchronous task: |
| 2994 | |
| 2995 | \code |
| 2996 | class TimerTaskAdapter : public TaskAdapter<QTimer> |
| 2997 | { |
| 2998 | public: |
| 2999 | TimerTaskAdapter() { |
| 3000 | task()->setSingleShot(true); |
| 3001 | task()->setInterval(1000); |
| 3002 | connect(task(), &QTimer::timeout, this, [this] { emit done(DoneResult::Success); }); |
| 3003 | } |
| 3004 | private: |
| 3005 | void start() final { task()->start(); } |
| 3006 | }; |
| 3007 | |
| 3008 | using TimerTask = CustomTask<TimerTaskAdapter>; |
| 3009 | \endcode |
| 3010 | |
| 3011 | You must derive the custom adapter from the TaskAdapter class template |
| 3012 | instantiated with a template parameter of the class implementing a running |
| 3013 | task. The code above uses QTimer to run the task. This class appears |
| 3014 | later as an argument to the task's handlers. The instance of this class |
| 3015 | parameter automatically becomes a member of the TaskAdapter template, and is |
| 3016 | accessible through the TaskAdapter::task() method. The constructor |
| 3017 | of \c TimerTaskAdapter initially configures the QTimer object and connects |
| 3018 | to the QTimer::timeout() signal. When the signal is triggered, \c TimerTaskAdapter |
| 3019 | emits the TaskInterface::done(DoneResult::Success) signal to inform the task tree that |
| 3020 | the task finished successfully. If it emits TaskInterface::done(DoneResult::Error), |
| 3021 | the task finished with an error. |
| 3022 | The TaskAdapter::start() method starts the timer. |
| 3023 | |
| 3024 | To make QTimer accessible inside TaskTree under the \c TimerTask name, |
| 3025 | define \c TimerTask to be an alias to the CustomTask<\c TimerTaskAdapter>. |
| 3026 | \c TimerTask becomes a new custom task type, using \c TimerTaskAdapter. |
| 3027 | |
| 3028 | The new task type is now registered, and you can use it in TaskTree: |
| 3029 | |
| 3030 | \code |
| 3031 | const auto onSetup = [](QTimer &task) { task.setInterval(2000); }; |
| 3032 | const auto onDone = [] { qDebug() << "timer triggered"; }; |
| 3033 | const Group root { |
| 3034 | TimerTask(onSetup, onDone) |
| 3035 | }; |
| 3036 | \endcode |
| 3037 | |
| 3038 | When a task tree containing the root from the above example is started, it |
| 3039 | prints a debug message within two seconds and then finishes successfully. |
| 3040 | |
| 3041 | \note The class implementing the running task should have a default constructor, |
| 3042 | and objects of this class should be freely destructible. It should be allowed |
| 3043 | to destroy a running object, preferably without waiting for the running task |
| 3044 | to finish (that is, safe non-blocking destructor of a running task). |
| 3045 | To achieve a non-blocking destruction of a task that has a blocking destructor, |
| 3046 | consider using the optional \c Deleter template parameter of the TaskAdapter. |
| 3047 | */ |
| 3048 | |
| 3049 | /*! |
| 3050 | Constructs an empty task tree. Use setRecipe() to pass a declarative description |
| 3051 | on how the task tree should execute the tasks and how it should handle the finished tasks. |
| 3052 | |
| 3053 | Starting an empty task tree is no-op and the relevant warning message is issued. |
| 3054 | |
| 3055 | \sa setRecipe(), start() |
| 3056 | */ |
| 3057 | TaskTree::TaskTree() |
| 3058 | : d(new TaskTreePrivate(this)) |
| 3059 | {} |
| 3060 | |
| 3061 | /*! |
| 3062 | \overload |
| 3063 | |
| 3064 | Constructs a task tree with a given \a recipe. After the task tree is started, |
| 3065 | it executes the tasks contained inside the \a recipe and |
| 3066 | handles finished tasks according to the passed description. |
| 3067 | |
| 3068 | \sa setRecipe(), start() |
| 3069 | */ |
| 3070 | TaskTree::TaskTree(const Group &recipe) : TaskTree() |
| 3071 | { |
| 3072 | setRecipe(recipe); |
| 3073 | } |
| 3074 | |
| 3075 | /*! |
| 3076 | Destroys the task tree. |
| 3077 | |
| 3078 | When the task tree is running while being destructed, it cancels all the running tasks |
| 3079 | immediately. In this case, no handlers are called, not even the groups' and |
| 3080 | tasks' done handlers or onStorageDone() handlers. The task tree also doesn't emit any |
| 3081 | signals from the destructor, not even done() or progressValueChanged() signals. |
| 3082 | This behavior may always be relied on. |
| 3083 | It is completely safe to destruct the running task tree. |
| 3084 | |
| 3085 | It's a usual pattern to destruct the running task tree. |
| 3086 | It's guaranteed that the destruction will run quickly, without having to wait for |
| 3087 | the currently running tasks to finish, provided that the used tasks implement |
| 3088 | their destructors in a non-blocking way. |
| 3089 | |
| 3090 | \note Do not call the destructor directly from any of the running task's handlers |
| 3091 | or task tree's signals. In these cases, use \l deleteLater() instead. |
| 3092 | |
| 3093 | \sa cancel() |
| 3094 | */ |
| 3095 | TaskTree::~TaskTree() |
| 3096 | { |
| 3097 | QT_ASSERT(!d->m_guard.isLocked(), qWarning("Deleting TaskTree instance directly from " |
| 3098 | "one of its handlers will lead to a crash!" )); |
| 3099 | // TODO: delete storages explicitly here? |
| 3100 | delete d; |
| 3101 | } |
| 3102 | |
| 3103 | /*! |
| 3104 | Sets a given \a recipe for the task tree. After the task tree is started, |
| 3105 | it executes the tasks contained inside the \a recipe and |
| 3106 | handles finished tasks according to the passed description. |
| 3107 | |
| 3108 | \note When called for a running task tree, the call is ignored. |
| 3109 | |
| 3110 | \sa TaskTree(const Tasking::Group &recipe), start() |
| 3111 | */ |
| 3112 | void TaskTree::setRecipe(const Group &recipe) |
| 3113 | { |
| 3114 | QT_ASSERT(!isRunning(), qWarning("The TaskTree is already running, ignoring..." ); return); |
| 3115 | QT_ASSERT(!d->m_guard.isLocked(), qWarning("The setRecipe() is called from one of the" |
| 3116 | "TaskTree handlers, ignoring..." ); return); |
| 3117 | // TODO: Should we clear the m_storageHandlers, too? |
| 3118 | d->m_storages.clear(); |
| 3119 | d->m_root.emplace(args&: d, args: recipe); |
| 3120 | } |
| 3121 | |
| 3122 | /*! |
| 3123 | Starts the task tree. |
| 3124 | |
| 3125 | Use setRecipe() or the constructor to set the declarative description according to which |
| 3126 | the task tree will execute the contained tasks and handle finished tasks. |
| 3127 | |
| 3128 | When the task tree is empty, that is, constructed with a default constructor, |
| 3129 | a call to \c start() is no-op and the relevant warning message is issued. |
| 3130 | |
| 3131 | Otherwise, when the task tree is already running, a call to \e start() is ignored and the |
| 3132 | relevant warning message is issued. |
| 3133 | |
| 3134 | Otherwise, the task tree is started. |
| 3135 | |
| 3136 | The started task tree may finish synchronously, |
| 3137 | for example when the main group's start handler returns SetupResult::StopWithError. |
| 3138 | For this reason, the connection to the done signal should be established before calling |
| 3139 | \c start(). Use isRunning() in order to detect whether the task tree is still running |
| 3140 | after a call to \c start(). |
| 3141 | |
| 3142 | The task tree implementation relies on the running event loop. |
| 3143 | Make sure you have a QEventLoop or QCoreApplication or one of its |
| 3144 | subclasses running (or about to be run) when calling this method. |
| 3145 | |
| 3146 | \sa TaskTree(const Tasking::Group &), setRecipe(), isRunning(), cancel() |
| 3147 | */ |
| 3148 | void TaskTree::start() |
| 3149 | { |
| 3150 | QT_ASSERT(!isRunning(), qWarning("The TaskTree is already running, ignoring..." ); return); |
| 3151 | QT_ASSERT(!d->m_guard.isLocked(), qWarning("The start() is called from one of the" |
| 3152 | "TaskTree handlers, ignoring..." ); return); |
| 3153 | d->start(); |
| 3154 | } |
| 3155 | |
| 3156 | /*! |
| 3157 | \fn void TaskTree::started() |
| 3158 | |
| 3159 | This signal is emitted when the task tree is started. The emission of this signal is |
| 3160 | followed synchronously by the progressValueChanged() signal with an initial \c 0 value. |
| 3161 | |
| 3162 | \sa start(), done() |
| 3163 | */ |
| 3164 | |
| 3165 | /*! |
| 3166 | \fn void TaskTree::done(DoneWith result) |
| 3167 | |
| 3168 | This signal is emitted when the task tree finished, passing the final \a result |
| 3169 | of the execution. The task tree neither calls any handler, |
| 3170 | nor emits any signal anymore after this signal was emitted. |
| 3171 | |
| 3172 | \note Do not delete the task tree directly from this signal's handler. |
| 3173 | Use deleteLater() instead. |
| 3174 | |
| 3175 | \sa started() |
| 3176 | */ |
| 3177 | |
| 3178 | /*! |
| 3179 | Cancels the execution of the running task tree. |
| 3180 | |
| 3181 | Cancels all the running tasks immediately. |
| 3182 | All running tasks finish with an error, invoking their error handlers. |
| 3183 | All running groups dispatch their handlers according to their workflow policies, |
| 3184 | invoking their done handlers. The storages' onStorageDone() handlers are invoked, too. |
| 3185 | The progressValueChanged() signals are also being sent. |
| 3186 | This behavior may always be relied on. |
| 3187 | |
| 3188 | The \c cancel() function is executed synchronously, so that after a call to \c cancel() |
| 3189 | all running tasks are finished and the tree is already canceled. |
| 3190 | It's guaranteed that \c cancel() will run quickly, without any blocking wait for |
| 3191 | the currently running tasks to finish, provided the used tasks implement their destructors |
| 3192 | in a non-blocking way. |
| 3193 | |
| 3194 | When the task tree is empty, that is, constructed with a default constructor, |
| 3195 | a call to \c cancel() is no-op and the relevant warning message is issued. |
| 3196 | |
| 3197 | Otherwise, when the task tree wasn't started, a call to \c cancel() is ignored. |
| 3198 | |
| 3199 | \note Do not call this function directly from any of the running task's handlers |
| 3200 | or task tree's signals. |
| 3201 | |
| 3202 | \sa ~TaskTree() |
| 3203 | */ |
| 3204 | void TaskTree::cancel() |
| 3205 | { |
| 3206 | QT_ASSERT(!d->m_guard.isLocked(), qWarning("The cancel() is called from one of the" |
| 3207 | "TaskTree handlers, ignoring..." ); return); |
| 3208 | d->stop(); |
| 3209 | } |
| 3210 | |
| 3211 | /*! |
| 3212 | Returns \c true if the task tree is currently running; otherwise returns \c false. |
| 3213 | |
| 3214 | \sa start(), cancel() |
| 3215 | */ |
| 3216 | bool TaskTree::isRunning() const |
| 3217 | { |
| 3218 | return bool(d->m_runtimeRoot); |
| 3219 | } |
| 3220 | |
| 3221 | /*! |
| 3222 | Executes a local event loop with QEventLoop::ExcludeUserInputEvents and starts the task tree. |
| 3223 | |
| 3224 | Returns DoneWith::Success if the task tree finished successfully; |
| 3225 | otherwise returns DoneWith::Error. |
| 3226 | |
| 3227 | \note Avoid using this method from the main thread. Use asynchronous start() instead. |
| 3228 | This method is to be used in non-main threads or in auto tests. |
| 3229 | |
| 3230 | \sa start() |
| 3231 | */ |
| 3232 | DoneWith TaskTree::runBlocking() |
| 3233 | { |
| 3234 | QPromise<void> dummy; |
| 3235 | dummy.start(); |
| 3236 | return runBlocking(future: dummy.future()); |
| 3237 | } |
| 3238 | |
| 3239 | /*! |
| 3240 | \overload runBlocking() |
| 3241 | |
| 3242 | The passed \a future is used for listening to the cancel event. |
| 3243 | When the task tree is canceled, this method cancels the passed \a future. |
| 3244 | */ |
| 3245 | DoneWith TaskTree::runBlocking(const QFuture<void> &future) |
| 3246 | { |
| 3247 | if (future.isCanceled()) |
| 3248 | return DoneWith::Cancel; |
| 3249 | |
| 3250 | DoneWith doneWith = DoneWith::Cancel; |
| 3251 | QEventLoop loop; |
| 3252 | connect(sender: this, signal: &TaskTree::done, context: &loop, slot: [&loop, &doneWith](DoneWith result) { |
| 3253 | doneWith = result; |
| 3254 | // Otherwise, the tasks from inside the running tree that were deleteLater() |
| 3255 | // will be leaked. Refer to the QObject::deleteLater() docs. |
| 3256 | QMetaObject::invokeMethod(object: &loop, function: [&loop] { loop.quit(); }, type: Qt::QueuedConnection); |
| 3257 | }); |
| 3258 | QFutureWatcher<void> watcher; |
| 3259 | connect(sender: &watcher, signal: &QFutureWatcherBase::canceled, context: this, slot: &TaskTree::cancel); |
| 3260 | watcher.setFuture(future); |
| 3261 | |
| 3262 | QTimer::singleShot(interval: 0, receiver: this, slot: &TaskTree::start); |
| 3263 | |
| 3264 | loop.exec(flags: QEventLoop::ExcludeUserInputEvents); |
| 3265 | if (doneWith == DoneWith::Cancel) { |
| 3266 | auto nonConstFuture = future; |
| 3267 | nonConstFuture.cancel(); |
| 3268 | } |
| 3269 | return doneWith; |
| 3270 | } |
| 3271 | |
| 3272 | /*! |
| 3273 | Constructs a temporary task tree using the passed \a recipe and runs it blocking. |
| 3274 | |
| 3275 | The optionally provided \a timeout is used to cancel the tree automatically after |
| 3276 | \a timeout milliseconds have passed. |
| 3277 | |
| 3278 | Returns DoneWith::Success if the task tree finished successfully; |
| 3279 | otherwise returns DoneWith::Error. |
| 3280 | |
| 3281 | \note Avoid using this method from the main thread. Use asynchronous start() instead. |
| 3282 | This method is to be used in non-main threads or in auto tests. |
| 3283 | |
| 3284 | \sa start() |
| 3285 | */ |
| 3286 | DoneWith TaskTree::runBlocking(const Group &recipe, milliseconds timeout) |
| 3287 | { |
| 3288 | QPromise<void> dummy; |
| 3289 | dummy.start(); |
| 3290 | return TaskTree::runBlocking(recipe, future: dummy.future(), timeout); |
| 3291 | } |
| 3292 | |
| 3293 | /*! |
| 3294 | \overload runBlocking(const Group &recipe, milliseconds timeout) |
| 3295 | |
| 3296 | The passed \a future is used for listening to the cancel event. |
| 3297 | When the task tree is canceled, this method cancels the passed \a future. |
| 3298 | */ |
| 3299 | DoneWith TaskTree::runBlocking(const Group &recipe, const QFuture<void> &future, milliseconds timeout) |
| 3300 | { |
| 3301 | const Group root = timeout == milliseconds::max() ? recipe |
| 3302 | : Group { recipe.withTimeout(timeout) }; |
| 3303 | TaskTree taskTree(root); |
| 3304 | return taskTree.runBlocking(future); |
| 3305 | } |
| 3306 | |
| 3307 | /*! |
| 3308 | Returns the current real count of asynchronous chains of invocations. |
| 3309 | |
| 3310 | The returned value indicates how many times the control returns to the caller's |
| 3311 | event loop while the task tree is running. Initially, this value is 0. |
| 3312 | If the execution of the task tree finishes fully synchronously, this value remains 0. |
| 3313 | If the task tree contains any asynchronous tasks that are successfully started during |
| 3314 | a call to start(), this value is bumped to 1 just before the call to start() finishes. |
| 3315 | Later, when any asynchronous task finishes and any possible continuations are started, |
| 3316 | this value is bumped again. The bumping continues until the task tree finishes. |
| 3317 | When the task tree emits the done() signal, the bumping stops. |
| 3318 | The asyncCountChanged() signal is emitted on every bump of this value. |
| 3319 | |
| 3320 | \sa asyncCountChanged() |
| 3321 | */ |
| 3322 | int TaskTree::asyncCount() const |
| 3323 | { |
| 3324 | return d->m_asyncCount; |
| 3325 | } |
| 3326 | |
| 3327 | /*! |
| 3328 | \fn void TaskTree::asyncCountChanged(int count) |
| 3329 | |
| 3330 | This signal is emitted when the running task tree is about to return control to the caller's |
| 3331 | event loop. When the task tree is started, this signal is emitted with \a count value of 0, |
| 3332 | and emitted later on every asyncCount() value bump with an updated \a count value. |
| 3333 | Every signal sent (except the initial one with the value of 0) guarantees that the task tree |
| 3334 | is still running asynchronously after the emission. |
| 3335 | |
| 3336 | \sa asyncCount() |
| 3337 | */ |
| 3338 | |
| 3339 | /*! |
| 3340 | Returns the number of asynchronous tasks contained in the stored recipe. |
| 3341 | |
| 3342 | \note The returned number doesn't include \l {Tasking::Sync} {Sync} tasks. |
| 3343 | \note Any task or group that was set up using withTimeout() increases the total number of |
| 3344 | tasks by \c 1. |
| 3345 | |
| 3346 | \sa setRecipe(), progressMaximum() |
| 3347 | */ |
| 3348 | int TaskTree::taskCount() const |
| 3349 | { |
| 3350 | return d->m_root ? d->m_root->taskCount() : 0; |
| 3351 | } |
| 3352 | |
| 3353 | /*! |
| 3354 | \fn void TaskTree::progressValueChanged(int value) |
| 3355 | |
| 3356 | This signal is emitted when the running task tree finished, canceled, or skipped some tasks. |
| 3357 | The \a value gives the current total number of finished, canceled or skipped tasks. |
| 3358 | When the task tree is started, and after the started() signal was emitted, |
| 3359 | this signal is emitted with an initial \a value of \c 0. |
| 3360 | When the task tree is about to finish, and before the done() signal is emitted, |
| 3361 | this signal is emitted with the final \a value of progressMaximum(). |
| 3362 | |
| 3363 | \sa progressValue(), progressMaximum() |
| 3364 | */ |
| 3365 | |
| 3366 | /*! |
| 3367 | \fn int TaskTree::progressMaximum() const |
| 3368 | |
| 3369 | Returns the maximum progressValue(). |
| 3370 | |
| 3371 | \note Currently, it's the same as taskCount(). This might change in the future. |
| 3372 | |
| 3373 | \sa progressValue() |
| 3374 | */ |
| 3375 | |
| 3376 | /*! |
| 3377 | Returns the current progress value, which is between the \c 0 and progressMaximum(). |
| 3378 | |
| 3379 | The returned number indicates how many tasks have been already finished, canceled, or skipped |
| 3380 | while the task tree is running. |
| 3381 | When the task tree is started, this number is set to \c 0. |
| 3382 | When the task tree is finished, this number always equals progressMaximum(). |
| 3383 | |
| 3384 | \sa progressMaximum(), progressValueChanged() |
| 3385 | */ |
| 3386 | int TaskTree::progressValue() const |
| 3387 | { |
| 3388 | return d->m_progressValue; |
| 3389 | } |
| 3390 | |
| 3391 | /*! |
| 3392 | \fn template <typename StorageStruct, typename Handler> void TaskTree::onStorageSetup(const Storage<StorageStruct> &storage, Handler &&handler) |
| 3393 | |
| 3394 | Installs a storage setup \a handler for the \a storage to pass the initial data |
| 3395 | dynamically to the running task tree. |
| 3396 | |
| 3397 | The \c StorageHandler takes a \e reference to the \c StorageStruct instance: |
| 3398 | |
| 3399 | \code |
| 3400 | static void save(const QString &fileName, const QByteArray &array) { ... } |
| 3401 | |
| 3402 | Storage<QByteArray> storage; |
| 3403 | |
| 3404 | const auto onSaverSetup = [storage](ConcurrentCall<QByteArray> &concurrent) { |
| 3405 | concurrent.setConcurrentCallData(&save, "foo.txt", *storage); |
| 3406 | }; |
| 3407 | |
| 3408 | const Group root { |
| 3409 | storage, |
| 3410 | ConcurrentCallTask(onSaverSetup) |
| 3411 | }; |
| 3412 | |
| 3413 | TaskTree taskTree(root); |
| 3414 | auto initStorage = [](QByteArray &storage){ |
| 3415 | storage = "initial content"; |
| 3416 | }; |
| 3417 | taskTree.onStorageSetup(storage, initStorage); |
| 3418 | taskTree.start(); |
| 3419 | \endcode |
| 3420 | |
| 3421 | When the running task tree enters a Group where the \a storage is placed in, |
| 3422 | it creates a \c StorageStruct instance, ready to be used inside this group. |
| 3423 | Just after the \c StorageStruct instance is created, and before any handler of this group |
| 3424 | is called, the task tree invokes the passed \a handler. This enables setting up |
| 3425 | initial content for the given storage dynamically. Later, when any group's handler is invoked, |
| 3426 | the task tree activates the created and initialized storage, so that it's available inside |
| 3427 | any group's handler. |
| 3428 | |
| 3429 | \sa onStorageDone() |
| 3430 | */ |
| 3431 | |
| 3432 | /*! |
| 3433 | \fn template <typename StorageStruct, typename Handler> void TaskTree::onStorageDone(const Storage<StorageStruct> &storage, Handler &&handler) |
| 3434 | |
| 3435 | Installs a storage done \a handler for the \a storage to retrieve the final data |
| 3436 | dynamically from the running task tree. |
| 3437 | |
| 3438 | The \c StorageHandler takes a \c const \e reference to the \c StorageStruct instance: |
| 3439 | |
| 3440 | \code |
| 3441 | static QByteArray load(const QString &fileName) { ... } |
| 3442 | |
| 3443 | Storage<QByteArray> storage; |
| 3444 | |
| 3445 | const auto onLoaderSetup = [](ConcurrentCall<QByteArray> &concurrent) { |
| 3446 | concurrent.setConcurrentCallData(&load, "foo.txt"); |
| 3447 | }; |
| 3448 | const auto onLoaderDone = [storage](const ConcurrentCall<QByteArray> &concurrent) { |
| 3449 | *storage = concurrent.result(); |
| 3450 | }; |
| 3451 | |
| 3452 | const Group root { |
| 3453 | storage, |
| 3454 | ConcurrentCallTask(onLoaderSetup, onLoaderDone, CallDoneIf::Success) |
| 3455 | }; |
| 3456 | |
| 3457 | TaskTree taskTree(root); |
| 3458 | auto collectStorage = [](const QByteArray &storage){ |
| 3459 | qDebug() << "final content" << storage; |
| 3460 | }; |
| 3461 | taskTree.onStorageDone(storage, collectStorage); |
| 3462 | taskTree.start(); |
| 3463 | \endcode |
| 3464 | |
| 3465 | When the running task tree is about to leave a Group where the \a storage is placed in, |
| 3466 | it destructs a \c StorageStruct instance. |
| 3467 | Just before the \c StorageStruct instance is destructed, and after all possible handlers from |
| 3468 | this group were called, the task tree invokes the passed \a handler. This enables reading |
| 3469 | the final content of the given storage dynamically and processing it further outside of |
| 3470 | the task tree. |
| 3471 | |
| 3472 | This handler is called also when the running tree is canceled. However, it's not called |
| 3473 | when the running tree is destructed. |
| 3474 | |
| 3475 | \sa onStorageSetup() |
| 3476 | */ |
| 3477 | |
| 3478 | void TaskTree::setupStorageHandler(const StorageBase &storage, |
| 3479 | StorageBase::StorageHandler setupHandler, |
| 3480 | StorageBase::StorageHandler doneHandler) |
| 3481 | { |
| 3482 | auto it = d->m_storageHandlers.find(key: storage); |
| 3483 | if (it == d->m_storageHandlers.end()) { |
| 3484 | d->m_storageHandlers.insert(key: storage, value: {.m_setupHandler: setupHandler, .m_doneHandler: doneHandler}); |
| 3485 | return; |
| 3486 | } |
| 3487 | if (setupHandler) { |
| 3488 | QT_ASSERT(!it->m_setupHandler, |
| 3489 | qWarning("The storage has its setup handler defined, overriding..." )); |
| 3490 | it->m_setupHandler = setupHandler; |
| 3491 | } |
| 3492 | if (doneHandler) { |
| 3493 | QT_ASSERT(!it->m_doneHandler, |
| 3494 | qWarning("The storage has its done handler defined, overriding..." )); |
| 3495 | it->m_doneHandler = doneHandler; |
| 3496 | } |
| 3497 | } |
| 3498 | |
| 3499 | TaskTreeTaskAdapter::TaskTreeTaskAdapter() |
| 3500 | { |
| 3501 | connect(sender: task(), signal: &TaskTree::done, context: this, |
| 3502 | slot: [this](DoneWith result) { emit done(result: toDoneResult(doneWith: result)); }); |
| 3503 | } |
| 3504 | |
| 3505 | void TaskTreeTaskAdapter::start() |
| 3506 | { |
| 3507 | task()->start(); |
| 3508 | } |
| 3509 | |
| 3510 | using TimeoutCallback = std::function<void()>; |
| 3511 | |
| 3512 | struct TimerData |
| 3513 | { |
| 3514 | system_clock::time_point m_deadline; |
| 3515 | QPointer<QObject> m_context; |
| 3516 | TimeoutCallback m_callback; |
| 3517 | }; |
| 3518 | |
| 3519 | struct TimerThreadData |
| 3520 | { |
| 3521 | Q_DISABLE_COPY_MOVE(TimerThreadData) |
| 3522 | |
| 3523 | TimerThreadData() = default; // defult constructor is required for initializing with {} since C++20 by Mingw 11.20 |
| 3524 | QHash<int, TimerData> m_timerIdToTimerData = {}; |
| 3525 | QMap<system_clock::time_point, QList<int>> m_deadlineToTimerId = {}; |
| 3526 | int m_timerIdCounter = 0; |
| 3527 | }; |
| 3528 | |
| 3529 | // Please note the thread_local keyword below guarantees a separate instance per thread. |
| 3530 | static thread_local TimerThreadData s_threadTimerData = {}; |
| 3531 | |
| 3532 | static void removeTimerId(int timerId) |
| 3533 | { |
| 3534 | const auto it = s_threadTimerData.m_timerIdToTimerData.constFind(key: timerId); |
| 3535 | QT_ASSERT(it != s_threadTimerData.m_timerIdToTimerData.cend(), |
| 3536 | qWarning("Removing active timerId failed." ); return); |
| 3537 | |
| 3538 | const system_clock::time_point deadline = it->m_deadline; |
| 3539 | s_threadTimerData.m_timerIdToTimerData.erase(it); |
| 3540 | |
| 3541 | QList<int> &ids = s_threadTimerData.m_deadlineToTimerId[deadline]; |
| 3542 | const int removedCount = ids.removeAll(t: timerId); |
| 3543 | QT_ASSERT(removedCount == 1, qWarning("Removing active timerId failed." ); return); |
| 3544 | if (ids.isEmpty()) |
| 3545 | s_threadTimerData.m_deadlineToTimerId.remove(key: deadline); |
| 3546 | } |
| 3547 | |
| 3548 | static void handleTimeout(int timerId) |
| 3549 | { |
| 3550 | const auto itData = s_threadTimerData.m_timerIdToTimerData.constFind(key: timerId); |
| 3551 | if (itData == s_threadTimerData.m_timerIdToTimerData.cend()) |
| 3552 | return; // The timer was already activated. |
| 3553 | |
| 3554 | const auto deadline = itData->m_deadline; |
| 3555 | while (true) { |
| 3556 | auto itMap = s_threadTimerData.m_deadlineToTimerId.begin(); |
| 3557 | if (itMap == s_threadTimerData.m_deadlineToTimerId.end()) |
| 3558 | return; |
| 3559 | |
| 3560 | if (itMap.key() > deadline) |
| 3561 | return; |
| 3562 | |
| 3563 | std::optional<TimerData> timerData; |
| 3564 | QList<int> &idList = *itMap; |
| 3565 | if (!idList.isEmpty()) { |
| 3566 | const int first = idList.first(); |
| 3567 | idList.removeFirst(); |
| 3568 | |
| 3569 | const auto it = s_threadTimerData.m_timerIdToTimerData.constFind(key: first); |
| 3570 | if (it != s_threadTimerData.m_timerIdToTimerData.cend()) { |
| 3571 | timerData = it.value(); |
| 3572 | s_threadTimerData.m_timerIdToTimerData.erase(it); |
| 3573 | } else { |
| 3574 | QT_CHECK(false); |
| 3575 | } |
| 3576 | } else { |
| 3577 | QT_CHECK(false); |
| 3578 | } |
| 3579 | |
| 3580 | if (idList.isEmpty()) |
| 3581 | s_threadTimerData.m_deadlineToTimerId.erase(it: itMap); |
| 3582 | if (timerData && timerData->m_context) |
| 3583 | timerData->m_callback(); |
| 3584 | } |
| 3585 | } |
| 3586 | |
| 3587 | static int scheduleTimeout(milliseconds timeout, QObject *context, const TimeoutCallback &callback) |
| 3588 | { |
| 3589 | const int timerId = ++s_threadTimerData.m_timerIdCounter; |
| 3590 | const system_clock::time_point deadline = system_clock::now() + timeout; |
| 3591 | QTimer::singleShot(interval: timeout, receiver: context, slot: [timerId] { handleTimeout(timerId); }); |
| 3592 | s_threadTimerData.m_timerIdToTimerData.emplace(key: timerId, args: TimerData{.m_deadline: deadline, .m_context: context, .m_callback: callback}); |
| 3593 | s_threadTimerData.m_deadlineToTimerId[deadline].append(t: timerId); |
| 3594 | return timerId; |
| 3595 | } |
| 3596 | |
| 3597 | TimeoutTaskAdapter::TimeoutTaskAdapter() |
| 3598 | { |
| 3599 | *task() = milliseconds::zero(); |
| 3600 | } |
| 3601 | |
| 3602 | TimeoutTaskAdapter::~TimeoutTaskAdapter() |
| 3603 | { |
| 3604 | if (m_timerId) |
| 3605 | removeTimerId(timerId: *m_timerId); |
| 3606 | } |
| 3607 | |
| 3608 | void TimeoutTaskAdapter::start() |
| 3609 | { |
| 3610 | m_timerId = scheduleTimeout(timeout: *task(), context: this, callback: [this] { |
| 3611 | m_timerId.reset(); |
| 3612 | emit done(result: DoneResult::Success); |
| 3613 | }); |
| 3614 | } |
| 3615 | |
| 3616 | /*! |
| 3617 | \typealias Tasking::TaskTreeTask |
| 3618 | |
| 3619 | Type alias for the CustomTask, to be used inside recipes, associated with the TaskTree task. |
| 3620 | */ |
| 3621 | |
| 3622 | /*! |
| 3623 | \typealias Tasking::TimeoutTask |
| 3624 | |
| 3625 | Type alias for the CustomTask, to be used inside recipes, associated with the |
| 3626 | \c std::chrono::milliseconds type. \c std::chrono::milliseconds is used to set up the |
| 3627 | timeout duration. The default timeout is \c std::chrono::milliseconds::zero(), that is, |
| 3628 | the TimeoutTask finishes as soon as the control returns to the running event loop. |
| 3629 | |
| 3630 | Example usage: |
| 3631 | |
| 3632 | \code |
| 3633 | using namespace std::chrono; |
| 3634 | using namespace std::chrono_literals; |
| 3635 | |
| 3636 | const auto onSetup = [](milliseconds &timeout) { timeout = 1000ms; } |
| 3637 | const auto onDone = [] { qDebug() << "Timed out."; } |
| 3638 | |
| 3639 | const Group root { |
| 3640 | Timeout(onSetup, onDone) |
| 3641 | }; |
| 3642 | \endcode |
| 3643 | */ |
| 3644 | |
| 3645 | } // namespace Tasking |
| 3646 | |
| 3647 | QT_END_NAMESPACE |
| 3648 | |