1 | // Copyright (C) 2024 Jarek Kobus |
2 | // Copyright (C) 2024 The Qt Company Ltd. |
3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
4 | |
5 | #include "tasktree.h" |
6 | |
7 | #include "barrier.h" |
8 | |
9 | #include <QtCore/QDebug> |
10 | #include <QtCore/QEventLoop> |
11 | #include <QtCore/QFutureWatcher> |
12 | #include <QtCore/QHash> |
13 | #include <QtCore/QMetaEnum> |
14 | #include <QtCore/QMutex> |
15 | #include <QtCore/QPointer> |
16 | #include <QtCore/QPromise> |
17 | #include <QtCore/QSet> |
18 | #include <QtCore/QTime> |
19 | #include <QtCore/QTimer> |
20 | |
21 | using namespace Qt::StringLiterals; |
22 | using namespace std::chrono; |
23 | |
24 | QT_BEGIN_NAMESPACE |
25 | |
26 | namespace Tasking { |
27 | |
28 | // That's cut down qtcassert.{c,h} to avoid the dependency. |
29 | #define QT_STRING(cond) qDebug("SOFT ASSERT: \"%s\" in %s: %s", cond, __FILE__, QT_STRINGIFY(__LINE__)) |
30 | #define QT_ASSERT(cond, action) if (Q_LIKELY(cond)) {} else { QT_STRING(#cond); action; } do {} while (0) |
31 | #define QT_CHECK(cond) if (cond) {} else { QT_STRING(#cond); } do {} while (0) |
32 | |
33 | class Guard |
34 | { |
35 | Q_DISABLE_COPY(Guard) |
36 | public: |
37 | Guard() = default; |
38 | ~Guard() { QT_CHECK(m_lockCount == 0); } |
39 | bool isLocked() const { return m_lockCount; } |
40 | private: |
41 | int m_lockCount = 0; |
42 | friend class GuardLocker; |
43 | }; |
44 | |
45 | class GuardLocker |
46 | { |
47 | Q_DISABLE_COPY(GuardLocker) |
48 | public: |
49 | GuardLocker(Guard &guard) : m_guard(guard) { ++m_guard.m_lockCount; } |
50 | ~GuardLocker() { --m_guard.m_lockCount; } |
51 | private: |
52 | Guard &m_guard; |
53 | }; |
54 | |
55 | /*! |
56 | \module TaskingSolution |
57 | \title Tasking Solution |
58 | \ingroup solutions-modules |
59 | \brief Contains a general purpose Tasking solution. |
60 | |
61 | The Tasking solution depends on Qt only, and doesn't depend on any \QC specific code. |
62 | */ |
63 | |
64 | /*! |
65 | \namespace Tasking |
66 | \inmodule TaskingSolution |
67 | \brief The Tasking namespace encloses all classes and global functions of the Tasking solution. |
68 | */ |
69 | |
70 | /*! |
71 | \class Tasking::TaskInterface |
72 | \inheaderfile solutions/tasking/tasktree.h |
73 | \inmodule TaskingSolution |
74 | \brief TaskInterface is the abstract base class for implementing custom task adapters. |
75 | \reentrant |
76 | |
77 | To implement a custom task adapter, derive your adapter from the |
78 | \c TaskAdapter<Task> class template. TaskAdapter automatically creates and destroys |
79 | the custom task instance and associates the adapter with a given \c Task type. |
80 | */ |
81 | |
82 | /*! |
83 | \fn virtual void TaskInterface::start() |
84 | |
85 | This method is called by the running TaskTree for starting the \c Task instance. |
86 | Reimplement this method in \c TaskAdapter<Task>'s subclass in order to start the |
87 | associated task. |
88 | |
89 | Use TaskAdapter::task() to access the associated \c Task instance. |
90 | |
91 | \sa done(), TaskAdapter::task() |
92 | */ |
93 | |
94 | /*! |
95 | \fn void TaskInterface::done(DoneResult result) |
96 | |
97 | Emit this signal from the \c TaskAdapter<Task>'s subclass, when the \c Task is finished. |
98 | Pass DoneResult::Success as a \a result argument when the task finishes with success; |
99 | otherwise, when an error occurs, pass DoneResult::Error. |
100 | */ |
101 | |
102 | /*! |
103 | \class Tasking::TaskAdapter |
104 | \inheaderfile solutions/tasking/tasktree.h |
105 | \inmodule TaskingSolution |
106 | \brief A class template for implementing custom task adapters. |
107 | \reentrant |
108 | |
109 | The TaskAdapter class template is responsible for creating a task of the \c Task type, |
110 | starting it, and reporting success or an error when the task is finished. |
111 | It also associates the adapter with a given \c Task type. |
112 | |
113 | Reimplement this class with the actual \c Task type to adapt the task's interface |
114 | into the general TaskTree's interface for managing the \c Task instances. |
115 | |
116 | Each subclass needs to provide a public default constructor, |
117 | implement the start() method, and emit the done() signal when the task is finished. |
118 | Use task() to access the associated \c Task instance. |
119 | |
120 | To use your task adapter inside the task tree, create an alias to the |
121 | Tasking::CustomTask template passing your task adapter as a template parameter: |
122 | \code |
123 | // Defines actual worker |
124 | class Worker {...}; |
125 | |
126 | // Adapts Worker's interface to work with task tree |
127 | class WorkerTaskAdapter : public TaskAdapter<Worker> {...}; |
128 | |
129 | // Defines WorkerTask as a new custom task type to be placed inside Group items |
130 | using WorkerTask = CustomTask<WorkerTaskAdapter>; |
131 | \endcode |
132 | |
133 | Optionally, you may pass a custom \c Deleter for the associated \c Task |
134 | as a second template parameter of your \c TaskAdapter subclass. |
135 | When the \c Deleter parameter is omitted, the \c std::default_delete<Task> is used by default. |
136 | The custom \c Deleter is useful when the destructor of the running \c Task |
137 | may potentially block the caller thread. Instead of blocking, the custom deleter may move |
138 | the running task into a separate thread and implement the blocking destruction there. |
139 | In this way, the fast destruction (seen from the caller thread) of the running task |
140 | with a blocking destructor may be achieved. |
141 | |
142 | For more information on implementing the custom task adapters, refer to \l {Task Adapters}. |
143 | |
144 | \sa start(), done(), task() |
145 | */ |
146 | |
147 | /*! |
148 | \fn template <typename Task, typename Deleter = std::default_delete<Task>> TaskAdapter<Task, Deleter>::TaskAdapter<Task, Deleter>() |
149 | |
150 | Creates a task adapter for the given \c Task type. |
151 | |
152 | Internally, it creates an instance of \c Task, which is accessible via the task() method. |
153 | The optionally provided \c Deleter is used instead of the \c Task destructor. |
154 | When \c Deleter is omitted, the \c std::default_delete<Task> is used by default. |
155 | |
156 | \sa task() |
157 | */ |
158 | |
159 | /*! |
160 | \fn template <typename Task, typename Deleter = std::default_delete<Task>> Task *TaskAdapter<Task, Deleter>::task() |
161 | |
162 | Returns the pointer to the associated \c Task instance. |
163 | */ |
164 | |
165 | /*! |
166 | \fn template <typename Task, typename Deleter = std::default_delete<Task>> Task *TaskAdapter<Task, Deleter>::task() const |
167 | \overload |
168 | |
169 | Returns the \c const pointer to the associated \c Task instance. |
170 | */ |
171 | |
172 | /*! |
173 | \class Tasking::Storage |
174 | \inheaderfile solutions/tasking/tasktree.h |
175 | \inmodule TaskingSolution |
176 | \brief A class template for custom data exchange in the running task tree. |
177 | \reentrant |
178 | |
179 | The Storage class template is responsible for dynamically creating and destructing objects |
180 | of the custom \c StorageStruct type. The creation and destruction are managed by the |
181 | running task tree. If a Storage object is placed inside a \l {Tasking::Group} {Group} element, |
182 | the running task tree creates the \c StorageStruct object when the group is started and before |
183 | the group's setup handler is called. Later, whenever any handler inside this group is called, |
184 | the task tree activates the previously created instance of the \c StorageStruct object. |
185 | This includes all tasks' and groups' setup and done handlers inside the group where the |
186 | Storage object was placed, also within the nested groups. |
187 | When a copy of the Storage object is passed to the handler via the lambda capture, |
188 | the handler may access the instance activated by the running task tree via the |
189 | \l {Tasking::Storage::operator->()} {operator->()}, |
190 | \l {Tasking::Storage::operator*()} {operator*()}, or activeStorage() method. |
191 | If two handlers capture the same Storage object, one of them may store a custom data there, |
192 | and the other may read it afterwards. |
193 | When the group is finished, the previously created instance of the \c StorageStruct |
194 | object is destroyed after the group's done handler is called. |
195 | |
196 | An example of data exchange between tasks: |
197 | |
198 | \code |
199 | const Storage<QString> storage; |
200 | |
201 | const auto onFirstDone = [storage](const Task &task) { |
202 | // Assings QString, taken from the first task result, to the active QString instance |
203 | // of the Storage object. |
204 | *storage = task.getResultAsString(); |
205 | }; |
206 | |
207 | const auto onSecondSetup = [storage](Task &task) { |
208 | // Reads QString from the active QString instance of the Storage object and use it to |
209 | // configure the second task before start. |
210 | task.configureWithString(*storage); |
211 | }; |
212 | |
213 | const Group root { |
214 | // The running task tree creates QString instance when root in entered |
215 | storage, |
216 | // The done handler of the first task stores the QString in the storage |
217 | TaskItem(..., onFirstDone), |
218 | // The setup handler of the second task reads the QString from the storage |
219 | TaskItem(onSecondSetup, ...) |
220 | }; |
221 | \endcode |
222 | |
223 | Since the root group executes its tasks sequentially, the \c onFirstDone handler |
224 | is always called before the \c onSecondSetup handler. This means that the QString data, |
225 | read from the \c storage inside the \c onSecondSetup handler's body, |
226 | has already been set by the \c onFirstDone handler. |
227 | You can always rely on it in \l {Tasking::sequential} {sequential} execution mode. |
228 | |
229 | The Storage internals are shared between all of its copies. That is why the copies of the |
230 | Storage object inside the handlers' lambda captures still refer to the same Storage instance. |
231 | You may place multiple Storage objects inside one \l {Tasking::Group} {Group} element, |
232 | provided that they do not include copies of the same Storage object. |
233 | Otherwise, an assert is triggered at runtime that includes an error message. |
234 | However, you can place copies of the same Storage object in different |
235 | \l {Tasking::Group} {Group} elements of the same recipe. In this case, the running task |
236 | tree will create multiple instances of the \c StorageStruct objects (one for each copy) |
237 | and storage shadowing will take place. Storage shadowing works in a similar way |
238 | to C++ variable shadowing inside the nested blocks of code: |
239 | |
240 | \code |
241 | Storage<QString> storage; |
242 | |
243 | const Group root { |
244 | storage, // Top copy, 1st instance of StorageStruct |
245 | onGroupSetup([storage] { ... }), // Top copy is active |
246 | Group { |
247 | storage, // Nested copy, 2nd instance of StorageStruct, |
248 | // shadows Top copy |
249 | onGroupSetup([storage] { ... }), // Nested copy is active |
250 | }, |
251 | Group { |
252 | onGroupSetup([storage] { ... }), // Top copy is active |
253 | } |
254 | }; |
255 | \endcode |
256 | |
257 | The Storage objects may also be used for passing the initial data to the executed task tree, |
258 | and for reading the final data out of the task tree before it finishes. |
259 | To do this, use \l {TaskTree::onStorageSetup()} {onStorageSetup()} or |
260 | \l {TaskTree::onStorageDone()} {onStorageDone()}, respectively. |
261 | |
262 | \note If you use an unreachable Storage object inside the handler, |
263 | because you forgot to place the storage in the recipe, |
264 | or placed it, but not in any handler's ancestor group, |
265 | you may expect a crash, preceded by the following message: |
266 | \e {The referenced storage is not reachable in the running tree. |
267 | A nullptr will be returned which might lead to a crash in the calling code. |
268 | It is possible that no storage was added to the tree, |
269 | or the storage is not reachable from where it is referenced.} |
270 | */ |
271 | |
272 | /*! |
273 | \fn template <typename StorageStruct> Storage<StorageStruct>::Storage<StorageStruct>() |
274 | |
275 | Creates a storage for the given \c StorageStruct type. |
276 | |
277 | \note All copies of \c this object are considered to be the same Storage instance. |
278 | */ |
279 | |
280 | /*! |
281 | \fn template <typename StorageStruct> StorageStruct &Storage<StorageStruct>::operator*() const noexcept |
282 | |
283 | Returns a \e reference to the active \c StorageStruct object, created by the running task tree. |
284 | Use this function only from inside the handler body of any GroupItem element placed |
285 | in the recipe, otherwise you may expect a crash. |
286 | Make sure that Storage is placed in any group ancestor of the handler's group item. |
287 | |
288 | \note The returned reference is valid as long as the group that created this instance |
289 | is still running. |
290 | |
291 | \sa activeStorage(), operator->() |
292 | */ |
293 | |
294 | /*! |
295 | \fn template <typename StorageStruct> StorageStruct *Storage<StorageStruct>::operator->() const noexcept |
296 | |
297 | Returns a \e pointer to the active \c StorageStruct object, created by the running task tree. |
298 | Use this function only from inside the handler body of any GroupItem element placed |
299 | in the recipe, otherwise you may expect a crash. |
300 | Make sure that Storage is placed in any group ancestor of the handler's group item. |
301 | |
302 | \note The returned pointer is valid as long as the group that created this instance |
303 | is still running. |
304 | |
305 | \sa activeStorage(), operator*() |
306 | */ |
307 | |
308 | /*! |
309 | \fn template <typename StorageStruct> StorageStruct *Storage<StorageStruct>::activeStorage() const |
310 | |
311 | Returns a \e pointer to the active \c StorageStruct object, created by the running task tree. |
312 | Use this function only from inside the handler body of any GroupItem element placed |
313 | in the recipe, otherwise you may expect a crash. |
314 | Make sure that Storage is placed in any group ancestor of the handler's group item. |
315 | |
316 | \note The returned pointer is valid as long as the group that created this instance |
317 | is still running. |
318 | |
319 | \sa operator->(), operator*() |
320 | */ |
321 | |
322 | /*! |
323 | \class Tasking::GroupItem |
324 | \inheaderfile solutions/tasking/tasktree.h |
325 | \inmodule TaskingSolution |
326 | \brief GroupItem represents the basic element that may be a part of any Group. |
327 | \reentrant |
328 | |
329 | GroupItem is a basic element that may be a part of any \l {Tasking::Group} {Group}. |
330 | It encapsulates the functionality provided by any GroupItem's subclass. |
331 | It is a value type and it is safe to copy the GroupItem instance, |
332 | even when it is originally created via the subclass' constructor. |
333 | |
334 | There are four main kinds of GroupItem: |
335 | \table |
336 | \header |
337 | \li GroupItem Kind |
338 | \li Brief Description |
339 | \row |
340 | \li \l CustomTask |
341 | \li Defines asynchronous task type and task's start, done, and error handlers. |
342 | Aliased with a unique task name, such as, \c ConcurrentCallTask<ResultType> |
343 | or \c NetworkQueryTask. Asynchronous tasks are the main reason for using a task tree. |
344 | \row |
345 | \li \l {Tasking::Group} {Group} |
346 | \li A container for other group items. Since the group is of the GroupItem type, |
347 | it's possible to nest it inside another group. The group is seen by its parent |
348 | as a single asynchronous task. |
349 | \row |
350 | \li GroupItem containing \l {Tasking::Storage} {Storage} |
351 | \li Enables the child tasks of a group to exchange data. When GroupItem containing |
352 | \l {Tasking::Storage} {Storage} is placed inside a group, the task tree instantiates |
353 | the storage's data object just before the group is entered, |
354 | and destroys it just after the group is left. |
355 | \row |
356 | \li Other group control items |
357 | \li The items returned by \l {Tasking::parallelLimit()} {parallelLimit()} or |
358 | \l {Tasking::workflowPolicy()} {workflowPolicy()} influence the group's behavior. |
359 | The items returned by \l {Tasking::onGroupSetup()} {onGroupSetup()} or |
360 | \l {Tasking::onGroupDone()} {onGroupDone()} define custom handlers called when |
361 | the group starts or ends execution. |
362 | \endtable |
363 | */ |
364 | |
365 | /*! |
366 | \fn template <typename StorageStruct> GroupItem::GroupItem(const Storage<StorageStruct> &storage) |
367 | |
368 | Constructs a \c GroupItem element holding the \a storage object. |
369 | |
370 | When the \l {Tasking::Group} {Group} element containing \e this GroupItem is entered |
371 | by the running task tree, an instance of the \c StorageStruct is created dynamically. |
372 | |
373 | When that group is about to be left after its execution, the previously instantiated |
374 | \c StorageStruct is deleted. |
375 | |
376 | The dynamically created instance of \c StorageStruct is accessible from inside any |
377 | handler body of the parent \l {Tasking::Group} {Group} element, |
378 | including nested groups and its tasks, via the |
379 | \l {Tasking::Storage::operator->()} {Storage::operator->()}, |
380 | \l {Tasking::Storage::operator*()} {Storage::operator*()}, or Storage::activeStorage() method. |
381 | |
382 | \sa {Tasking::Storage} {Storage} |
383 | */ |
384 | |
385 | /*! |
386 | \fn GroupItem::GroupItem(const QList<GroupItem> &items) |
387 | |
388 | Constructs a \c GroupItem element with a given list of \a items. |
389 | |
390 | When this \c GroupItem element is parsed by the TaskTree, it is simply replaced with |
391 | its \a items. |
392 | |
393 | This constructor is useful when constructing a \l {Tasking::Group} {Group} element with |
394 | lists of \c GroupItem elements: |
395 | |
396 | \code |
397 | static QList<GroupItems> getItems(); |
398 | |
399 | ... |
400 | |
401 | const Group root { |
402 | parallel, |
403 | finishAllAndSuccess, |
404 | getItems(), // OK, getItems() list is wrapped into a single GroupItem element |
405 | onGroupSetup(...), |
406 | onGroupDone(...) |
407 | }; |
408 | \endcode |
409 | |
410 | If you want to create a subtree, use \l {Tasking::Group} {Group} instead. |
411 | |
412 | \note Don't confuse this \c GroupItem with the \l {Tasking::Group} {Group} element, as |
413 | \l {Tasking::Group} {Group} keeps its children nested |
414 | after being parsed by the task tree, while this \c GroupItem does not. |
415 | |
416 | \sa {Tasking::Group} {Group} |
417 | */ |
418 | |
419 | /*! |
420 | \fn GroupItem::GroupItem(std::initializer_list<GroupItem> items) |
421 | \overload |
422 | \sa GroupItem(const QList<Tasking::GroupItem> &items) |
423 | */ |
424 | |
425 | /*! |
426 | \class Tasking::Group |
427 | \inheaderfile solutions/tasking/tasktree.h |
428 | \inmodule TaskingSolution |
429 | \brief Group represents the basic element for composing declarative recipes describing |
430 | how to execute and handle a nested tree of asynchronous tasks. |
431 | \reentrant |
432 | |
433 | Group is a container for other group items. It encloses child tasks into one unit, |
434 | which is seen by the group's parent as a single, asynchronous task. |
435 | Since Group is of the GroupItem type, it may also be a child of Group. |
436 | |
437 | Insert child tasks into the group by using aliased custom task names, such as, |
438 | \c ConcurrentCallTask<ResultType> or \c NetworkQueryTask: |
439 | |
440 | \code |
441 | const Group group { |
442 | NetworkQueryTask(...), |
443 | ConcurrentCallTask<int>(...) |
444 | }; |
445 | \endcode |
446 | |
447 | The group's behavior may be customized by inserting the items returned by |
448 | \l {Tasking::parallelLimit()} {parallelLimit()} or |
449 | \l {Tasking::workflowPolicy()} {workflowPolicy()} functions: |
450 | |
451 | \code |
452 | const Group group { |
453 | parallel, |
454 | continueOnError, |
455 | NetworkQueryTask(...), |
456 | NetworkQueryTask(...) |
457 | }; |
458 | \endcode |
459 | |
460 | The group may contain nested groups: |
461 | |
462 | \code |
463 | const Group group { |
464 | finishAllAndSuccess, |
465 | NetworkQueryTask(...), |
466 | Group { |
467 | NetworkQueryTask(...), |
468 | Group { |
469 | parallel, |
470 | NetworkQueryTask(...), |
471 | NetworkQueryTask(...), |
472 | } |
473 | ConcurrentCallTask<QString>(...) |
474 | } |
475 | }; |
476 | \endcode |
477 | |
478 | The group may dynamically instantiate a custom storage structure, which may be used for |
479 | inter-task data exchange: |
480 | |
481 | \code |
482 | struct MyCustomStruct { QByteArray data; }; |
483 | |
484 | Storage<MyCustomStruct> storage; |
485 | |
486 | const auto onFirstSetup = [](NetworkQuery &task) { ... }; |
487 | const auto onFirstDone = [storage](const NetworkQuery &task) { |
488 | // storage-> gives a pointer to MyCustomStruct instance, |
489 | // created dynamically by the running task tree. |
490 | storage->data = task.reply()->readAll(); |
491 | }; |
492 | const auto onSecondSetup = [storage](ConcurrentCall<QImage> &task) { |
493 | // storage-> gives a pointer to MyCustomStruct. Since the group is sequential, |
494 | // the stored MyCustomStruct was already updated inside the onFirstDone handler. |
495 | const QByteArray storedData = storage->data; |
496 | }; |
497 | |
498 | const Group group { |
499 | // When the group is entered by a running task tree, it creates MyCustomStruct |
500 | // instance dynamically. It is later accessible from all handlers via |
501 | // the *storage or storage-> operators. |
502 | sequential, |
503 | storage, |
504 | NetworkQueryTask(onFirstSetup, onFirstDone, CallDoneIf::Success), |
505 | ConcurrentCallTask<QImage>(onSecondSetup) |
506 | }; |
507 | \endcode |
508 | */ |
509 | |
510 | /*! |
511 | \fn Group::Group(const QList<GroupItem> &children) |
512 | |
513 | Constructs a group with a given list of \a children. |
514 | |
515 | This constructor is useful when the child items of the group are not known at compile time, |
516 | but later, at runtime: |
517 | |
518 | \code |
519 | const QStringList sourceList = ...; |
520 | |
521 | QList<GroupItem> groupItems { parallel }; |
522 | |
523 | for (const QString &source : sourceList) { |
524 | const NetworkQueryTask task(...); // use source for setup handler |
525 | groupItems << task; |
526 | } |
527 | |
528 | const Group group(groupItems); |
529 | \endcode |
530 | */ |
531 | |
532 | /*! |
533 | \fn Group::Group(std::initializer_list<GroupItem> children) |
534 | |
535 | Constructs a group from \c std::initializer_list given by \a children. |
536 | |
537 | This constructor is useful when all child items of the group are known at compile time: |
538 | |
539 | \code |
540 | const Group group { |
541 | finishAllAndSuccess, |
542 | NetworkQueryTask(...), |
543 | Group { |
544 | NetworkQueryTask(...), |
545 | Group { |
546 | parallel, |
547 | NetworkQueryTask(...), |
548 | NetworkQueryTask(...), |
549 | } |
550 | ConcurrentCallTask<QString>(...) |
551 | } |
552 | }; |
553 | \endcode |
554 | */ |
555 | |
556 | /*! |
557 | \class Tasking::Sync |
558 | \inheaderfile solutions/tasking/tasktree.h |
559 | \inmodule TaskingSolution |
560 | \brief Synchronously executes a custom handler between other tasks. |
561 | \reentrant |
562 | |
563 | \c Sync is useful when you want to execute an additional handler between other tasks. |
564 | \c Sync is seen by its parent \l {Tasking::Group} {Group} as any other task. |
565 | Avoid long-running execution of the \c Sync's handler body, since it is executed |
566 | synchronously from the caller thread. If that is unavoidable, consider using |
567 | \c ConcurrentCallTask instead. |
568 | */ |
569 | |
570 | /*! |
571 | \fn template <typename Handler> Sync::Sync(Handler &&handler) |
572 | |
573 | Constructs an element that executes a passed \a handler synchronously. |
574 | The \c Handler is of the \c std::function<DoneResult()> type. |
575 | The DoneResult value, returned by the \a handler, is considered during parent group's |
576 | \l {workflowPolicy} {workflow policy} resolution. |
577 | Optionally, the shortened form of \c std::function<void()> is also accepted. |
578 | In this case, it's assumed that the return value is DoneResult::Success. |
579 | |
580 | The passed \a handler executes synchronously from the caller thread, so avoid a long-running |
581 | execution of the handler body. Otherwise, consider using \c ConcurrentCallTask. |
582 | |
583 | \note The \c Sync element is not counted as a task when reporting task tree progress, |
584 | and is not included in TaskTree::taskCount() or TaskTree::progressMaximum(). |
585 | */ |
586 | |
587 | /*! |
588 | \class Tasking::CustomTask |
589 | \inheaderfile solutions/tasking/tasktree.h |
590 | \inmodule TaskingSolution |
591 | \brief A class template used for declaring custom task items and defining their setup |
592 | and done handlers. |
593 | \reentrant |
594 | |
595 | Describes custom task items within task tree recipes. |
596 | |
597 | Custom task names are aliased with unique names using the \c CustomTask template |
598 | with a given TaskAdapter subclass as a template parameter. |
599 | For example, \c ConcurrentCallTask<T> is an alias to the \c CustomTask that is defined |
600 | to work with \c ConcurrentCall<T> as an associated task class. |
601 | The following table contains example custom tasks and their associated task classes: |
602 | |
603 | \table |
604 | \header |
605 | \li Aliased Task Name (Tasking Namespace) |
606 | \li Associated Task Class |
607 | \li Brief Description |
608 | \row |
609 | \li ConcurrentCallTask<ReturnType> |
610 | \li ConcurrentCall<ReturnType> |
611 | \li Starts an asynchronous task. Runs in a separate thread. |
612 | \row |
613 | \li NetworkQueryTask |
614 | \li NetworkQuery |
615 | \li Sends a network query. |
616 | \row |
617 | \li TaskTreeTask |
618 | \li TaskTree |
619 | \li Starts a nested task tree. |
620 | \row |
621 | \li TimeoutTask |
622 | \li \c std::chrono::milliseconds |
623 | \li Starts a timer. |
624 | \row |
625 | \li WaitForBarrierTask |
626 | \li MultiBarrier<Limit> |
627 | \li Starts an asynchronous task waiting for the barrier to pass. |
628 | \endtable |
629 | */ |
630 | |
631 | /*! |
632 | \typealias Tasking::CustomTask::Task |
633 | |
634 | Type alias for the task type associated with the custom task's \c Adapter. |
635 | */ |
636 | |
637 | /*! |
638 | \typealias Tasking::CustomTask::Deleter |
639 | |
640 | Type alias for the task's type deleter associated with the custom task's \c Adapter. |
641 | */ |
642 | |
643 | /*! |
644 | \typealias Tasking::CustomTask::TaskSetupHandler |
645 | |
646 | Type alias for \c std::function<SetupResult(Task &)>. |
647 | |
648 | The \c TaskSetupHandler is an optional argument of a custom task element's constructor. |
649 | Any function with the above signature, when passed as a task setup handler, |
650 | will be called by the running task tree after the task is created and before it is started. |
651 | |
652 | Inside the body of the handler, you may configure the task according to your needs. |
653 | The additional parameters, including storages, may be passed to the handler |
654 | via the lambda capture. |
655 | You can decide dynamically whether the task should be started or skipped with |
656 | success or an error. |
657 | |
658 | \note Do not start the task inside the start handler by yourself. Leave it for TaskTree, |
659 | otherwise the behavior is undefined. |
660 | |
661 | The return value of the handler instructs the running task tree on how to proceed |
662 | after the handler's invocation is finished. The return value of SetupResult::Continue |
663 | instructs the task tree to continue running, that is, to execute the associated \c Task. |
664 | The return value of SetupResult::StopWithSuccess or SetupResult::StopWithError |
665 | instructs the task tree to skip the task's execution and finish it immediately with |
666 | success or an error, respectively. |
667 | |
668 | When the return type is either SetupResult::StopWithSuccess or SetupResult::StopWithError, |
669 | the task's done handler (if provided) isn't called afterwards. |
670 | |
671 | The constructor of a custom task accepts also functions in the shortened form of |
672 | \c std::function<void(Task &)>, that is, the return value is \c void. |
673 | In this case, it's assumed that the return value is SetupResult::Continue. |
674 | |
675 | \sa CustomTask(), TaskDoneHandler, GroupSetupHandler |
676 | */ |
677 | |
678 | /*! |
679 | \typealias Tasking::CustomTask::TaskDoneHandler |
680 | |
681 | Type alias for \c std::function<DoneResult(const Task &, DoneWith)> or DoneResult. |
682 | |
683 | The \c TaskDoneHandler is an optional argument of a custom task element's constructor. |
684 | Any function with the above signature, when passed as a task done handler, |
685 | will be called by the running task tree after the task execution finished and before |
686 | the final result of the execution is reported back to the parent group. |
687 | |
688 | Inside the body of the handler you may retrieve the final data from the finished task. |
689 | The additional parameters, including storages, may be passed to the handler |
690 | via the lambda capture. |
691 | It is also possible to decide dynamically whether the task should finish with its return |
692 | value, or the final result should be tweaked. |
693 | |
694 | The DoneWith argument is optional and your done handler may omit it. |
695 | When provided, it holds the info about the final result of a task that will be |
696 | reported to its parent. |
697 | |
698 | If you do not plan to read any data from the finished task, |
699 | you may omit the \c {const Task &} argument. |
700 | |
701 | The returned DoneResult value is optional and your handler may return \c void instead. |
702 | In this case, the final result of the task will be equal to the value indicated by |
703 | the DoneWith argument. When the handler returns the DoneResult value, |
704 | the task's final result may be tweaked inside the done handler's body by the returned value. |
705 | |
706 | For a \c TaskDoneHandler of the DoneResult type, no additional handling is executed, |
707 | and the task finishes unconditionally with the passed value of DoneResult. |
708 | |
709 | \sa CustomTask(), TaskSetupHandler, GroupDoneHandler |
710 | */ |
711 | |
712 | /*! |
713 | \fn template <typename Adapter> template <typename SetupHandler = TaskSetupHandler, typename DoneHandler = TaskDoneHandler> CustomTask<Adapter>::CustomTask(SetupHandler &&setup = TaskSetupHandler(), DoneHandler &&done = TaskDoneHandler(), CallDoneIf callDoneIf = CallDoneIf::SuccessOrError) |
714 | |
715 | Constructs a \c CustomTask instance and attaches the \a setup and \a done handlers to the task. |
716 | When the running task tree is about to start the task, |
717 | it instantiates the associated \l Task object, invokes \a setup handler with a \e reference |
718 | to the created task, and starts it. When the running task finishes, |
719 | the task tree invokes a \a done handler, with a \c const \e reference to the created task. |
720 | |
721 | The passed \a setup handler is of the \l TaskSetupHandler type. For example: |
722 | |
723 | \code |
724 | static void parseAndLog(const QString &input); |
725 | |
726 | ... |
727 | |
728 | const QString input = ...; |
729 | |
730 | const auto onFirstSetup = [input](ConcurrentCall<void> &task) { |
731 | if (input == "Skip") |
732 | return SetupResult::StopWithSuccess; // This task won't start, the next one will |
733 | if (input == "Error") |
734 | return SetupResult::StopWithError; // This task and the next one won't start |
735 | task.setConcurrentCallData(parseAndLog, input); |
736 | // This task will start, and the next one will start after this one finished with success |
737 | return SetupResult::Continue; |
738 | }; |
739 | |
740 | const auto onSecondSetup = [input](ConcurrentCall<void> &task) { |
741 | task.setConcurrentCallData(parseAndLog, input); |
742 | }; |
743 | |
744 | const Group group { |
745 | ConcurrentCallTask<void>(onFirstSetup), |
746 | ConcurrentCallTask<void>(onSecondSetup) |
747 | }; |
748 | \endcode |
749 | |
750 | The \a done handler is of the \l TaskDoneHandler type. |
751 | By default, the \a done handler is invoked whenever the task finishes. |
752 | Pass a non-default value for the \a callDoneIf argument when you want the handler to be called |
753 | only on a successful or failed execution. |
754 | |
755 | \sa TaskSetupHandler, TaskDoneHandler |
756 | */ |
757 | |
758 | /*! |
759 | \enum Tasking::WorkflowPolicy |
760 | |
761 | This enum describes the possible behavior of the Group element when any group's child task |
762 | finishes its execution. It's also used when the running Group is canceled. |
763 | |
764 | \value StopOnError |
765 | Default. Corresponds to the stopOnError global element. |
766 | If any child task finishes with an error, the group stops and finishes with an error. |
767 | If all child tasks finished with success, the group finishes with success. |
768 | If a group is empty, it finishes with success. |
769 | \value ContinueOnError |
770 | Corresponds to the continueOnError global element. |
771 | Similar to stopOnError, but in case any child finishes with an error, |
772 | the execution continues until all tasks finish, and the group reports an error |
773 | afterwards, even when some other tasks in the group finished with success. |
774 | If all child tasks finish successfully, the group finishes with success. |
775 | If a group is empty, it finishes with success. |
776 | \value StopOnSuccess |
777 | Corresponds to the stopOnSuccess global element. |
778 | If any child task finishes with success, the group stops and finishes with success. |
779 | If all child tasks finished with an error, the group finishes with an error. |
780 | If a group is empty, it finishes with an error. |
781 | \value ContinueOnSuccess |
782 | Corresponds to the continueOnSuccess global element. |
783 | Similar to stopOnSuccess, but in case any child finishes successfully, |
784 | the execution continues until all tasks finish, and the group reports success |
785 | afterwards, even when some other tasks in the group finished with an error. |
786 | If all child tasks finish with an error, the group finishes with an error. |
787 | If a group is empty, it finishes with an error. |
788 | \value StopOnSuccessOrError |
789 | Corresponds to the stopOnSuccessOrError global element. |
790 | The group starts as many tasks as it can. When any task finishes, |
791 | the group stops and reports the task's result. |
792 | Useful only in parallel mode. |
793 | In sequential mode, only the first task is started, and when finished, |
794 | the group finishes too, so the other tasks are always skipped. |
795 | If a group is empty, it finishes with an error. |
796 | \value FinishAllAndSuccess |
797 | Corresponds to the finishAllAndSuccess global element. |
798 | The group executes all tasks and ignores their return results. When all |
799 | tasks finished, the group finishes with success. |
800 | If a group is empty, it finishes with success. |
801 | \value FinishAllAndError |
802 | Corresponds to the finishAllAndError global element. |
803 | The group executes all tasks and ignores their return results. When all |
804 | tasks finished, the group finishes with an error. |
805 | If a group is empty, it finishes with an error. |
806 | |
807 | Whenever a child task's result causes the Group to stop, that is, |
808 | in case of StopOnError, StopOnSuccess, or StopOnSuccessOrError policies, |
809 | the Group cancels the other running child tasks (if any - for example in parallel mode), |
810 | and skips executing tasks it has not started yet (for example, in the sequential mode - |
811 | those, that are placed after the failed task). Both canceling and skipping child tasks |
812 | may happen when parallelLimit() is used. |
813 | |
814 | The table below summarizes the differences between various workflow policies: |
815 | |
816 | \table |
817 | \header |
818 | \li \l WorkflowPolicy |
819 | \li Executes all child tasks |
820 | \li Result |
821 | \li Result when the group is empty |
822 | \row |
823 | \li StopOnError |
824 | \li Stops when any child task finished with an error and reports an error |
825 | \li An error when at least one child task failed, success otherwise |
826 | \li Success |
827 | \row |
828 | \li ContinueOnError |
829 | \li Yes |
830 | \li An error when at least one child task failed, success otherwise |
831 | \li Success |
832 | \row |
833 | \li StopOnSuccess |
834 | \li Stops when any child task finished with success and reports success |
835 | \li Success when at least one child task succeeded, an error otherwise |
836 | \li An error |
837 | \row |
838 | \li ContinueOnSuccess |
839 | \li Yes |
840 | \li Success when at least one child task succeeded, an error otherwise |
841 | \li An error |
842 | \row |
843 | \li StopOnSuccessOrError |
844 | \li Stops when any child task finished and reports child task's result |
845 | \li Success or an error, depending on the finished child task's result |
846 | \li An error |
847 | \row |
848 | \li FinishAllAndSuccess |
849 | \li Yes |
850 | \li Success |
851 | \li Success |
852 | \row |
853 | \li FinishAllAndError |
854 | \li Yes |
855 | \li An error |
856 | \li An error |
857 | \endtable |
858 | |
859 | If a child of a group is also a group, the child group runs its tasks according to its own |
860 | workflow policy. When a parent group stops the running child group because |
861 | of parent group's workflow policy, that is, when the StopOnError, StopOnSuccess, |
862 | or StopOnSuccessOrError policy was used for the parent, |
863 | the child group's result is reported according to the |
864 | \b Result column and to the \b {child group's workflow policy} row in the table above. |
865 | */ |
866 | |
867 | /*! |
868 | \variable Tasking::nullItem |
869 | |
870 | A convenient global group's element indicating a no-op item. |
871 | |
872 | This is useful in conditional expressions to indicate the absence of an optional element: |
873 | |
874 | \code |
875 | const ExecutableItem task = ...; |
876 | const std::optional<ExecutableItem> optionalTask = ...; |
877 | |
878 | Group group { |
879 | task, |
880 | optionalTask ? *optionalTask : nullItem |
881 | }; |
882 | \endcode |
883 | */ |
884 | |
885 | /*! |
886 | \variable Tasking::successItem |
887 | |
888 | A convenient global executable element containing an empty, successful, synchronous task. |
889 | |
890 | This is useful in if-statements to indicate that a branch ends with success: |
891 | |
892 | \code |
893 | const ExecutableItem conditionalTask = ...; |
894 | |
895 | Group group { |
896 | stopOnDone, |
897 | If (conditionalTask) >> Then { |
898 | ... |
899 | } >> Else { |
900 | successItem |
901 | }, |
902 | nextTask |
903 | }; |
904 | \endcode |
905 | |
906 | In the above example, if the \c conditionalTask finishes with an error, the \c Else branch |
907 | is chosen, which finishes immediately with success. This causes the \c nextTask to be skipped |
908 | (because of the stopOnDone workflow policy of the \c group) |
909 | and the \c group finishes with success. |
910 | |
911 | \sa errorItem |
912 | */ |
913 | |
914 | /*! |
915 | \variable Tasking::errorItem |
916 | |
917 | A convenient global executable element containing an empty, erroneous, synchronous task. |
918 | |
919 | This is useful in if-statements to indicate that a branch ends with an error: |
920 | |
921 | \code |
922 | const ExecutableItem conditionalTask = ...; |
923 | |
924 | Group group { |
925 | stopOnError, |
926 | If (conditionalTask) >> Then { |
927 | ... |
928 | } >> Else { |
929 | errorItem |
930 | }, |
931 | nextTask |
932 | }; |
933 | \endcode |
934 | |
935 | In the above example, if the \c conditionalTask finishes with an error, the \c Else branch |
936 | is chosen, which finishes immediately with an error. This causes the \c nextTask to be skipped |
937 | (because of the stopOnError workflow policy of the \c group) |
938 | and the \c group finishes with an error. |
939 | |
940 | \sa successItem |
941 | */ |
942 | |
943 | /*! |
944 | \variable Tasking::sequential |
945 | A convenient global group's element describing the sequential execution mode. |
946 | |
947 | This is the default execution mode of the Group element. |
948 | |
949 | When a Group has no execution mode, it runs in the sequential mode. |
950 | All the direct child tasks of a group are started in a chain, so that when one task finishes, |
951 | the next one starts. This enables you to pass the results from the previous task |
952 | as input to the next task before it starts. This mode guarantees that the next task |
953 | is started only after the previous task finishes. |
954 | |
955 | \sa parallel, parallelLimit() |
956 | */ |
957 | |
958 | /*! |
959 | \variable Tasking::parallel |
960 | A convenient global group's element describing the parallel execution mode. |
961 | |
962 | All the direct child tasks of a group are started after the group is started, |
963 | without waiting for the previous child tasks to finish. |
964 | In this mode, all child tasks run simultaneously. |
965 | |
966 | \sa sequential, parallelLimit() |
967 | */ |
968 | |
969 | /*! |
970 | \variable Tasking::parallelIdealThreadCountLimit |
971 | A convenient global group's element describing the parallel execution mode with a limited |
972 | number of tasks running simultanously. The limit is equal to the ideal number of threads |
973 | excluding the calling thread. |
974 | |
975 | This is a shortcut to: |
976 | \code |
977 | parallelLimit(qMax(QThread::idealThreadCount() - 1, 1)) |
978 | \endcode |
979 | |
980 | \sa parallel, parallelLimit() |
981 | */ |
982 | |
983 | /*! |
984 | \variable Tasking::stopOnError |
985 | A convenient global group's element describing the StopOnError workflow policy. |
986 | |
987 | This is the default workflow policy of the Group element. |
988 | */ |
989 | |
990 | /*! |
991 | \variable Tasking::continueOnError |
992 | A convenient global group's element describing the ContinueOnError workflow policy. |
993 | */ |
994 | |
995 | /*! |
996 | \variable Tasking::stopOnSuccess |
997 | A convenient global group's element describing the StopOnSuccess workflow policy. |
998 | */ |
999 | |
1000 | /*! |
1001 | \variable Tasking::continueOnSuccess |
1002 | A convenient global group's element describing the ContinueOnSuccess workflow policy. |
1003 | */ |
1004 | |
1005 | /*! |
1006 | \variable Tasking::stopOnSuccessOrError |
1007 | A convenient global group's element describing the StopOnSuccessOrError workflow policy. |
1008 | */ |
1009 | |
1010 | /*! |
1011 | \variable Tasking::finishAllAndSuccess |
1012 | A convenient global group's element describing the FinishAllAndSuccess workflow policy. |
1013 | */ |
1014 | |
1015 | /*! |
1016 | \variable Tasking::finishAllAndError |
1017 | A convenient global group's element describing the FinishAllAndError workflow policy. |
1018 | */ |
1019 | |
1020 | /*! |
1021 | \enum Tasking::SetupResult |
1022 | |
1023 | This enum is optionally returned from the group's or task's setup handler function. |
1024 | It instructs the running task tree on how to proceed after the setup handler's execution |
1025 | finished. |
1026 | \value Continue |
1027 | Default. The group's or task's execution continues normally. |
1028 | When a group's or task's setup handler returns void, it's assumed that |
1029 | it returned Continue. |
1030 | \value StopWithSuccess |
1031 | The group's or task's execution stops immediately with success. |
1032 | When returned from the group's setup handler, all child tasks are skipped, |
1033 | and the group's onGroupDone() handler is invoked with DoneWith::Success. |
1034 | The group reports success to its parent. The group's workflow policy is ignored. |
1035 | When returned from the task's setup handler, the task isn't started, |
1036 | its done handler isn't invoked, and the task reports success to its parent. |
1037 | \value StopWithError |
1038 | The group's or task's execution stops immediately with an error. |
1039 | When returned from the group's setup handler, all child tasks are skipped, |
1040 | and the group's onGroupDone() handler is invoked with DoneWith::Error. |
1041 | The group reports an error to its parent. The group's workflow policy is ignored. |
1042 | When returned from the task's setup handler, the task isn't started, |
1043 | its error handler isn't invoked, and the task reports an error to its parent. |
1044 | */ |
1045 | |
1046 | /*! |
1047 | \enum Tasking::DoneResult |
1048 | |
1049 | This enum is optionally returned from the group's or task's done handler function. |
1050 | When the done handler doesn't return any value, that is, its return type is \c void, |
1051 | its final return value is automatically deduced by the running task tree and reported |
1052 | to its parent group. |
1053 | |
1054 | When the done handler returns the DoneResult, you can tweak the final return value |
1055 | inside the handler. |
1056 | |
1057 | When the DoneResult is returned by the group's done handler, the group's workflow policy |
1058 | is ignored. |
1059 | |
1060 | This enum is also used inside the TaskInterface::done() signal and it indicates whether |
1061 | the task finished with success or an error. |
1062 | |
1063 | \value Success |
1064 | The group's or task's execution ends with success. |
1065 | \value Error |
1066 | The group's or task's execution ends with an error. |
1067 | */ |
1068 | |
1069 | /*! |
1070 | \enum Tasking::DoneWith |
1071 | |
1072 | This enum is an optional argument for the group's or task's done handler. |
1073 | It indicates whether the group or task finished with success or an error, or it was canceled. |
1074 | |
1075 | It is also used as an argument inside the TaskTree::done() signal, |
1076 | indicating the final result of the TaskTree execution. |
1077 | |
1078 | \value Success |
1079 | The group's or task's execution ended with success. |
1080 | \value Error |
1081 | The group's or task's execution ended with an error. |
1082 | \value Cancel |
1083 | The group's or task's execution was canceled. This happens when the user calls |
1084 | TaskTree::cancel() for the running task tree or when the group's workflow policy |
1085 | results in canceling some of its running children. |
1086 | Tweaking the done handler's final result by returning Tasking::DoneResult from |
1087 | the handler is no-op when the group's or task's execution was canceled. |
1088 | */ |
1089 | |
1090 | /*! |
1091 | \enum Tasking::CallDoneIf |
1092 | |
1093 | This enum is an optional argument for the \l onGroupDone() element or custom task's constructor. |
1094 | It instructs the task tree on when the group's or task's done handler should be invoked. |
1095 | |
1096 | \value SuccessOrError |
1097 | The done handler is always invoked. |
1098 | \value Success |
1099 | The done handler is invoked only after successful execution, |
1100 | that is, when DoneWith::Success. |
1101 | \value Error |
1102 | The done handler is invoked only after failed execution, |
1103 | that is, when DoneWith::Error or when DoneWith::Cancel. |
1104 | */ |
1105 | |
1106 | /*! |
1107 | \typealias Tasking::GroupItem::GroupSetupHandler |
1108 | |
1109 | Type alias for \c std::function<SetupResult()>. |
1110 | |
1111 | The \c GroupSetupHandler is an argument of the onGroupSetup() element. |
1112 | Any function with the above signature, when passed as a group setup handler, |
1113 | will be called by the running task tree when the group execution starts. |
1114 | |
1115 | The return value of the handler instructs the running group on how to proceed |
1116 | after the handler's invocation is finished. The default return value of SetupResult::Continue |
1117 | instructs the group to continue running, that is, to start executing its child tasks. |
1118 | The return value of SetupResult::StopWithSuccess or SetupResult::StopWithError |
1119 | instructs the group to skip the child tasks' execution and finish immediately with |
1120 | success or an error, respectively. |
1121 | |
1122 | When the return type is either SetupResult::StopWithSuccess or SetupResult::StopWithError, |
1123 | the group's done handler (if provided) is called synchronously immediately afterwards. |
1124 | |
1125 | \note Even if the group setup handler returns StopWithSuccess or StopWithError, |
1126 | the group's done handler is invoked. This behavior differs from that of task done handler |
1127 | and might change in the future. |
1128 | |
1129 | The onGroupSetup() element accepts also functions in the shortened form of |
1130 | \c std::function<void()>, that is, the return value is \c void. |
1131 | In this case, it's assumed that the return value is SetupResult::Continue. |
1132 | |
1133 | \sa onGroupSetup(), GroupDoneHandler, CustomTask::TaskSetupHandler |
1134 | */ |
1135 | |
1136 | /*! |
1137 | \typealias Tasking::GroupItem::GroupDoneHandler |
1138 | |
1139 | Type alias for \c std::function<DoneResult(DoneWith)> or DoneResult. |
1140 | |
1141 | The \c GroupDoneHandler is an argument of the onGroupDone() element. |
1142 | Any function with the above signature, when passed as a group done handler, |
1143 | will be called by the running task tree when the group execution ends. |
1144 | |
1145 | The DoneWith argument is optional and your done handler may omit it. |
1146 | When provided, it holds the info about the final result of a group that will be |
1147 | reported to its parent. |
1148 | |
1149 | The returned DoneResult value is optional and your handler may return \c void instead. |
1150 | In this case, the final result of the group will be equal to the value indicated by |
1151 | the DoneWith argument. When the handler returns the DoneResult value, |
1152 | the group's final result may be tweaked inside the done handler's body by the returned value. |
1153 | |
1154 | For a \c GroupDoneHandler of the DoneResult type, no additional handling is executed, |
1155 | and the group finishes unconditionally with the passed value of DoneResult, |
1156 | ignoring the group's workflow policy. |
1157 | |
1158 | \sa onGroupDone(), GroupSetupHandler, CustomTask::TaskDoneHandler |
1159 | */ |
1160 | |
1161 | /*! |
1162 | \fn template <typename Handler> GroupItem onGroupSetup(Handler &&handler) |
1163 | |
1164 | Constructs a group's element holding the group setup handler. |
1165 | The \a handler is invoked whenever the group starts. |
1166 | |
1167 | The passed \a handler is either of the \c std::function<SetupResult()> or the |
1168 | \c std::function<void()> type. For more information on a possible handler type, refer to |
1169 | \l {GroupItem::GroupSetupHandler}. |
1170 | |
1171 | When the \a handler is invoked, none of the group's child tasks are running yet. |
1172 | |
1173 | If a group contains the Storage elements, the \a handler is invoked |
1174 | after the storages are constructed, so that the \a handler may already |
1175 | perform some initial modifications to the active storages. |
1176 | |
1177 | \sa GroupItem::GroupSetupHandler, onGroupDone() |
1178 | */ |
1179 | |
1180 | /*! |
1181 | \fn template <typename Handler> GroupItem onGroupDone(Handler &&handler, CallDoneIf callDoneIf = CallDoneIf::SuccessOrError) |
1182 | |
1183 | Constructs a group's element holding the group done handler. |
1184 | By default, the \a handler is invoked whenever the group finishes. |
1185 | Pass a non-default value for the \a callDoneIf argument when you want the handler to be called |
1186 | only on a successful or failed execution. |
1187 | Depending on the group's workflow policy, this handler may also be called |
1188 | when the running group is canceled (e.g. when stopOnError element was used). |
1189 | |
1190 | The passed \a handler is of the \c std::function<DoneResult(DoneWith)> type. |
1191 | Optionally, each of the return DoneResult type or the argument DoneWith type may be omitted |
1192 | (that is, its return type may be \c void). For more information on a possible handler type, |
1193 | refer to \l {GroupItem::GroupDoneHandler}. |
1194 | |
1195 | When the \a handler is invoked, all of the group's child tasks are already finished. |
1196 | |
1197 | If a group contains the Storage elements, the \a handler is invoked |
1198 | before the storages are destructed, so that the \a handler may still |
1199 | perform a last read of the active storages' data. |
1200 | |
1201 | \sa GroupItem::GroupDoneHandler, onGroupSetup() |
1202 | */ |
1203 | |
1204 | /*! |
1205 | Constructs a group's element describing the \l{Execution Mode}{execution mode}. |
1206 | |
1207 | The execution mode element in a Group specifies how the direct child tasks of |
1208 | the Group are started. |
1209 | |
1210 | For convenience, when appropriate, the \l sequential or \l parallel global elements |
1211 | may be used instead. |
1212 | |
1213 | The \a limit defines the maximum number of direct child tasks running in parallel: |
1214 | |
1215 | \list |
1216 | \li When \a limit equals to 0, there is no limit, and all direct child tasks are started |
1217 | together, in the oder in which they appear in a group. This means the fully parallel |
1218 | execution, and the \l parallel element may be used instead. |
1219 | |
1220 | \li When \a limit equals to 1, it means that only one child task may run at the time. |
1221 | This means the sequential execution, and the \l sequential element may be used instead. |
1222 | In this case, child tasks run in chain, so the next child task starts after |
1223 | the previous child task has finished. |
1224 | |
1225 | \li When other positive number is passed as \a limit, the group's child tasks run |
1226 | in parallel, but with a limited number of tasks running simultanously. |
1227 | The \e limit defines the maximum number of tasks running in parallel in a group. |
1228 | When the group is started, the first batch of tasks is started |
1229 | (the number of tasks in a batch equals to the passed \a limit, at most), |
1230 | while the others are kept waiting. When any running task finishes, |
1231 | the group starts the next remaining one, so that the \e limit of simultaneously |
1232 | running tasks inside a group isn't exceeded. This repeats on every child task's |
1233 | finish until all child tasks are started. This enables you to limit the maximum |
1234 | number of tasks that run simultaneously, for example if running too many processes might |
1235 | block the machine for a long time. |
1236 | \endlist |
1237 | |
1238 | In all execution modes, a group starts tasks in the oder in which they appear. |
1239 | |
1240 | If a child of a group is also a group, the child group runs its tasks according |
1241 | to its own execution mode. |
1242 | |
1243 | \sa sequential, parallel |
1244 | */ |
1245 | GroupItem ParallelLimitFunctor::operator()(int limit) const |
1246 | { |
1247 | return GroupItem({.m_groupHandler: {}, .m_parallelLimit: limit}); |
1248 | } |
1249 | |
1250 | /*! |
1251 | Constructs a group's \l {Workflow Policy} {workflow policy} element for a given \a policy. |
1252 | |
1253 | For convenience, global elements may be used instead. |
1254 | |
1255 | \sa stopOnError, continueOnError, stopOnSuccess, continueOnSuccess, stopOnSuccessOrError, |
1256 | finishAllAndSuccess, finishAllAndError, WorkflowPolicy |
1257 | */ |
1258 | GroupItem WorkflowPolicyFunctor::operator()(WorkflowPolicy policy) const |
1259 | { |
1260 | return GroupItem({.m_groupHandler: {}, .m_parallelLimit: {}, .m_workflowPolicy: policy}); |
1261 | } |
1262 | |
1263 | const ParallelLimitFunctor parallelLimit = ParallelLimitFunctor(); |
1264 | const WorkflowPolicyFunctor workflowPolicy = WorkflowPolicyFunctor(); |
1265 | |
1266 | const GroupItem sequential = parallelLimit(1); |
1267 | const GroupItem parallel = parallelLimit(0); |
1268 | const GroupItem parallelIdealThreadCountLimit = parallelLimit(qMax(a: QThread::idealThreadCount() - 1, b: 1)); |
1269 | |
1270 | const GroupItem stopOnError = workflowPolicy(WorkflowPolicy::StopOnError); |
1271 | const GroupItem continueOnError = workflowPolicy(WorkflowPolicy::ContinueOnError); |
1272 | const GroupItem stopOnSuccess = workflowPolicy(WorkflowPolicy::StopOnSuccess); |
1273 | const GroupItem continueOnSuccess = workflowPolicy(WorkflowPolicy::ContinueOnSuccess); |
1274 | const GroupItem stopOnSuccessOrError = workflowPolicy(WorkflowPolicy::StopOnSuccessOrError); |
1275 | const GroupItem finishAllAndSuccess = workflowPolicy(WorkflowPolicy::FinishAllAndSuccess); |
1276 | const GroupItem finishAllAndError = workflowPolicy(WorkflowPolicy::FinishAllAndError); |
1277 | |
1278 | // Keep below the above in order to avoid static initialization fiasco. |
1279 | const GroupItem nullItem = GroupItem({}); |
1280 | const ExecutableItem successItem = Group { finishAllAndSuccess }; |
1281 | const ExecutableItem errorItem = Group { finishAllAndError }; |
1282 | |
1283 | // Please note the thread_local keyword below guarantees a separate instance per thread. |
1284 | // The s_activeTaskTrees is currently used internally only and is not exposed in the public API. |
1285 | // It serves for withLog() implementation now. Add a note here when a new usage is introduced. |
1286 | static thread_local QList<TaskTree *> s_activeTaskTrees = {}; |
1287 | |
1288 | static TaskTree *activeTaskTree() |
1289 | { |
1290 | QT_ASSERT(s_activeTaskTrees.size(), return nullptr); |
1291 | return s_activeTaskTrees.back(); |
1292 | } |
1293 | |
1294 | DoneResult toDoneResult(bool success) |
1295 | { |
1296 | return success ? DoneResult::Success : DoneResult::Error; |
1297 | } |
1298 | |
1299 | static SetupResult toSetupResult(bool success) |
1300 | { |
1301 | return success ? SetupResult::StopWithSuccess : SetupResult::StopWithError; |
1302 | } |
1303 | |
1304 | static DoneResult toDoneResult(DoneWith doneWith) |
1305 | { |
1306 | return doneWith == DoneWith::Success ? DoneResult::Success : DoneResult::Error; |
1307 | } |
1308 | |
1309 | static DoneWith toDoneWith(DoneResult result) |
1310 | { |
1311 | return result == DoneResult::Success ? DoneWith::Success : DoneWith::Error; |
1312 | } |
1313 | |
1314 | class LoopThreadData |
1315 | { |
1316 | Q_DISABLE_COPY_MOVE(LoopThreadData) |
1317 | |
1318 | public: |
1319 | LoopThreadData() = default; |
1320 | void pushIteration(int index) |
1321 | { |
1322 | m_activeLoopStack.push_back(t: index); |
1323 | } |
1324 | void popIteration() |
1325 | { |
1326 | QT_ASSERT(m_activeLoopStack.size(), return); |
1327 | m_activeLoopStack.pop_back(); |
1328 | } |
1329 | int iteration() const |
1330 | { |
1331 | QT_ASSERT(m_activeLoopStack.size(), qWarning( |
1332 | "The referenced loop is not reachable in the running tree. " |
1333 | "A -1 will be returned which might lead to a crash in the calling code. " |
1334 | "It is possible that no loop was added to the tree, " |
1335 | "or the loop is not reachable from where it is referenced." ); return -1); |
1336 | return m_activeLoopStack.last(); |
1337 | } |
1338 | |
1339 | private: |
1340 | QList<int> m_activeLoopStack; |
1341 | }; |
1342 | |
1343 | class LoopData |
1344 | { |
1345 | public: |
1346 | LoopThreadData &threadData() { |
1347 | QMutexLocker lock(&m_threadDataMutex); |
1348 | return m_threadDataMap.try_emplace(k: QThread::currentThread()).first->second; |
1349 | } |
1350 | |
1351 | const std::optional<int> m_loopCount = {}; |
1352 | const Loop::ValueGetter m_valueGetter = {}; |
1353 | const Loop::Condition m_condition = {}; |
1354 | QMutex m_threadDataMutex = {}; |
1355 | // Use std::map on purpose, so that it doesn't invalidate references on modifications. |
1356 | // Don't optimize it by using std::unordered_map. |
1357 | std::map<QThread *, LoopThreadData> m_threadDataMap = {}; |
1358 | }; |
1359 | |
1360 | Loop::Loop() |
1361 | : m_loopData(new LoopData) |
1362 | {} |
1363 | |
1364 | Loop::Loop(int count, const ValueGetter &valueGetter) |
1365 | : m_loopData(new LoopData{.m_loopCount: count, .m_valueGetter: valueGetter}) |
1366 | {} |
1367 | |
1368 | Loop::Loop(const Condition &condition) |
1369 | : m_loopData(new LoopData{.m_loopCount: {}, .m_valueGetter: {}, .m_condition: condition}) |
1370 | {} |
1371 | |
1372 | int Loop::iteration() const |
1373 | { |
1374 | return m_loopData->threadData().iteration(); |
1375 | } |
1376 | |
1377 | const void *Loop::valuePtr() const |
1378 | { |
1379 | return m_loopData->m_valueGetter(iteration()); |
1380 | } |
1381 | |
1382 | using StoragePtr = void *; |
1383 | |
1384 | static constexpr QLatin1StringView s_activeStorageWarning = |
1385 | "The referenced storage is not reachable in the running tree. " |
1386 | "A nullptr will be returned which might lead to a crash in the calling code. " |
1387 | "It is possible that no storage was added to the tree, " |
1388 | "or the storage is not reachable from where it is referenced."_L1 ; |
1389 | |
1390 | class StorageThreadData |
1391 | { |
1392 | Q_DISABLE_COPY_MOVE(StorageThreadData) |
1393 | |
1394 | public: |
1395 | StorageThreadData() = default; |
1396 | void pushStorage(StoragePtr storagePtr) |
1397 | { |
1398 | m_activeStorageStack.push_back(t: {storagePtr, activeTaskTree()}); |
1399 | } |
1400 | void popStorage() |
1401 | { |
1402 | QT_ASSERT(m_activeStorageStack.size(), return); |
1403 | m_activeStorageStack.pop_back(); |
1404 | } |
1405 | StoragePtr activeStorage() const |
1406 | { |
1407 | QT_ASSERT(m_activeStorageStack.size(), |
1408 | qWarning().noquote() << s_activeStorageWarning; return nullptr); |
1409 | const QPair<StoragePtr, TaskTree *> &top = m_activeStorageStack.last(); |
1410 | QT_ASSERT(top.second == activeTaskTree(), |
1411 | qWarning().noquote() << s_activeStorageWarning; return nullptr); |
1412 | return top.first; |
1413 | } |
1414 | |
1415 | private: |
1416 | QList<QPair<StoragePtr, TaskTree *>> m_activeStorageStack; |
1417 | }; |
1418 | |
1419 | class StorageData |
1420 | { |
1421 | public: |
1422 | StorageThreadData &threadData() { |
1423 | QMutexLocker lock(&m_threadDataMutex); |
1424 | return m_threadDataMap.try_emplace(k: QThread::currentThread()).first->second; |
1425 | } |
1426 | |
1427 | const StorageBase::StorageConstructor m_constructor = {}; |
1428 | const StorageBase::StorageDestructor m_destructor = {}; |
1429 | QMutex m_threadDataMutex = {}; |
1430 | // Use std::map on purpose, so that it doesn't invalidate references on modifications. |
1431 | // Don't optimize it by using std::unordered_map. |
1432 | std::map<QThread *, StorageThreadData> m_threadDataMap = {}; |
1433 | }; |
1434 | |
1435 | StorageBase::StorageBase(const StorageConstructor &ctor, const StorageDestructor &dtor) |
1436 | : m_storageData(new StorageData{.m_constructor: ctor, .m_destructor: dtor}) |
1437 | {} |
1438 | |
1439 | void *StorageBase::activeStorageVoid() const |
1440 | { |
1441 | return m_storageData->threadData().activeStorage(); |
1442 | } |
1443 | |
1444 | void GroupItem::addChildren(const QList<GroupItem> &children) |
1445 | { |
1446 | QT_ASSERT(m_type == Type::Group || m_type == Type::List, |
1447 | qWarning("Only Group or List may have children, skipping..." ); return); |
1448 | if (m_type == Type::List) { |
1449 | m_children.append(l: children); |
1450 | return; |
1451 | } |
1452 | for (const GroupItem &child : children) { |
1453 | switch (child.m_type) { |
1454 | case Type::List: |
1455 | addChildren(children: child.m_children); |
1456 | break; |
1457 | case Type::Group: |
1458 | m_children.append(t: child); |
1459 | break; |
1460 | case Type::GroupData: |
1461 | if (child.m_groupData.m_groupHandler.m_setupHandler) { |
1462 | QT_ASSERT(!m_groupData.m_groupHandler.m_setupHandler, |
1463 | qWarning("Group setup handler redefinition, overriding..." )); |
1464 | m_groupData.m_groupHandler.m_setupHandler |
1465 | = child.m_groupData.m_groupHandler.m_setupHandler; |
1466 | } |
1467 | if (child.m_groupData.m_groupHandler.m_doneHandler) { |
1468 | QT_ASSERT(!m_groupData.m_groupHandler.m_doneHandler, |
1469 | qWarning("Group done handler redefinition, overriding..." )); |
1470 | m_groupData.m_groupHandler.m_doneHandler |
1471 | = child.m_groupData.m_groupHandler.m_doneHandler; |
1472 | m_groupData.m_groupHandler.m_callDoneIf |
1473 | = child.m_groupData.m_groupHandler.m_callDoneIf; |
1474 | } |
1475 | if (child.m_groupData.m_parallelLimit) { |
1476 | QT_ASSERT(!m_groupData.m_parallelLimit, |
1477 | qWarning("Group execution mode redefinition, overriding..." )); |
1478 | m_groupData.m_parallelLimit = child.m_groupData.m_parallelLimit; |
1479 | } |
1480 | if (child.m_groupData.m_workflowPolicy) { |
1481 | QT_ASSERT(!m_groupData.m_workflowPolicy, |
1482 | qWarning("Group workflow policy redefinition, overriding..." )); |
1483 | m_groupData.m_workflowPolicy = child.m_groupData.m_workflowPolicy; |
1484 | } |
1485 | if (child.m_groupData.m_loop) { |
1486 | QT_ASSERT(!m_groupData.m_loop, |
1487 | qWarning("Group loop redefinition, overriding..." )); |
1488 | m_groupData.m_loop = child.m_groupData.m_loop; |
1489 | } |
1490 | break; |
1491 | case Type::TaskHandler: |
1492 | QT_ASSERT(child.m_taskHandler.m_createHandler, |
1493 | qWarning("Task create handler can't be null, skipping..." ); return); |
1494 | m_children.append(t: child); |
1495 | break; |
1496 | case Type::Storage: |
1497 | // Check for duplicates, as can't have the same storage twice on the same level. |
1498 | for (const StorageBase &storage : child.m_storageList) { |
1499 | if (m_storageList.contains(t: storage)) { |
1500 | QT_ASSERT(false, qWarning("Can't add the same storage into one Group twice, " |
1501 | "skipping..." )); |
1502 | continue; |
1503 | } |
1504 | m_storageList.append(t: storage); |
1505 | } |
1506 | break; |
1507 | } |
1508 | } |
1509 | } |
1510 | |
1511 | /*! |
1512 | \class Tasking::ExecutableItem |
1513 | \inheaderfile solutions/tasking/tasktree.h |
1514 | \inmodule TaskingSolution |
1515 | \brief Base class for executable task items. |
1516 | \reentrant |
1517 | |
1518 | \c ExecutableItem provides an additional interface for items containing executable tasks. |
1519 | Use withTimeout() to attach a timeout to a task. |
1520 | Use withLog() to include debugging information about the task startup and the execution result. |
1521 | */ |
1522 | |
1523 | /*! |
1524 | Attaches \c TimeoutTask to a copy of \c this ExecutableItem, elapsing after \a timeout |
1525 | in milliseconds, with an optionally provided timeout \a handler, and returns the coupled item. |
1526 | |
1527 | When the ExecutableItem finishes before \a timeout passes, the returned item finishes |
1528 | immediately with the task's result. Otherwise, \a handler is invoked (if provided), |
1529 | the task is canceled, and the returned item finishes with an error. |
1530 | */ |
1531 | ExecutableItem ExecutableItem::withTimeout(milliseconds timeout, |
1532 | const std::function<void()> &handler) const |
1533 | { |
1534 | const auto onSetup = [timeout](milliseconds &timeoutData) { timeoutData = timeout; }; |
1535 | return Group { |
1536 | parallel, |
1537 | stopOnSuccessOrError, |
1538 | Group { |
1539 | finishAllAndError, |
1540 | handler ? TimeoutTask(onSetup, [handler] { handler(); }, CallDoneIf::Success) |
1541 | : TimeoutTask(onSetup) |
1542 | }, |
1543 | *this |
1544 | }; |
1545 | } |
1546 | |
1547 | static QString currentTime() { return QTime::currentTime().toString(f: Qt::ISODateWithMs); } |
1548 | |
1549 | static QString (const QString &logName) |
1550 | { |
1551 | return QString::fromLatin1(ba: "TASK TREE LOG [%1] \"%2\"" ).arg(args: currentTime(), args: logName); |
1552 | }; |
1553 | |
1554 | /*! |
1555 | Attaches a custom debug printout to a copy of \c this ExecutableItem, |
1556 | issued on task startup and after the task is finished, and returns the coupled item. |
1557 | |
1558 | The debug printout includes a timestamp of the event (start or finish) |
1559 | and \a logName to identify the specific task in the debug log. |
1560 | |
1561 | The finish printout contains the additional information whether the execution was |
1562 | synchronous or asynchronous, its result (the value described by the DoneWith enum), |
1563 | and the total execution time in milliseconds. |
1564 | */ |
1565 | ExecutableItem ExecutableItem::withLog(const QString &logName) const |
1566 | { |
1567 | struct LogStorage |
1568 | { |
1569 | time_point<system_clock, nanoseconds> start; |
1570 | int asyncCount = 0; |
1571 | }; |
1572 | const Storage<LogStorage> storage; |
1573 | return Group { |
1574 | storage, |
1575 | onGroupSetup(handler: [storage, logName] { |
1576 | storage->start = system_clock::now(); |
1577 | storage->asyncCount = activeTaskTree()->asyncCount(); |
1578 | qDebug().noquote().nospace() << logHeader(logName) << " started." ; |
1579 | }), |
1580 | *this, |
1581 | onGroupDone(handler: [storage, logName](DoneWith result) { |
1582 | const auto elapsed = duration_cast<milliseconds>(d: system_clock::now() - storage->start); |
1583 | const int asyncCountDiff = activeTaskTree()->asyncCount() - storage->asyncCount; |
1584 | QT_CHECK(asyncCountDiff >= 0); |
1585 | const QMetaEnum doneWithEnum = QMetaEnum::fromType<DoneWith>(); |
1586 | const QString syncType = asyncCountDiff ? QString::fromLatin1(ba: "asynchronously" ) |
1587 | : QString::fromLatin1(ba: "synchronously" ); |
1588 | qDebug().noquote().nospace() << logHeader(logName) << " finished " << syncType |
1589 | << " with " << doneWithEnum.valueToKey(value: int(result)) |
1590 | << " within " << elapsed.count() << "ms." ; |
1591 | }) |
1592 | }; |
1593 | } |
1594 | |
1595 | /*! |
1596 | \fn ExecutableItem ExecutableItem::operator!(const ExecutableItem &item) |
1597 | |
1598 | Returns an ExecutableItem with the DoneResult of \a item negated. |
1599 | |
1600 | If \a item reports DoneResult::Success, the returned item reports DoneResult::Error. |
1601 | If \a item reports DoneResult::Error, the returned item reports DoneResult::Success. |
1602 | |
1603 | The returned item is equivalent to: |
1604 | \code |
1605 | Group { |
1606 | item, |
1607 | onGroupDone([](DoneWith doneWith) { return toDoneResult(doneWith == DoneWith::Error); }) |
1608 | } |
1609 | \endcode |
1610 | |
1611 | \sa operator&&(), operator||() |
1612 | */ |
1613 | ExecutableItem operator!(const ExecutableItem &item) |
1614 | { |
1615 | return Group { |
1616 | item, |
1617 | onGroupDone(handler: [](DoneWith doneWith) { return toDoneResult(success: doneWith == DoneWith::Error); }) |
1618 | }; |
1619 | } |
1620 | |
1621 | /*! |
1622 | \fn ExecutableItem ExecutableItem::operator&&(const ExecutableItem &first, const ExecutableItem &second) |
1623 | |
1624 | Returns an ExecutableItem with \a first and \a second tasks merged with conjunction. |
1625 | |
1626 | Both \a first and \a second tasks execute in sequence. |
1627 | If both tasks report DoneResult::Success, the returned item reports DoneResult::Success. |
1628 | Otherwise, the returned item reports DoneResult::Error. |
1629 | |
1630 | The returned item is |
1631 | \l {https://en.wikipedia.org/wiki/Short-circuit_evaluation}{short-circuiting}: |
1632 | if the \a first task reports DoneResult::Error, the \a second task is skipped, |
1633 | and the returned item reports DoneResult::Error immediately. |
1634 | |
1635 | The returned item is equivalent to: |
1636 | \code |
1637 | Group { stopOnError, first, second } |
1638 | \endcode |
1639 | |
1640 | \note Parallel execution of conjunction in a short-circuit manner can be achieved with the |
1641 | following code: \c {Group { parallel, stopOnError, first, second }}. In this case: |
1642 | if the \e {first finished} task reports DoneResult::Error, |
1643 | the \e other task is canceled, and the group reports DoneResult::Error immediately. |
1644 | |
1645 | \sa operator||(), operator!() |
1646 | */ |
1647 | ExecutableItem operator&&(const ExecutableItem &first, const ExecutableItem &second) |
1648 | { |
1649 | return Group { stopOnError, first, second }; |
1650 | } |
1651 | |
1652 | /*! |
1653 | \fn ExecutableItem ExecutableItem::operator||(const ExecutableItem &first, const ExecutableItem &second) |
1654 | |
1655 | Returns an ExecutableItem with \a first and \a second tasks merged with disjunction. |
1656 | |
1657 | Both \a first and \a second tasks execute in sequence. |
1658 | If both tasks report DoneResult::Error, the returned item reports DoneResult::Error. |
1659 | Otherwise, the returned item reports DoneResult::Success. |
1660 | |
1661 | The returned item is |
1662 | \l {https://en.wikipedia.org/wiki/Short-circuit_evaluation}{short-circuiting}: |
1663 | if the \a first task reports DoneResult::Success, the \a second task is skipped, |
1664 | and the returned item reports DoneResult::Success immediately. |
1665 | |
1666 | The returned item is equivalent to: |
1667 | \code |
1668 | Group { stopOnSuccess, first, second } |
1669 | \endcode |
1670 | |
1671 | \note Parallel execution of disjunction in a short-circuit manner can be achieved with the |
1672 | following code: \c {Group { parallel, stopOnSuccess, first, second }}. In this case: |
1673 | if the \e {first finished} task reports DoneResult::Success, |
1674 | the \e other task is canceled, and the group reports DoneResult::Success immediately. |
1675 | |
1676 | \sa operator&&(), operator!() |
1677 | */ |
1678 | ExecutableItem operator||(const ExecutableItem &first, const ExecutableItem &second) |
1679 | { |
1680 | return Group { stopOnSuccess, first, second }; |
1681 | } |
1682 | |
1683 | /*! |
1684 | \fn ExecutableItem ExecutableItem::operator&&(const ExecutableItem &item, DoneResult result) |
1685 | \overload ExecutableItem::operator&&() |
1686 | |
1687 | Returns the \a item task if the \a result is DoneResult::Success; otherwise returns |
1688 | the \a item task with its done result tweaked to DoneResult::Error. |
1689 | |
1690 | The \c {task && DoneResult::Error} is an eqivalent to tweaking the task's done result |
1691 | into DoneResult::Error unconditionally. |
1692 | */ |
1693 | ExecutableItem operator&&(const ExecutableItem &item, DoneResult result) |
1694 | { |
1695 | if (result == DoneResult::Success) |
1696 | return item; |
1697 | return Group { finishAllAndError, item }; |
1698 | } |
1699 | |
1700 | /*! |
1701 | \fn ExecutableItem ExecutableItem::operator||(const ExecutableItem &item, DoneResult result) |
1702 | \overload ExecutableItem::operator||() |
1703 | |
1704 | Returns the \a item task if the \a result is DoneResult::Error; otherwise returns |
1705 | the \a item task with its done result tweaked to DoneResult::Success. |
1706 | |
1707 | The \c {task || DoneResult::Success} is an eqivalent to tweaking the task's done result |
1708 | into DoneResult::Success unconditionally. |
1709 | */ |
1710 | ExecutableItem operator||(const ExecutableItem &item, DoneResult result) |
1711 | { |
1712 | if (result == DoneResult::Error) |
1713 | return item; |
1714 | return Group { finishAllAndSuccess, item }; |
1715 | } |
1716 | |
1717 | ExecutableItem ExecutableItem::withCancelImpl( |
1718 | const std::function<void(QObject *, const std::function<void()> &)> &connectWrapper) const |
1719 | { |
1720 | const auto onSetup = [connectWrapper](Barrier &barrier) { |
1721 | connectWrapper(&barrier, [barrierPtr = &barrier] { barrierPtr->advance(); }); |
1722 | }; |
1723 | return Group { |
1724 | parallel, |
1725 | stopOnSuccessOrError, |
1726 | Group { |
1727 | finishAllAndError, |
1728 | BarrierTask(onSetup) |
1729 | }, |
1730 | *this |
1731 | }; |
1732 | } |
1733 | |
1734 | class TaskTreePrivate; |
1735 | class TaskNode; |
1736 | class RuntimeContainer; |
1737 | class RuntimeIteration; |
1738 | class RuntimeTask; |
1739 | |
1740 | class ExecutionContextActivator |
1741 | { |
1742 | public: |
1743 | ExecutionContextActivator(RuntimeIteration *iteration) { |
1744 | activateTaskTree(iteration); |
1745 | activateContext(iteration); |
1746 | } |
1747 | ExecutionContextActivator(RuntimeContainer *container) { |
1748 | activateTaskTree(container); |
1749 | activateContext(container); |
1750 | } |
1751 | ~ExecutionContextActivator() { |
1752 | for (int i = m_activeStorages.size() - 1; i >= 0; --i) // iterate in reverse order |
1753 | m_activeStorages[i].m_storageData->threadData().popStorage(); |
1754 | for (int i = m_activeLoops.size() - 1; i >= 0; --i) // iterate in reverse order |
1755 | m_activeLoops[i].m_loopData->threadData().popIteration(); |
1756 | QT_ASSERT(s_activeTaskTrees.size(), return); |
1757 | s_activeTaskTrees.pop_back(); |
1758 | } |
1759 | |
1760 | private: |
1761 | void activateTaskTree(RuntimeIteration *iteration); |
1762 | void activateTaskTree(RuntimeContainer *container); |
1763 | void activateContext(RuntimeIteration *iteration); |
1764 | void activateContext(RuntimeContainer *container); |
1765 | QList<Loop> m_activeLoops; |
1766 | QList<StorageBase> m_activeStorages; |
1767 | }; |
1768 | |
1769 | class ContainerNode |
1770 | { |
1771 | Q_DISABLE_COPY(ContainerNode) |
1772 | |
1773 | public: |
1774 | ContainerNode(ContainerNode &&other) = default; |
1775 | ContainerNode(TaskTreePrivate *taskTreePrivate, const GroupItem &task); |
1776 | |
1777 | TaskTreePrivate *const m_taskTreePrivate = nullptr; |
1778 | |
1779 | const GroupItem::GroupHandler m_groupHandler; |
1780 | const int m_parallelLimit = 1; |
1781 | const WorkflowPolicy m_workflowPolicy = WorkflowPolicy::StopOnError; |
1782 | const std::optional<Loop> m_loop; |
1783 | const QList<StorageBase> m_storageList; |
1784 | std::vector<TaskNode> m_children; |
1785 | const int m_taskCount = 0; |
1786 | }; |
1787 | |
1788 | class TaskNode |
1789 | { |
1790 | Q_DISABLE_COPY(TaskNode) |
1791 | |
1792 | public: |
1793 | TaskNode(TaskNode &&other) = default; |
1794 | TaskNode(TaskTreePrivate *taskTreePrivate, const GroupItem &task) |
1795 | : m_taskHandler(task.m_taskHandler) |
1796 | , m_container(taskTreePrivate, task) |
1797 | {} |
1798 | |
1799 | bool isTask() const { return bool(m_taskHandler.m_createHandler); } |
1800 | int taskCount() const { return isTask() ? 1 : m_container.m_taskCount; } |
1801 | |
1802 | const GroupItem::TaskHandler m_taskHandler; |
1803 | ContainerNode m_container; |
1804 | }; |
1805 | |
1806 | class TaskTreePrivate |
1807 | { |
1808 | Q_DISABLE_COPY_MOVE(TaskTreePrivate) |
1809 | |
1810 | public: |
1811 | TaskTreePrivate(TaskTree *taskTree) |
1812 | : q(taskTree) {} |
1813 | |
1814 | void start(); |
1815 | void stop(); |
1816 | void bumpAsyncCount(); |
1817 | void advanceProgress(int byValue); |
1818 | void emitDone(DoneWith result); |
1819 | void callSetupHandler(StorageBase storage, StoragePtr storagePtr) { |
1820 | callStorageHandler(storage, storagePtr, ptr: &StorageHandler::m_setupHandler); |
1821 | } |
1822 | void callDoneHandler(StorageBase storage, StoragePtr storagePtr) { |
1823 | callStorageHandler(storage, storagePtr, ptr: &StorageHandler::m_doneHandler); |
1824 | } |
1825 | struct StorageHandler { |
1826 | StorageBase::StorageHandler m_setupHandler = {}; |
1827 | StorageBase::StorageHandler m_doneHandler = {}; |
1828 | }; |
1829 | typedef StorageBase::StorageHandler StorageHandler::*HandlerPtr; // ptr to class member |
1830 | void callStorageHandler(StorageBase storage, StoragePtr storagePtr, HandlerPtr ptr) |
1831 | { |
1832 | const auto it = m_storageHandlers.constFind(key: storage); |
1833 | if (it == m_storageHandlers.constEnd()) |
1834 | return; |
1835 | const StorageHandler storageHandler = *it; |
1836 | if (storageHandler.*ptr) { |
1837 | GuardLocker locker(m_guard); |
1838 | (storageHandler.*ptr)(storagePtr); |
1839 | } |
1840 | } |
1841 | |
1842 | // Node related methods |
1843 | |
1844 | // If returned value != Continue, childDone() needs to be called in parent container (in caller) |
1845 | // in order to unwind properly. |
1846 | SetupResult start(RuntimeTask *node); |
1847 | void stop(RuntimeTask *node); |
1848 | bool invokeDoneHandler(RuntimeTask *node, DoneWith doneWith); |
1849 | |
1850 | // Container related methods |
1851 | |
1852 | SetupResult start(RuntimeContainer *container); |
1853 | SetupResult continueStart(RuntimeContainer *container, SetupResult startAction); |
1854 | SetupResult startChildren(RuntimeContainer *container); |
1855 | SetupResult childDone(RuntimeIteration *iteration, bool success); |
1856 | void stop(RuntimeContainer *container); |
1857 | bool invokeDoneHandler(RuntimeContainer *container, DoneWith doneWith); |
1858 | bool invokeLoopHandler(RuntimeContainer *container); |
1859 | |
1860 | template <typename Container, typename Handler, typename ...Args, |
1861 | typename ReturnType = std::invoke_result_t<Handler, Args...>> |
1862 | ReturnType invokeHandler(Container *container, Handler &&handler, Args &&...args) |
1863 | { |
1864 | ExecutionContextActivator activator(container); |
1865 | GuardLocker locker(m_guard); |
1866 | return std::invoke(std::forward<Handler>(handler), std::forward<Args>(args)...); |
1867 | } |
1868 | |
1869 | static int effectiveLoopCount(const std::optional<Loop> &loop) |
1870 | { |
1871 | return loop && loop->m_loopData->m_loopCount ? *loop->m_loopData->m_loopCount : 1; |
1872 | } |
1873 | |
1874 | TaskTree *q = nullptr; |
1875 | Guard m_guard; |
1876 | int m_progressValue = 0; |
1877 | int m_asyncCount = 0; |
1878 | QSet<StorageBase> m_storages; |
1879 | QHash<StorageBase, StorageHandler> m_storageHandlers; |
1880 | std::optional<TaskNode> m_root; |
1881 | std::unique_ptr<RuntimeTask> m_runtimeRoot; // Keep me last in order to destruct first |
1882 | }; |
1883 | |
1884 | static bool initialSuccessBit(WorkflowPolicy workflowPolicy) |
1885 | { |
1886 | switch (workflowPolicy) { |
1887 | case WorkflowPolicy::StopOnError: |
1888 | case WorkflowPolicy::ContinueOnError: |
1889 | case WorkflowPolicy::FinishAllAndSuccess: |
1890 | return true; |
1891 | case WorkflowPolicy::StopOnSuccess: |
1892 | case WorkflowPolicy::ContinueOnSuccess: |
1893 | case WorkflowPolicy::StopOnSuccessOrError: |
1894 | case WorkflowPolicy::FinishAllAndError: |
1895 | return false; |
1896 | } |
1897 | QT_CHECK(false); |
1898 | return false; |
1899 | } |
1900 | |
1901 | static bool isProgressive(RuntimeContainer *container); |
1902 | |
1903 | class RuntimeIteration |
1904 | { |
1905 | Q_DISABLE_COPY(RuntimeIteration) |
1906 | |
1907 | public: |
1908 | RuntimeIteration(int index, RuntimeContainer *container); |
1909 | std::optional<Loop> loop() const; |
1910 | void deleteChild(RuntimeTask *node); |
1911 | |
1912 | const int m_iterationIndex = 0; |
1913 | const bool m_isProgressive = true; |
1914 | RuntimeContainer *m_container = nullptr; |
1915 | int m_doneCount = 0; |
1916 | std::vector<std::unique_ptr<RuntimeTask>> m_children = {}; // Owning. |
1917 | }; |
1918 | |
1919 | class RuntimeContainer |
1920 | { |
1921 | Q_DISABLE_COPY(RuntimeContainer) |
1922 | |
1923 | public: |
1924 | RuntimeContainer(const ContainerNode &taskContainer, RuntimeTask *parentTask) |
1925 | : m_containerNode(taskContainer) |
1926 | , m_parentTask(parentTask) |
1927 | , m_storages(createStorages(container: taskContainer)) |
1928 | , m_successBit(initialSuccessBit(workflowPolicy: taskContainer.m_workflowPolicy)) |
1929 | , m_shouldIterate(taskContainer.m_loop) |
1930 | {} |
1931 | |
1932 | ~RuntimeContainer() |
1933 | { |
1934 | for (int i = m_containerNode.m_storageList.size() - 1; i >= 0; --i) { // iterate in reverse order |
1935 | const StorageBase storage = m_containerNode.m_storageList[i]; |
1936 | StoragePtr storagePtr = m_storages.value(i); |
1937 | if (m_callStorageDoneHandlersOnDestruction) |
1938 | m_containerNode.m_taskTreePrivate->callDoneHandler(storage, storagePtr); |
1939 | storage.m_storageData->m_destructor(storagePtr); |
1940 | } |
1941 | } |
1942 | |
1943 | static QList<StoragePtr> createStorages(const ContainerNode &container); |
1944 | bool isStarting() const { return m_startGuard.isLocked(); } |
1945 | RuntimeIteration *parentIteration() const; |
1946 | bool updateSuccessBit(bool success); |
1947 | void deleteFinishedIterations(); |
1948 | int progressiveLoopCount() const |
1949 | { |
1950 | return m_containerNode.m_taskTreePrivate->effectiveLoopCount(loop: m_containerNode.m_loop); |
1951 | } |
1952 | |
1953 | const ContainerNode &m_containerNode; // Not owning. |
1954 | RuntimeTask *m_parentTask = nullptr; // Not owning. |
1955 | const QList<StoragePtr> m_storages; // Owning. |
1956 | |
1957 | bool m_successBit = true; |
1958 | bool m_callStorageDoneHandlersOnDestruction = false; |
1959 | Guard m_startGuard; |
1960 | |
1961 | int m_iterationCount = 0; |
1962 | int m_nextToStart = 0; |
1963 | int m_runningChildren = 0; |
1964 | bool m_shouldIterate = true; |
1965 | std::vector<std::unique_ptr<RuntimeIteration>> m_iterations; // Owning. |
1966 | }; |
1967 | |
1968 | class RuntimeTask |
1969 | { |
1970 | public: |
1971 | ~RuntimeTask() |
1972 | { |
1973 | if (m_task) { |
1974 | // Ensures the running task's d'tor doesn't emit done() signal. QTCREATORBUG-30204. |
1975 | QObject::disconnect(sender: m_task.get(), signal: &TaskInterface::done, |
1976 | receiver: m_taskNode.m_container.m_taskTreePrivate->q, zero: nullptr); |
1977 | } |
1978 | } |
1979 | |
1980 | const TaskNode &m_taskNode; // Not owning. |
1981 | RuntimeIteration *m_parentIteration = nullptr; // Not owning. |
1982 | std::optional<RuntimeContainer> m_container = {}; // Owning. |
1983 | std::unique_ptr<TaskInterface> m_task = {}; // Owning. |
1984 | }; |
1985 | |
1986 | static bool isProgressive(RuntimeContainer *container) |
1987 | { |
1988 | RuntimeIteration *iteration = container->m_parentTask->m_parentIteration; |
1989 | return iteration ? iteration->m_isProgressive : true; |
1990 | } |
1991 | |
1992 | void ExecutionContextActivator::activateTaskTree(RuntimeIteration *iteration) |
1993 | { |
1994 | activateTaskTree(container: iteration->m_container); |
1995 | } |
1996 | |
1997 | void ExecutionContextActivator::activateTaskTree(RuntimeContainer *container) |
1998 | { |
1999 | s_activeTaskTrees.push_back(t: container->m_containerNode.m_taskTreePrivate->q); |
2000 | } |
2001 | |
2002 | void ExecutionContextActivator::activateContext(RuntimeIteration *iteration) |
2003 | { |
2004 | std::optional<Loop> loop = iteration->loop(); |
2005 | if (loop) { |
2006 | loop->m_loopData->threadData().pushIteration(index: iteration->m_iterationIndex); |
2007 | m_activeLoops.append(t: *loop); |
2008 | } |
2009 | activateContext(container: iteration->m_container); |
2010 | } |
2011 | |
2012 | void ExecutionContextActivator::activateContext(RuntimeContainer *container) |
2013 | { |
2014 | const ContainerNode &containerNode = container->m_containerNode; |
2015 | for (int i = 0; i < containerNode.m_storageList.size(); ++i) { |
2016 | const StorageBase &storage = containerNode.m_storageList[i]; |
2017 | if (m_activeStorages.contains(t: storage)) |
2018 | continue; // Storage shadowing: The storage is already active, skipping it... |
2019 | m_activeStorages.append(t: storage); |
2020 | storage.m_storageData->threadData().pushStorage(storagePtr: container->m_storages.value(i)); |
2021 | } |
2022 | // Go to the parent after activating this storages so that storage shadowing works |
2023 | // in the direction from child to parent root. |
2024 | if (container->parentIteration()) |
2025 | activateContext(iteration: container->parentIteration()); |
2026 | } |
2027 | |
2028 | void TaskTreePrivate::start() |
2029 | { |
2030 | QT_ASSERT(m_root, return); |
2031 | QT_ASSERT(!m_runtimeRoot, return); |
2032 | m_asyncCount = 0; |
2033 | m_progressValue = 0; |
2034 | { |
2035 | GuardLocker locker(m_guard); |
2036 | emit q->started(); |
2037 | emit q->asyncCountChanged(count: m_asyncCount); |
2038 | emit q->progressValueChanged(value: m_progressValue); |
2039 | } |
2040 | // TODO: check storage handlers for not existing storages in tree |
2041 | for (auto it = m_storageHandlers.cbegin(); it != m_storageHandlers.cend(); ++it) { |
2042 | QT_ASSERT(m_storages.contains(it.key()), qWarning("The registered storage doesn't " |
2043 | "exist in task tree. Its handlers will never be called." )); |
2044 | } |
2045 | m_runtimeRoot.reset(p: new RuntimeTask{.m_taskNode: *m_root}); |
2046 | start(node: m_runtimeRoot.get()); |
2047 | bumpAsyncCount(); |
2048 | } |
2049 | |
2050 | void TaskTreePrivate::stop() |
2051 | { |
2052 | QT_ASSERT(m_root, return); |
2053 | if (!m_runtimeRoot) |
2054 | return; |
2055 | stop(node: m_runtimeRoot.get()); |
2056 | m_runtimeRoot.reset(); |
2057 | emitDone(result: DoneWith::Cancel); |
2058 | } |
2059 | |
2060 | void TaskTreePrivate::bumpAsyncCount() |
2061 | { |
2062 | if (!m_runtimeRoot) |
2063 | return; |
2064 | ++m_asyncCount; |
2065 | GuardLocker locker(m_guard); |
2066 | emit q->asyncCountChanged(count: m_asyncCount); |
2067 | } |
2068 | |
2069 | void TaskTreePrivate::advanceProgress(int byValue) |
2070 | { |
2071 | if (byValue == 0) |
2072 | return; |
2073 | QT_CHECK(byValue > 0); |
2074 | QT_CHECK(m_progressValue + byValue <= m_root->taskCount()); |
2075 | m_progressValue += byValue; |
2076 | GuardLocker locker(m_guard); |
2077 | emit q->progressValueChanged(value: m_progressValue); |
2078 | } |
2079 | |
2080 | void TaskTreePrivate::emitDone(DoneWith result) |
2081 | { |
2082 | QT_CHECK(m_progressValue == m_root->taskCount()); |
2083 | GuardLocker locker(m_guard); |
2084 | emit q->done(result); |
2085 | } |
2086 | |
2087 | RuntimeIteration::RuntimeIteration(int index, RuntimeContainer *container) |
2088 | : m_iterationIndex(index) |
2089 | , m_isProgressive(index < container->progressiveLoopCount() && isProgressive(container)) |
2090 | , m_container(container) |
2091 | {} |
2092 | |
2093 | std::optional<Loop> RuntimeIteration::loop() const |
2094 | { |
2095 | return m_container->m_containerNode.m_loop; |
2096 | } |
2097 | |
2098 | void RuntimeIteration::deleteChild(RuntimeTask *task) |
2099 | { |
2100 | const auto it = std::find_if(first: m_children.cbegin(), last: m_children.cend(), pred: [task](const auto &ptr) { |
2101 | return ptr.get() == task; |
2102 | }); |
2103 | if (it != m_children.cend()) |
2104 | m_children.erase(position: it); |
2105 | } |
2106 | |
2107 | static std::vector<TaskNode> createChildren(TaskTreePrivate *taskTreePrivate, |
2108 | const QList<GroupItem> &children) |
2109 | { |
2110 | std::vector<TaskNode> result; |
2111 | result.reserve(n: children.size()); |
2112 | for (const GroupItem &child : children) |
2113 | result.emplace_back(args&: taskTreePrivate, args: child); |
2114 | return result; |
2115 | } |
2116 | |
2117 | ContainerNode::ContainerNode(TaskTreePrivate *taskTreePrivate, const GroupItem &task) |
2118 | : m_taskTreePrivate(taskTreePrivate) |
2119 | , m_groupHandler(task.m_groupData.m_groupHandler) |
2120 | , m_parallelLimit(task.m_groupData.m_parallelLimit.value_or(u: 1)) |
2121 | , m_workflowPolicy(task.m_groupData.m_workflowPolicy.value_or(u: WorkflowPolicy::StopOnError)) |
2122 | , m_loop(task.m_groupData.m_loop) |
2123 | , m_storageList(task.m_storageList) |
2124 | , m_children(createChildren(taskTreePrivate, children: task.m_children)) |
2125 | , m_taskCount(std::accumulate(first: m_children.cbegin(), last: m_children.cend(), init: 0, |
2126 | binary_op: [](int r, const TaskNode &n) { return r + n.taskCount(); }) |
2127 | * taskTreePrivate->effectiveLoopCount(loop: m_loop)) |
2128 | { |
2129 | for (const StorageBase &storage : m_storageList) |
2130 | m_taskTreePrivate->m_storages << storage; |
2131 | } |
2132 | |
2133 | QList<StoragePtr> RuntimeContainer::createStorages(const ContainerNode &container) |
2134 | { |
2135 | QList<StoragePtr> storages; |
2136 | for (const StorageBase &storage : container.m_storageList) { |
2137 | StoragePtr storagePtr = storage.m_storageData->m_constructor(); |
2138 | storages.append(t: storagePtr); |
2139 | container.m_taskTreePrivate->callSetupHandler(storage, storagePtr); |
2140 | } |
2141 | return storages; |
2142 | } |
2143 | |
2144 | RuntimeIteration *RuntimeContainer::parentIteration() const |
2145 | { |
2146 | return m_parentTask->m_parentIteration; |
2147 | } |
2148 | |
2149 | bool RuntimeContainer::updateSuccessBit(bool success) |
2150 | { |
2151 | if (m_containerNode.m_workflowPolicy == WorkflowPolicy::FinishAllAndSuccess |
2152 | || m_containerNode.m_workflowPolicy == WorkflowPolicy::FinishAllAndError |
2153 | || m_containerNode.m_workflowPolicy == WorkflowPolicy::StopOnSuccessOrError) { |
2154 | if (m_containerNode.m_workflowPolicy == WorkflowPolicy::StopOnSuccessOrError) |
2155 | m_successBit = success; |
2156 | return m_successBit; |
2157 | } |
2158 | |
2159 | const bool donePolicy = m_containerNode.m_workflowPolicy == WorkflowPolicy::StopOnSuccess |
2160 | || m_containerNode.m_workflowPolicy == WorkflowPolicy::ContinueOnSuccess; |
2161 | m_successBit = donePolicy ? (m_successBit || success) : (m_successBit && success); |
2162 | return m_successBit; |
2163 | } |
2164 | |
2165 | void RuntimeContainer::deleteFinishedIterations() |
2166 | { |
2167 | for (auto it = m_iterations.cbegin(); it != m_iterations.cend(); ) { |
2168 | if (it->get()->m_doneCount == int(m_containerNode.m_children.size())) |
2169 | it = m_iterations.erase(position: it); |
2170 | else |
2171 | ++it; |
2172 | } |
2173 | } |
2174 | |
2175 | SetupResult TaskTreePrivate::start(RuntimeContainer *container) |
2176 | { |
2177 | const ContainerNode &containerNode = container->m_containerNode; |
2178 | SetupResult startAction = SetupResult::Continue; |
2179 | if (containerNode.m_groupHandler.m_setupHandler) { |
2180 | startAction = invokeHandler(container, handler: containerNode.m_groupHandler.m_setupHandler); |
2181 | if (startAction != SetupResult::Continue) { |
2182 | if (isProgressive(container)) |
2183 | advanceProgress(byValue: containerNode.m_taskCount); |
2184 | // Non-Continue SetupResult takes precedence over the workflow policy. |
2185 | container->m_successBit = startAction == SetupResult::StopWithSuccess; |
2186 | } |
2187 | } |
2188 | return continueStart(container, startAction); |
2189 | } |
2190 | |
2191 | SetupResult TaskTreePrivate::continueStart(RuntimeContainer *container, SetupResult startAction) |
2192 | { |
2193 | const SetupResult groupAction = startAction == SetupResult::Continue ? startChildren(container) |
2194 | : startAction; |
2195 | if (groupAction == SetupResult::Continue) |
2196 | return groupAction; |
2197 | |
2198 | const bool bit = container->updateSuccessBit(success: groupAction == SetupResult::StopWithSuccess); |
2199 | RuntimeIteration *parentIteration = container->parentIteration(); |
2200 | RuntimeTask *parentTask = container->m_parentTask; |
2201 | QT_CHECK(parentTask); |
2202 | const bool result = invokeDoneHandler(container, doneWith: bit ? DoneWith::Success : DoneWith::Error); |
2203 | if (parentIteration) { |
2204 | parentIteration->deleteChild(task: parentTask); |
2205 | if (!parentIteration->m_container->isStarting()) |
2206 | childDone(iteration: parentIteration, success: result); |
2207 | } else { |
2208 | QT_CHECK(m_runtimeRoot.get() == parentTask); |
2209 | m_runtimeRoot.reset(); |
2210 | emitDone(result: result ? DoneWith::Success : DoneWith::Error); |
2211 | } |
2212 | return toSetupResult(success: result); |
2213 | } |
2214 | |
2215 | SetupResult TaskTreePrivate::startChildren(RuntimeContainer *container) |
2216 | { |
2217 | const ContainerNode &containerNode = container->m_containerNode; |
2218 | const int childCount = int(containerNode.m_children.size()); |
2219 | |
2220 | if (container->m_iterationCount == 0) { |
2221 | if (container->m_shouldIterate && !invokeLoopHandler(container)) { |
2222 | if (isProgressive(container)) |
2223 | advanceProgress(byValue: containerNode.m_taskCount); |
2224 | return toSetupResult(success: container->m_successBit); |
2225 | } |
2226 | container->m_iterations.emplace_back( |
2227 | args: std::make_unique<RuntimeIteration>(args&: container->m_iterationCount, args&: container)); |
2228 | ++container->m_iterationCount; |
2229 | } |
2230 | |
2231 | GuardLocker locker(container->m_startGuard); |
2232 | |
2233 | while (containerNode.m_parallelLimit == 0 |
2234 | || container->m_runningChildren < containerNode.m_parallelLimit) { |
2235 | container->deleteFinishedIterations(); |
2236 | if (container->m_nextToStart == childCount) { |
2237 | if (invokeLoopHandler(container)) { |
2238 | container->m_nextToStart = 0; |
2239 | container->m_iterations.emplace_back( |
2240 | args: std::make_unique<RuntimeIteration>(args&: container->m_iterationCount, args&: container)); |
2241 | ++container->m_iterationCount; |
2242 | } else if (container->m_iterations.empty()) { |
2243 | return toSetupResult(success: container->m_successBit); |
2244 | } else { |
2245 | return SetupResult::Continue; |
2246 | } |
2247 | } |
2248 | if (containerNode.m_children.size() == 0) // Empty loop body. |
2249 | continue; |
2250 | |
2251 | RuntimeIteration *iteration = container->m_iterations.back().get(); |
2252 | RuntimeTask *newTask = new RuntimeTask{.m_taskNode: containerNode.m_children.at(n: container->m_nextToStart), |
2253 | .m_parentIteration: iteration}; |
2254 | iteration->m_children.emplace_back(args&: newTask); |
2255 | ++container->m_runningChildren; |
2256 | ++container->m_nextToStart; |
2257 | |
2258 | const SetupResult startAction = start(node: newTask); |
2259 | if (startAction == SetupResult::Continue) |
2260 | continue; |
2261 | |
2262 | const SetupResult finalizeAction = childDone(iteration, |
2263 | success: startAction == SetupResult::StopWithSuccess); |
2264 | if (finalizeAction != SetupResult::Continue) |
2265 | return finalizeAction; |
2266 | } |
2267 | return SetupResult::Continue; |
2268 | } |
2269 | |
2270 | SetupResult TaskTreePrivate::childDone(RuntimeIteration *iteration, bool success) |
2271 | { |
2272 | RuntimeContainer *container = iteration->m_container; |
2273 | const WorkflowPolicy &workflowPolicy = container->m_containerNode.m_workflowPolicy; |
2274 | const bool shouldStop = workflowPolicy == WorkflowPolicy::StopOnSuccessOrError |
2275 | || (workflowPolicy == WorkflowPolicy::StopOnSuccess && success) |
2276 | || (workflowPolicy == WorkflowPolicy::StopOnError && !success); |
2277 | ++iteration->m_doneCount; |
2278 | --container->m_runningChildren; |
2279 | if (shouldStop) |
2280 | stop(container); |
2281 | |
2282 | const bool updatedSuccess = container->updateSuccessBit(success); |
2283 | const SetupResult startAction = shouldStop ? toSetupResult(success: updatedSuccess) |
2284 | : SetupResult::Continue; |
2285 | |
2286 | if (container->isStarting()) |
2287 | return startAction; |
2288 | return continueStart(container, startAction); |
2289 | } |
2290 | |
2291 | void TaskTreePrivate::stop(RuntimeContainer *container) |
2292 | { |
2293 | const ContainerNode &containerNode = container->m_containerNode; |
2294 | for (auto &iteration : container->m_iterations) { |
2295 | for (auto &child : iteration->m_children) { |
2296 | ++iteration->m_doneCount; |
2297 | stop(node: child.get()); |
2298 | } |
2299 | |
2300 | if (iteration->m_isProgressive) { |
2301 | int skippedTaskCount = 0; |
2302 | for (int i = iteration->m_doneCount; i < int(containerNode.m_children.size()); ++i) |
2303 | skippedTaskCount += containerNode.m_children.at(n: i).taskCount(); |
2304 | advanceProgress(byValue: skippedTaskCount); |
2305 | } |
2306 | } |
2307 | const int skippedIterations = container->progressiveLoopCount() - container->m_iterationCount; |
2308 | if (skippedIterations > 0) { |
2309 | advanceProgress(byValue: container->m_containerNode.m_taskCount / container->progressiveLoopCount() |
2310 | * skippedIterations); |
2311 | } |
2312 | } |
2313 | |
2314 | static bool shouldCall(CallDoneIf callDoneIf, DoneWith result) |
2315 | { |
2316 | if (result == DoneWith::Success) |
2317 | return callDoneIf != CallDoneIf::Error; |
2318 | return callDoneIf != CallDoneIf::Success; |
2319 | } |
2320 | |
2321 | bool TaskTreePrivate::invokeDoneHandler(RuntimeContainer *container, DoneWith doneWith) |
2322 | { |
2323 | DoneResult result = toDoneResult(doneWith); |
2324 | const GroupItem::GroupHandler &groupHandler = container->m_containerNode.m_groupHandler; |
2325 | if (groupHandler.m_doneHandler && shouldCall(callDoneIf: groupHandler.m_callDoneIf, result: doneWith)) |
2326 | result = invokeHandler(container, handler: groupHandler.m_doneHandler, args&: doneWith); |
2327 | container->m_callStorageDoneHandlersOnDestruction = true; |
2328 | // TODO: is it needed? |
2329 | container->m_parentTask->m_container.reset(); |
2330 | return result == DoneResult::Success; |
2331 | } |
2332 | |
2333 | bool TaskTreePrivate::invokeLoopHandler(RuntimeContainer *container) |
2334 | { |
2335 | if (container->m_shouldIterate) { |
2336 | const LoopData *loopData = container->m_containerNode.m_loop->m_loopData.get(); |
2337 | if (loopData->m_loopCount) { |
2338 | container->m_shouldIterate = container->m_iterationCount < loopData->m_loopCount; |
2339 | } else if (loopData->m_condition) { |
2340 | container->m_shouldIterate = invokeHandler(container, handler: loopData->m_condition, |
2341 | args&: container->m_iterationCount); |
2342 | } |
2343 | } |
2344 | return container->m_shouldIterate; |
2345 | } |
2346 | |
2347 | SetupResult TaskTreePrivate::start(RuntimeTask *node) |
2348 | { |
2349 | if (!node->m_taskNode.isTask()) { |
2350 | node->m_container.emplace(args: node->m_taskNode.m_container, args&: node); |
2351 | return start(container: &*node->m_container); |
2352 | } |
2353 | |
2354 | const GroupItem::TaskHandler &handler = node->m_taskNode.m_taskHandler; |
2355 | node->m_task.reset(p: handler.m_createHandler()); |
2356 | const SetupResult startAction = handler.m_setupHandler |
2357 | ? invokeHandler(container: node->m_parentIteration, handler: handler.m_setupHandler, args&: *node->m_task.get()) |
2358 | : SetupResult::Continue; |
2359 | if (startAction != SetupResult::Continue) { |
2360 | if (node->m_parentIteration->m_isProgressive) |
2361 | advanceProgress(byValue: 1); |
2362 | node->m_parentIteration->deleteChild(task: node); |
2363 | return startAction; |
2364 | } |
2365 | const std::shared_ptr<SetupResult> unwindAction |
2366 | = std::make_shared<SetupResult>(args: SetupResult::Continue); |
2367 | QObject::connect(sender: node->m_task.get(), signal: &TaskInterface::done, |
2368 | context: q, slot: [this, node, unwindAction](DoneResult doneResult) { |
2369 | const bool result = invokeDoneHandler(node, doneWith: toDoneWith(result: doneResult)); |
2370 | QObject::disconnect(sender: node->m_task.get(), signal: &TaskInterface::done, receiver: q, zero: nullptr); |
2371 | node->m_task.release()->deleteLater(); |
2372 | RuntimeIteration *parentIteration = node->m_parentIteration; |
2373 | parentIteration->deleteChild(task: node); |
2374 | if (parentIteration->m_container->isStarting()) { |
2375 | *unwindAction = toSetupResult(success: result); |
2376 | } else { |
2377 | childDone(iteration: parentIteration, success: result); |
2378 | bumpAsyncCount(); |
2379 | } |
2380 | }); |
2381 | |
2382 | node->m_task->start(); |
2383 | return *unwindAction; |
2384 | } |
2385 | |
2386 | void TaskTreePrivate::stop(RuntimeTask *node) |
2387 | { |
2388 | if (!node->m_task) { |
2389 | if (!node->m_container) |
2390 | return; |
2391 | stop(container: &*node->m_container); |
2392 | node->m_container->updateSuccessBit(success: false); |
2393 | invokeDoneHandler(container: &*node->m_container, doneWith: DoneWith::Cancel); |
2394 | return; |
2395 | } |
2396 | |
2397 | invokeDoneHandler(node, doneWith: DoneWith::Cancel); |
2398 | node->m_task.reset(); |
2399 | } |
2400 | |
2401 | bool TaskTreePrivate::invokeDoneHandler(RuntimeTask *node, DoneWith doneWith) |
2402 | { |
2403 | DoneResult result = toDoneResult(doneWith); |
2404 | const GroupItem::TaskHandler &handler = node->m_taskNode.m_taskHandler; |
2405 | if (handler.m_doneHandler && shouldCall(callDoneIf: handler.m_callDoneIf, result: doneWith)) { |
2406 | result = invokeHandler(container: node->m_parentIteration, |
2407 | handler: handler.m_doneHandler, args&: *node->m_task.get(), args&: doneWith); |
2408 | } |
2409 | if (node->m_parentIteration->m_isProgressive) |
2410 | advanceProgress(byValue: 1); |
2411 | return result == DoneResult::Success; |
2412 | } |
2413 | |
2414 | /*! |
2415 | \class Tasking::TaskTree |
2416 | \inheaderfile solutions/tasking/tasktree.h |
2417 | \inmodule TaskingSolution |
2418 | \brief The TaskTree class runs an async task tree structure defined in a declarative way. |
2419 | \reentrant |
2420 | |
2421 | Use the Tasking namespace to build extensible, declarative task tree |
2422 | structures that contain possibly asynchronous tasks, such as QProcess, |
2423 | NetworkQuery, or ConcurrentCall<ReturnType>. TaskTree structures enable you |
2424 | to create a sophisticated mixture of a parallel or sequential flow of tasks |
2425 | in the form of a tree and to run it any time later. |
2426 | |
2427 | \section1 Root Element and Tasks |
2428 | |
2429 | The TaskTree has a mandatory Group root element, which may contain |
2430 | any number of tasks of various types, such as QProcessTask, NetworkQueryTask, |
2431 | or ConcurrentCallTask<ReturnType>: |
2432 | |
2433 | \code |
2434 | using namespace Tasking; |
2435 | |
2436 | const Group root { |
2437 | QProcessTask(...), |
2438 | NetworkQueryTask(...), |
2439 | ConcurrentCallTask<int>(...) |
2440 | }; |
2441 | |
2442 | TaskTree *taskTree = new TaskTree(root); |
2443 | connect(taskTree, &TaskTree::done, ...); // finish handler |
2444 | taskTree->start(); |
2445 | \endcode |
2446 | |
2447 | The task tree above has a top level element of the Group type that contains |
2448 | tasks of the QProcessTask, NetworkQueryTask, and ConcurrentCallTask<int> type. |
2449 | After taskTree->start() is called, the tasks are run in a chain, starting |
2450 | with QProcessTask. When the QProcessTask finishes successfully, the NetworkQueryTask |
2451 | task is started. Finally, when the network task finishes successfully, the |
2452 | ConcurrentCallTask<int> task is started. |
2453 | |
2454 | When the last running task finishes with success, the task tree is considered |
2455 | to have run successfully and the done() signal is emitted with DoneWith::Success. |
2456 | When a task finishes with an error, the execution of the task tree is stopped |
2457 | and the remaining tasks are skipped. The task tree finishes with an error and |
2458 | sends the TaskTree::done() signal with DoneWith::Error. |
2459 | |
2460 | \section1 Groups |
2461 | |
2462 | The parent of the Group sees it as a single task. Like other tasks, |
2463 | the group can be started and it can finish with success or an error. |
2464 | The Group elements can be nested to create a tree structure: |
2465 | |
2466 | \code |
2467 | const Group root { |
2468 | Group { |
2469 | parallel, |
2470 | QProcessTask(...), |
2471 | ConcurrentCallTask<int>(...) |
2472 | }, |
2473 | NetworkQueryTask(...) |
2474 | }; |
2475 | \endcode |
2476 | |
2477 | The example above differs from the first example in that the root element has |
2478 | a subgroup that contains the QProcessTask and ConcurrentCallTask<int>. The subgroup is a |
2479 | sibling element of the NetworkQueryTask in the root. The subgroup contains an |
2480 | additional \e parallel element that instructs its Group to execute its tasks |
2481 | in parallel. |
2482 | |
2483 | So, when the tree above is started, the QProcessTask and ConcurrentCallTask<int> start |
2484 | immediately and run in parallel. Since the root group doesn't contain a |
2485 | \e parallel element, its direct child tasks are run in sequence. Thus, the |
2486 | NetworkQueryTask starts when the whole subgroup finishes. The group is |
2487 | considered as finished when all its tasks have finished. The order in which |
2488 | the tasks finish is not relevant. |
2489 | |
2490 | So, depending on which task lasts longer (QProcessTask or ConcurrentCallTask<int>), the |
2491 | following scenarios can take place: |
2492 | |
2493 | \table |
2494 | \header |
2495 | \li Scenario 1 |
2496 | \li Scenario 2 |
2497 | \row |
2498 | \li Root Group starts |
2499 | \li Root Group starts |
2500 | \row |
2501 | \li Sub Group starts |
2502 | \li Sub Group starts |
2503 | \row |
2504 | \li QProcessTask starts |
2505 | \li QProcessTask starts |
2506 | \row |
2507 | \li ConcurrentCallTask<int> starts |
2508 | \li ConcurrentCallTask<int> starts |
2509 | \row |
2510 | \li ... |
2511 | \li ... |
2512 | \row |
2513 | \li \b {QProcessTask finishes} |
2514 | \li \b {ConcurrentCallTask<int> finishes} |
2515 | \row |
2516 | \li ... |
2517 | \li ... |
2518 | \row |
2519 | \li \b {ConcurrentCallTask<int> finishes} |
2520 | \li \b {QProcessTask finishes} |
2521 | \row |
2522 | \li Sub Group finishes |
2523 | \li Sub Group finishes |
2524 | \row |
2525 | \li NetworkQueryTask starts |
2526 | \li NetworkQueryTask starts |
2527 | \row |
2528 | \li ... |
2529 | \li ... |
2530 | \row |
2531 | \li NetworkQueryTask finishes |
2532 | \li NetworkQueryTask finishes |
2533 | \row |
2534 | \li Root Group finishes |
2535 | \li Root Group finishes |
2536 | \endtable |
2537 | |
2538 | The differences between the scenarios are marked with bold. Three dots mean |
2539 | that an unspecified amount of time passes between previous and next events |
2540 | (a task or tasks continue to run). No dots between events |
2541 | means that they occur synchronously. |
2542 | |
2543 | The presented scenarios assume that all tasks run successfully. If a task |
2544 | fails during execution, the task tree finishes with an error. In particular, |
2545 | when QProcessTask finishes with an error while ConcurrentCallTask<int> is still being executed, |
2546 | the ConcurrentCallTask<int> is automatically canceled, the subgroup finishes with an error, |
2547 | the NetworkQueryTask is skipped, and the tree finishes with an error. |
2548 | |
2549 | \section1 Task Types |
2550 | |
2551 | Each task type is associated with its corresponding task class that executes |
2552 | the task. For example, a QProcessTask inside a task tree is associated with |
2553 | the QProcess class that executes the process. The associated objects are |
2554 | automatically created, started, and destructed exclusively by the task tree |
2555 | at the appropriate time. |
2556 | |
2557 | If a root group consists of five sequential QProcessTask tasks, and the task tree |
2558 | executes the group, it creates an instance of QProcess for the first |
2559 | QProcessTask and starts it. If the QProcess instance finishes successfully, |
2560 | the task tree destructs it and creates a new QProcess instance for the |
2561 | second QProcessTask, and so on. If the first task finishes with an error, the task |
2562 | tree stops creating QProcess instances, and the root group finishes with an |
2563 | error. |
2564 | |
2565 | The following table shows examples of task types and their corresponding task |
2566 | classes: |
2567 | |
2568 | \table |
2569 | \header |
2570 | \li Task Type (Tasking Namespace) |
2571 | \li Associated Task Class |
2572 | \li Brief Description |
2573 | \row |
2574 | \li QProcessTask |
2575 | \li QProcess |
2576 | \li Starts process. |
2577 | \row |
2578 | \li ConcurrentCallTask<ReturnType> |
2579 | \li Tasking::ConcurrentCall<ReturnType> |
2580 | \li Starts asynchronous task, runs in separate thread. |
2581 | \row |
2582 | \li TaskTreeTask |
2583 | \li Tasking::TaskTree |
2584 | \li Starts nested task tree. |
2585 | \row |
2586 | \li NetworkQueryTask |
2587 | \li NetworkQuery |
2588 | \li Starts network download. |
2589 | \endtable |
2590 | |
2591 | \section1 Task Handlers |
2592 | |
2593 | Use Task handlers to set up a task for execution and to enable reading |
2594 | the output data from the task when it finishes with success or an error. |
2595 | |
2596 | \section2 Task's Start Handler |
2597 | |
2598 | When a corresponding task class object is created and before it's started, |
2599 | the task tree invokes an optionally user-provided setup handler. The setup |
2600 | handler should always take a \e reference to the associated task class object: |
2601 | |
2602 | \code |
2603 | const auto onSetup = [](QProcess &process) { |
2604 | process.setCommand({"sleep", {"3"}}); |
2605 | }; |
2606 | const Group root { |
2607 | QProcessTask(onSetup) |
2608 | }; |
2609 | \endcode |
2610 | |
2611 | You can modify the passed QProcess in the setup handler, so that the task |
2612 | tree can start the process according to your configuration. |
2613 | You should not call \c {process.start();} in the setup handler, |
2614 | as the task tree calls it when needed. The setup handler is optional. When used, |
2615 | it must be the first argument of the task's constructor. |
2616 | |
2617 | Optionally, the setup handler may return a SetupResult. The returned |
2618 | SetupResult influences the further start behavior of a given task. The |
2619 | possible values are: |
2620 | |
2621 | \table |
2622 | \header |
2623 | \li SetupResult Value |
2624 | \li Brief Description |
2625 | \row |
2626 | \li Continue |
2627 | \li The task will be started normally. This is the default behavior when the |
2628 | setup handler doesn't return SetupResult (that is, its return type is |
2629 | void). |
2630 | \row |
2631 | \li StopWithSuccess |
2632 | \li The task won't be started and it will report success to its parent. |
2633 | \row |
2634 | \li StopWithError |
2635 | \li The task won't be started and it will report an error to its parent. |
2636 | \endtable |
2637 | |
2638 | This is useful for running a task only when a condition is met and the data |
2639 | needed to evaluate this condition is not known until previously started tasks |
2640 | finish. In this way, the setup handler dynamically decides whether to start the |
2641 | corresponding task normally or skip it and report success or an error. |
2642 | For more information about inter-task data exchange, see \l Storage. |
2643 | |
2644 | \section2 Task's Done Handler |
2645 | |
2646 | When a running task finishes, the task tree invokes an optionally provided done handler. |
2647 | The handler should take a \c const \e reference to the associated task class object: |
2648 | |
2649 | \code |
2650 | const auto onSetup = [](QProcess &process) { |
2651 | process.setCommand({"sleep", {"3"}}); |
2652 | }; |
2653 | const auto onDone = [](const QProcess &process, DoneWith result) { |
2654 | if (result == DoneWith::Success) |
2655 | qDebug() << "Success" << process.cleanedStdOut(); |
2656 | else |
2657 | qDebug() << "Failure" << process.cleanedStdErr(); |
2658 | }; |
2659 | const Group root { |
2660 | QProcessTask(onSetup, onDone) |
2661 | }; |
2662 | \endcode |
2663 | |
2664 | The done handler may collect output data from QProcess, and store it |
2665 | for further processing or perform additional actions. |
2666 | |
2667 | \note If the task setup handler returns StopWithSuccess or StopWithError, |
2668 | the done handler is not invoked. |
2669 | |
2670 | \section1 Group Handlers |
2671 | |
2672 | Similarly to task handlers, group handlers enable you to set up a group to |
2673 | execute and to apply more actions when the whole group finishes with |
2674 | success or an error. |
2675 | |
2676 | \section2 Group's Start Handler |
2677 | |
2678 | The task tree invokes the group start handler before it starts the child |
2679 | tasks. The group handler doesn't take any arguments: |
2680 | |
2681 | \code |
2682 | const auto onSetup = [] { |
2683 | qDebug() << "Entering the group"; |
2684 | }; |
2685 | const Group root { |
2686 | onGroupSetup(onSetup), |
2687 | QProcessTask(...) |
2688 | }; |
2689 | \endcode |
2690 | |
2691 | The group setup handler is optional. To define a group setup handler, add an |
2692 | onGroupSetup() element to a group. The argument of onGroupSetup() is a user |
2693 | handler. If you add more than one onGroupSetup() element to a group, an assert |
2694 | is triggered at runtime that includes an error message. |
2695 | |
2696 | Like the task's start handler, the group start handler may return SetupResult. |
2697 | The returned SetupResult value affects the start behavior of the |
2698 | whole group. If you do not specify a group start handler or its return type |
2699 | is void, the default group's action is SetupResult::Continue, so that all |
2700 | tasks are started normally. Otherwise, when the start handler returns |
2701 | SetupResult::StopWithSuccess or SetupResult::StopWithError, the tasks are not |
2702 | started (they are skipped) and the group itself reports success or failure, |
2703 | depending on the returned value, respectively. |
2704 | |
2705 | \code |
2706 | const Group root { |
2707 | onGroupSetup([] { qDebug() << "Root setup"; }), |
2708 | Group { |
2709 | onGroupSetup([] { qDebug() << "Group 1 setup"; return SetupResult::Continue; }), |
2710 | QProcessTask(...) // Process 1 |
2711 | }, |
2712 | Group { |
2713 | onGroupSetup([] { qDebug() << "Group 2 setup"; return SetupResult::StopWithSuccess; }), |
2714 | QProcessTask(...) // Process 2 |
2715 | }, |
2716 | Group { |
2717 | onGroupSetup([] { qDebug() << "Group 3 setup"; return SetupResult::StopWithError; }), |
2718 | QProcessTask(...) // Process 3 |
2719 | }, |
2720 | QProcessTask(...) // Process 4 |
2721 | }; |
2722 | \endcode |
2723 | |
2724 | In the above example, all subgroups of a root group define their setup handlers. |
2725 | The following scenario assumes that all started processes finish with success: |
2726 | |
2727 | \table |
2728 | \header |
2729 | \li Scenario |
2730 | \li Comment |
2731 | \row |
2732 | \li Root Group starts |
2733 | \li Doesn't return SetupResult, so its tasks are executed. |
2734 | \row |
2735 | \li Group 1 starts |
2736 | \li Returns Continue, so its tasks are executed. |
2737 | \row |
2738 | \li Process 1 starts |
2739 | \li |
2740 | \row |
2741 | \li ... |
2742 | \li ... |
2743 | \row |
2744 | \li Process 1 finishes (success) |
2745 | \li |
2746 | \row |
2747 | \li Group 1 finishes (success) |
2748 | \li |
2749 | \row |
2750 | \li Group 2 starts |
2751 | \li Returns StopWithSuccess, so Process 2 is skipped and Group 2 reports |
2752 | success. |
2753 | \row |
2754 | \li Group 2 finishes (success) |
2755 | \li |
2756 | \row |
2757 | \li Group 3 starts |
2758 | \li Returns StopWithError, so Process 3 is skipped and Group 3 reports |
2759 | an error. |
2760 | \row |
2761 | \li Group 3 finishes (error) |
2762 | \li |
2763 | \row |
2764 | \li Root Group finishes (error) |
2765 | \li Group 3, which is a direct child of the root group, finished with an |
2766 | error, so the root group stops executing, skips Process 4, which has |
2767 | not started yet, and reports an error. |
2768 | \endtable |
2769 | |
2770 | \section2 Groups's Done Handler |
2771 | |
2772 | A Group's done handler is executed after the successful or failed execution of its tasks. |
2773 | The final value reported by the group depends on its \l {Workflow Policy}. |
2774 | The handler can apply other necessary actions. |
2775 | The done handler is defined inside the onGroupDone() element of a group. |
2776 | It may take the optional DoneWith argument, indicating the successful or failed execution: |
2777 | |
2778 | \code |
2779 | const Group root { |
2780 | onGroupSetup([] { qDebug() << "Root setup"; }), |
2781 | QProcessTask(...), |
2782 | onGroupDone([](DoneWith result) { |
2783 | if (result == DoneWith::Success) |
2784 | qDebug() << "Root finished with success"; |
2785 | else |
2786 | qDebug() << "Root finished with an error"; |
2787 | }) |
2788 | }; |
2789 | \endcode |
2790 | |
2791 | The group done handler is optional. If you add more than one onGroupDone() to a group, |
2792 | an assert is triggered at runtime that includes an error message. |
2793 | |
2794 | \note Even if the group setup handler returns StopWithSuccess or StopWithError, |
2795 | the group's done handler is invoked. This behavior differs from that of task done handler |
2796 | and might change in the future. |
2797 | |
2798 | \section1 Other Group Elements |
2799 | |
2800 | A group can contain other elements that describe the processing flow, such as |
2801 | the execution mode or workflow policy. It can also contain storage elements |
2802 | that are responsible for collecting and sharing custom common data gathered |
2803 | during group execution. |
2804 | |
2805 | \section2 Execution Mode |
2806 | |
2807 | The execution mode element in a Group specifies how the direct child tasks of |
2808 | the Group are started. The most common execution modes are \l sequential and |
2809 | \l parallel. It's also possible to specify the limit of tasks running |
2810 | in parallel by using the parallelLimit() function. |
2811 | |
2812 | In all execution modes, a group starts tasks in the oder in which they appear. |
2813 | |
2814 | If a child of a group is also a group, the child group runs its tasks |
2815 | according to its own execution mode. |
2816 | |
2817 | \section2 Workflow Policy |
2818 | |
2819 | The workflow policy element in a Group specifies how the group should behave |
2820 | when any of its \e direct child's tasks finish. For a detailed description of possible |
2821 | policies, refer to WorkflowPolicy. |
2822 | |
2823 | If a child of a group is also a group, the child group runs its tasks |
2824 | according to its own workflow policy. |
2825 | |
2826 | \section2 Storage |
2827 | |
2828 | Use the \l {Tasking::Storage} {Storage} element to exchange information between tasks. |
2829 | Especially, in the sequential execution mode, when a task needs data from another, |
2830 | already finished task, before it can start. For example, a task tree that copies data by reading |
2831 | it from a source and writing it to a destination might look as follows: |
2832 | |
2833 | \code |
2834 | static QByteArray load(const QString &fileName) { ... } |
2835 | static void save(const QString &fileName, const QByteArray &array) { ... } |
2836 | |
2837 | static Group copyRecipe(const QString &source, const QString &destination) |
2838 | { |
2839 | struct CopyStorage { // [1] custom inter-task struct |
2840 | QByteArray content; // [2] custom inter-task data |
2841 | }; |
2842 | |
2843 | // [3] instance of custom inter-task struct manageable by task tree |
2844 | const Storage<CopyStorage> storage; |
2845 | |
2846 | const auto onLoaderSetup = [source](ConcurrentCall<QByteArray> &async) { |
2847 | async.setConcurrentCallData(&load, source); |
2848 | }; |
2849 | // [4] runtime: task tree activates the instance from [7] before invoking handler |
2850 | const auto onLoaderDone = [storage](const ConcurrentCall<QByteArray> &async) { |
2851 | storage->content = async.result(); // [5] loader stores the result in storage |
2852 | }; |
2853 | |
2854 | // [4] runtime: task tree activates the instance from [7] before invoking handler |
2855 | const auto onSaverSetup = [storage, destination](ConcurrentCall<void> &async) { |
2856 | const QByteArray content = storage->content; // [6] saver takes data from storage |
2857 | async.setConcurrentCallData(&save, destination, content); |
2858 | }; |
2859 | const auto onSaverDone = [](const ConcurrentCall<void> &async) { |
2860 | qDebug() << "Save done successfully"; |
2861 | }; |
2862 | |
2863 | const Group root { |
2864 | // [7] runtime: task tree creates an instance of CopyStorage when root is entered |
2865 | storage, |
2866 | ConcurrentCallTask<QByteArray>(onLoaderSetup, onLoaderDone, CallDoneIf::Success), |
2867 | ConcurrentCallTask<void>(onSaverSetup, onSaverDone, CallDoneIf::Success) |
2868 | }; |
2869 | return root; |
2870 | } |
2871 | |
2872 | const QString source = ...; |
2873 | const QString destination = ...; |
2874 | TaskTree taskTree(copyRecipe(source, destination)); |
2875 | connect(&taskTree, &TaskTree::done, |
2876 | &taskTree, [](DoneWith result) { |
2877 | if (result == DoneWith::Success) |
2878 | qDebug() << "The copying finished successfully."; |
2879 | }); |
2880 | tasktree.start(); |
2881 | \endcode |
2882 | |
2883 | In the example above, the inter-task data consists of a QByteArray content |
2884 | variable [2] enclosed in a \c CopyStorage custom struct [1]. If the loader |
2885 | finishes successfully, it stores the data in a \c CopyStorage::content |
2886 | variable [5]. The saver then uses the variable to configure the saving task [6]. |
2887 | |
2888 | To enable a task tree to manage the \c CopyStorage struct, an instance of |
2889 | \l {Tasking::Storage} {Storage}<\c CopyStorage> is created [3]. If a copy of this object is |
2890 | inserted as the group's child item [7], an instance of the \c CopyStorage struct is |
2891 | created dynamically when the task tree enters this group. When the task |
2892 | tree leaves this group, the existing instance of the \c CopyStorage struct is |
2893 | destructed as it's no longer needed. |
2894 | |
2895 | If several task trees holding a copy of the common |
2896 | \l {Tasking::Storage} {Storage}<\c CopyStorage> instance run simultaneously |
2897 | (including the case when the task trees are run in different threads), |
2898 | each task tree contains its own copy of the \c CopyStorage struct. |
2899 | |
2900 | You can access \c CopyStorage from any handler in the group with a storage object. |
2901 | This includes all handlers of all descendant tasks of the group with |
2902 | a storage object. To access the custom struct in a handler, pass the |
2903 | copy of the \l {Tasking::Storage} {Storage}<\c CopyStorage> object to the handler |
2904 | (for example, in a lambda capture) [4]. |
2905 | |
2906 | When the task tree invokes a handler in a subtree containing the storage [7], |
2907 | the task tree activates its own \c CopyStorage instance inside the |
2908 | \l {Tasking::Storage} {Storage}<\c CopyStorage> object. Therefore, the \c CopyStorage struct |
2909 | may be accessed only from within the handler body. To access the currently active |
2910 | \c CopyStorage from within \l {Tasking::Storage} {Storage}<\c CopyStorage>, use the |
2911 | \l {Tasking::Storage::operator->()} {Storage::operator->()}, |
2912 | \l {Tasking::Storage::operator*()} {Storage::operator*()}, or Storage::activeStorage() method. |
2913 | |
2914 | The following list summarizes how to employ a Storage object into the task |
2915 | tree: |
2916 | \list 1 |
2917 | \li Define the custom structure \c MyStorage with custom data [1], [2] |
2918 | \li Create an instance of the \l {Tasking::Storage} {Storage}<\c MyStorage> storage [3] |
2919 | \li Pass the \l {Tasking::Storage} {Storage}<\c MyStorage> instance to handlers [4] |
2920 | \li Access the \c MyStorage instance in handlers [5], [6] |
2921 | \li Insert the \l {Tasking::Storage} {Storage}<\c MyStorage> instance into a group [7] |
2922 | \endlist |
2923 | |
2924 | \section1 TaskTree class |
2925 | |
2926 | TaskTree executes the tree structure of asynchronous tasks according to the |
2927 | recipe described by the Group root element. |
2928 | |
2929 | As TaskTree is also an asynchronous task, it can be a part of another TaskTree. |
2930 | To place a nested TaskTree inside another TaskTree, insert the TaskTreeTask |
2931 | element into another Group element. |
2932 | |
2933 | TaskTree reports progress of completed tasks when running. The progress value |
2934 | is increased when a task finishes or is skipped or canceled. |
2935 | When TaskTree is finished and the TaskTree::done() signal is emitted, |
2936 | the current value of the progress equals the maximum progress value. |
2937 | Maximum progress equals the total number of asynchronous tasks in a tree. |
2938 | A nested TaskTree is counted as a single task, and its child tasks are not |
2939 | counted in the top level tree. Groups themselves are not counted as tasks, |
2940 | but their tasks are counted. \l {Tasking::Sync} {Sync} tasks are not asynchronous, |
2941 | so they are not counted as tasks. |
2942 | |
2943 | To set additional initial data for the running tree, modify the storage |
2944 | instances in a tree when it creates them by installing a storage setup |
2945 | handler: |
2946 | |
2947 | \code |
2948 | Storage<CopyStorage> storage; |
2949 | const Group root = ...; // storage placed inside root's group and inside handlers |
2950 | TaskTree taskTree(root); |
2951 | auto initStorage = [](CopyStorage &storage) { |
2952 | storage.content = "initial content"; |
2953 | }; |
2954 | taskTree.onStorageSetup(storage, initStorage); |
2955 | taskTree.start(); |
2956 | \endcode |
2957 | |
2958 | When the running task tree creates a \c CopyStorage instance, and before any |
2959 | handler inside a tree is called, the task tree calls the initStorage handler, |
2960 | to enable setting up initial data of the storage, unique to this particular |
2961 | run of taskTree. |
2962 | |
2963 | Similarly, to collect some additional result data from the running tree, |
2964 | read it from storage instances in the tree when they are about to be |
2965 | destroyed. To do this, install a storage done handler: |
2966 | |
2967 | \code |
2968 | Storage<CopyStorage> storage; |
2969 | const Group root = ...; // storage placed inside root's group and inside handlers |
2970 | TaskTree taskTree(root); |
2971 | auto collectStorage = [](const CopyStorage &storage) { |
2972 | qDebug() << "final content" << storage.content; |
2973 | }; |
2974 | taskTree.onStorageDone(storage, collectStorage); |
2975 | taskTree.start(); |
2976 | \endcode |
2977 | |
2978 | When the running task tree is about to destroy a \c CopyStorage instance, the |
2979 | task tree calls the collectStorage handler, to enable reading the final data |
2980 | from the storage, unique to this particular run of taskTree. |
2981 | |
2982 | \section1 Task Adapters |
2983 | |
2984 | To extend a TaskTree with a new task type, implement a simple adapter class |
2985 | derived from the TaskAdapter class template. The following class is an |
2986 | adapter for a single shot timer, which may be considered as a new asynchronous task: |
2987 | |
2988 | \code |
2989 | class TimerTaskAdapter : public TaskAdapter<QTimer> |
2990 | { |
2991 | public: |
2992 | TimerTaskAdapter() { |
2993 | task()->setSingleShot(true); |
2994 | task()->setInterval(1000); |
2995 | connect(task(), &QTimer::timeout, this, [this] { emit done(DoneResult::Success); }); |
2996 | } |
2997 | private: |
2998 | void start() final { task()->start(); } |
2999 | }; |
3000 | |
3001 | using TimerTask = CustomTask<TimerTaskAdapter>; |
3002 | \endcode |
3003 | |
3004 | You must derive the custom adapter from the TaskAdapter class template |
3005 | instantiated with a template parameter of the class implementing a running |
3006 | task. The code above uses QTimer to run the task. This class appears |
3007 | later as an argument to the task's handlers. The instance of this class |
3008 | parameter automatically becomes a member of the TaskAdapter template, and is |
3009 | accessible through the TaskAdapter::task() method. The constructor |
3010 | of \c TimerTaskAdapter initially configures the QTimer object and connects |
3011 | to the QTimer::timeout() signal. When the signal is triggered, \c TimerTaskAdapter |
3012 | emits the TaskInterface::done(DoneResult::Success) signal to inform the task tree that |
3013 | the task finished successfully. If it emits TaskInterface::done(DoneResult::Error), |
3014 | the task finished with an error. |
3015 | The TaskAdapter::start() method starts the timer. |
3016 | |
3017 | To make QTimer accessible inside TaskTree under the \c TimerTask name, |
3018 | define \c TimerTask to be an alias to the CustomTask<\c TimerTaskAdapter>. |
3019 | \c TimerTask becomes a new custom task type, using \c TimerTaskAdapter. |
3020 | |
3021 | The new task type is now registered, and you can use it in TaskTree: |
3022 | |
3023 | \code |
3024 | const auto onSetup = [](QTimer &task) { task.setInterval(2000); }; |
3025 | const auto onDone = [] { qDebug() << "timer triggered"; }; |
3026 | const Group root { |
3027 | TimerTask(onSetup, onDone) |
3028 | }; |
3029 | \endcode |
3030 | |
3031 | When a task tree containing the root from the above example is started, it |
3032 | prints a debug message within two seconds and then finishes successfully. |
3033 | |
3034 | \note The class implementing the running task should have a default constructor, |
3035 | and objects of this class should be freely destructible. It should be allowed |
3036 | to destroy a running object, preferably without waiting for the running task |
3037 | to finish (that is, safe non-blocking destructor of a running task). |
3038 | To achieve a non-blocking destruction of a task that has a blocking destructor, |
3039 | consider using the optional \c Deleter template parameter of the TaskAdapter. |
3040 | */ |
3041 | |
3042 | /*! |
3043 | Constructs an empty task tree. Use setRecipe() to pass a declarative description |
3044 | on how the task tree should execute the tasks and how it should handle the finished tasks. |
3045 | |
3046 | Starting an empty task tree is no-op and the relevant warning message is issued. |
3047 | |
3048 | \sa setRecipe(), start() |
3049 | */ |
3050 | TaskTree::TaskTree() |
3051 | : d(new TaskTreePrivate(this)) |
3052 | {} |
3053 | |
3054 | /*! |
3055 | \overload |
3056 | |
3057 | Constructs a task tree with a given \a recipe. After the task tree is started, |
3058 | it executes the tasks contained inside the \a recipe and |
3059 | handles finished tasks according to the passed description. |
3060 | |
3061 | \sa setRecipe(), start() |
3062 | */ |
3063 | TaskTree::TaskTree(const Group &recipe) : TaskTree() |
3064 | { |
3065 | setRecipe(recipe); |
3066 | } |
3067 | |
3068 | /*! |
3069 | Destroys the task tree. |
3070 | |
3071 | When the task tree is running while being destructed, it cancels all the running tasks |
3072 | immediately. In this case, no handlers are called, not even the groups' and |
3073 | tasks' done handlers or onStorageDone() handlers. The task tree also doesn't emit any |
3074 | signals from the destructor, not even done() or progressValueChanged() signals. |
3075 | This behavior may always be relied on. |
3076 | It is completely safe to destruct the running task tree. |
3077 | |
3078 | It's a usual pattern to destruct the running task tree. |
3079 | It's guaranteed that the destruction will run quickly, without having to wait for |
3080 | the currently running tasks to finish, provided that the used tasks implement |
3081 | their destructors in a non-blocking way. |
3082 | |
3083 | \note Do not call the destructor directly from any of the running task's handlers |
3084 | or task tree's signals. In these cases, use \l deleteLater() instead. |
3085 | |
3086 | \sa cancel() |
3087 | */ |
3088 | TaskTree::~TaskTree() |
3089 | { |
3090 | QT_ASSERT(!d->m_guard.isLocked(), qWarning("Deleting TaskTree instance directly from " |
3091 | "one of its handlers will lead to a crash!" )); |
3092 | // TODO: delete storages explicitly here? |
3093 | delete d; |
3094 | } |
3095 | |
3096 | /*! |
3097 | Sets a given \a recipe for the task tree. After the task tree is started, |
3098 | it executes the tasks contained inside the \a recipe and |
3099 | handles finished tasks according to the passed description. |
3100 | |
3101 | \note When called for a running task tree, the call is ignored. |
3102 | |
3103 | \sa TaskTree(const Tasking::Group &recipe), start() |
3104 | */ |
3105 | void TaskTree::setRecipe(const Group &recipe) |
3106 | { |
3107 | QT_ASSERT(!isRunning(), qWarning("The TaskTree is already running, ignoring..." ); return); |
3108 | QT_ASSERT(!d->m_guard.isLocked(), qWarning("The setRecipe() is called from one of the" |
3109 | "TaskTree handlers, ignoring..." ); return); |
3110 | // TODO: Should we clear the m_storageHandlers, too? |
3111 | d->m_storages.clear(); |
3112 | d->m_root.emplace(args&: d, args: recipe); |
3113 | } |
3114 | |
3115 | /*! |
3116 | Starts the task tree. |
3117 | |
3118 | Use setRecipe() or the constructor to set the declarative description according to which |
3119 | the task tree will execute the contained tasks and handle finished tasks. |
3120 | |
3121 | When the task tree is empty, that is, constructed with a default constructor, |
3122 | a call to \c start() is no-op and the relevant warning message is issued. |
3123 | |
3124 | Otherwise, when the task tree is already running, a call to \e start() is ignored and the |
3125 | relevant warning message is issued. |
3126 | |
3127 | Otherwise, the task tree is started. |
3128 | |
3129 | The started task tree may finish synchronously, |
3130 | for example when the main group's start handler returns SetupResult::StopWithError. |
3131 | For this reason, the connection to the done signal should be established before calling |
3132 | \c start(). Use isRunning() in order to detect whether the task tree is still running |
3133 | after a call to \c start(). |
3134 | |
3135 | The task tree implementation relies on the running event loop. |
3136 | Make sure you have a QEventLoop or QCoreApplication or one of its |
3137 | subclasses running (or about to be run) when calling this method. |
3138 | |
3139 | \sa TaskTree(const Tasking::Group &), setRecipe(), isRunning(), cancel() |
3140 | */ |
3141 | void TaskTree::start() |
3142 | { |
3143 | QT_ASSERT(!isRunning(), qWarning("The TaskTree is already running, ignoring..." ); return); |
3144 | QT_ASSERT(!d->m_guard.isLocked(), qWarning("The start() is called from one of the" |
3145 | "TaskTree handlers, ignoring..." ); return); |
3146 | d->start(); |
3147 | } |
3148 | |
3149 | /*! |
3150 | \fn void TaskTree::started() |
3151 | |
3152 | This signal is emitted when the task tree is started. The emission of this signal is |
3153 | followed synchronously by the progressValueChanged() signal with an initial \c 0 value. |
3154 | |
3155 | \sa start(), done() |
3156 | */ |
3157 | |
3158 | /*! |
3159 | \fn void TaskTree::done(DoneWith result) |
3160 | |
3161 | This signal is emitted when the task tree finished, passing the final \a result |
3162 | of the execution. The task tree neither calls any handler, |
3163 | nor emits any signal anymore after this signal was emitted. |
3164 | |
3165 | \note Do not delete the task tree directly from this signal's handler. |
3166 | Use deleteLater() instead. |
3167 | |
3168 | \sa started() |
3169 | */ |
3170 | |
3171 | /*! |
3172 | Cancels the execution of the running task tree. |
3173 | |
3174 | Cancels all the running tasks immediately. |
3175 | All running tasks finish with an error, invoking their error handlers. |
3176 | All running groups dispatch their handlers according to their workflow policies, |
3177 | invoking their done handlers. The storages' onStorageDone() handlers are invoked, too. |
3178 | The progressValueChanged() signals are also being sent. |
3179 | This behavior may always be relied on. |
3180 | |
3181 | The \c cancel() function is executed synchronously, so that after a call to \c cancel() |
3182 | all running tasks are finished and the tree is already canceled. |
3183 | It's guaranteed that \c cancel() will run quickly, without any blocking wait for |
3184 | the currently running tasks to finish, provided the used tasks implement their destructors |
3185 | in a non-blocking way. |
3186 | |
3187 | When the task tree is empty, that is, constructed with a default constructor, |
3188 | a call to \c cancel() is no-op and the relevant warning message is issued. |
3189 | |
3190 | Otherwise, when the task tree wasn't started, a call to \c cancel() is ignored. |
3191 | |
3192 | \note Do not call this function directly from any of the running task's handlers |
3193 | or task tree's signals. |
3194 | |
3195 | \sa ~TaskTree() |
3196 | */ |
3197 | void TaskTree::cancel() |
3198 | { |
3199 | QT_ASSERT(!d->m_guard.isLocked(), qWarning("The cancel() is called from one of the" |
3200 | "TaskTree handlers, ignoring..." ); return); |
3201 | d->stop(); |
3202 | } |
3203 | |
3204 | /*! |
3205 | Returns \c true if the task tree is currently running; otherwise returns \c false. |
3206 | |
3207 | \sa start(), cancel() |
3208 | */ |
3209 | bool TaskTree::isRunning() const |
3210 | { |
3211 | return bool(d->m_runtimeRoot); |
3212 | } |
3213 | |
3214 | /*! |
3215 | Executes a local event loop with QEventLoop::ExcludeUserInputEvents and starts the task tree. |
3216 | |
3217 | Returns DoneWith::Success if the task tree finished successfully; |
3218 | otherwise returns DoneWith::Error. |
3219 | |
3220 | \note Avoid using this method from the main thread. Use asynchronous start() instead. |
3221 | This method is to be used in non-main threads or in auto tests. |
3222 | |
3223 | \sa start() |
3224 | */ |
3225 | DoneWith TaskTree::runBlocking() |
3226 | { |
3227 | QPromise<void> dummy; |
3228 | dummy.start(); |
3229 | return runBlocking(future: dummy.future()); |
3230 | } |
3231 | |
3232 | /*! |
3233 | \overload runBlocking() |
3234 | |
3235 | The passed \a future is used for listening to the cancel event. |
3236 | When the task tree is canceled, this method cancels the passed \a future. |
3237 | */ |
3238 | DoneWith TaskTree::runBlocking(const QFuture<void> &future) |
3239 | { |
3240 | if (future.isCanceled()) |
3241 | return DoneWith::Cancel; |
3242 | |
3243 | DoneWith doneWith = DoneWith::Cancel; |
3244 | QEventLoop loop; |
3245 | connect(sender: this, signal: &TaskTree::done, context: &loop, slot: [&loop, &doneWith](DoneWith result) { |
3246 | doneWith = result; |
3247 | // Otherwise, the tasks from inside the running tree that were deleteLater() |
3248 | // will be leaked. Refer to the QObject::deleteLater() docs. |
3249 | QMetaObject::invokeMethod(object: &loop, function: [&loop] { loop.quit(); }, type: Qt::QueuedConnection); |
3250 | }); |
3251 | QFutureWatcher<void> watcher; |
3252 | connect(sender: &watcher, signal: &QFutureWatcherBase::canceled, context: this, slot: &TaskTree::cancel); |
3253 | watcher.setFuture(future); |
3254 | |
3255 | QTimer::singleShot(interval: 0, receiver: this, slot: &TaskTree::start); |
3256 | |
3257 | loop.exec(flags: QEventLoop::ExcludeUserInputEvents); |
3258 | if (doneWith == DoneWith::Cancel) { |
3259 | auto nonConstFuture = future; |
3260 | nonConstFuture.cancel(); |
3261 | } |
3262 | return doneWith; |
3263 | } |
3264 | |
3265 | /*! |
3266 | Constructs a temporary task tree using the passed \a recipe and runs it blocking. |
3267 | |
3268 | The optionally provided \a timeout is used to cancel the tree automatically after |
3269 | \a timeout milliseconds have passed. |
3270 | |
3271 | Returns DoneWith::Success if the task tree finished successfully; |
3272 | otherwise returns DoneWith::Error. |
3273 | |
3274 | \note Avoid using this method from the main thread. Use asynchronous start() instead. |
3275 | This method is to be used in non-main threads or in auto tests. |
3276 | |
3277 | \sa start() |
3278 | */ |
3279 | DoneWith TaskTree::runBlocking(const Group &recipe, milliseconds timeout) |
3280 | { |
3281 | QPromise<void> dummy; |
3282 | dummy.start(); |
3283 | return TaskTree::runBlocking(recipe, future: dummy.future(), timeout); |
3284 | } |
3285 | |
3286 | /*! |
3287 | \overload runBlocking(const Group &recipe, milliseconds timeout) |
3288 | |
3289 | The passed \a future is used for listening to the cancel event. |
3290 | When the task tree is canceled, this method cancels the passed \a future. |
3291 | */ |
3292 | DoneWith TaskTree::runBlocking(const Group &recipe, const QFuture<void> &future, milliseconds timeout) |
3293 | { |
3294 | const Group root = timeout == milliseconds::max() ? recipe |
3295 | : Group { recipe.withTimeout(timeout) }; |
3296 | TaskTree taskTree(root); |
3297 | return taskTree.runBlocking(future); |
3298 | } |
3299 | |
3300 | /*! |
3301 | Returns the current real count of asynchronous chains of invocations. |
3302 | |
3303 | The returned value indicates how many times the control returns to the caller's |
3304 | event loop while the task tree is running. Initially, this value is 0. |
3305 | If the execution of the task tree finishes fully synchronously, this value remains 0. |
3306 | If the task tree contains any asynchronous tasks that are successfully started during |
3307 | a call to start(), this value is bumped to 1 just before the call to start() finishes. |
3308 | Later, when any asynchronous task finishes and any possible continuations are started, |
3309 | this value is bumped again. The bumping continues until the task tree finishes. |
3310 | When the task tree emits the done() signal, the bumping stops. |
3311 | The asyncCountChanged() signal is emitted on every bump of this value. |
3312 | |
3313 | \sa asyncCountChanged() |
3314 | */ |
3315 | int TaskTree::asyncCount() const |
3316 | { |
3317 | return d->m_asyncCount; |
3318 | } |
3319 | |
3320 | /*! |
3321 | \fn void TaskTree::asyncCountChanged(int count) |
3322 | |
3323 | This signal is emitted when the running task tree is about to return control to the caller's |
3324 | event loop. When the task tree is started, this signal is emitted with \a count value of 0, |
3325 | and emitted later on every asyncCount() value bump with an updated \a count value. |
3326 | Every signal sent (except the initial one with the value of 0) guarantees that the task tree |
3327 | is still running asynchronously after the emission. |
3328 | |
3329 | \sa asyncCount() |
3330 | */ |
3331 | |
3332 | /*! |
3333 | Returns the number of asynchronous tasks contained in the stored recipe. |
3334 | |
3335 | \note The returned number doesn't include \l {Tasking::Sync} {Sync} tasks. |
3336 | \note Any task or group that was set up using withTimeout() increases the total number of |
3337 | tasks by \c 1. |
3338 | |
3339 | \sa setRecipe(), progressMaximum() |
3340 | */ |
3341 | int TaskTree::taskCount() const |
3342 | { |
3343 | return d->m_root ? d->m_root->taskCount() : 0; |
3344 | } |
3345 | |
3346 | /*! |
3347 | \fn void TaskTree::progressValueChanged(int value) |
3348 | |
3349 | This signal is emitted when the running task tree finished, canceled, or skipped some tasks. |
3350 | The \a value gives the current total number of finished, canceled or skipped tasks. |
3351 | When the task tree is started, and after the started() signal was emitted, |
3352 | this signal is emitted with an initial \a value of \c 0. |
3353 | When the task tree is about to finish, and before the done() signal is emitted, |
3354 | this signal is emitted with the final \a value of progressMaximum(). |
3355 | |
3356 | \sa progressValue(), progressMaximum() |
3357 | */ |
3358 | |
3359 | /*! |
3360 | \fn int TaskTree::progressMaximum() const |
3361 | |
3362 | Returns the maximum progressValue(). |
3363 | |
3364 | \note Currently, it's the same as taskCount(). This might change in the future. |
3365 | |
3366 | \sa progressValue() |
3367 | */ |
3368 | |
3369 | /*! |
3370 | Returns the current progress value, which is between the \c 0 and progressMaximum(). |
3371 | |
3372 | The returned number indicates how many tasks have been already finished, canceled, or skipped |
3373 | while the task tree is running. |
3374 | When the task tree is started, this number is set to \c 0. |
3375 | When the task tree is finished, this number always equals progressMaximum(). |
3376 | |
3377 | \sa progressMaximum(), progressValueChanged() |
3378 | */ |
3379 | int TaskTree::progressValue() const |
3380 | { |
3381 | return d->m_progressValue; |
3382 | } |
3383 | |
3384 | /*! |
3385 | \fn template <typename StorageStruct, typename Handler> void TaskTree::onStorageSetup(const Storage<StorageStruct> &storage, Handler &&handler) |
3386 | |
3387 | Installs a storage setup \a handler for the \a storage to pass the initial data |
3388 | dynamically to the running task tree. |
3389 | |
3390 | The \c StorageHandler takes a \e reference to the \c StorageStruct instance: |
3391 | |
3392 | \code |
3393 | static void save(const QString &fileName, const QByteArray &array) { ... } |
3394 | |
3395 | Storage<QByteArray> storage; |
3396 | |
3397 | const auto onSaverSetup = [storage](ConcurrentCall<QByteArray> &concurrent) { |
3398 | concurrent.setConcurrentCallData(&save, "foo.txt", *storage); |
3399 | }; |
3400 | |
3401 | const Group root { |
3402 | storage, |
3403 | ConcurrentCallTask(onSaverSetup) |
3404 | }; |
3405 | |
3406 | TaskTree taskTree(root); |
3407 | auto initStorage = [](QByteArray &storage){ |
3408 | storage = "initial content"; |
3409 | }; |
3410 | taskTree.onStorageSetup(storage, initStorage); |
3411 | taskTree.start(); |
3412 | \endcode |
3413 | |
3414 | When the running task tree enters a Group where the \a storage is placed in, |
3415 | it creates a \c StorageStruct instance, ready to be used inside this group. |
3416 | Just after the \c StorageStruct instance is created, and before any handler of this group |
3417 | is called, the task tree invokes the passed \a handler. This enables setting up |
3418 | initial content for the given storage dynamically. Later, when any group's handler is invoked, |
3419 | the task tree activates the created and initialized storage, so that it's available inside |
3420 | any group's handler. |
3421 | |
3422 | \sa onStorageDone() |
3423 | */ |
3424 | |
3425 | /*! |
3426 | \fn template <typename StorageStruct, typename Handler> void TaskTree::onStorageDone(const Storage<StorageStruct> &storage, Handler &&handler) |
3427 | |
3428 | Installs a storage done \a handler for the \a storage to retrieve the final data |
3429 | dynamically from the running task tree. |
3430 | |
3431 | The \c StorageHandler takes a \c const \e reference to the \c StorageStruct instance: |
3432 | |
3433 | \code |
3434 | static QByteArray load(const QString &fileName) { ... } |
3435 | |
3436 | Storage<QByteArray> storage; |
3437 | |
3438 | const auto onLoaderSetup = [](ConcurrentCall<QByteArray> &concurrent) { |
3439 | concurrent.setConcurrentCallData(&load, "foo.txt"); |
3440 | }; |
3441 | const auto onLoaderDone = [storage](const ConcurrentCall<QByteArray> &concurrent) { |
3442 | *storage = concurrent.result(); |
3443 | }; |
3444 | |
3445 | const Group root { |
3446 | storage, |
3447 | ConcurrentCallTask(onLoaderSetup, onLoaderDone, CallDoneIf::Success) |
3448 | }; |
3449 | |
3450 | TaskTree taskTree(root); |
3451 | auto collectStorage = [](const QByteArray &storage){ |
3452 | qDebug() << "final content" << storage; |
3453 | }; |
3454 | taskTree.onStorageDone(storage, collectStorage); |
3455 | taskTree.start(); |
3456 | \endcode |
3457 | |
3458 | When the running task tree is about to leave a Group where the \a storage is placed in, |
3459 | it destructs a \c StorageStruct instance. |
3460 | Just before the \c StorageStruct instance is destructed, and after all possible handlers from |
3461 | this group were called, the task tree invokes the passed \a handler. This enables reading |
3462 | the final content of the given storage dynamically and processing it further outside of |
3463 | the task tree. |
3464 | |
3465 | This handler is called also when the running tree is canceled. However, it's not called |
3466 | when the running tree is destructed. |
3467 | |
3468 | \sa onStorageSetup() |
3469 | */ |
3470 | |
3471 | void TaskTree::setupStorageHandler(const StorageBase &storage, |
3472 | StorageBase::StorageHandler setupHandler, |
3473 | StorageBase::StorageHandler doneHandler) |
3474 | { |
3475 | auto it = d->m_storageHandlers.find(key: storage); |
3476 | if (it == d->m_storageHandlers.end()) { |
3477 | d->m_storageHandlers.insert(key: storage, value: {.m_setupHandler: setupHandler, .m_doneHandler: doneHandler}); |
3478 | return; |
3479 | } |
3480 | if (setupHandler) { |
3481 | QT_ASSERT(!it->m_setupHandler, |
3482 | qWarning("The storage has its setup handler defined, overriding..." )); |
3483 | it->m_setupHandler = setupHandler; |
3484 | } |
3485 | if (doneHandler) { |
3486 | QT_ASSERT(!it->m_doneHandler, |
3487 | qWarning("The storage has its done handler defined, overriding..." )); |
3488 | it->m_doneHandler = doneHandler; |
3489 | } |
3490 | } |
3491 | |
3492 | TaskTreeTaskAdapter::TaskTreeTaskAdapter() |
3493 | { |
3494 | connect(sender: task(), signal: &TaskTree::done, context: this, |
3495 | slot: [this](DoneWith result) { emit done(result: toDoneResult(doneWith: result)); }); |
3496 | } |
3497 | |
3498 | void TaskTreeTaskAdapter::start() |
3499 | { |
3500 | task()->start(); |
3501 | } |
3502 | |
3503 | using TimeoutCallback = std::function<void()>; |
3504 | |
3505 | struct TimerData |
3506 | { |
3507 | system_clock::time_point m_deadline; |
3508 | QPointer<QObject> m_context; |
3509 | TimeoutCallback m_callback; |
3510 | }; |
3511 | |
3512 | struct TimerThreadData |
3513 | { |
3514 | Q_DISABLE_COPY_MOVE(TimerThreadData) |
3515 | |
3516 | TimerThreadData() = default; // defult constructor is required for initializing with {} since C++20 by Mingw 11.20 |
3517 | QHash<int, TimerData> m_timerIdToTimerData = {}; |
3518 | QMap<system_clock::time_point, QList<int>> m_deadlineToTimerId = {}; |
3519 | int m_timerIdCounter = 0; |
3520 | }; |
3521 | |
3522 | // Please note the thread_local keyword below guarantees a separate instance per thread. |
3523 | static thread_local TimerThreadData s_threadTimerData = {}; |
3524 | |
3525 | static void removeTimerId(int timerId) |
3526 | { |
3527 | const auto it = s_threadTimerData.m_timerIdToTimerData.constFind(key: timerId); |
3528 | QT_ASSERT(it != s_threadTimerData.m_timerIdToTimerData.cend(), |
3529 | qWarning("Removing active timerId failed." ); return); |
3530 | |
3531 | const system_clock::time_point deadline = it->m_deadline; |
3532 | s_threadTimerData.m_timerIdToTimerData.erase(it); |
3533 | |
3534 | QList<int> &ids = s_threadTimerData.m_deadlineToTimerId[deadline]; |
3535 | const int removedCount = ids.removeAll(t: timerId); |
3536 | QT_ASSERT(removedCount == 1, qWarning("Removing active timerId failed." ); return); |
3537 | if (ids.isEmpty()) |
3538 | s_threadTimerData.m_deadlineToTimerId.remove(key: deadline); |
3539 | } |
3540 | |
3541 | static void handleTimeout(int timerId) |
3542 | { |
3543 | const auto itData = s_threadTimerData.m_timerIdToTimerData.constFind(key: timerId); |
3544 | if (itData == s_threadTimerData.m_timerIdToTimerData.cend()) |
3545 | return; // The timer was already activated. |
3546 | |
3547 | const auto deadline = itData->m_deadline; |
3548 | while (true) { |
3549 | auto itMap = s_threadTimerData.m_deadlineToTimerId.begin(); |
3550 | if (itMap == s_threadTimerData.m_deadlineToTimerId.end()) |
3551 | return; |
3552 | |
3553 | if (itMap.key() > deadline) |
3554 | return; |
3555 | |
3556 | std::optional<TimerData> timerData; |
3557 | QList<int> &idList = *itMap; |
3558 | if (!idList.isEmpty()) { |
3559 | const int first = idList.first(); |
3560 | idList.removeFirst(); |
3561 | |
3562 | const auto it = s_threadTimerData.m_timerIdToTimerData.constFind(key: first); |
3563 | if (it != s_threadTimerData.m_timerIdToTimerData.cend()) { |
3564 | timerData = it.value(); |
3565 | s_threadTimerData.m_timerIdToTimerData.erase(it); |
3566 | } else { |
3567 | QT_CHECK(false); |
3568 | } |
3569 | } else { |
3570 | QT_CHECK(false); |
3571 | } |
3572 | |
3573 | if (idList.isEmpty()) |
3574 | s_threadTimerData.m_deadlineToTimerId.erase(it: itMap); |
3575 | if (timerData && timerData->m_context) |
3576 | timerData->m_callback(); |
3577 | } |
3578 | } |
3579 | |
3580 | static int scheduleTimeout(milliseconds timeout, QObject *context, const TimeoutCallback &callback) |
3581 | { |
3582 | const int timerId = ++s_threadTimerData.m_timerIdCounter; |
3583 | const system_clock::time_point deadline = system_clock::now() + timeout; |
3584 | QTimer::singleShot(interval: timeout, receiver: context, slot: [timerId] { handleTimeout(timerId); }); |
3585 | s_threadTimerData.m_timerIdToTimerData.emplace(key: timerId, args: TimerData{.m_deadline: deadline, .m_context: context, .m_callback: callback}); |
3586 | s_threadTimerData.m_deadlineToTimerId[deadline].append(t: timerId); |
3587 | return timerId; |
3588 | } |
3589 | |
3590 | TimeoutTaskAdapter::TimeoutTaskAdapter() |
3591 | { |
3592 | *task() = milliseconds::zero(); |
3593 | } |
3594 | |
3595 | TimeoutTaskAdapter::~TimeoutTaskAdapter() |
3596 | { |
3597 | if (m_timerId) |
3598 | removeTimerId(timerId: *m_timerId); |
3599 | } |
3600 | |
3601 | void TimeoutTaskAdapter::start() |
3602 | { |
3603 | m_timerId = scheduleTimeout(timeout: *task(), context: this, callback: [this] { |
3604 | m_timerId.reset(); |
3605 | emit done(result: DoneResult::Success); |
3606 | }); |
3607 | } |
3608 | |
3609 | /*! |
3610 | \typealias Tasking::TaskTreeTask |
3611 | |
3612 | Type alias for the CustomTask, to be used inside recipes, associated with the TaskTree task. |
3613 | */ |
3614 | |
3615 | /*! |
3616 | \typealias Tasking::TimeoutTask |
3617 | |
3618 | Type alias for the CustomTask, to be used inside recipes, associated with the |
3619 | \c std::chrono::milliseconds type. \c std::chrono::milliseconds is used to set up the |
3620 | timeout duration. The default timeout is \c std::chrono::milliseconds::zero(), that is, |
3621 | the TimeoutTask finishes as soon as the control returns to the running event loop. |
3622 | |
3623 | Example usage: |
3624 | |
3625 | \code |
3626 | using namespace std::chrono; |
3627 | using namespace std::chrono_literals; |
3628 | |
3629 | const auto onSetup = [](milliseconds &timeout) { timeout = 1000ms; } |
3630 | const auto onDone = [] { qDebug() << "Timed out."; } |
3631 | |
3632 | const Group root { |
3633 | Timeout(onSetup, onDone) |
3634 | }; |
3635 | \endcode |
3636 | */ |
3637 | |
3638 | } // namespace Tasking |
3639 | |
3640 | QT_END_NAMESPACE |
3641 | |