1 | // Copyright (C) 2020 The Qt Company Ltd. |
2 | // Copyright (C) 2021 Intel Corporation. |
3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
4 | |
5 | #ifndef QNUMERIC_P_H |
6 | #define QNUMERIC_P_H |
7 | |
8 | // |
9 | // W A R N I N G |
10 | // ------------- |
11 | // |
12 | // This file is not part of the Qt API. It exists purely as an |
13 | // implementation detail. This header file may change from version to |
14 | // version without notice, or even be removed. |
15 | // |
16 | // We mean it. |
17 | // |
18 | |
19 | #include "QtCore/private/qglobal_p.h" |
20 | #include "QtCore/qnumeric.h" |
21 | #include "QtCore/qsimd.h" |
22 | #include <cmath> |
23 | #include <limits> |
24 | #include <type_traits> |
25 | |
26 | #include <QtCore/q26numeric.h> // temporarily, for saturate_cast |
27 | |
28 | #ifndef __has_extension |
29 | # define __has_extension(X) 0 |
30 | #endif |
31 | |
32 | #if !defined(Q_CC_MSVC) && defined(Q_OS_QNX) |
33 | # include <math.h> |
34 | # ifdef isnan |
35 | # define QT_MATH_H_DEFINES_MACROS |
36 | QT_BEGIN_NAMESPACE |
37 | namespace qnumeric_std_wrapper { |
38 | // the 'using namespace std' below is cases where the stdlib already put the math.h functions in the std namespace and undefined the macros. |
39 | Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(double d) { using namespace std; return isnan(d); } |
40 | Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(double d) { using namespace std; return isinf(d); } |
41 | Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(double d) { using namespace std; return isfinite(d); } |
42 | Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(double d) { using namespace std; return fpclassify(d); } |
43 | Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(float f) { using namespace std; return isnan(f); } |
44 | Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(float f) { using namespace std; return isinf(f); } |
45 | Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(float f) { using namespace std; return isfinite(f); } |
46 | Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(float f) { using namespace std; return fpclassify(f); } |
47 | } |
48 | QT_END_NAMESPACE |
49 | // These macros from math.h conflict with the real functions in the std namespace. |
50 | # undef signbit |
51 | # undef isnan |
52 | # undef isinf |
53 | # undef isfinite |
54 | # undef fpclassify |
55 | # endif // defined(isnan) |
56 | #endif |
57 | |
58 | QT_BEGIN_NAMESPACE |
59 | |
60 | class qfloat16; |
61 | |
62 | namespace qnumeric_std_wrapper { |
63 | #if defined(QT_MATH_H_DEFINES_MACROS) |
64 | # undef QT_MATH_H_DEFINES_MACROS |
65 | Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return math_h_isnan(d); } |
66 | Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return math_h_isinf(d); } |
67 | Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return math_h_isfinite(d); } |
68 | Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return math_h_fpclassify(d); } |
69 | Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return math_h_isnan(f); } |
70 | Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return math_h_isinf(f); } |
71 | Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return math_h_isfinite(f); } |
72 | Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return math_h_fpclassify(f); } |
73 | #else |
74 | Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return std::isnan(x: d); } |
75 | Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return std::isinf(x: d); } |
76 | Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return std::isfinite(x: d); } |
77 | Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return std::fpclassify(x: d); } |
78 | Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return std::isnan(x: f); } |
79 | Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return std::isinf(x: f); } |
80 | Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return std::isfinite(x: f); } |
81 | Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return std::fpclassify(x: f); } |
82 | #endif |
83 | } |
84 | |
85 | constexpr Q_DECL_CONST_FUNCTION static inline double qt_inf() noexcept |
86 | { |
87 | static_assert(std::numeric_limits<double>::has_infinity, |
88 | "platform has no definition for infinity for type double" ); |
89 | return std::numeric_limits<double>::infinity(); |
90 | } |
91 | |
92 | #if QT_CONFIG(signaling_nan) |
93 | constexpr Q_DECL_CONST_FUNCTION static inline double qt_snan() noexcept |
94 | { |
95 | static_assert(std::numeric_limits<double>::has_signaling_NaN, |
96 | "platform has no definition for signaling NaN for type double" ); |
97 | return std::numeric_limits<double>::signaling_NaN(); |
98 | } |
99 | #endif |
100 | |
101 | // Quiet NaN |
102 | constexpr Q_DECL_CONST_FUNCTION static inline double qt_qnan() noexcept |
103 | { |
104 | static_assert(std::numeric_limits<double>::has_quiet_NaN, |
105 | "platform has no definition for quiet NaN for type double" ); |
106 | return std::numeric_limits<double>::quiet_NaN(); |
107 | } |
108 | |
109 | Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(double d) |
110 | { |
111 | return qnumeric_std_wrapper::isinf(d); |
112 | } |
113 | |
114 | Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(double d) |
115 | { |
116 | return qnumeric_std_wrapper::isnan(d); |
117 | } |
118 | |
119 | Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(double d) |
120 | { |
121 | return qnumeric_std_wrapper::isfinite(d); |
122 | } |
123 | |
124 | Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(double d) |
125 | { |
126 | return qnumeric_std_wrapper::fpclassify(d); |
127 | } |
128 | |
129 | Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(float f) |
130 | { |
131 | return qnumeric_std_wrapper::isinf(f); |
132 | } |
133 | |
134 | Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(float f) |
135 | { |
136 | return qnumeric_std_wrapper::isnan(f); |
137 | } |
138 | |
139 | Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(float f) |
140 | { |
141 | return qnumeric_std_wrapper::isfinite(f); |
142 | } |
143 | |
144 | Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(float f) |
145 | { |
146 | return qnumeric_std_wrapper::fpclassify(f); |
147 | } |
148 | |
149 | #ifndef Q_QDOC |
150 | namespace { |
151 | /*! |
152 | Returns true if the double \a v can be converted to type \c T, false if |
153 | it's out of range. If the conversion is successful, the converted value is |
154 | stored in \a value; if it was not successful, \a value will contain the |
155 | minimum or maximum of T, depending on the sign of \a d. If \c T is |
156 | unsigned, then \a value contains the absolute value of \a v. If \c T is \c |
157 | float, an underflow is also signalled by returning false and setting \a |
158 | value to zero. |
159 | |
160 | This function works for v containing infinities, but not NaN. It's the |
161 | caller's responsibility to exclude that possibility before calling it. |
162 | */ |
163 | template <typename T> static inline std::enable_if_t<std::is_integral_v<T>, bool> |
164 | convertDoubleTo(double v, T *value, bool allow_precision_upgrade = true) |
165 | { |
166 | static_assert(std::is_integral_v<T>); |
167 | constexpr bool TypeIsLarger = std::numeric_limits<T>::digits > std::numeric_limits<double>::digits; |
168 | |
169 | if constexpr (TypeIsLarger) { |
170 | using S = std::make_signed_t<T>; |
171 | constexpr S max_mantissa = S(1) << std::numeric_limits<double>::digits; |
172 | // T has more bits than double's mantissa, so don't allow "upgrading" |
173 | // to T (makes it look like the number had more precision than really |
174 | // was transmitted) |
175 | if (!allow_precision_upgrade && !(v <= double(max_mantissa) && v >= double(-max_mantissa - 1))) |
176 | return false; |
177 | } |
178 | |
179 | constexpr T Tmin = (std::numeric_limits<T>::min)(); |
180 | constexpr T Tmax = (std::numeric_limits<T>::max)(); |
181 | |
182 | // The [conv.fpint] (7.10 Floating-integral conversions) section of the C++ |
183 | // standard says only exact conversions are guaranteed. Converting |
184 | // integrals to floating-point with loss of precision has implementation- |
185 | // defined behavior whether the next higher or next lower is returned; |
186 | // converting FP to integral is UB if it can't be represented. |
187 | // |
188 | // That means we can't write UINT64_MAX+1. Writing ldexp(1, 64) would be |
189 | // correct, but Clang, ICC and MSVC don't realize that it's a constant and |
190 | // the math call stays in the compiled code. |
191 | |
192 | #if defined(Q_PROCESSOR_X86_64) && defined(__SSE2__) |
193 | // Of course, UB doesn't apply if we use intrinsics, in which case we are |
194 | // allowed to dpeend on exactly the processor's behavior. This |
195 | // implementation uses the truncating conversions from Scalar Double to |
196 | // integral types (CVTTSD2SI and VCVTTSD2USI), which is documented to |
197 | // return the "indefinite integer value" if the range of the target type is |
198 | // exceeded. (only implemented for x86-64 to avoid having to deal with the |
199 | // non-existence of the 64-bit intrinsics on i386) |
200 | |
201 | if (std::numeric_limits<T>::is_signed) { |
202 | __m128d mv = _mm_set_sd(w: v); |
203 | # ifdef __AVX512F__ |
204 | // use explicit round control and suppress exceptions |
205 | if (sizeof(T) > 4) |
206 | *value = T(_mm_cvtt_roundsd_i64(mv, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)); |
207 | else |
208 | *value = _mm_cvtt_roundsd_i32(mv, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
209 | # else |
210 | *value = sizeof(T) > 4 ? T(_mm_cvttsd_si64(a: mv)) : _mm_cvttsd_si32(a: mv); |
211 | # endif |
212 | |
213 | // if *value is the "indefinite integer value", check if the original |
214 | // variable \a v is the same value (Tmin is an exact representation) |
215 | if (*value == Tmin && !_mm_ucomieq_sd(mv, _mm_set_sd(Tmin))) { |
216 | // v != Tmin, so it was out of range |
217 | if (v > 0) |
218 | *value = Tmax; |
219 | return false; |
220 | } |
221 | |
222 | // convert the integer back to double and compare for equality with v, |
223 | // to determine if we've lost any precision |
224 | __m128d mi = _mm_setzero_pd(); |
225 | mi = sizeof(T) > 4 ? _mm_cvtsi64_sd(mv, *value) : _mm_cvtsi32_sd(mv, *value); |
226 | return _mm_ucomieq_sd(a: mv, b: mi); |
227 | } |
228 | |
229 | # ifdef __AVX512F__ |
230 | if (!std::numeric_limits<T>::is_signed) { |
231 | // Same thing as above, but this function operates on absolute values |
232 | // and the "indefinite integer value" for the 64-bit unsigned |
233 | // conversion (Tmax) is not representable in double, so it can never be |
234 | // the result of an in-range conversion. This is implemented for AVX512 |
235 | // and later because of the unsigned conversion instruction. Converting |
236 | // to unsigned without losing an extra bit of precision prior to AVX512 |
237 | // is left to the compiler below. |
238 | |
239 | v = fabs(v); |
240 | __m128d mv = _mm_set_sd(v); |
241 | |
242 | // use explicit round control and suppress exceptions |
243 | if (sizeof(T) > 4) |
244 | *value = T(_mm_cvtt_roundsd_u64(mv, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)); |
245 | else |
246 | *value = _mm_cvtt_roundsd_u32(mv, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
247 | |
248 | if (*value == Tmax) { |
249 | // no double can have an exact value of quint64(-1), but they can |
250 | // quint32(-1), so we need to compare for that |
251 | if (TypeIsLarger || _mm_ucomieq_sd(mv, _mm_set_sd(Tmax))) |
252 | return false; |
253 | } |
254 | |
255 | // return true if it was an exact conversion |
256 | __m128d mi = _mm_setzero_pd(); |
257 | mi = sizeof(T) > 4 ? _mm_cvtu64_sd(mv, *value) : _mm_cvtu32_sd(mv, *value); |
258 | return _mm_ucomieq_sd(mv, mi); |
259 | } |
260 | # endif |
261 | #endif |
262 | |
263 | double supremum; |
264 | if (std::numeric_limits<T>::is_signed) { |
265 | supremum = -1.0 * Tmin; // -1 * (-2^63) = 2^63, exact (for T = qint64) |
266 | *value = Tmin; |
267 | if (v < Tmin) |
268 | return false; |
269 | } else { |
270 | using ST = typename std::make_signed<T>::type; |
271 | supremum = -2.0 * (std::numeric_limits<ST>::min)(); // -2 * (-2^63) = 2^64, exact (for T = quint64) |
272 | v = fabs(x: v); |
273 | } |
274 | |
275 | *value = Tmax; |
276 | if (v >= supremum) |
277 | return false; |
278 | |
279 | // Now we can convert, these two conversions cannot be UB |
280 | *value = T(v); |
281 | |
282 | QT_WARNING_PUSH |
283 | QT_WARNING_DISABLE_FLOAT_COMPARE |
284 | |
285 | return *value == v; |
286 | |
287 | QT_WARNING_POP |
288 | } |
289 | |
290 | template <typename T> static |
291 | std::enable_if_t<std::is_floating_point_v<T> || std::is_same_v<T, qfloat16>, bool> |
292 | convertDoubleTo(double v, T *value, bool allow_precision_upgrade = true) |
293 | { |
294 | Q_UNUSED(allow_precision_upgrade); |
295 | constexpr T Huge = std::numeric_limits<T>::infinity(); |
296 | |
297 | if constexpr (std::numeric_limits<double>::max_exponent <= |
298 | std::numeric_limits<T>::max_exponent) { |
299 | // no UB can happen |
300 | *value = T(v); |
301 | return true; |
302 | } |
303 | |
304 | #if defined(__SSE2__) && (defined(Q_CC_GNU) || __has_extension(gnu_asm)) |
305 | // The x86 CVTSD2SH instruction from SSE2 does what we want: |
306 | // - converts out-of-range doubles to ±infinity and sets #O |
307 | // - converts underflows to zero and sets #U |
308 | // We need to clear any previously-stored exceptions from it before the |
309 | // operation (3-cycle cost) and obtain the new state afterwards (1 cycle). |
310 | |
311 | unsigned csr = _MM_MASK_MASK; // clear stored exception indicators |
312 | auto sse_check_result = [&](auto result) { |
313 | if ((csr & (_MM_EXCEPT_UNDERFLOW | _MM_EXCEPT_OVERFLOW)) == 0) |
314 | return true; |
315 | if (csr & _MM_EXCEPT_OVERFLOW) |
316 | return false; |
317 | |
318 | // According to IEEE 754[1], #U is also set when the result is tiny and |
319 | // inexact, but still non-zero, so detect that (this won't generate |
320 | // good code for types without hardware support). |
321 | // [1] https://en.wikipedia.org/wiki/Floating-point_arithmetic#Exception_handling |
322 | return result != 0; |
323 | }; |
324 | |
325 | // Written directly in assembly because both Clang and GCC have been |
326 | // observed to reorder the STMXCSR instruction above the conversion |
327 | // operation. MSVC generates horrid code when using the intrinsics anyway, |
328 | // so it's not a loss. |
329 | // See https://github.com/llvm/llvm-project/issues/83661. |
330 | if constexpr (std::is_same_v<T, float>) { |
331 | # ifdef __AVX__ |
332 | asm ("vldmxcsr %[csr]\n\t" |
333 | "vcvtsd2ss %[in], %[in], %[out]\n\t" |
334 | "vstmxcsr %[csr]" |
335 | : [csr] "+m" (csr), [out] "=v" (*value) : [in] "v" (v)); |
336 | # else |
337 | asm ("ldmxcsr %[csr]\n\t" |
338 | "cvtsd2ss %[in], %[out]\n\t" |
339 | "stmxcsr %[csr]" |
340 | : [csr] "+m" (csr), [out] "=v" (*value) : [in] "v" (v)); |
341 | # endif |
342 | return sse_check_result(*value); |
343 | } |
344 | |
345 | # if defined(__F16C__) || defined(__AVX512FP16__) |
346 | if constexpr (sizeof(T) == 2 && std::numeric_limits<T>::max_exponent == 16) { |
347 | // qfloat16 or std::float16_t, but not std::bfloat16_t or std::bfloat8_t |
348 | auto doConvert = [&](auto *out) { |
349 | asm ("vldmxcsr %[csr]\n\t" |
350 | # ifdef __AVX512FP16__ |
351 | // AVX512FP16 & AVX10 have an instruction for this |
352 | "vcvtsd2sh %[in], %[in], %[out]\n\t" |
353 | # else |
354 | "vcvtsd2ss %[in], %[in], %[out]\n\t" // sets DEST[MAXVL-1:128] := 0 |
355 | "vcvtps2ph %[rc], %[out], %[out]\n\t" |
356 | # endif |
357 | "vstmxcsr %[csr]" |
358 | : [csr] "+m" (csr), [out] "=v" (*out) |
359 | : [in] "v" (v), [rc] "i" (_MM_FROUND_CUR_DIRECTION) |
360 | ); |
361 | return sse_check_result(out); |
362 | }; |
363 | |
364 | if constexpr (std::is_same_v<T, qfloat16> && !std::is_void_v<typename T::NativeType>) { |
365 | typename T::NativeType tmp; |
366 | bool b = doConvert(&tmp); |
367 | *value = tmp; |
368 | return b; |
369 | } else { |
370 | # ifndef Q_CC_CLANG |
371 | // Clang can only implement this if it has a native FP16 type |
372 | return doConvert(value); |
373 | # endif |
374 | } |
375 | } |
376 | # endif |
377 | #endif // __SSE2__ && inline assembly |
378 | |
379 | if (!qt_is_finite(d: v) && std::numeric_limits<T>::has_infinity) { |
380 | // infinity (or NaN) |
381 | *value = T(v); |
382 | return true; |
383 | } |
384 | |
385 | // Check for in-range value to ensure the conversion is not UB (see the |
386 | // comment above for Standard language). |
387 | if (std::fabs(x: v) > double{(std::numeric_limits<T>::max)()}) { |
388 | *value = v < 0 ? -Huge : Huge; |
389 | return false; |
390 | } |
391 | |
392 | *value = T(v); |
393 | if (v != 0 && *value == 0) { |
394 | // Underflow through loss of precision |
395 | return false; |
396 | } |
397 | return true; |
398 | } |
399 | |
400 | template <typename T> inline bool add_overflow(T v1, T v2, T *r) { return qAddOverflow(v1, v2, r); } |
401 | template <typename T> inline bool sub_overflow(T v1, T v2, T *r) { return qSubOverflow(v1, v2, r); } |
402 | template <typename T> inline bool mul_overflow(T v1, T v2, T *r) { return qMulOverflow(v1, v2, r); } |
403 | |
404 | template <typename T, T V2> bool add_overflow(T v1, std::integral_constant<T, V2>, T *r) |
405 | { |
406 | return qAddOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r); |
407 | } |
408 | |
409 | template <auto V2, typename T> bool add_overflow(T v1, T *r) |
410 | { |
411 | return qAddOverflow<V2, T>(v1, r); |
412 | } |
413 | |
414 | template <typename T, T V2> bool sub_overflow(T v1, std::integral_constant<T, V2>, T *r) |
415 | { |
416 | return qSubOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r); |
417 | } |
418 | |
419 | template <auto V2, typename T> bool sub_overflow(T v1, T *r) |
420 | { |
421 | return qSubOverflow<V2, T>(v1, r); |
422 | } |
423 | |
424 | template <typename T, T V2> bool mul_overflow(T v1, std::integral_constant<T, V2>, T *r) |
425 | { |
426 | return qMulOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r); |
427 | } |
428 | |
429 | template <auto V2, typename T> bool mul_overflow(T v1, T *r) |
430 | { |
431 | return qMulOverflow<V2, T>(v1, r); |
432 | } |
433 | } |
434 | #endif // Q_QDOC |
435 | |
436 | template <typename To, typename From> |
437 | static constexpr auto qt_saturate(From x) |
438 | { |
439 | return q26::saturate_cast<To>(x); |
440 | } |
441 | |
442 | QT_END_NAMESPACE |
443 | |
444 | #endif // QNUMERIC_P_H |
445 | |