| 1 | // Copyright (C) 2020 The Qt Company Ltd. |
| 2 | // Copyright (C) 2020 Intel Corporation. |
| 3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 4 | |
| 5 | #include <qstringconverter.h> |
| 6 | #include <private/qstringconverter_p.h> |
| 7 | #include "qendian.h" |
| 8 | |
| 9 | #include "private/qsimd_p.h" |
| 10 | #include "private/qstringiterator_p.h" |
| 11 | #include "private/qtools_p.h" |
| 12 | #include "qbytearraymatcher.h" |
| 13 | #include "qcontainertools_impl.h" |
| 14 | #include <QtCore/qbytearraylist.h> |
| 15 | |
| 16 | #if QT_CONFIG(icu) |
| 17 | #include <unicode/ucnv.h> |
| 18 | #include <unicode/ucnv_cb.h> |
| 19 | #include <unicode/ucnv_err.h> |
| 20 | #include <unicode/ustring.h> |
| 21 | #endif |
| 22 | |
| 23 | #ifdef Q_OS_WIN |
| 24 | #include <qt_windows.h> |
| 25 | #ifndef QT_BOOTSTRAPPED |
| 26 | #include <QtCore/qvarlengtharray.h> |
| 27 | #include <QtCore/q20iterator.h> |
| 28 | #include <QtCore/q26numeric.h> |
| 29 | #endif // !QT_BOOTSTRAPPED |
| 30 | #endif |
| 31 | |
| 32 | #include <array> |
| 33 | #if __has_include(<bit>) && __cplusplus > 201703L |
| 34 | #include <bit> |
| 35 | #endif |
| 36 | #include <string> |
| 37 | |
| 38 | QT_BEGIN_NAMESPACE |
| 39 | |
| 40 | using namespace QtMiscUtils; |
| 41 | |
| 42 | static_assert(std::is_nothrow_move_constructible_v<QStringEncoder>); |
| 43 | static_assert(std::is_nothrow_move_assignable_v<QStringEncoder>); |
| 44 | static_assert(std::is_nothrow_move_constructible_v<QStringDecoder>); |
| 45 | static_assert(std::is_nothrow_move_assignable_v<QStringDecoder>); |
| 46 | |
| 47 | enum { Endian = 0, Data = 1 }; |
| 48 | |
| 49 | static const uchar utf8bom[] = { 0xef, 0xbb, 0xbf }; |
| 50 | |
| 51 | #if defined(__SSE2__) || defined(__ARM_NEON__) |
| 52 | static Q_ALWAYS_INLINE uint qBitScanReverse(unsigned v) noexcept |
| 53 | { |
| 54 | #if defined(__cpp_lib_int_pow2) && __cpp_lib_int_pow2 >= 202002L |
| 55 | return std::bit_width(v) - 1; |
| 56 | #else |
| 57 | uint result = qCountLeadingZeroBits(v); |
| 58 | // Now Invert the result: clz will count *down* from the msb to the lsb, so the msb index is 31 |
| 59 | // and the lsb index is 0. The result for _bit_scan_reverse is expected to be the index when |
| 60 | // counting up: msb index is 0 (because it starts there), and the lsb index is 31. |
| 61 | result ^= sizeof(unsigned) * 8 - 1; |
| 62 | return result; |
| 63 | #endif |
| 64 | } |
| 65 | #endif |
| 66 | |
| 67 | #if defined(__SSE2__) |
| 68 | static inline bool simdEncodeAscii(uchar *&dst, const char16_t *&nextAscii, const char16_t *&src, const char16_t *end) |
| 69 | { |
| 70 | // do sixteen characters at a time |
| 71 | for ( ; end - src >= 16; src += 16, dst += 16) { |
| 72 | # ifdef __AVX2__ |
| 73 | __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src)); |
| 74 | __m128i data1 = _mm256_castsi256_si128(data); |
| 75 | __m128i data2 = _mm256_extracti128_si256(data, 1); |
| 76 | # else |
| 77 | __m128i data1 = _mm_loadu_si128(p: (const __m128i*)src); |
| 78 | __m128i data2 = _mm_loadu_si128(p: 1+(const __m128i*)src); |
| 79 | # endif |
| 80 | |
| 81 | // check if everything is ASCII |
| 82 | // the highest ASCII value is U+007F |
| 83 | // Do the packing directly: |
| 84 | // The PACKUSWB instruction has packs a signed 16-bit integer to an unsigned 8-bit |
| 85 | // with saturation. That is, anything from 0x0100 to 0x7fff is saturated to 0xff, |
| 86 | // while all negatives (0x8000 to 0xffff) get saturated to 0x00. To detect non-ASCII, |
| 87 | // we simply do a signed greater-than comparison to 0x00. That means we detect NULs as |
| 88 | // "non-ASCII", but it's an acceptable compromise. |
| 89 | __m128i packed = _mm_packus_epi16(a: data1, b: data2); |
| 90 | __m128i nonAscii = _mm_cmpgt_epi8(a: packed, b: _mm_setzero_si128()); |
| 91 | |
| 92 | // store, even if there are non-ASCII characters here |
| 93 | _mm_storeu_si128(p: (__m128i*)dst, b: packed); |
| 94 | |
| 95 | // n will contain 1 bit set per character in [data1, data2] that is non-ASCII (or NUL) |
| 96 | ushort n = ~_mm_movemask_epi8(a: nonAscii); |
| 97 | if (n) { |
| 98 | // find the next probable ASCII character |
| 99 | // we don't want to load 32 bytes again in this loop if we know there are non-ASCII |
| 100 | // characters still coming |
| 101 | nextAscii = src + qBitScanReverse(v: n) + 1; |
| 102 | |
| 103 | n = qCountTrailingZeroBits(v: n); |
| 104 | dst += n; |
| 105 | src += n; |
| 106 | return false; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | if (end - src >= 8) { |
| 111 | // do eight characters at a time |
| 112 | __m128i data = _mm_loadu_si128(p: reinterpret_cast<const __m128i *>(src)); |
| 113 | __m128i packed = _mm_packus_epi16(a: data, b: data); |
| 114 | __m128i nonAscii = _mm_cmpgt_epi8(a: packed, b: _mm_setzero_si128()); |
| 115 | |
| 116 | // store even non-ASCII |
| 117 | _mm_storel_epi64(p: reinterpret_cast<__m128i *>(dst), a: packed); |
| 118 | |
| 119 | uchar n = ~_mm_movemask_epi8(a: nonAscii); |
| 120 | if (n) { |
| 121 | nextAscii = src + qBitScanReverse(v: n) + 1; |
| 122 | n = qCountTrailingZeroBits(v: n); |
| 123 | dst += n; |
| 124 | src += n; |
| 125 | return false; |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | return src == end; |
| 130 | } |
| 131 | |
| 132 | static inline bool simdDecodeAscii(char16_t *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end) |
| 133 | { |
| 134 | // do sixteen characters at a time |
| 135 | for ( ; end - src >= 16; src += 16, dst += 16) { |
| 136 | __m128i data = _mm_loadu_si128(p: (const __m128i*)src); |
| 137 | |
| 138 | #ifdef __AVX2__ |
| 139 | const int BitSpacing = 2; |
| 140 | // load and zero extend to an YMM register |
| 141 | const __m256i extended = _mm256_cvtepu8_epi16(data); |
| 142 | |
| 143 | uint n = _mm256_movemask_epi8(extended); |
| 144 | if (!n) { |
| 145 | // store |
| 146 | _mm256_storeu_si256((__m256i*)dst, extended); |
| 147 | continue; |
| 148 | } |
| 149 | #else |
| 150 | const int BitSpacing = 1; |
| 151 | |
| 152 | // check if everything is ASCII |
| 153 | // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII |
| 154 | uint n = _mm_movemask_epi8(a: data); |
| 155 | if (!n) { |
| 156 | // unpack |
| 157 | _mm_storeu_si128(p: (__m128i*)dst, b: _mm_unpacklo_epi8(a: data, b: _mm_setzero_si128())); |
| 158 | _mm_storeu_si128(p: 1+(__m128i*)dst, b: _mm_unpackhi_epi8(a: data, b: _mm_setzero_si128())); |
| 159 | continue; |
| 160 | } |
| 161 | #endif |
| 162 | |
| 163 | // copy the front part that is still ASCII |
| 164 | while (!(n & 1)) { |
| 165 | *dst++ = *src++; |
| 166 | n >>= BitSpacing; |
| 167 | } |
| 168 | |
| 169 | // find the next probable ASCII character |
| 170 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
| 171 | // characters still coming |
| 172 | n = qBitScanReverse(v: n); |
| 173 | nextAscii = src + (n / BitSpacing) + 1; |
| 174 | return false; |
| 175 | |
| 176 | } |
| 177 | |
| 178 | if (end - src >= 8) { |
| 179 | __m128i data = _mm_loadl_epi64(p: reinterpret_cast<const __m128i *>(src)); |
| 180 | uint n = _mm_movemask_epi8(a: data) & 0xff; |
| 181 | if (!n) { |
| 182 | // unpack and store |
| 183 | _mm_storeu_si128(p: reinterpret_cast<__m128i *>(dst), b: _mm_unpacklo_epi8(a: data, b: _mm_setzero_si128())); |
| 184 | } else { |
| 185 | while (!(n & 1)) { |
| 186 | *dst++ = *src++; |
| 187 | n >>= 1; |
| 188 | } |
| 189 | |
| 190 | n = qBitScanReverse(v: n); |
| 191 | nextAscii = src + n + 1; |
| 192 | return false; |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | return src == end; |
| 197 | } |
| 198 | |
| 199 | static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii) |
| 200 | { |
| 201 | #ifdef __AVX2__ |
| 202 | // do 32 characters at a time |
| 203 | // (this is similar to simdTestMask in qstring.cpp) |
| 204 | const __m256i mask = _mm256_set1_epi8(char(0x80)); |
| 205 | for ( ; end - src >= 32; src += 32) { |
| 206 | __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src)); |
| 207 | if (_mm256_testz_si256(mask, data)) |
| 208 | continue; |
| 209 | |
| 210 | uint n = _mm256_movemask_epi8(data); |
| 211 | Q_ASSERT(n); |
| 212 | |
| 213 | // find the next probable ASCII character |
| 214 | // we don't want to load 32 bytes again in this loop if we know there are non-ASCII |
| 215 | // characters still coming |
| 216 | nextAscii = src + qBitScanReverse(n) + 1; |
| 217 | |
| 218 | // return the non-ASCII character |
| 219 | return src + qCountTrailingZeroBits(n); |
| 220 | } |
| 221 | #endif |
| 222 | |
| 223 | // do sixteen characters at a time |
| 224 | for ( ; end - src >= 16; src += 16) { |
| 225 | __m128i data = _mm_loadu_si128(p: reinterpret_cast<const __m128i*>(src)); |
| 226 | |
| 227 | // check if everything is ASCII |
| 228 | // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII |
| 229 | uint n = _mm_movemask_epi8(a: data); |
| 230 | if (!n) |
| 231 | continue; |
| 232 | |
| 233 | // find the next probable ASCII character |
| 234 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
| 235 | // characters still coming |
| 236 | nextAscii = src + qBitScanReverse(v: n) + 1; |
| 237 | |
| 238 | // return the non-ASCII character |
| 239 | return src + qCountTrailingZeroBits(v: n); |
| 240 | } |
| 241 | |
| 242 | // do four characters at a time |
| 243 | for ( ; end - src >= 4; src += 4) { |
| 244 | quint32 data = qFromUnaligned<quint32>(src); |
| 245 | data &= 0x80808080U; |
| 246 | if (!data) |
| 247 | continue; |
| 248 | |
| 249 | // We don't try to guess which of the three bytes is ASCII and which |
| 250 | // one isn't. The chance that at least two of them are non-ASCII is |
| 251 | // better than 75%. |
| 252 | nextAscii = src; |
| 253 | return src; |
| 254 | } |
| 255 | nextAscii = end; |
| 256 | return src; |
| 257 | } |
| 258 | |
| 259 | // Compare only the US-ASCII beginning of [src8, end8) and [src16, end16) |
| 260 | // and advance src8 and src16 to the first character that could not be compared |
| 261 | static void simdCompareAscii(const qchar8_t *&src8, const qchar8_t *end8, const char16_t *&src16, const char16_t *end16) |
| 262 | { |
| 263 | int bitSpacing = 1; |
| 264 | qptrdiff len = qMin(a: end8 - src8, b: end16 - src16); |
| 265 | qptrdiff offset = 0; |
| 266 | uint mask = 0; |
| 267 | |
| 268 | // do sixteen characters at a time |
| 269 | for ( ; offset + 16 < len; offset += 16) { |
| 270 | __m128i data8 = _mm_loadu_si128(p: reinterpret_cast<const __m128i *>(src8 + offset)); |
| 271 | #ifdef __AVX2__ |
| 272 | // AVX2 version, use 256-bit registers and VPMOVXZBW |
| 273 | __m256i data16 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src16 + offset)); |
| 274 | |
| 275 | // expand US-ASCII as if it were Latin1 and confirm it's US-ASCII |
| 276 | __m256i datax8 = _mm256_cvtepu8_epi16(data8); |
| 277 | mask = _mm256_movemask_epi8(datax8); |
| 278 | if (mask) |
| 279 | break; |
| 280 | |
| 281 | // compare Latin1 to UTF-16 |
| 282 | __m256i latin1cmp = _mm256_cmpeq_epi16(datax8, data16); |
| 283 | mask = ~_mm256_movemask_epi8(latin1cmp); |
| 284 | if (mask) |
| 285 | break; |
| 286 | #else |
| 287 | // non-AVX2 code |
| 288 | __m128i datalo16 = _mm_loadu_si128(p: reinterpret_cast<const __m128i *>(src16 + offset)); |
| 289 | __m128i datahi16 = _mm_loadu_si128(p: reinterpret_cast<const __m128i *>(src16 + offset) + 1); |
| 290 | |
| 291 | // expand US-ASCII as if it were Latin1, we'll confirm later |
| 292 | __m128i datalo8 = _mm_unpacklo_epi8(a: data8, b: _mm_setzero_si128()); |
| 293 | __m128i datahi8 = _mm_unpackhi_epi8(a: data8, b: _mm_setzero_si128()); |
| 294 | |
| 295 | // compare Latin1 to UTF-16 |
| 296 | __m128i latin1cmplo = _mm_cmpeq_epi16(a: datalo8, b: datalo16); |
| 297 | __m128i latin1cmphi = _mm_cmpeq_epi16(a: datahi8, b: datahi16); |
| 298 | mask = _mm_movemask_epi8(a: latin1cmphi) << 16; |
| 299 | mask |= ushort(_mm_movemask_epi8(a: latin1cmplo)); |
| 300 | mask = ~mask; |
| 301 | if (mask) |
| 302 | break; |
| 303 | |
| 304 | // confirm it was US-ASCII |
| 305 | mask = _mm_movemask_epi8(a: data8); |
| 306 | if (mask) { |
| 307 | bitSpacing = 0; |
| 308 | break; |
| 309 | } |
| 310 | #endif |
| 311 | } |
| 312 | |
| 313 | // helper for comparing 4 or 8 characters |
| 314 | auto cmp_lt_16 = [&mask, &offset](int n, __m128i data8, __m128i data16) { |
| 315 | // n = 4 -> sizemask = 0xff |
| 316 | // n = 8 -> sizemask = 0xffff |
| 317 | unsigned sizemask = (1U << (2 * n)) - 1; |
| 318 | |
| 319 | // expand as if Latin1 |
| 320 | data8 = _mm_unpacklo_epi8(a: data8, b: _mm_setzero_si128()); |
| 321 | |
| 322 | // compare and confirm it's US-ASCII |
| 323 | __m128i latin1cmp = _mm_cmpeq_epi16(a: data8, b: data16); |
| 324 | mask = ~_mm_movemask_epi8(a: latin1cmp) & sizemask; |
| 325 | mask |= _mm_movemask_epi8(a: data8); |
| 326 | if (mask == 0) |
| 327 | offset += n; |
| 328 | }; |
| 329 | |
| 330 | // do eight characters at a time |
| 331 | if (mask == 0 && offset + 8 < len) { |
| 332 | __m128i data8 = _mm_loadl_epi64(p: reinterpret_cast<const __m128i *>(src8 + offset)); |
| 333 | __m128i data16 = _mm_loadu_si128(p: reinterpret_cast<const __m128i *>(src16 + offset)); |
| 334 | cmp_lt_16(8, data8, data16); |
| 335 | } |
| 336 | |
| 337 | // do four characters |
| 338 | if (mask == 0 && offset + 4 < len) { |
| 339 | __m128i data8 = _mm_cvtsi32_si128(a: qFromUnaligned<quint32>(src: src8 + offset)); |
| 340 | __m128i data16 = _mm_loadl_epi64(p: reinterpret_cast<const __m128i *>(src16 + offset)); |
| 341 | cmp_lt_16(4, data8, data16); |
| 342 | } |
| 343 | |
| 344 | // correct the source pointers to point to the first character we couldn't deal with |
| 345 | if (mask) |
| 346 | offset += qCountTrailingZeroBits(v: mask) >> bitSpacing; |
| 347 | src8 += offset; |
| 348 | src16 += offset; |
| 349 | } |
| 350 | #elif defined(__ARM_NEON__) |
| 351 | static inline bool simdEncodeAscii(uchar *&dst, const char16_t *&nextAscii, const char16_t *&src, const char16_t *end) |
| 352 | { |
| 353 | uint16x8_t maxAscii = vdupq_n_u16(0x7f); |
| 354 | uint16x8_t mask1 = qvsetq_n_u16(1, 1 << 2, 1 << 4, 1 << 6, 1 << 8, 1 << 10, 1 << 12, 1 << 14 ); |
| 355 | uint16x8_t mask2 = vshlq_n_u16(mask1, 1); |
| 356 | |
| 357 | // do sixteen characters at a time |
| 358 | for ( ; end - src >= 16; src += 16, dst += 16) { |
| 359 | // load 2 lanes (or: "load interleaved") |
| 360 | uint16x8x2_t in = vld2q_u16(reinterpret_cast<const uint16_t *>(src)); |
| 361 | |
| 362 | // check if any of the elements > 0x7f, select 1 bit per element (element 0 -> bit 0, element 1 -> bit 1, etc), |
| 363 | // add those together into a scalar, and merge the scalars. |
| 364 | uint16_t nonAscii = vaddvq_u16(vandq_u16(vcgtq_u16(in.val[0], maxAscii), mask1)) |
| 365 | | vaddvq_u16(vandq_u16(vcgtq_u16(in.val[1], maxAscii), mask2)); |
| 366 | |
| 367 | // merge the two lanes by shifting the values of the second by 8 and inserting them |
| 368 | uint16x8_t out = vsliq_n_u16(in.val[0], in.val[1], 8); |
| 369 | |
| 370 | // store, even if there are non-ASCII characters here |
| 371 | vst1q_u8(dst, vreinterpretq_u8_u16(out)); |
| 372 | |
| 373 | if (nonAscii) { |
| 374 | // find the next probable ASCII character |
| 375 | // we don't want to load 32 bytes again in this loop if we know there are non-ASCII |
| 376 | // characters still coming |
| 377 | nextAscii = src + qBitScanReverse(nonAscii) + 1; |
| 378 | |
| 379 | nonAscii = qCountTrailingZeroBits(nonAscii); |
| 380 | dst += nonAscii; |
| 381 | src += nonAscii; |
| 382 | return false; |
| 383 | } |
| 384 | } |
| 385 | return src == end; |
| 386 | } |
| 387 | |
| 388 | static inline bool simdDecodeAscii(char16_t *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end) |
| 389 | { |
| 390 | // do eight characters at a time |
| 391 | uint8x8_t msb_mask = vdup_n_u8(0x80); |
| 392 | uint8x8_t add_mask = qvset_n_u8(1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 ); |
| 393 | for ( ; end - src >= 8; src += 8, dst += 8) { |
| 394 | uint8x8_t c = vld1_u8(src); |
| 395 | uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask)); |
| 396 | if (!n) { |
| 397 | // store |
| 398 | vst1q_u16(reinterpret_cast<uint16_t *>(dst), vmovl_u8(c)); |
| 399 | continue; |
| 400 | } |
| 401 | |
| 402 | // copy the front part that is still ASCII |
| 403 | while (!(n & 1)) { |
| 404 | *dst++ = *src++; |
| 405 | n >>= 1; |
| 406 | } |
| 407 | |
| 408 | // find the next probable ASCII character |
| 409 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
| 410 | // characters still coming |
| 411 | n = qBitScanReverse(n); |
| 412 | nextAscii = src + n + 1; |
| 413 | return false; |
| 414 | |
| 415 | } |
| 416 | return src == end; |
| 417 | } |
| 418 | |
| 419 | static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii) |
| 420 | { |
| 421 | // The SIMD code below is untested, so just force an early return until |
| 422 | // we've had the time to verify it works. |
| 423 | nextAscii = end; |
| 424 | return src; |
| 425 | |
| 426 | // do eight characters at a time |
| 427 | uint8x8_t msb_mask = vdup_n_u8(0x80); |
| 428 | uint8x8_t add_mask = qvset_n_u8(1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7); |
| 429 | for ( ; end - src >= 8; src += 8) { |
| 430 | uint8x8_t c = vld1_u8(src); |
| 431 | uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask)); |
| 432 | if (!n) |
| 433 | continue; |
| 434 | |
| 435 | // find the next probable ASCII character |
| 436 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
| 437 | // characters still coming |
| 438 | nextAscii = src + qBitScanReverse(n) + 1; |
| 439 | |
| 440 | // return the non-ASCII character |
| 441 | return src + qCountTrailingZeroBits(n); |
| 442 | } |
| 443 | nextAscii = end; |
| 444 | return src; |
| 445 | } |
| 446 | |
| 447 | static void simdCompareAscii(const qchar8_t *&, const qchar8_t *, const char16_t *&, const char16_t *) |
| 448 | { |
| 449 | } |
| 450 | #else |
| 451 | static inline bool simdEncodeAscii(uchar *, const char16_t *, const char16_t *, const char16_t *) |
| 452 | { |
| 453 | return false; |
| 454 | } |
| 455 | |
| 456 | static inline bool simdDecodeAscii(char16_t *, const uchar *, const uchar *, const uchar *) |
| 457 | { |
| 458 | return false; |
| 459 | } |
| 460 | |
| 461 | static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii) |
| 462 | { |
| 463 | nextAscii = end; |
| 464 | return src; |
| 465 | } |
| 466 | |
| 467 | static void simdCompareAscii(const qchar8_t *&, const qchar8_t *, const char16_t *&, const char16_t *) |
| 468 | { |
| 469 | } |
| 470 | #endif |
| 471 | |
| 472 | enum { = 1 }; |
| 473 | |
| 474 | QByteArray QUtf8::convertFromUnicode(QStringView in) |
| 475 | { |
| 476 | qsizetype len = in.size(); |
| 477 | |
| 478 | // create a QByteArray with the worst case scenario size |
| 479 | QByteArray result(len * 3, Qt::Uninitialized); |
| 480 | uchar *dst = reinterpret_cast<uchar *>(const_cast<char *>(result.constData())); |
| 481 | const char16_t *src = reinterpret_cast<const char16_t *>(in.data()); |
| 482 | const char16_t *const end = src + len; |
| 483 | |
| 484 | while (src != end) { |
| 485 | const char16_t *nextAscii = end; |
| 486 | if (simdEncodeAscii(dst, nextAscii, src, end)) |
| 487 | break; |
| 488 | |
| 489 | do { |
| 490 | char16_t u = *src++; |
| 491 | int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(u, dst, src, end); |
| 492 | if (res < 0) { |
| 493 | // encoding error - append '?' |
| 494 | *dst++ = '?'; |
| 495 | } |
| 496 | } while (src < nextAscii); |
| 497 | } |
| 498 | |
| 499 | result.truncate(pos: dst - reinterpret_cast<uchar *>(const_cast<char *>(result.constData()))); |
| 500 | return result; |
| 501 | } |
| 502 | |
| 503 | QByteArray QUtf8::convertFromUnicode(QStringView in, QStringConverterBase::State *state) |
| 504 | { |
| 505 | QByteArray ba(3*in.size() +3, Qt::Uninitialized); |
| 506 | char *end = convertFromUnicode(out: ba.data(), in, state); |
| 507 | ba.truncate(pos: end - ba.data()); |
| 508 | return ba; |
| 509 | } |
| 510 | |
| 511 | char *QUtf8::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state) |
| 512 | { |
| 513 | Q_ASSERT(state); |
| 514 | qsizetype len = in.size(); |
| 515 | if (!len) |
| 516 | return out; |
| 517 | |
| 518 | auto appendReplacementChar = [state](uchar *cursor) -> uchar * { |
| 519 | if (state->flags & QStringConverter::Flag::ConvertInvalidToNull) { |
| 520 | *cursor++ = 0; |
| 521 | } else { |
| 522 | // QChar::replacement encoded in utf8 |
| 523 | *cursor++ = 0xef; |
| 524 | *cursor++ = 0xbf; |
| 525 | *cursor++ = 0xbd; |
| 526 | } |
| 527 | return cursor; |
| 528 | }; |
| 529 | |
| 530 | uchar *cursor = reinterpret_cast<uchar *>(out); |
| 531 | const char16_t *src = in.utf16(); |
| 532 | const char16_t *const end = src + len; |
| 533 | |
| 534 | if (!(state->flags & QStringDecoder::Flag::Stateless)) { |
| 535 | if (state->remainingChars) { |
| 536 | int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(u: state->state_data[0], dst&: cursor, src, end); |
| 537 | if (res < 0) |
| 538 | cursor = appendReplacementChar(cursor); |
| 539 | state->state_data[0] = 0; |
| 540 | state->remainingChars = 0; |
| 541 | } else if (!(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom) { |
| 542 | // append UTF-8 BOM |
| 543 | *cursor++ = utf8bom[0]; |
| 544 | *cursor++ = utf8bom[1]; |
| 545 | *cursor++ = utf8bom[2]; |
| 546 | state->internalState |= HeaderDone; |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | while (src != end) { |
| 551 | const char16_t *nextAscii = end; |
| 552 | if (simdEncodeAscii(dst&: cursor, nextAscii, src, end)) |
| 553 | break; |
| 554 | |
| 555 | do { |
| 556 | char16_t uc = *src++; |
| 557 | int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(u: uc, dst&: cursor, src, end); |
| 558 | if (Q_LIKELY(res >= 0)) |
| 559 | continue; |
| 560 | |
| 561 | if (res == QUtf8BaseTraits::Error) { |
| 562 | // encoding error |
| 563 | ++state->invalidChars; |
| 564 | cursor = appendReplacementChar(cursor); |
| 565 | } else if (res == QUtf8BaseTraits::EndOfString) { |
| 566 | if (state->flags & QStringConverter::Flag::Stateless) { |
| 567 | ++state->invalidChars; |
| 568 | cursor = appendReplacementChar(cursor); |
| 569 | } else { |
| 570 | state->remainingChars = 1; |
| 571 | state->state_data[0] = uc; |
| 572 | } |
| 573 | return reinterpret_cast<char *>(cursor); |
| 574 | } |
| 575 | } while (src < nextAscii); |
| 576 | } |
| 577 | |
| 578 | return reinterpret_cast<char *>(cursor); |
| 579 | } |
| 580 | |
| 581 | char *QUtf8::convertFromLatin1(char *out, QLatin1StringView in) |
| 582 | { |
| 583 | // ### SIMD-optimize: |
| 584 | for (uchar ch : in) { |
| 585 | if (ch < 128) { |
| 586 | *out++ = ch; |
| 587 | } else { |
| 588 | // as per https://en.wikipedia.org/wiki/UTF-8#Encoding, 2nd row |
| 589 | *out++ = 0b110'0'0000u | (ch >> 6); |
| 590 | *out++ = 0b10'00'0000u | (ch & 0b0011'1111); |
| 591 | } |
| 592 | } |
| 593 | return out; |
| 594 | } |
| 595 | |
| 596 | QString QUtf8::convertToUnicode(QByteArrayView in) |
| 597 | { |
| 598 | // UTF-8 to UTF-16 always needs the exact same number of words or less: |
| 599 | // UTF-8 UTF-16 |
| 600 | // 1 byte 1 word |
| 601 | // 2 bytes 1 word |
| 602 | // 3 bytes 1 word |
| 603 | // 4 bytes 2 words (one surrogate pair) |
| 604 | // That is, we'll use the full buffer if the input is US-ASCII (1-byte UTF-8), |
| 605 | // half the buffer for U+0080-U+07FF text (e.g., Greek, Cyrillic, Arabic) or |
| 606 | // non-BMP text, and one third of the buffer for U+0800-U+FFFF text (e.g, CJK). |
| 607 | // |
| 608 | // The table holds for invalid sequences too: we'll insert one replacement char |
| 609 | // per invalid byte. |
| 610 | QString result(in.size(), Qt::Uninitialized); |
| 611 | QChar *data = const_cast<QChar*>(result.constData()); // we know we're not shared |
| 612 | const QChar *end = convertToUnicode(buffer: data, in); |
| 613 | result.truncate(pos: end - data); |
| 614 | return result; |
| 615 | } |
| 616 | |
| 617 | /*! \internal |
| 618 | \since 6.6 |
| 619 | \overload |
| 620 | |
| 621 | Converts the UTF-8 sequence of bytes viewed by \a in to a sequence of |
| 622 | QChar starting at \a dst in the destination buffer. The buffer is expected |
| 623 | to be large enough to hold the result. An upper bound for the size of the |
| 624 | buffer is \c in.size() QChars. |
| 625 | |
| 626 | If, during decoding, an error occurs, a QChar::ReplacementCharacter is |
| 627 | written. |
| 628 | |
| 629 | Returns a pointer to one past the last QChar written. |
| 630 | |
| 631 | This function never throws. |
| 632 | |
| 633 | For QChar buffers, instead of casting manually, you can use the static |
| 634 | QUtf8::convertToUnicode(QChar *, QByteArrayView) directly. |
| 635 | */ |
| 636 | char16_t *QUtf8::convertToUnicode(char16_t *dst, QByteArrayView in) noexcept |
| 637 | { |
| 638 | const uchar *const start = reinterpret_cast<const uchar *>(in.data()); |
| 639 | const uchar *src = start; |
| 640 | const uchar *end = src + in.size(); |
| 641 | |
| 642 | // attempt to do a full decoding in SIMD |
| 643 | const uchar *nextAscii = end; |
| 644 | if (!simdDecodeAscii(dst, nextAscii, src, end)) { |
| 645 | // at least one non-ASCII entry |
| 646 | // check if we failed to decode the UTF-8 BOM; if so, skip it |
| 647 | if (Q_UNLIKELY(src == start) |
| 648 | && end - src >= 3 |
| 649 | && Q_UNLIKELY(src[0] == utf8bom[0] && src[1] == utf8bom[1] && src[2] == utf8bom[2])) { |
| 650 | src += 3; |
| 651 | } |
| 652 | |
| 653 | while (src < end) { |
| 654 | nextAscii = end; |
| 655 | if (simdDecodeAscii(dst, nextAscii, src, end)) |
| 656 | break; |
| 657 | |
| 658 | do { |
| 659 | uchar b = *src++; |
| 660 | const qsizetype res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst, src, end); |
| 661 | if (res < 0) { |
| 662 | // decoding error |
| 663 | *dst++ = QChar::ReplacementCharacter; |
| 664 | } |
| 665 | } while (src < nextAscii); |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | return dst; |
| 670 | } |
| 671 | |
| 672 | QString QUtf8::convertToUnicode(QByteArrayView in, QStringConverter::State *state) |
| 673 | { |
| 674 | // See above for buffer requirements for stateless decoding. However, that |
| 675 | // fails if the state is not empty. The following situations can add to the |
| 676 | // requirements: |
| 677 | // state contains chars starts with requirement |
| 678 | // 1 of 2 bytes valid continuation 0 |
| 679 | // 2 of 3 bytes same 0 |
| 680 | // 3 bytes of 4 same +1 (need to insert surrogate pair) |
| 681 | // 1 of 2 bytes invalid continuation +1 (need to insert replacement and restart) |
| 682 | // 2 of 3 bytes same +1 (same) |
| 683 | // 3 of 4 bytes same +1 (same) |
| 684 | QString result(in.size() + 1, Qt::Uninitialized); |
| 685 | QChar *end = convertToUnicode(out: result.data(), in, state); |
| 686 | result.truncate(pos: end - result.constData()); |
| 687 | return result; |
| 688 | } |
| 689 | |
| 690 | char16_t *QUtf8::convertToUnicode(char16_t *dst, QByteArrayView in, QStringConverter::State *state) |
| 691 | { |
| 692 | qsizetype len = in.size(); |
| 693 | |
| 694 | Q_ASSERT(state); |
| 695 | if (!len) |
| 696 | return dst; |
| 697 | |
| 698 | |
| 699 | char16_t replacement = QChar::ReplacementCharacter; |
| 700 | if (state->flags & QStringConverter::Flag::ConvertInvalidToNull) |
| 701 | replacement = QChar::Null; |
| 702 | |
| 703 | qsizetype res; |
| 704 | uchar ch = 0; |
| 705 | |
| 706 | const uchar *src = reinterpret_cast<const uchar *>(in.data()); |
| 707 | const uchar *end = src + len; |
| 708 | |
| 709 | if (!(state->flags & QStringConverter::Flag::Stateless)) { |
| 710 | bool = state->internalState & HeaderDone || state->flags & QStringConverter::Flag::ConvertInitialBom; |
| 711 | if (state->remainingChars || !headerdone) { |
| 712 | // handle incoming state first |
| 713 | uchar remainingCharsData[4]; // longest UTF-8 sequence possible |
| 714 | qsizetype remainingCharsCount = state->remainingChars; |
| 715 | qsizetype newCharsToCopy = qMin<qsizetype>(a: sizeof(remainingCharsData) - remainingCharsCount, b: end - src); |
| 716 | |
| 717 | memset(s: remainingCharsData, c: 0, n: sizeof(remainingCharsData)); |
| 718 | memcpy(dest: remainingCharsData, src: &state->state_data[0], n: remainingCharsCount); |
| 719 | memcpy(dest: remainingCharsData + remainingCharsCount, src: src, n: newCharsToCopy); |
| 720 | |
| 721 | const uchar *begin = &remainingCharsData[1]; |
| 722 | res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b: remainingCharsData[0], dst, src&: begin, |
| 723 | end: static_cast<const uchar *>(remainingCharsData) + remainingCharsCount + newCharsToCopy); |
| 724 | if (res == QUtf8BaseTraits::Error) { |
| 725 | ++state->invalidChars; |
| 726 | *dst++ = replacement; |
| 727 | ++src; |
| 728 | } else if (res == QUtf8BaseTraits::EndOfString) { |
| 729 | // if we got EndOfString again, then there were too few bytes in src; |
| 730 | // copy to our state and return |
| 731 | state->remainingChars = remainingCharsCount + newCharsToCopy; |
| 732 | memcpy(dest: &state->state_data[0], src: remainingCharsData, n: state->remainingChars); |
| 733 | return dst; |
| 734 | } else if (!headerdone) { |
| 735 | // eat the UTF-8 BOM |
| 736 | if (dst[-1] == 0xfeff) |
| 737 | --dst; |
| 738 | } |
| 739 | state->internalState |= HeaderDone; |
| 740 | |
| 741 | // adjust src now that we have maybe consumed a few chars |
| 742 | if (res >= 0) { |
| 743 | Q_ASSERT(res > remainingCharsCount); |
| 744 | src += res - remainingCharsCount; |
| 745 | } |
| 746 | } |
| 747 | } else if (!(state->flags & QStringConverter::Flag::ConvertInitialBom)) { |
| 748 | // stateless, remove initial BOM |
| 749 | if (len > 2 && src[0] == utf8bom[0] && src[1] == utf8bom[1] && src[2] == utf8bom[2]) |
| 750 | // skip BOM |
| 751 | src += 3; |
| 752 | } |
| 753 | |
| 754 | // main body, stateless decoding |
| 755 | res = 0; |
| 756 | const uchar *nextAscii = src; |
| 757 | while (res >= 0 && src < end) { |
| 758 | if (src >= nextAscii && simdDecodeAscii(dst, nextAscii, src, end)) |
| 759 | break; |
| 760 | |
| 761 | ch = *src++; |
| 762 | res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b: ch, dst, src, end); |
| 763 | if (res == QUtf8BaseTraits::Error) { |
| 764 | res = 0; |
| 765 | ++state->invalidChars; |
| 766 | *dst++ = replacement; |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | if (res == QUtf8BaseTraits::EndOfString) { |
| 771 | // unterminated UTF sequence |
| 772 | if (state->flags & QStringConverter::Flag::Stateless) { |
| 773 | *dst++ = QChar::ReplacementCharacter; |
| 774 | ++state->invalidChars; |
| 775 | while (src++ < end) { |
| 776 | *dst++ = QChar::ReplacementCharacter; |
| 777 | ++state->invalidChars; |
| 778 | } |
| 779 | state->remainingChars = 0; |
| 780 | } else { |
| 781 | --src; // unread the byte in ch |
| 782 | state->remainingChars = end - src; |
| 783 | memcpy(dest: &state->state_data[0], src: src, n: end - src); |
| 784 | } |
| 785 | } else { |
| 786 | state->remainingChars = 0; |
| 787 | } |
| 788 | |
| 789 | return dst; |
| 790 | } |
| 791 | |
| 792 | struct QUtf8NoOutputTraits : public QUtf8BaseTraitsNoAscii |
| 793 | { |
| 794 | struct NoOutput {}; |
| 795 | static void appendUtf16(const NoOutput &, char16_t) {} |
| 796 | static void appendUcs4(const NoOutput &, char32_t) {} |
| 797 | }; |
| 798 | |
| 799 | QUtf8::ValidUtf8Result QUtf8::isValidUtf8(QByteArrayView in) |
| 800 | { |
| 801 | const uchar *src = reinterpret_cast<const uchar *>(in.data()); |
| 802 | const uchar *end = src + in.size(); |
| 803 | const uchar *nextAscii = src; |
| 804 | bool isValidAscii = true; |
| 805 | |
| 806 | while (src < end) { |
| 807 | if (src >= nextAscii) |
| 808 | src = simdFindNonAscii(src, end, nextAscii); |
| 809 | if (src == end) |
| 810 | break; |
| 811 | |
| 812 | do { |
| 813 | uchar b = *src++; |
| 814 | if ((b & 0x80) == 0) |
| 815 | continue; |
| 816 | |
| 817 | isValidAscii = false; |
| 818 | QUtf8NoOutputTraits::NoOutput output; |
| 819 | const qsizetype res = QUtf8Functions::fromUtf8<QUtf8NoOutputTraits>(b, dst&: output, src, end); |
| 820 | if (res < 0) { |
| 821 | // decoding error |
| 822 | return { .isValidUtf8: false, .isValidAscii: false }; |
| 823 | } |
| 824 | } while (src < nextAscii); |
| 825 | } |
| 826 | |
| 827 | return { .isValidUtf8: true, .isValidAscii: isValidAscii }; |
| 828 | } |
| 829 | |
| 830 | int QUtf8::compareUtf8(QByteArrayView utf8, QStringView utf16, Qt::CaseSensitivity cs) noexcept |
| 831 | { |
| 832 | auto src1 = reinterpret_cast<const qchar8_t *>(utf8.data()); |
| 833 | auto end1 = src1 + utf8.size(); |
| 834 | auto src2 = reinterpret_cast<const char16_t *>(utf16.data()); |
| 835 | auto end2 = src2 + utf16.size(); |
| 836 | |
| 837 | do { |
| 838 | simdCompareAscii(src8&: src1, end8: end1, src16&: src2, end16: end2); |
| 839 | |
| 840 | if (src1 < end1 && src2 < end2) { |
| 841 | char32_t uc1 = *src1++; |
| 842 | char32_t uc2 = *src2++; |
| 843 | |
| 844 | if (uc1 >= 0x80) { |
| 845 | char32_t *output = &uc1; |
| 846 | qsizetype res = QUtf8Functions::fromUtf8<QUtf8BaseTraitsNoAscii>(b: uc1, dst&: output, src&: src1, end: end1); |
| 847 | if (res < 0) { |
| 848 | // decoding error |
| 849 | uc1 = QChar::ReplacementCharacter; |
| 850 | } |
| 851 | |
| 852 | // Only decode the UTF-16 surrogate pair if the UTF-8 code point |
| 853 | // wasn't US-ASCII (a surrogate cannot match US-ASCII). |
| 854 | if (QChar::isHighSurrogate(ucs4: uc2) && src2 < end2 && QChar::isLowSurrogate(ucs4: *src2)) |
| 855 | uc2 = QChar::surrogateToUcs4(high: uc2, low: *src2++); |
| 856 | } |
| 857 | if (cs == Qt::CaseInsensitive) { |
| 858 | uc1 = QChar::toCaseFolded(ucs4: uc1); |
| 859 | uc2 = QChar::toCaseFolded(ucs4: uc2); |
| 860 | } |
| 861 | if (uc1 != uc2) |
| 862 | return int(uc1) - int(uc2); |
| 863 | } |
| 864 | } while (src1 < end1 && src2 < end2); |
| 865 | |
| 866 | // the shorter string sorts first |
| 867 | return (end1 > src1) - int(end2 > src2); |
| 868 | } |
| 869 | |
| 870 | int QUtf8::compareUtf8(QByteArrayView utf8, QLatin1StringView s, Qt::CaseSensitivity cs) |
| 871 | { |
| 872 | char32_t uc1 = QChar::Null; |
| 873 | auto src1 = reinterpret_cast<const uchar *>(utf8.data()); |
| 874 | auto end1 = src1 + utf8.size(); |
| 875 | auto src2 = reinterpret_cast<const uchar *>(s.latin1()); |
| 876 | auto end2 = src2 + s.size(); |
| 877 | |
| 878 | while (src1 < end1 && src2 < end2) { |
| 879 | uchar b = *src1++; |
| 880 | char32_t *output = &uc1; |
| 881 | const qsizetype res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst&: output, src&: src1, end: end1); |
| 882 | if (res < 0) { |
| 883 | // decoding error |
| 884 | uc1 = QChar::ReplacementCharacter; |
| 885 | } |
| 886 | |
| 887 | char32_t uc2 = *src2++; |
| 888 | if (cs == Qt::CaseInsensitive) { |
| 889 | uc1 = QChar::toCaseFolded(ucs4: uc1); |
| 890 | uc2 = QChar::toCaseFolded(ucs4: uc2); |
| 891 | } |
| 892 | if (uc1 != uc2) |
| 893 | return int(uc1) - int(uc2); |
| 894 | } |
| 895 | |
| 896 | // the shorter string sorts first |
| 897 | return (end1 > src1) - (end2 > src2); |
| 898 | } |
| 899 | |
| 900 | int QUtf8::compareUtf8(QByteArrayView lhs, QByteArrayView rhs, Qt::CaseSensitivity cs) noexcept |
| 901 | { |
| 902 | if (lhs.isEmpty()) |
| 903 | return qt_lencmp(lhs: 0, rhs: rhs.size()); |
| 904 | |
| 905 | if (cs == Qt::CaseSensitive) { |
| 906 | const auto l = std::min(a: lhs.size(), b: rhs.size()); |
| 907 | int r = memcmp(s1: lhs.data(), s2: rhs.data(), n: l); |
| 908 | return r ? r : qt_lencmp(lhs: lhs.size(), rhs: rhs.size()); |
| 909 | } |
| 910 | |
| 911 | char32_t uc1 = QChar::Null; |
| 912 | auto src1 = reinterpret_cast<const uchar *>(lhs.data()); |
| 913 | auto end1 = src1 + lhs.size(); |
| 914 | char32_t uc2 = QChar::Null; |
| 915 | auto src2 = reinterpret_cast<const uchar *>(rhs.data()); |
| 916 | auto end2 = src2 + rhs.size(); |
| 917 | |
| 918 | while (src1 < end1 && src2 < end2) { |
| 919 | uchar b = *src1++; |
| 920 | char32_t *output = &uc1; |
| 921 | qsizetype res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst&: output, src&: src1, end: end1); |
| 922 | if (res < 0) { |
| 923 | // decoding error |
| 924 | uc1 = QChar::ReplacementCharacter; |
| 925 | } |
| 926 | |
| 927 | b = *src2++; |
| 928 | output = &uc2; |
| 929 | res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst&: output, src&: src2, end: end2); |
| 930 | if (res < 0) { |
| 931 | // decoding error |
| 932 | uc2 = QChar::ReplacementCharacter; |
| 933 | } |
| 934 | |
| 935 | uc1 = QChar::toCaseFolded(ucs4: uc1); |
| 936 | uc2 = QChar::toCaseFolded(ucs4: uc2); |
| 937 | if (uc1 != uc2) |
| 938 | return int(uc1) - int(uc2); |
| 939 | } |
| 940 | |
| 941 | // the shorter string sorts first |
| 942 | return (end1 > src1) - (end2 > src2); |
| 943 | } |
| 944 | |
| 945 | #ifndef QT_BOOTSTRAPPED |
| 946 | QByteArray QUtf16::convertFromUnicode(QStringView in, QStringConverter::State *state, DataEndianness endian) |
| 947 | { |
| 948 | bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom; |
| 949 | qsizetype length = 2 * in.size(); |
| 950 | if (writeBom) |
| 951 | length += 2; |
| 952 | |
| 953 | QByteArray d(length, Qt::Uninitialized); |
| 954 | char *end = convertFromUnicode(out: d.data(), in, state, endian); |
| 955 | Q_ASSERT(end - d.constData() == d.size()); |
| 956 | Q_UNUSED(end); |
| 957 | return d; |
| 958 | } |
| 959 | |
| 960 | char *QUtf16::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state, DataEndianness endian) |
| 961 | { |
| 962 | Q_ASSERT(state); |
| 963 | bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom; |
| 964 | |
| 965 | if (endian == DetectEndianness) |
| 966 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
| 967 | |
| 968 | if (writeBom) { |
| 969 | // set them up the BOM |
| 970 | QChar bom(QChar::ByteOrderMark); |
| 971 | if (endian == BigEndianness) |
| 972 | qToBigEndian(src: bom.unicode(), dest: out); |
| 973 | else |
| 974 | qToLittleEndian(src: bom.unicode(), dest: out); |
| 975 | out += 2; |
| 976 | } |
| 977 | if (endian == BigEndianness) |
| 978 | qToBigEndian<char16_t>(source: in.data(), count: in.size(), dest: out); |
| 979 | else |
| 980 | qToLittleEndian<char16_t>(source: in.data(), count: in.size(), dest: out); |
| 981 | |
| 982 | state->remainingChars = 0; |
| 983 | state->internalState |= HeaderDone; |
| 984 | return out + 2*in.size(); |
| 985 | } |
| 986 | |
| 987 | QString QUtf16::convertToUnicode(QByteArrayView in, QStringConverter::State *state, DataEndianness endian) |
| 988 | { |
| 989 | QString result((in.size() + 1) >> 1, Qt::Uninitialized); // worst case |
| 990 | QChar *qch = convertToUnicode(out: result.data(), in, state, endian); |
| 991 | result.truncate(pos: qch - result.constData()); |
| 992 | return result; |
| 993 | } |
| 994 | |
| 995 | QChar *QUtf16::convertToUnicode(QChar *out, QByteArrayView in, QStringConverter::State *state, DataEndianness endian) |
| 996 | { |
| 997 | qsizetype len = in.size(); |
| 998 | const char *chars = in.data(); |
| 999 | |
| 1000 | Q_ASSERT(state); |
| 1001 | |
| 1002 | if (endian == DetectEndianness) |
| 1003 | endian = (DataEndianness)state->state_data[Endian]; |
| 1004 | |
| 1005 | const char *end = chars + len; |
| 1006 | |
| 1007 | // make sure we can decode at least one char |
| 1008 | if (state->remainingChars + len < 2) { |
| 1009 | if (len) { |
| 1010 | Q_ASSERT(state->remainingChars == 0 && len == 1); |
| 1011 | state->remainingChars = 1; |
| 1012 | state->state_data[Data] = *chars; |
| 1013 | } |
| 1014 | return out; |
| 1015 | } |
| 1016 | |
| 1017 | bool = state && state->internalState & HeaderDone; |
| 1018 | if (state->flags & QStringConverter::Flag::ConvertInitialBom) |
| 1019 | headerdone = true; |
| 1020 | |
| 1021 | if (!headerdone || state->remainingChars) { |
| 1022 | uchar buf; |
| 1023 | if (state->remainingChars) |
| 1024 | buf = state->state_data[Data]; |
| 1025 | else |
| 1026 | buf = *chars++; |
| 1027 | |
| 1028 | // detect BOM, set endianness |
| 1029 | state->internalState |= HeaderDone; |
| 1030 | QChar ch(buf, *chars++); |
| 1031 | if (endian == DetectEndianness) { |
| 1032 | // someone set us up the BOM |
| 1033 | if (ch == QChar::ByteOrderSwapped) { |
| 1034 | endian = BigEndianness; |
| 1035 | } else if (ch == QChar::ByteOrderMark) { |
| 1036 | endian = LittleEndianness; |
| 1037 | } else { |
| 1038 | if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { |
| 1039 | endian = BigEndianness; |
| 1040 | } else { |
| 1041 | endian = LittleEndianness; |
| 1042 | } |
| 1043 | } |
| 1044 | } |
| 1045 | if (endian == BigEndianness) |
| 1046 | ch = QChar::fromUcs2(c: (ch.unicode() >> 8) | ((ch.unicode() & 0xff) << 8)); |
| 1047 | if (headerdone || ch != QChar::ByteOrderMark) |
| 1048 | *out++ = ch; |
| 1049 | } else if (endian == DetectEndianness) { |
| 1050 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
| 1051 | } |
| 1052 | |
| 1053 | qsizetype nPairs = (end - chars) >> 1; |
| 1054 | if (endian == BigEndianness) |
| 1055 | qFromBigEndian<char16_t>(source: chars, count: nPairs, dest: out); |
| 1056 | else |
| 1057 | qFromLittleEndian<char16_t>(source: chars, count: nPairs, dest: out); |
| 1058 | out += nPairs; |
| 1059 | |
| 1060 | state->state_data[Endian] = endian; |
| 1061 | state->remainingChars = 0; |
| 1062 | if ((end - chars) & 1) { |
| 1063 | if (state->flags & QStringConverter::Flag::Stateless) { |
| 1064 | *out++ = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? QChar::Null : QChar::ReplacementCharacter; |
| 1065 | } else { |
| 1066 | state->remainingChars = 1; |
| 1067 | state->state_data[Data] = *(end - 1); |
| 1068 | } |
| 1069 | } else { |
| 1070 | state->state_data[Data] = 0; |
| 1071 | } |
| 1072 | |
| 1073 | return out; |
| 1074 | } |
| 1075 | |
| 1076 | QByteArray QUtf32::convertFromUnicode(QStringView in, QStringConverter::State *state, DataEndianness endian) |
| 1077 | { |
| 1078 | bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom; |
| 1079 | qsizetype length = 4*in.size(); |
| 1080 | if (writeBom) |
| 1081 | length += 4; |
| 1082 | QByteArray ba(length, Qt::Uninitialized); |
| 1083 | char *end = convertFromUnicode(out: ba.data(), in, state, endian); |
| 1084 | ba.truncate(pos: end - ba.constData()); |
| 1085 | return ba; |
| 1086 | } |
| 1087 | |
| 1088 | char *QUtf32::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state, DataEndianness endian) |
| 1089 | { |
| 1090 | Q_ASSERT(state); |
| 1091 | |
| 1092 | bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom; |
| 1093 | if (endian == DetectEndianness) |
| 1094 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
| 1095 | |
| 1096 | if (writeBom) { |
| 1097 | // set them up the BOM |
| 1098 | if (endian == BigEndianness) { |
| 1099 | out[0] = 0; |
| 1100 | out[1] = 0; |
| 1101 | out[2] = (char)0xfe; |
| 1102 | out[3] = (char)0xff; |
| 1103 | } else { |
| 1104 | out[0] = (char)0xff; |
| 1105 | out[1] = (char)0xfe; |
| 1106 | out[2] = 0; |
| 1107 | out[3] = 0; |
| 1108 | } |
| 1109 | out += 4; |
| 1110 | state->internalState |= HeaderDone; |
| 1111 | } |
| 1112 | |
| 1113 | const QChar *uc = in.data(); |
| 1114 | const QChar *end = in.data() + in.size(); |
| 1115 | QChar ch; |
| 1116 | char32_t ucs4; |
| 1117 | if (state->remainingChars == 1) { |
| 1118 | auto character = state->state_data[Data]; |
| 1119 | Q_ASSERT(character <= 0xFFFF); |
| 1120 | ch = QChar(character); |
| 1121 | // this is ugly, but shortcuts a whole lot of logic that would otherwise be required |
| 1122 | state->remainingChars = 0; |
| 1123 | goto decode_surrogate; |
| 1124 | } |
| 1125 | |
| 1126 | while (uc < end) { |
| 1127 | ch = *uc++; |
| 1128 | if (Q_LIKELY(!ch.isSurrogate())) { |
| 1129 | ucs4 = ch.unicode(); |
| 1130 | } else if (Q_LIKELY(ch.isHighSurrogate())) { |
| 1131 | decode_surrogate: |
| 1132 | if (uc == end) { |
| 1133 | if (state->flags & QStringConverter::Flag::Stateless) { |
| 1134 | ucs4 = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? 0 : QChar::ReplacementCharacter; |
| 1135 | } else { |
| 1136 | state->remainingChars = 1; |
| 1137 | state->state_data[Data] = ch.unicode(); |
| 1138 | return out; |
| 1139 | } |
| 1140 | } else if (uc->isLowSurrogate()) { |
| 1141 | ucs4 = QChar::surrogateToUcs4(high: ch, low: *uc++); |
| 1142 | } else { |
| 1143 | ucs4 = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? 0 : QChar::ReplacementCharacter; |
| 1144 | } |
| 1145 | } else { |
| 1146 | ucs4 = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? 0 : QChar::ReplacementCharacter; |
| 1147 | } |
| 1148 | if (endian == BigEndianness) |
| 1149 | qToBigEndian(src: ucs4, dest: out); |
| 1150 | else |
| 1151 | qToLittleEndian(src: ucs4, dest: out); |
| 1152 | out += 4; |
| 1153 | } |
| 1154 | |
| 1155 | return out; |
| 1156 | } |
| 1157 | |
| 1158 | QString QUtf32::convertToUnicode(QByteArrayView in, QStringConverter::State *state, DataEndianness endian) |
| 1159 | { |
| 1160 | QString result; |
| 1161 | result.resize(size: (in.size() + 7) >> 1); // worst case |
| 1162 | QChar *end = convertToUnicode(out: result.data(), in, state, endian); |
| 1163 | result.truncate(pos: end - result.constData()); |
| 1164 | return result; |
| 1165 | } |
| 1166 | |
| 1167 | QChar *QUtf32::convertToUnicode(QChar *out, QByteArrayView in, QStringConverter::State *state, DataEndianness endian) |
| 1168 | { |
| 1169 | qsizetype len = in.size(); |
| 1170 | const char *chars = in.data(); |
| 1171 | |
| 1172 | Q_ASSERT(state); |
| 1173 | if (endian == DetectEndianness) |
| 1174 | endian = (DataEndianness)state->state_data[Endian]; |
| 1175 | |
| 1176 | const char *end = chars + len; |
| 1177 | |
| 1178 | uchar tuple[4]; |
| 1179 | memcpy(dest: tuple, src: &state->state_data[Data], n: 4); |
| 1180 | |
| 1181 | // make sure we can decode at least one char |
| 1182 | if (state->remainingChars + len < 4) { |
| 1183 | if (len) { |
| 1184 | while (chars < end) { |
| 1185 | tuple[state->remainingChars] = *chars; |
| 1186 | ++state->remainingChars; |
| 1187 | ++chars; |
| 1188 | } |
| 1189 | Q_ASSERT(state->remainingChars < 4); |
| 1190 | memcpy(dest: &state->state_data[Data], src: tuple, n: 4); |
| 1191 | } |
| 1192 | return out; |
| 1193 | } |
| 1194 | |
| 1195 | bool = state->internalState & HeaderDone; |
| 1196 | if (state->flags & QStringConverter::Flag::ConvertInitialBom) |
| 1197 | headerdone = true; |
| 1198 | |
| 1199 | qsizetype num = state->remainingChars; |
| 1200 | state->remainingChars = 0; |
| 1201 | |
| 1202 | if (!headerdone || endian == DetectEndianness || num) { |
| 1203 | while (num < 4) |
| 1204 | tuple[num++] = *chars++; |
| 1205 | if (endian == DetectEndianness) { |
| 1206 | // someone set us up the BOM? |
| 1207 | if (tuple[0] == 0xff && tuple[1] == 0xfe && tuple[2] == 0 && tuple[3] == 0) { |
| 1208 | endian = LittleEndianness; |
| 1209 | } else if (tuple[0] == 0 && tuple[1] == 0 && tuple[2] == 0xfe && tuple[3] == 0xff) { |
| 1210 | endian = BigEndianness; |
| 1211 | } else if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { |
| 1212 | endian = BigEndianness; |
| 1213 | } else { |
| 1214 | endian = LittleEndianness; |
| 1215 | } |
| 1216 | } |
| 1217 | char32_t code = (endian == BigEndianness) ? qFromBigEndian<char32_t>(src: tuple) : qFromLittleEndian<char32_t>(src: tuple); |
| 1218 | if (headerdone || code != QChar::ByteOrderMark) { |
| 1219 | if (QChar::requiresSurrogates(ucs4: code)) { |
| 1220 | *out++ = QChar(QChar::highSurrogate(ucs4: code)); |
| 1221 | *out++ = QChar(QChar::lowSurrogate(ucs4: code)); |
| 1222 | } else { |
| 1223 | *out++ = QChar(code); |
| 1224 | } |
| 1225 | } |
| 1226 | num = 0; |
| 1227 | } else if (endian == DetectEndianness) { |
| 1228 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
| 1229 | } |
| 1230 | state->state_data[Endian] = endian; |
| 1231 | state->internalState |= HeaderDone; |
| 1232 | |
| 1233 | while (chars < end) { |
| 1234 | tuple[num++] = *chars++; |
| 1235 | if (num == 4) { |
| 1236 | char32_t code = (endian == BigEndianness) ? qFromBigEndian<char32_t>(src: tuple) : qFromLittleEndian<char32_t>(src: tuple); |
| 1237 | for (char16_t c : QChar::fromUcs4(c: code)) |
| 1238 | *out++ = c; |
| 1239 | num = 0; |
| 1240 | } |
| 1241 | } |
| 1242 | |
| 1243 | if (num) { |
| 1244 | if (state->flags & QStringDecoder::Flag::Stateless) { |
| 1245 | *out++ = QChar::ReplacementCharacter; |
| 1246 | } else { |
| 1247 | state->state_data[Endian] = endian; |
| 1248 | state->remainingChars = num; |
| 1249 | memcpy(dest: &state->state_data[Data], src: tuple, n: 4); |
| 1250 | } |
| 1251 | } |
| 1252 | |
| 1253 | return out; |
| 1254 | } |
| 1255 | #endif // !QT_BOOTSTRAPPED |
| 1256 | |
| 1257 | #if defined(Q_OS_WIN) && !defined(QT_BOOTSTRAPPED) |
| 1258 | int QLocal8Bit::checkUtf8() |
| 1259 | { |
| 1260 | return GetACP() == CP_UTF8 ? 1 : -1; |
| 1261 | } |
| 1262 | |
| 1263 | QString QLocal8Bit::convertToUnicode_sys(QByteArrayView in, QStringConverter::State *state) |
| 1264 | { |
| 1265 | return convertToUnicode_sys(in, CP_ACP, state); |
| 1266 | } |
| 1267 | |
| 1268 | QString QLocal8Bit::convertToUnicode_sys(QByteArrayView in, quint32 codePage, |
| 1269 | QStringConverter::State *state) |
| 1270 | { |
| 1271 | const char *mb = in.data(); |
| 1272 | qsizetype mblen = in.size(); |
| 1273 | |
| 1274 | Q_ASSERT(state); |
| 1275 | qsizetype &invalidChars = state->invalidChars; |
| 1276 | using Flag = QStringConverter::Flag; |
| 1277 | const bool useNullForReplacement = !!(state->flags & Flag::ConvertInvalidToNull); |
| 1278 | const char16_t replacementCharacter = useNullForReplacement ? QChar::Null |
| 1279 | : QChar::ReplacementCharacter; |
| 1280 | if (state->flags & Flag::Stateless) { |
| 1281 | Q_ASSERT(state->remainingChars == 0); |
| 1282 | state = nullptr; |
| 1283 | } |
| 1284 | |
| 1285 | if (!mb || !mblen) |
| 1286 | return QString(); |
| 1287 | |
| 1288 | // Use a local stack-buffer at first to allow us a decently large container |
| 1289 | // to avoid a lot of resizing, without also returning an overallocated |
| 1290 | // QString to the user for small strings. |
| 1291 | // Then we can be fast for small strings and take the hit of extra resizes |
| 1292 | // and measuring how much storage is needed for large strings. |
| 1293 | std::array<wchar_t, 4096> buf; |
| 1294 | wchar_t *out = buf.data(); |
| 1295 | qsizetype outlen = buf.size(); |
| 1296 | |
| 1297 | QString sp; |
| 1298 | |
| 1299 | // Return a pointer to storage where we have enough space for `size` |
| 1300 | const auto growOut = [&](qsizetype size) -> std::tuple<wchar_t *, qsizetype> { |
| 1301 | if (outlen >= size) |
| 1302 | return {out, outlen}; |
| 1303 | const bool wasStackBuffer = sp.isEmpty(); |
| 1304 | const auto begin = wasStackBuffer ? buf.data() : reinterpret_cast<wchar_t *>(sp.data()); |
| 1305 | const qsizetype offset = qsizetype(std::distance(begin, out)); |
| 1306 | qsizetype newSize = 0; |
| 1307 | if (Q_UNLIKELY(qAddOverflow(offset, size, &newSize))) { |
| 1308 | Q_CHECK_PTR(false); |
| 1309 | return {nullptr, 0}; |
| 1310 | } |
| 1311 | sp.resize(newSize); |
| 1312 | auto it = reinterpret_cast<wchar_t *>(sp.data()); |
| 1313 | if (wasStackBuffer) |
| 1314 | it = std::copy_n(buf.data(), offset, it); |
| 1315 | else |
| 1316 | it += offset; |
| 1317 | return {it, size}; |
| 1318 | }; |
| 1319 | |
| 1320 | // Convert the pending characters (if available) |
| 1321 | while (state && state->remainingChars && mblen) { |
| 1322 | QStringConverter::State localState; |
| 1323 | localState.flags = state->flags; |
| 1324 | // Use at most 6 characters as a guess for the longest encoded character |
| 1325 | // in any multibyte encoding. |
| 1326 | // Even with a total of 2 bytes of overhead that would leave around |
| 1327 | // 2^(4 * 8) possible characters |
| 1328 | std::array<char, 6> prev = {0}; |
| 1329 | Q_ASSERT(state->remainingChars <= q20::ssize(state->state_data)); |
| 1330 | qsizetype index = 0; |
| 1331 | for (; index < state->remainingChars; ++index) |
| 1332 | prev[index] = state->state_data[index]; |
| 1333 | const qsizetype toCopy = std::min(q20::ssize(prev) - index, mblen); |
| 1334 | for (qsizetype i = 0; i < toCopy; ++i, ++index) |
| 1335 | prev[index] = mb[i]; |
| 1336 | mb += toCopy; |
| 1337 | mblen -= toCopy; |
| 1338 | |
| 1339 | // Recursing: |
| 1340 | // Since we are using a clean local state it will try to decode what was |
| 1341 | // stored in our state + some extra octets from input (`prev`). If some |
| 1342 | // part fails we will have those characters stored in the local state's |
| 1343 | // storage, and we can extract those. It may also output some |
| 1344 | // replacement characters, which we'll count in the invalidChars. |
| 1345 | // In the best case we only do this once, but we will loop until we have |
| 1346 | // resolved all the remaining characters or we have run out of new input |
| 1347 | // in which case we may still have remaining characters. |
| 1348 | const QString tmp = convertToUnicode_sys(QByteArrayView(prev.data(), index), codePage, |
| 1349 | &localState); |
| 1350 | std::tie(out, outlen) = growOut(tmp.size()); |
| 1351 | if (!out) |
| 1352 | return {}; |
| 1353 | out = std::copy_n(reinterpret_cast<const wchar_t *>(tmp.constData()), tmp.size(), out); |
| 1354 | outlen -= tmp.size(); |
| 1355 | const qsizetype tail = toCopy - localState.remainingChars; |
| 1356 | if (tail >= 0) { |
| 1357 | // Everything left to process comes from `in`, so we can stop |
| 1358 | // looping. Adjust the window for `in` and unset remainingChars to |
| 1359 | // signal that we're done. |
| 1360 | mb -= localState.remainingChars; |
| 1361 | mblen += localState.remainingChars; |
| 1362 | localState.remainingChars = 0; |
| 1363 | } |
| 1364 | state->remainingChars = localState.remainingChars; |
| 1365 | state->invalidChars += localState.invalidChars; |
| 1366 | std::copy_n(localState.state_data, state->remainingChars, state->state_data); |
| 1367 | } |
| 1368 | |
| 1369 | Q_ASSERT(!state || state->remainingChars == 0 || mblen == 0); |
| 1370 | |
| 1371 | // Need it in this scope, since we try to decrease our window size if we |
| 1372 | // encounter an error |
| 1373 | int nextIn = q26::saturate_cast<int>(mblen); |
| 1374 | while (mblen > 0) { |
| 1375 | std::tie(out, outlen) = growOut(1); // Need space for at least one character |
| 1376 | if (!out) |
| 1377 | return {}; |
| 1378 | const int nextOut = q26::saturate_cast<int>(outlen); |
| 1379 | int len = MultiByteToWideChar(codePage, MB_ERR_INVALID_CHARS, mb, nextIn, out, nextOut); |
| 1380 | if (len) { |
| 1381 | mb += nextIn; |
| 1382 | mblen -= nextIn; |
| 1383 | out += len; |
| 1384 | outlen -= len; |
| 1385 | } else { |
| 1386 | int r = GetLastError(); |
| 1387 | if (r == ERROR_INSUFFICIENT_BUFFER) { |
| 1388 | const int wclen = MultiByteToWideChar(codePage, 0, mb, nextIn, 0, 0); |
| 1389 | std::tie(out, outlen) = growOut(wclen); |
| 1390 | if (!out) |
| 1391 | return {}; |
| 1392 | } else if (r == ERROR_NO_UNICODE_TRANSLATION) { |
| 1393 | // Can't decode the current window, so either store the state, |
| 1394 | // reduce window size or output a replacement character. |
| 1395 | |
| 1396 | // Check if we can store all remaining characters in the state |
| 1397 | // to be used next time we're called: |
| 1398 | if (state && mblen <= q20::ssize(state->state_data)) { |
| 1399 | state->remainingChars = mblen; |
| 1400 | std::copy_n(mb, mblen, state->state_data); |
| 1401 | mb += mblen; |
| 1402 | mblen = 0; |
| 1403 | break; |
| 1404 | } |
| 1405 | |
| 1406 | // .. if not, try to find the last valid character in the window |
| 1407 | // and try again with a shrunken window: |
| 1408 | if (nextIn > 1) { |
| 1409 | // There may be some incomplete data at the end of our current |
| 1410 | // window, so decrease the window size and try again. |
| 1411 | // In the worst case scenario there is gigs of undecodable |
| 1412 | // garbage, but what are we supposed to do about that? |
| 1413 | const auto it = CharPrevExA(codePage, mb, mb + nextIn, 0); |
| 1414 | if (it != mb) |
| 1415 | nextIn = int(it - mb); |
| 1416 | else |
| 1417 | --nextIn; |
| 1418 | continue; |
| 1419 | } |
| 1420 | |
| 1421 | // Finally, we are forced to output a replacement character for |
| 1422 | // the first byte in the window: |
| 1423 | std::tie(out, outlen) = growOut(1); |
| 1424 | if (!out) |
| 1425 | return {}; |
| 1426 | *out = replacementCharacter; |
| 1427 | ++invalidChars; |
| 1428 | ++out; |
| 1429 | --outlen; |
| 1430 | ++mb; |
| 1431 | --mblen; |
| 1432 | } else { |
| 1433 | // Fail. |
| 1434 | qWarning("MultiByteToWideChar: Cannot convert multibyte text" ); |
| 1435 | break; |
| 1436 | } |
| 1437 | } |
| 1438 | nextIn = q26::saturate_cast<int>(mblen); |
| 1439 | } |
| 1440 | |
| 1441 | if (sp.isEmpty()) { |
| 1442 | // We must have only used the stack buffer |
| 1443 | if (out != buf.data()) // else: we return null-string |
| 1444 | sp = QStringView(buf.data(), out).toString(); |
| 1445 | } else{ |
| 1446 | const auto begin = reinterpret_cast<wchar_t *>(sp.data()); |
| 1447 | sp.truncate(std::distance(begin, out)); |
| 1448 | } |
| 1449 | |
| 1450 | if (sp.size() && sp.back().isNull()) |
| 1451 | sp.chop(1); |
| 1452 | |
| 1453 | if (!state && mblen > 0) { |
| 1454 | // We have trailing character(s) that could not be converted, and |
| 1455 | // nowhere to cache them |
| 1456 | sp.resize(sp.size() + mblen, replacementCharacter); |
| 1457 | invalidChars += mblen; |
| 1458 | } |
| 1459 | return sp; |
| 1460 | } |
| 1461 | |
| 1462 | QByteArray QLocal8Bit::convertFromUnicode_sys(QStringView in, QStringConverter::State *state) |
| 1463 | { |
| 1464 | return convertFromUnicode_sys(in, CP_ACP, state); |
| 1465 | } |
| 1466 | |
| 1467 | QByteArray QLocal8Bit::convertFromUnicode_sys(QStringView in, quint32 codePage, |
| 1468 | QStringConverter::State *state) |
| 1469 | { |
| 1470 | const wchar_t *ch = reinterpret_cast<const wchar_t *>(in.data()); |
| 1471 | qsizetype uclen = in.size(); |
| 1472 | |
| 1473 | Q_ASSERT(state); |
| 1474 | // The Windows API has a *boolean* out-parameter that says if a replacement |
| 1475 | // character was used, but it gives us no way to know _how many_ were used. |
| 1476 | // Since we cannot simply scan the string for replacement characters |
| 1477 | // (which is potentially a question mark, and thus a valid character), |
| 1478 | // we simply do not track the number of invalid characters here. |
| 1479 | // auto &invalidChars = state->invalidChars; |
| 1480 | |
| 1481 | using Flag = QStringConverter::Flag; |
| 1482 | if (state->flags & Flag::Stateless) { // temporary |
| 1483 | Q_ASSERT(state->remainingChars == 0); |
| 1484 | state = nullptr; |
| 1485 | } |
| 1486 | |
| 1487 | if (!ch) |
| 1488 | return QByteArray(); |
| 1489 | if (uclen == 0) |
| 1490 | return QByteArray("" ); |
| 1491 | |
| 1492 | // Use a local stack-buffer at first to allow us a decently large container |
| 1493 | // to avoid a lot of resizing, without also returning an overallocated |
| 1494 | // QByteArray to the user for small strings. |
| 1495 | // Then we can be fast for small strings and take the hit of extra resizes |
| 1496 | // and measuring how much storage is needed for large strings. |
| 1497 | std::array<char, 4096> buf; |
| 1498 | char *out = buf.data(); |
| 1499 | qsizetype outlen = buf.size(); |
| 1500 | QByteArray mb; |
| 1501 | |
| 1502 | if (state && state->remainingChars > 0) { |
| 1503 | Q_ASSERT(state->remainingChars == 1); |
| 1504 | // Let's try to decode the pending character |
| 1505 | wchar_t wc[2] = { wchar_t(state->state_data[0]), ch[0] }; |
| 1506 | // Check if the second character is a valid low surrogate, |
| 1507 | // otherwise we'll just decode the first character, for which windows |
| 1508 | // will output a replacement character. |
| 1509 | const bool validCodePoint = QChar::isLowSurrogate(wc[1]); |
| 1510 | int len = WideCharToMultiByte(codePage, 0, wc, validCodePoint ? 2 : 1, out, outlen, nullptr, |
| 1511 | nullptr); |
| 1512 | if (!len) |
| 1513 | return {}; // Cannot recover, and I refuse to believe it was a size limitation |
| 1514 | out += len; |
| 1515 | outlen -= len; |
| 1516 | if (validCodePoint) { |
| 1517 | ++ch; |
| 1518 | --uclen; |
| 1519 | } |
| 1520 | state->remainingChars = 0; |
| 1521 | state->state_data[0] = 0; |
| 1522 | if (uclen == 0) |
| 1523 | return QByteArrayView(buf.data(), len).toByteArray(); |
| 1524 | } |
| 1525 | |
| 1526 | if (state && QChar::isHighSurrogate(ch[uclen - 1])) { |
| 1527 | // We can handle a missing low surrogate at the end of the string, |
| 1528 | // so if there is one, exclude it now and store it in the state. |
| 1529 | state->remainingChars = 1; |
| 1530 | state->state_data[0] = ch[uclen - 1]; |
| 1531 | --uclen; |
| 1532 | if (uclen == 0) |
| 1533 | return QByteArray(); |
| 1534 | } |
| 1535 | |
| 1536 | Q_ASSERT(uclen > 0); |
| 1537 | |
| 1538 | // Return a pointer to storage where we have enough space for `size` |
| 1539 | const auto growOut = [&](qsizetype size) -> std::tuple<char *, qsizetype> { |
| 1540 | if (outlen >= size) |
| 1541 | return {out, outlen}; |
| 1542 | const bool wasStackBuffer = mb.isEmpty(); |
| 1543 | const auto begin = wasStackBuffer ? buf.data() : mb.data(); |
| 1544 | const qsizetype offset = qsizetype(std::distance(begin, out)); |
| 1545 | qsizetype newSize = 0; |
| 1546 | if (Q_UNLIKELY(qAddOverflow(offset, size, &newSize))) { |
| 1547 | Q_CHECK_PTR(false); |
| 1548 | return {nullptr, 0}; |
| 1549 | } |
| 1550 | mb.resize(newSize); |
| 1551 | auto it = mb.data(); |
| 1552 | if (wasStackBuffer) |
| 1553 | it = std::copy_n(buf.data(), offset, it); |
| 1554 | else |
| 1555 | it += offset; |
| 1556 | return {it, size}; |
| 1557 | }; |
| 1558 | |
| 1559 | const auto getNextWindowSize = [&]() { |
| 1560 | int nextIn = q26::saturate_cast<int>(uclen); |
| 1561 | // The Windows API has some issues if the current window ends in the |
| 1562 | // middle of a surrogate pair, so we avoid that: |
| 1563 | if (nextIn > 1 && QChar::isHighSurrogate(ch[nextIn - 1])) |
| 1564 | --nextIn; |
| 1565 | return nextIn; |
| 1566 | }; |
| 1567 | |
| 1568 | int len = 0; |
| 1569 | while (uclen > 0) { |
| 1570 | const int nextIn = getNextWindowSize(); |
| 1571 | std::tie(out, outlen) = growOut(1); // We need at least one byte |
| 1572 | if (!out) |
| 1573 | return {}; |
| 1574 | const int nextOut = q26::saturate_cast<int>(outlen); |
| 1575 | len = WideCharToMultiByte(codePage, 0, ch, nextIn, out, nextOut, nullptr, nullptr); |
| 1576 | if (len > 0) { |
| 1577 | ch += nextIn; |
| 1578 | uclen -= nextIn; |
| 1579 | out += len; |
| 1580 | outlen -= len; |
| 1581 | } else { |
| 1582 | int r = GetLastError(); |
| 1583 | if (r == ERROR_INSUFFICIENT_BUFFER) { |
| 1584 | int neededLength = WideCharToMultiByte(codePage, 0, ch, nextIn, nullptr, 0, |
| 1585 | nullptr, nullptr); |
| 1586 | if (neededLength <= 0) { |
| 1587 | // Fail. Observed with UTF8 where the input window was max int and ended in an |
| 1588 | // incomplete sequence, probably a Windows bug. We try to avoid that from |
| 1589 | // happening by reducing the window size in that case. But let's keep this |
| 1590 | // branch just in case of other bugs. |
| 1591 | #ifndef QT_NO_DEBUG |
| 1592 | r = GetLastError(); |
| 1593 | fprintf(stderr, |
| 1594 | "WideCharToMultiByte: Cannot convert multibyte text (error %d)\n" , r); |
| 1595 | #endif // !QT_NO_DEBUG |
| 1596 | break; |
| 1597 | } |
| 1598 | std::tie(out, outlen) = growOut(neededLength); |
| 1599 | if (!out) |
| 1600 | return {}; |
| 1601 | // and try again... |
| 1602 | } else { |
| 1603 | // Fail. Probably can't happen in fact (dwFlags is 0). |
| 1604 | #ifndef QT_NO_DEBUG |
| 1605 | // Can't use qWarning(), as it'll recurse to handle %ls |
| 1606 | fprintf(stderr, |
| 1607 | "WideCharToMultiByte: Cannot convert multibyte text (error %d): %ls\n" , r, |
| 1608 | reinterpret_cast<const wchar_t *>( |
| 1609 | QStringView(ch, uclen).left(100).toString().utf16())); |
| 1610 | #endif |
| 1611 | break; |
| 1612 | } |
| 1613 | } |
| 1614 | } |
| 1615 | if (mb.isEmpty()) { |
| 1616 | // We must have only used the stack buffer |
| 1617 | if (out != buf.data()) // else: we return null-array |
| 1618 | mb = QByteArrayView(buf.data(), out).toByteArray(); |
| 1619 | } else { |
| 1620 | mb.truncate(std::distance(mb.data(), out)); |
| 1621 | } |
| 1622 | return mb; |
| 1623 | } |
| 1624 | #endif |
| 1625 | |
| 1626 | void QStringConverter::State::clear() noexcept |
| 1627 | { |
| 1628 | if (clearFn) |
| 1629 | clearFn(this); |
| 1630 | else |
| 1631 | state_data[0] = state_data[1] = state_data[2] = state_data[3] = 0; |
| 1632 | remainingChars = 0; |
| 1633 | invalidChars = 0; |
| 1634 | internalState = 0; |
| 1635 | } |
| 1636 | |
| 1637 | void QStringConverter::State::reset() noexcept |
| 1638 | { |
| 1639 | if (flags & Flag::UsesIcu) { |
| 1640 | #if QT_CONFIG(icu) |
| 1641 | UConverter *converter = static_cast<UConverter *>(d[0]); |
| 1642 | if (converter) |
| 1643 | ucnv_reset(converter); |
| 1644 | #else |
| 1645 | Q_UNREACHABLE(); |
| 1646 | #endif |
| 1647 | } else { |
| 1648 | clear(); |
| 1649 | } |
| 1650 | } |
| 1651 | |
| 1652 | #ifndef QT_BOOTSTRAPPED |
| 1653 | static QChar *fromUtf16(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1654 | { |
| 1655 | return QUtf16::convertToUnicode(out, in, state, endian: DetectEndianness); |
| 1656 | } |
| 1657 | |
| 1658 | static char *toUtf16(char *out, QStringView in, QStringConverter::State *state) |
| 1659 | { |
| 1660 | return QUtf16::convertFromUnicode(out, in, state, endian: DetectEndianness); |
| 1661 | } |
| 1662 | |
| 1663 | static QChar *fromUtf16BE(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1664 | { |
| 1665 | return QUtf16::convertToUnicode(out, in, state, endian: BigEndianness); |
| 1666 | } |
| 1667 | |
| 1668 | static char *toUtf16BE(char *out, QStringView in, QStringConverter::State *state) |
| 1669 | { |
| 1670 | return QUtf16::convertFromUnicode(out, in, state, endian: BigEndianness); |
| 1671 | } |
| 1672 | |
| 1673 | static QChar *fromUtf16LE(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1674 | { |
| 1675 | return QUtf16::convertToUnicode(out, in, state, endian: LittleEndianness); |
| 1676 | } |
| 1677 | |
| 1678 | static char *toUtf16LE(char *out, QStringView in, QStringConverter::State *state) |
| 1679 | { |
| 1680 | return QUtf16::convertFromUnicode(out, in, state, endian: LittleEndianness); |
| 1681 | } |
| 1682 | |
| 1683 | static QChar *fromUtf32(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1684 | { |
| 1685 | return QUtf32::convertToUnicode(out, in, state, endian: DetectEndianness); |
| 1686 | } |
| 1687 | |
| 1688 | static char *toUtf32(char *out, QStringView in, QStringConverter::State *state) |
| 1689 | { |
| 1690 | return QUtf32::convertFromUnicode(out, in, state, endian: DetectEndianness); |
| 1691 | } |
| 1692 | |
| 1693 | static QChar *fromUtf32BE(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1694 | { |
| 1695 | return QUtf32::convertToUnicode(out, in, state, endian: BigEndianness); |
| 1696 | } |
| 1697 | |
| 1698 | static char *toUtf32BE(char *out, QStringView in, QStringConverter::State *state) |
| 1699 | { |
| 1700 | return QUtf32::convertFromUnicode(out, in, state, endian: BigEndianness); |
| 1701 | } |
| 1702 | |
| 1703 | static QChar *fromUtf32LE(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1704 | { |
| 1705 | return QUtf32::convertToUnicode(out, in, state, endian: LittleEndianness); |
| 1706 | } |
| 1707 | |
| 1708 | static char *toUtf32LE(char *out, QStringView in, QStringConverter::State *state) |
| 1709 | { |
| 1710 | return QUtf32::convertFromUnicode(out, in, state, endian: LittleEndianness); |
| 1711 | } |
| 1712 | #endif // !QT_BOOTSTRAPPED |
| 1713 | |
| 1714 | char *QLatin1::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state) noexcept |
| 1715 | { |
| 1716 | Q_ASSERT(state); |
| 1717 | if (state->flags & QStringConverter::Flag::Stateless) // temporary |
| 1718 | state = nullptr; |
| 1719 | |
| 1720 | const char replacement = (state && state->flags & QStringConverter::Flag::ConvertInvalidToNull) ? 0 : '?'; |
| 1721 | qsizetype invalid = 0; |
| 1722 | for (qsizetype i = 0; i < in.size(); ++i) { |
| 1723 | if (in[i] > QChar(0xff)) { |
| 1724 | *out = replacement; |
| 1725 | ++invalid; |
| 1726 | } else { |
| 1727 | *out = (char)in[i].cell(); |
| 1728 | } |
| 1729 | ++out; |
| 1730 | } |
| 1731 | if (state) |
| 1732 | state->invalidChars += invalid; |
| 1733 | return out; |
| 1734 | } |
| 1735 | |
| 1736 | static QChar *fromLocal8Bit(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1737 | { |
| 1738 | QString s = QLocal8Bit::convertToUnicode(in, state); |
| 1739 | memcpy(dest: out, src: s.constData(), n: s.size()*sizeof(QChar)); |
| 1740 | return out + s.size(); |
| 1741 | } |
| 1742 | |
| 1743 | static char *toLocal8Bit(char *out, QStringView in, QStringConverter::State *state) |
| 1744 | { |
| 1745 | QByteArray s = QLocal8Bit::convertFromUnicode(in, state); |
| 1746 | memcpy(dest: out, src: s.constData(), n: s.size()); |
| 1747 | return out + s.size(); |
| 1748 | } |
| 1749 | |
| 1750 | |
| 1751 | static qsizetype fromUtf8Len(qsizetype l) { return l + 1; } |
| 1752 | static qsizetype toUtf8Len(qsizetype l) { return 3*(l + 1); } |
| 1753 | |
| 1754 | #ifndef QT_BOOTSTRAPPED |
| 1755 | static qsizetype fromUtf16Len(qsizetype l) { return l/2 + 2; } |
| 1756 | static qsizetype toUtf16Len(qsizetype l) { return 2*(l + 1); } |
| 1757 | |
| 1758 | static qsizetype fromUtf32Len(qsizetype l) { return l/2 + 2; } |
| 1759 | static qsizetype toUtf32Len(qsizetype l) { return 4*(l + 1); } |
| 1760 | #endif |
| 1761 | |
| 1762 | static qsizetype fromLatin1Len(qsizetype l) { return l + 1; } |
| 1763 | static qsizetype toLatin1Len(qsizetype l) { return l + 1; } |
| 1764 | |
| 1765 | |
| 1766 | |
| 1767 | /*! |
| 1768 | \class QStringConverterBase |
| 1769 | \internal |
| 1770 | |
| 1771 | Just a common base class for QStringConverter and QTextCodec |
| 1772 | */ |
| 1773 | |
| 1774 | /*! |
| 1775 | \class QStringConverter |
| 1776 | \inmodule QtCore |
| 1777 | \brief The QStringConverter class provides a base class for encoding and decoding text. |
| 1778 | \reentrant |
| 1779 | \ingroup i18n |
| 1780 | |
| 1781 | Qt uses UTF-16 to store, draw and manipulate strings. In many |
| 1782 | situations you may wish to deal with data that uses a different |
| 1783 | encoding. Most text data transferred over files and network connections is encoded |
| 1784 | in UTF-8. |
| 1785 | |
| 1786 | The QStringConverter class is a base class for the \l {QStringEncoder} and |
| 1787 | \l {QStringDecoder} classes that help with converting between different |
| 1788 | text encodings. QStringDecoder can decode a string from an encoded representation |
| 1789 | into UTF-16, the format Qt uses internally. QStringEncoder does the opposite |
| 1790 | operation, encoding UTF-16 encoded data (usually in the form of a QString) to |
| 1791 | the requested encoding. |
| 1792 | |
| 1793 | The following encodings are always supported: |
| 1794 | |
| 1795 | \list |
| 1796 | \li UTF-8 |
| 1797 | \li UTF-16 |
| 1798 | \li UTF-16BE |
| 1799 | \li UTF-16LE |
| 1800 | \li UTF-32 |
| 1801 | \li UTF-32BE |
| 1802 | \li UTF-32LE |
| 1803 | \li ISO-8859-1 (Latin-1) |
| 1804 | \li The system encoding |
| 1805 | \endlist |
| 1806 | |
| 1807 | QStringConverter may support more encodings depending on how Qt was |
| 1808 | compiled. If more codecs are supported, they can be listed using |
| 1809 | availableCodecs(). |
| 1810 | |
| 1811 | \l {QStringConverter}s can be used as follows to convert some encoded |
| 1812 | string to and from UTF-16. |
| 1813 | |
| 1814 | Suppose you have some string encoded in UTF-8, and |
| 1815 | want to convert it to a QString. The simple way |
| 1816 | to do it is to use a \l {QStringDecoder} like this: |
| 1817 | |
| 1818 | \snippet code/src_corelib_text_qstringconverter.cpp 0 |
| 1819 | |
| 1820 | After this, \c string holds the text in decoded form. |
| 1821 | Converting a string from Unicode to the local encoding is just as |
| 1822 | easy using the \l {QStringEncoder} class: |
| 1823 | |
| 1824 | \snippet code/src_corelib_text_qstringconverter.cpp 1 |
| 1825 | |
| 1826 | To read or write text files in various encodings, use QTextStream and |
| 1827 | its \l{QTextStream::setEncoding()}{setEncoding()} function. |
| 1828 | |
| 1829 | Some care must be taken when trying to convert the data in chunks, |
| 1830 | for example, when receiving it over a network. In such cases it is |
| 1831 | possible that a multi-byte character will be split over two |
| 1832 | chunks. At best this might result in the loss of a character and |
| 1833 | at worst cause the entire conversion to fail. |
| 1834 | |
| 1835 | Both QStringEncoder and QStringDecoder make this easy, by tracking |
| 1836 | this in an internal state. So simply calling the encoder or decoder |
| 1837 | again with the next chunk of data will automatically continue encoding |
| 1838 | or decoding the data correctly: |
| 1839 | |
| 1840 | \snippet code/src_corelib_text_qstringconverter.cpp 2 |
| 1841 | |
| 1842 | The QStringDecoder object maintains state between chunks and therefore |
| 1843 | works correctly even if a multi-byte character is split between |
| 1844 | chunks. |
| 1845 | |
| 1846 | QStringConverter objects can't be copied because of their internal state, but |
| 1847 | can be moved. |
| 1848 | |
| 1849 | \sa QTextStream, QStringDecoder, QStringEncoder |
| 1850 | */ |
| 1851 | |
| 1852 | /*! |
| 1853 | \enum QStringConverter::Flag |
| 1854 | |
| 1855 | \value Default Default conversion rules apply. |
| 1856 | \value ConvertInvalidToNull If this flag is set, each invalid input |
| 1857 | character is output as a null character. If it is not set, |
| 1858 | invalid input characters are represented as QChar::ReplacementCharacter |
| 1859 | if the output encoding can represent that character, otherwise as a question mark. |
| 1860 | \value WriteBom When converting from a QString to an output encoding, write a QChar::ByteOrderMark as the first |
| 1861 | character if the output encoding supports this. This is the case for UTF-8, UTF-16 and UTF-32 |
| 1862 | encodings. |
| 1863 | \value ConvertInitialBom When converting from an input encoding to a QString the QStringDecoder usually skips an |
| 1864 | leading QChar::ByteOrderMark. When this flag is set, the byte order mark will not be |
| 1865 | skipped, but converted to utf-16 and inserted at the start of the created QString. |
| 1866 | \value Stateless Ignore possible converter states between different function calls |
| 1867 | to encode or decode strings. This will also cause the QStringConverter to raise an error if an incomplete |
| 1868 | sequence of data is encountered. |
| 1869 | \omitvalue UsesIcu |
| 1870 | */ |
| 1871 | |
| 1872 | /*! |
| 1873 | \enum QStringConverter::Encoding |
| 1874 | \value Utf8 Create a converter to or from UTF-8 |
| 1875 | \value Utf16 Create a converter to or from UTF-16. When decoding, the byte order will get automatically |
| 1876 | detected by a leading byte order mark. If none exists or when encoding, the system byte order will |
| 1877 | be assumed. |
| 1878 | \value Utf16BE Create a converter to or from big-endian UTF-16. |
| 1879 | \value Utf16LE Create a converter to or from little-endian UTF-16. |
| 1880 | \value Utf32 Create a converter to or from UTF-32. When decoding, the byte order will get automatically |
| 1881 | detected by a leading byte order mark. If none exists or when encoding, the system byte order will |
| 1882 | be assumed. |
| 1883 | \value Utf32BE Create a converter to or from big-endian UTF-32. |
| 1884 | \value Utf32LE Create a converter to or from little-endian UTF-32. |
| 1885 | \value Latin1 Create a converter to or from ISO-8859-1 (Latin1). |
| 1886 | \value System Create a converter to or from the underlying encoding of the |
| 1887 | operating systems locale. This is always assumed to be UTF-8 for Unix based |
| 1888 | systems. On Windows, this converts to and from the locale code page. |
| 1889 | \omitvalue LastEncoding |
| 1890 | */ |
| 1891 | |
| 1892 | /*! |
| 1893 | \struct QStringConverter::Interface |
| 1894 | \internal |
| 1895 | */ |
| 1896 | |
| 1897 | const QStringConverter::Interface QStringConverter::encodingInterfaces[QStringConverter::LastEncoding + 1] = |
| 1898 | { |
| 1899 | { .name: "UTF-8" , .toUtf16: QUtf8::convertToUnicode, .toUtf16Len: fromUtf8Len, .fromUtf16: QUtf8::convertFromUnicode, .fromUtf16Len: toUtf8Len }, |
| 1900 | #ifndef QT_BOOTSTRAPPED |
| 1901 | { .name: "UTF-16" , .toUtf16: fromUtf16, .toUtf16Len: fromUtf16Len, .fromUtf16: toUtf16, .fromUtf16Len: toUtf16Len }, |
| 1902 | { .name: "UTF-16LE" , .toUtf16: fromUtf16LE, .toUtf16Len: fromUtf16Len, .fromUtf16: toUtf16LE, .fromUtf16Len: toUtf16Len }, |
| 1903 | { .name: "UTF-16BE" , .toUtf16: fromUtf16BE, .toUtf16Len: fromUtf16Len, .fromUtf16: toUtf16BE, .fromUtf16Len: toUtf16Len }, |
| 1904 | { .name: "UTF-32" , .toUtf16: fromUtf32, .toUtf16Len: fromUtf32Len, .fromUtf16: toUtf32, .fromUtf16Len: toUtf32Len }, |
| 1905 | { .name: "UTF-32LE" , .toUtf16: fromUtf32LE, .toUtf16Len: fromUtf32Len, .fromUtf16: toUtf32LE, .fromUtf16Len: toUtf32Len }, |
| 1906 | { .name: "UTF-32BE" , .toUtf16: fromUtf32BE, .toUtf16Len: fromUtf32Len, .fromUtf16: toUtf32BE, .fromUtf16Len: toUtf32Len }, |
| 1907 | #endif |
| 1908 | { .name: "ISO-8859-1" , .toUtf16: QLatin1::convertToUnicode, .toUtf16Len: fromLatin1Len, .fromUtf16: QLatin1::convertFromUnicode, .fromUtf16Len: toLatin1Len }, |
| 1909 | { .name: "Locale" , .toUtf16: fromLocal8Bit, .toUtf16Len: fromUtf8Len, .fromUtf16: toLocal8Bit, .fromUtf16Len: toUtf8Len } |
| 1910 | }; |
| 1911 | |
| 1912 | // match names case insensitive and skipping '-' and '_' |
| 1913 | template <typename Char> |
| 1914 | static bool nameMatch_impl_impl(const char *a, const Char *b, const Char *b_end) |
| 1915 | { |
| 1916 | do { |
| 1917 | while (*a == '-' || *a == '_') |
| 1918 | ++a; |
| 1919 | while (b != b_end && (*b == Char{'-'} || *b == Char{'_'})) |
| 1920 | ++b; |
| 1921 | if (!*a && b == b_end) // end of both strings |
| 1922 | return true; |
| 1923 | if (char16_t(*b) > 127) |
| 1924 | return false; // non-US-ASCII cannot match US-ASCII (prevents narrowing below) |
| 1925 | } while (QtMiscUtils::toAsciiLower(ch: *a++) == QtMiscUtils::toAsciiLower(ch: char(*b++))); |
| 1926 | |
| 1927 | return false; |
| 1928 | } |
| 1929 | |
| 1930 | static bool nameMatch_impl(const char *a, QLatin1StringView b) |
| 1931 | { |
| 1932 | return nameMatch_impl_impl(a, b: b.begin(), b_end: b.end()); |
| 1933 | } |
| 1934 | |
| 1935 | static bool nameMatch_impl(const char *a, QUtf8StringView b) |
| 1936 | { |
| 1937 | return nameMatch_impl(a, b: QLatin1StringView{QByteArrayView{b}}); |
| 1938 | } |
| 1939 | |
| 1940 | static bool nameMatch_impl(const char *a, QStringView b) |
| 1941 | { |
| 1942 | return nameMatch_impl_impl(a, b: b.utf16(), b_end: b.utf16() + b.size()); // uses char16_t*, not QChar* |
| 1943 | } |
| 1944 | |
| 1945 | static bool nameMatch(const char *a, QAnyStringView b) |
| 1946 | { |
| 1947 | return b.visit(v: [a](auto b) { return nameMatch_impl(a, b); }); |
| 1948 | } |
| 1949 | |
| 1950 | |
| 1951 | /*! |
| 1952 | \fn constexpr QStringConverter::QStringConverter() |
| 1953 | \internal |
| 1954 | */ |
| 1955 | |
| 1956 | /*! |
| 1957 | \fn constexpr QStringConverter::QStringConverter(Encoding, Flags) |
| 1958 | \internal |
| 1959 | */ |
| 1960 | |
| 1961 | |
| 1962 | #if QT_CONFIG(icu) |
| 1963 | // only derives from QStringConverter to get access to protected types |
| 1964 | struct QStringConverterICU : QStringConverter |
| 1965 | { |
| 1966 | static void clear_function(QStringConverterBase::State *state) noexcept |
| 1967 | { |
| 1968 | ucnv_close(converter: static_cast<UConverter *>(state->d[0])); |
| 1969 | state->d[0] = nullptr; |
| 1970 | } |
| 1971 | |
| 1972 | static void ensureConverter(QStringConverter::State *state) |
| 1973 | { |
| 1974 | // old code might reset the state via clear instead of reset |
| 1975 | // in that case, the converter has been closed, and we have to reopen it |
| 1976 | if (state->d[0] == nullptr) |
| 1977 | state->d[0] = createConverterForName(name: static_cast<const char *>(state->d[1]), state); |
| 1978 | } |
| 1979 | |
| 1980 | static QChar *toUtf16(QChar *out, QByteArrayView in, QStringConverter::State *state) |
| 1981 | { |
| 1982 | ensureConverter(state); |
| 1983 | |
| 1984 | auto icu_conv = static_cast<UConverter *>(state->d[0]); |
| 1985 | UErrorCode err = U_ZERO_ERROR; |
| 1986 | auto source = in.data(); |
| 1987 | auto sourceLimit = in.data() + in.size(); |
| 1988 | |
| 1989 | qsizetype length = toLen(inLength: in.size()); |
| 1990 | |
| 1991 | UChar *target = reinterpret_cast<UChar *>(out); |
| 1992 | auto targetLimit = target + length; |
| 1993 | // We explicitly clean up anyway, so no need to set flush to true, |
| 1994 | // which would just reset the converter. |
| 1995 | UBool flush = false; |
| 1996 | |
| 1997 | // If the QStringConverter was moved, the state that we used as a context is stale now. |
| 1998 | UConverterToUCallback action; |
| 1999 | const void *context; |
| 2000 | ucnv_getToUCallBack(converter: icu_conv, action: &action, context: &context); |
| 2001 | if (context != state) |
| 2002 | ucnv_setToUCallBack(converter: icu_conv, newAction: action, newContext: state, oldAction: nullptr, oldContext: nullptr, err: &err); |
| 2003 | |
| 2004 | ucnv_toUnicode(converter: icu_conv, target: &target, targetLimit, source: &source, sourceLimit, offsets: nullptr, flush, err: &err); |
| 2005 | // We did reserve enough space: |
| 2006 | Q_ASSERT(err != U_BUFFER_OVERFLOW_ERROR); |
| 2007 | if (state->flags.testFlag(flag: QStringConverter::Flag::Stateless)) { |
| 2008 | if (auto leftOver = ucnv_toUCountPending(cnv: icu_conv, status: &err)) { |
| 2009 | ucnv_reset(converter: icu_conv); |
| 2010 | state->invalidChars += leftOver; |
| 2011 | } |
| 2012 | } |
| 2013 | return reinterpret_cast<QChar *>(target); |
| 2014 | } |
| 2015 | |
| 2016 | static char *fromUtf16(char *out, QStringView in, QStringConverter::State *state) |
| 2017 | { |
| 2018 | ensureConverter(state); |
| 2019 | auto icu_conv = static_cast<UConverter *>(state->d[0]); |
| 2020 | UErrorCode err = U_ZERO_ERROR; |
| 2021 | auto source = reinterpret_cast<const UChar *>(in.data()); |
| 2022 | auto sourceLimit = reinterpret_cast<const UChar *>(in.data() + in.size()); |
| 2023 | |
| 2024 | qsizetype length = UCNV_GET_MAX_BYTES_FOR_STRING(in.size(), ucnv_getMaxCharSize(icu_conv)); |
| 2025 | |
| 2026 | char *target = out; |
| 2027 | char *targetLimit = out + length; |
| 2028 | UBool flush = false; |
| 2029 | |
| 2030 | // If the QStringConverter was moved, the state that we used as a context is stale now. |
| 2031 | UConverterFromUCallback action; |
| 2032 | const void *context; |
| 2033 | ucnv_getFromUCallBack(converter: icu_conv, action: &action, context: &context); |
| 2034 | if (context != state) |
| 2035 | ucnv_setFromUCallBack(converter: icu_conv, newAction: action, newContext: state, oldAction: nullptr, oldContext: nullptr, err: &err); |
| 2036 | |
| 2037 | ucnv_fromUnicode(converter: icu_conv, target: &target, targetLimit, source: &source, sourceLimit, offsets: nullptr, flush, err: &err); |
| 2038 | // We did reserve enough space: |
| 2039 | Q_ASSERT(err != U_BUFFER_OVERFLOW_ERROR); |
| 2040 | if (state->flags.testFlag(flag: QStringConverter::Flag::Stateless)) { |
| 2041 | if (auto leftOver = ucnv_fromUCountPending(cnv: icu_conv, status: &err)) { |
| 2042 | ucnv_reset(converter: icu_conv); |
| 2043 | state->invalidChars += leftOver; |
| 2044 | } |
| 2045 | } |
| 2046 | return target; |
| 2047 | } |
| 2048 | |
| 2049 | Q_DISABLE_COPY_MOVE(QStringConverterICU) |
| 2050 | |
| 2051 | template<qsizetype X> |
| 2052 | static qsizetype fromLen(qsizetype inLength) |
| 2053 | { |
| 2054 | return X * inLength * sizeof(UChar); |
| 2055 | } |
| 2056 | |
| 2057 | static qsizetype toLen(qsizetype inLength) |
| 2058 | { |
| 2059 | |
| 2060 | /* Assumption: each input char might map to a different codepoint |
| 2061 | Each codepoint can take up to 4 bytes == 2 QChar |
| 2062 | We can ignore reserving space for a BOM, as only UTF encodings use one |
| 2063 | and those are not handled by the ICU converter. |
| 2064 | */ |
| 2065 | return 2 * inLength; |
| 2066 | } |
| 2067 | |
| 2068 | static constexpr QStringConverter::Interface forLength[] = { |
| 2069 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<1>}, |
| 2070 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<2>}, |
| 2071 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<3>}, |
| 2072 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<4>}, |
| 2073 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<5>}, |
| 2074 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<6>}, |
| 2075 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<7>}, |
| 2076 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<8>} |
| 2077 | }; |
| 2078 | |
| 2079 | static UConverter *createConverterForName(const char *name, const State *state) |
| 2080 | { |
| 2081 | Q_ASSERT(name); |
| 2082 | Q_ASSERT(state); |
| 2083 | UErrorCode status = U_ZERO_ERROR; |
| 2084 | UConverter *conv = ucnv_open(converterName: name, err: &status); |
| 2085 | if (status != U_ZERO_ERROR && status != U_AMBIGUOUS_ALIAS_WARNING) { |
| 2086 | ucnv_close(converter: conv); |
| 2087 | return nullptr; |
| 2088 | } |
| 2089 | |
| 2090 | if (state->flags.testFlag(flag: Flag::ConvertInvalidToNull)) { |
| 2091 | UErrorCode error = U_ZERO_ERROR; |
| 2092 | |
| 2093 | auto nullToSubstituter = [](const void *context, UConverterToUnicodeArgs *toUArgs, |
| 2094 | const char *, int32_t length, |
| 2095 | UConverterCallbackReason reason, UErrorCode *err) { |
| 2096 | if (reason <= UCNV_IRREGULAR) { |
| 2097 | *err = U_ZERO_ERROR; |
| 2098 | UChar c = '\0'; |
| 2099 | ucnv_cbToUWriteUChars(args: toUArgs, source: &c, length: 1, offsetIndex: 0, err); |
| 2100 | // Recover outer scope's state (which isn't const) from context: |
| 2101 | auto state = const_cast<State *>(static_cast<const State *>(context)); |
| 2102 | state->invalidChars += length; |
| 2103 | } |
| 2104 | }; |
| 2105 | ucnv_setToUCallBack(converter: conv, newAction: nullToSubstituter, newContext: state, oldAction: nullptr, oldContext: nullptr, err: &error); |
| 2106 | |
| 2107 | auto nullFromSubstituter = [](const void *context, UConverterFromUnicodeArgs *fromUArgs, |
| 2108 | const UChar *, int32_t length, |
| 2109 | UChar32, UConverterCallbackReason reason, UErrorCode *err) { |
| 2110 | if (reason <= UCNV_IRREGULAR) { |
| 2111 | *err = U_ZERO_ERROR; |
| 2112 | const UChar replacement[] = { 0 }; |
| 2113 | const UChar *stringBegin = std::begin(arr: replacement); |
| 2114 | ucnv_cbFromUWriteUChars(args: fromUArgs, source: &stringBegin, sourceLimit: std::end(arr: replacement), offsetIndex: 0, err); |
| 2115 | // Recover outer scope's state (which isn't const) from context: |
| 2116 | auto state = const_cast<State *>(static_cast<const State *>(context)); |
| 2117 | state->invalidChars += length; |
| 2118 | } |
| 2119 | }; |
| 2120 | ucnv_setFromUCallBack(converter: conv, newAction: nullFromSubstituter, newContext: state, oldAction: nullptr, oldContext: nullptr, err: &error); |
| 2121 | } else { |
| 2122 | UErrorCode error = U_ZERO_ERROR; |
| 2123 | |
| 2124 | auto qmarkToSubstituter = [](const void *context, UConverterToUnicodeArgs *toUArgs, |
| 2125 | const char *codeUnits,int32_t length, |
| 2126 | UConverterCallbackReason reason, UErrorCode *err) { |
| 2127 | if (reason <= UCNV_IRREGULAR) { |
| 2128 | // Recover outer scope's state (which isn't const) from context: |
| 2129 | auto state = const_cast<State *>(static_cast<const State *>(context)); |
| 2130 | state->invalidChars += length; |
| 2131 | } |
| 2132 | // use existing ICU callback for logic |
| 2133 | UCNV_TO_U_CALLBACK_SUBSTITUTE(context: nullptr, toUArgs, codeUnits, length, reason, err); |
| 2134 | |
| 2135 | }; |
| 2136 | ucnv_setToUCallBack(converter: conv, newAction: qmarkToSubstituter, newContext: state, oldAction: nullptr, oldContext: nullptr, err: &error); |
| 2137 | |
| 2138 | auto qmarkFromSubstituter = [](const void *context, UConverterFromUnicodeArgs *fromUArgs, |
| 2139 | const UChar *codeUnits, int32_t length, |
| 2140 | UChar32 codePoint, UConverterCallbackReason reason, UErrorCode *err) { |
| 2141 | if (reason <= UCNV_IRREGULAR) { |
| 2142 | // Recover outer scope's state (which isn't const) from context: |
| 2143 | auto state = const_cast<State *>(static_cast<const State *>(context)); |
| 2144 | state->invalidChars += length; |
| 2145 | } |
| 2146 | // use existing ICU callback for logic |
| 2147 | UCNV_FROM_U_CALLBACK_SUBSTITUTE(context: nullptr, fromUArgs, codeUnits, length, |
| 2148 | codePoint, reason, err); |
| 2149 | }; |
| 2150 | ucnv_setFromUCallBack(converter: conv, newAction: qmarkFromSubstituter, newContext: state, oldAction: nullptr, oldContext: nullptr, err: &error); |
| 2151 | } |
| 2152 | return conv; |
| 2153 | } |
| 2154 | |
| 2155 | static std::string nul_terminate_impl(QLatin1StringView name) |
| 2156 | { return name.isNull() ? std::string() : std::string{name.data(), size_t(name.size())}; } |
| 2157 | |
| 2158 | static std::string nul_terminate_impl(QUtf8StringView name) |
| 2159 | { return nul_terminate_impl(name: QLatin1StringView{QByteArrayView{name}}); } |
| 2160 | |
| 2161 | static std::string nul_terminate_impl(QStringView name) |
| 2162 | { |
| 2163 | std::string result; |
| 2164 | const auto convert = [&](char *p, size_t n) { |
| 2165 | const auto sz = QLatin1::convertFromUnicode(out: p, in: name) - p; |
| 2166 | Q_ASSERT(size_t(sz) <= n); |
| 2167 | return sz; |
| 2168 | }; |
| 2169 | #ifdef __cpp_lib_string_resize_and_overwrite |
| 2170 | result.resize_and_overwrite(size_t(name.size()), convert); |
| 2171 | #else |
| 2172 | result.resize(n: size_t(name.size())); |
| 2173 | result.resize(n: convert(result.data(), result.size())); |
| 2174 | #endif // __cpp_lib_string_resize_and_overwrite |
| 2175 | return result; |
| 2176 | } |
| 2177 | |
| 2178 | static std::string nul_terminate(QAnyStringView name) |
| 2179 | { return name.visit(v: [](auto name) { return nul_terminate_impl(name); }); } |
| 2180 | |
| 2181 | static const QStringConverter::Interface * |
| 2182 | make_icu_converter(QStringConverterBase::State *state, QAnyStringView name) |
| 2183 | { return make_icu_converter(state, name: nul_terminate(name).data()); } |
| 2184 | |
| 2185 | static const QStringConverter::Interface *make_icu_converter( |
| 2186 | QStringConverterBase::State *state, |
| 2187 | const char *name) |
| 2188 | { |
| 2189 | UErrorCode status = U_ZERO_ERROR; |
| 2190 | UConverter *conv = createConverterForName(name, state); |
| 2191 | if (!conv) |
| 2192 | return nullptr; |
| 2193 | |
| 2194 | const char *icuName = ucnv_getName(converter: conv, err: &status); |
| 2195 | // ucnv_getStandardName returns a name which is owned by the library |
| 2196 | // we can thus store it in the state without worrying aobut its lifetime |
| 2197 | const char *persistentName = ucnv_getStandardName(name: icuName, standard: "MIME" , pErrorCode: &status); |
| 2198 | if (U_FAILURE(code: status) || !persistentName) { |
| 2199 | status = U_ZERO_ERROR; |
| 2200 | persistentName = ucnv_getStandardName(name: icuName, standard: "IANA" , pErrorCode: &status); |
| 2201 | } |
| 2202 | state->d[1] = const_cast<char *>(persistentName); |
| 2203 | state->d[0] = conv; |
| 2204 | state->flags |= QStringConverterBase::Flag::UsesIcu; |
| 2205 | qsizetype maxCharSize = ucnv_getMaxCharSize(converter: conv); |
| 2206 | state->clearFn = QStringConverterICU::clear_function; |
| 2207 | if (maxCharSize > 8 || maxCharSize < 1) { |
| 2208 | qWarning(msg: "Encountered unexpected codec \"%s\" which requires >8x space" , name); |
| 2209 | return nullptr; |
| 2210 | } else { |
| 2211 | return &forLength[maxCharSize - 1]; |
| 2212 | } |
| 2213 | |
| 2214 | } |
| 2215 | |
| 2216 | }; |
| 2217 | #endif |
| 2218 | |
| 2219 | /*! |
| 2220 | \internal |
| 2221 | */ |
| 2222 | QStringConverter::QStringConverter(QAnyStringView name, Flags f) |
| 2223 | : iface(nullptr), state(f) |
| 2224 | { |
| 2225 | auto e = encodingForName(name); |
| 2226 | if (e) |
| 2227 | iface = encodingInterfaces + int(*e); |
| 2228 | #if QT_CONFIG(icu) |
| 2229 | else |
| 2230 | iface = QStringConverterICU::make_icu_converter(state: &state, name); |
| 2231 | #endif |
| 2232 | } |
| 2233 | |
| 2234 | |
| 2235 | const char *QStringConverter::name() const noexcept |
| 2236 | { |
| 2237 | if (!iface) |
| 2238 | return nullptr; |
| 2239 | if (state.flags & QStringConverter::Flag::UsesIcu) { |
| 2240 | #if QT_CONFIG(icu) |
| 2241 | return static_cast<const char*>(state.d[1]); |
| 2242 | #else |
| 2243 | return nullptr; |
| 2244 | #endif |
| 2245 | } else { |
| 2246 | return iface->name; |
| 2247 | } |
| 2248 | } |
| 2249 | |
| 2250 | /*! |
| 2251 | \fn bool QStringConverter::isValid() const |
| 2252 | |
| 2253 | Returns true if this is a valid string converter that can be used for encoding or |
| 2254 | decoding text. |
| 2255 | |
| 2256 | Default constructed string converters or converters constructed with an unsupported |
| 2257 | name are not valid. |
| 2258 | */ |
| 2259 | |
| 2260 | /*! |
| 2261 | \fn void QStringConverter::resetState() |
| 2262 | |
| 2263 | Resets the internal state of the converter, clearing potential errors or partial |
| 2264 | conversions. |
| 2265 | */ |
| 2266 | |
| 2267 | /*! |
| 2268 | \fn bool QStringConverter::hasError() const |
| 2269 | |
| 2270 | Returns true if a conversion could not correctly convert a character. This could for example |
| 2271 | get triggered by an invalid UTF-8 sequence or when a character can't get converted due to |
| 2272 | limitations in the target encoding. |
| 2273 | */ |
| 2274 | |
| 2275 | /*! |
| 2276 | \fn const char *QStringConverter::name() const |
| 2277 | |
| 2278 | Returns the canonical name of the encoding this QStringConverter can encode or decode. |
| 2279 | Returns a nullptr if the converter is not valid. |
| 2280 | The returned name is UTF-8 encoded. |
| 2281 | |
| 2282 | \sa isValid() |
| 2283 | */ |
| 2284 | |
| 2285 | /*! |
| 2286 | Convert \a name to the corresponding \l Encoding member, if there is one. |
| 2287 | |
| 2288 | If the \a name is not the name of a codec listed in the Encoding enumeration, |
| 2289 | \c{std::nullopt} is returned. Such a name may, none the less, be accepted by |
| 2290 | the QStringConverter constructor when Qt is built with ICU, if ICU provides a |
| 2291 | converter with the given name. |
| 2292 | |
| 2293 | \note In Qt versions prior to 6.8, this function took only a \c{const char *}, |
| 2294 | which was expected to be UTF-8-encoded. |
| 2295 | */ |
| 2296 | std::optional<QStringConverter::Encoding> QStringConverter::encodingForName(QAnyStringView name) noexcept |
| 2297 | { |
| 2298 | if (name.isEmpty()) |
| 2299 | return std::nullopt; |
| 2300 | for (qsizetype i = 0; i < LastEncoding + 1; ++i) { |
| 2301 | if (nameMatch(a: encodingInterfaces[i].name, b: name)) |
| 2302 | return QStringConverter::Encoding(i); |
| 2303 | } |
| 2304 | if (nameMatch(a: "latin1" , b: name)) |
| 2305 | return QStringConverter::Latin1; |
| 2306 | return std::nullopt; |
| 2307 | } |
| 2308 | |
| 2309 | #ifndef QT_BOOTSTRAPPED |
| 2310 | /*! |
| 2311 | Returns the encoding for the content of \a data if it can be determined. |
| 2312 | \a expectedFirstCharacter can be passed as an additional hint to help determine |
| 2313 | the encoding. |
| 2314 | |
| 2315 | The returned optional is empty, if the encoding is unclear. |
| 2316 | */ |
| 2317 | std::optional<QStringConverter::Encoding> |
| 2318 | QStringConverter::encodingForData(QByteArrayView data, char16_t expectedFirstCharacter) noexcept |
| 2319 | { |
| 2320 | // someone set us up the BOM? |
| 2321 | qsizetype arraySize = data.size(); |
| 2322 | if (arraySize > 3) { |
| 2323 | char32_t uc = qFromUnaligned<char32_t>(src: data.data()); |
| 2324 | if (uc == qToBigEndian(source: char32_t(QChar::ByteOrderMark))) |
| 2325 | return QStringConverter::Utf32BE; |
| 2326 | if (uc == qToLittleEndian(source: char32_t(QChar::ByteOrderMark))) |
| 2327 | return QStringConverter::Utf32LE; |
| 2328 | if (expectedFirstCharacter) { |
| 2329 | // catch also anything starting with the expected character |
| 2330 | if (qToLittleEndian(source: uc) == expectedFirstCharacter) |
| 2331 | return QStringConverter::Utf32LE; |
| 2332 | else if (qToBigEndian(source: uc) == expectedFirstCharacter) |
| 2333 | return QStringConverter::Utf32BE; |
| 2334 | } |
| 2335 | } |
| 2336 | |
| 2337 | if (arraySize > 2) { |
| 2338 | if (memcmp(s1: data.data(), s2: utf8bom, n: sizeof(utf8bom)) == 0) |
| 2339 | return QStringConverter::Utf8; |
| 2340 | } |
| 2341 | |
| 2342 | if (arraySize > 1) { |
| 2343 | char16_t uc = qFromUnaligned<char16_t>(src: data.data()); |
| 2344 | if (uc == qToBigEndian(source: char16_t(QChar::ByteOrderMark))) |
| 2345 | return QStringConverter::Utf16BE; |
| 2346 | if (uc == qToLittleEndian(source: char16_t(QChar::ByteOrderMark))) |
| 2347 | return QStringConverter::Utf16LE; |
| 2348 | if (expectedFirstCharacter) { |
| 2349 | // catch also anything starting with the expected character |
| 2350 | if (qToLittleEndian(source: uc) == expectedFirstCharacter) |
| 2351 | return QStringConverter::Utf16LE; |
| 2352 | else if (qToBigEndian(source: uc) == expectedFirstCharacter) |
| 2353 | return QStringConverter::Utf16BE; |
| 2354 | } |
| 2355 | } |
| 2356 | return std::nullopt; |
| 2357 | } |
| 2358 | |
| 2359 | static QByteArray parseHtmlMetaForEncoding(QByteArrayView data) |
| 2360 | { |
| 2361 | static constexpr auto metaSearcher = qMakeStaticByteArrayMatcher(pattern: "meta " ); |
| 2362 | static constexpr auto charsetSearcher = qMakeStaticByteArrayMatcher(pattern: "charset=" ); |
| 2363 | |
| 2364 | QByteArray = data.first(n: qMin(a: data.size(), b: qsizetype(1024))).toByteArray().toLower(); |
| 2365 | qsizetype pos = metaSearcher.indexIn(haystack: header); |
| 2366 | if (pos != -1) { |
| 2367 | pos = charsetSearcher.indexIn(haystack: header, from: pos); |
| 2368 | if (pos != -1) { |
| 2369 | pos += qstrlen(str: "charset=" ); |
| 2370 | if (pos < header.size() && (header.at(i: pos) == '\"' || header.at(i: pos) == '\'')) |
| 2371 | ++pos; |
| 2372 | |
| 2373 | qsizetype pos2 = pos; |
| 2374 | // The attribute can be closed with either """, "'", ">" or "/", |
| 2375 | // none of which are valid charset characters. |
| 2376 | while (++pos2 < header.size()) { |
| 2377 | char ch = header.at(i: pos2); |
| 2378 | if (ch == '\"' || ch == '\'' || ch == '>' || ch == '/') { |
| 2379 | QByteArray name = header.mid(index: pos, len: pos2 - pos); |
| 2380 | qsizetype colon = name.indexOf(c: ':'); |
| 2381 | if (colon > 0) |
| 2382 | name = name.left(n: colon); |
| 2383 | name = name.simplified(); |
| 2384 | if (name == "unicode" ) // QTBUG-41998, ICU will return UTF-16. |
| 2385 | name = QByteArrayLiteral("UTF-8" ); |
| 2386 | if (!name.isEmpty()) |
| 2387 | return name; |
| 2388 | } |
| 2389 | } |
| 2390 | } |
| 2391 | } |
| 2392 | return QByteArray(); |
| 2393 | } |
| 2394 | |
| 2395 | /*! |
| 2396 | Tries to determine the encoding of the HTML in \a data by looking at leading byte |
| 2397 | order marks or a charset specifier in the HTML meta tag. If the optional is empty, |
| 2398 | the encoding specified is not supported by QStringConverter. If no encoding is |
| 2399 | detected, the method returns Utf8. |
| 2400 | |
| 2401 | \sa QStringDecoder::decoderForHtml() |
| 2402 | */ |
| 2403 | std::optional<QStringConverter::Encoding> QStringConverter::encodingForHtml(QByteArrayView data) |
| 2404 | { |
| 2405 | // determine charset |
| 2406 | std::optional<QStringConverter::Encoding> encoding = encodingForData(data); |
| 2407 | if (encoding) |
| 2408 | // trust the initial BOM |
| 2409 | return encoding; |
| 2410 | |
| 2411 | QByteArray encodingTag = parseHtmlMetaForEncoding(data); |
| 2412 | if (!encodingTag.isEmpty()) |
| 2413 | return encodingForName(name: encodingTag); |
| 2414 | |
| 2415 | return Utf8; |
| 2416 | } |
| 2417 | |
| 2418 | static qsizetype availableCodecCount() |
| 2419 | { |
| 2420 | #if !QT_CONFIG(icu) |
| 2421 | return QStringConverter::Encoding::LastEncoding; |
| 2422 | #else |
| 2423 | /* icu contains also the names of what Qt provides |
| 2424 | except for the special Locale one (so add one for it) |
| 2425 | */ |
| 2426 | return 1 + ucnv_countAvailable(); |
| 2427 | #endif |
| 2428 | } |
| 2429 | |
| 2430 | /*! |
| 2431 | Returns a list of names of supported codecs. The names returned |
| 2432 | by this function can be passed to QStringEncoder's and |
| 2433 | QStringDecoder's constructor to create a en- or decoder for |
| 2434 | the given codec. |
| 2435 | |
| 2436 | This function may be used to obtain a listing of additional codecs beyond |
| 2437 | the standard ones. Support for additional codecs requires Qt be compiled |
| 2438 | with support for the ICU library. |
| 2439 | |
| 2440 | \note The order of codecs is an internal implementation detail |
| 2441 | and not guaranteed to be stable. |
| 2442 | */ |
| 2443 | QStringList QStringConverter::availableCodecs() |
| 2444 | { |
| 2445 | auto availableCodec = [](qsizetype index) -> QString |
| 2446 | { |
| 2447 | #if !QT_CONFIG(icu) |
| 2448 | return QString::fromLatin1(encodingInterfaces[index].name); |
| 2449 | #else |
| 2450 | if (index == 0) // "Locale", not provided by icu |
| 2451 | return QString::fromLatin1( |
| 2452 | ba: encodingInterfaces[QStringConverter::Encoding::System].name); |
| 2453 | // this mirrors the setup we do to set a converters name |
| 2454 | UErrorCode status = U_ZERO_ERROR; |
| 2455 | auto icuName = ucnv_getAvailableName(n: int32_t(index - 1)); |
| 2456 | const char *standardName = ucnv_getStandardName(name: icuName, standard: "MIME" , pErrorCode: &status); |
| 2457 | if (U_FAILURE(code: status) || !standardName) { |
| 2458 | status = U_ZERO_ERROR; |
| 2459 | standardName = ucnv_getStandardName(name: icuName, standard: "IANA" , pErrorCode: &status); |
| 2460 | } |
| 2461 | if (!standardName) |
| 2462 | standardName = icuName; |
| 2463 | return QString::fromLatin1(ba: standardName); |
| 2464 | #endif |
| 2465 | }; |
| 2466 | |
| 2467 | qsizetype codecCount = availableCodecCount(); |
| 2468 | QStringList result; |
| 2469 | result.reserve(asize: codecCount); |
| 2470 | for (qsizetype i = 0; i < codecCount; ++i) |
| 2471 | result.push_back(t: availableCodec(i)); |
| 2472 | return result; |
| 2473 | } |
| 2474 | |
| 2475 | /*! |
| 2476 | Tries to determine the encoding of the HTML in \a data by looking at leading byte |
| 2477 | order marks or a charset specifier in the HTML meta tag and returns a QStringDecoder |
| 2478 | matching the encoding. If the returned decoder is not valid, |
| 2479 | the encoding specified is not supported by QStringConverter. If no encoding is |
| 2480 | detected, the method returns a decoder for Utf8. |
| 2481 | |
| 2482 | \sa isValid() |
| 2483 | */ |
| 2484 | QStringDecoder QStringDecoder::decoderForHtml(QByteArrayView data) |
| 2485 | { |
| 2486 | // determine charset |
| 2487 | std::optional<QStringConverter::Encoding> encoding = encodingForData(data); |
| 2488 | if (encoding) |
| 2489 | // trust the initial BOM |
| 2490 | return QStringDecoder(encoding.value()); |
| 2491 | |
| 2492 | QByteArray encodingTag = parseHtmlMetaForEncoding(data); |
| 2493 | if (!encodingTag.isEmpty()) |
| 2494 | return QStringDecoder(encodingTag); |
| 2495 | |
| 2496 | return QStringDecoder(Utf8); |
| 2497 | } |
| 2498 | #endif // !QT_BOOTSTRAPPED |
| 2499 | |
| 2500 | /*! |
| 2501 | Returns the canonical name for encoding \a e. |
| 2502 | */ |
| 2503 | const char *QStringConverter::nameForEncoding(QStringConverter::Encoding e) |
| 2504 | { |
| 2505 | return encodingInterfaces[int(e)].name; |
| 2506 | } |
| 2507 | |
| 2508 | /*! |
| 2509 | \class QStringEncoder |
| 2510 | \inmodule QtCore |
| 2511 | \brief The QStringEncoder class provides a state-based encoder for text. |
| 2512 | \reentrant |
| 2513 | \ingroup i18n |
| 2514 | |
| 2515 | A text encoder converts text from Qt's internal representation into an encoded |
| 2516 | text format using a specific encoding. |
| 2517 | |
| 2518 | Converting a string from Unicode to the local encoding can be achieved |
| 2519 | using the following code: |
| 2520 | |
| 2521 | \snippet code/src_corelib_text_qstringconverter.cpp 1 |
| 2522 | |
| 2523 | The encoder remembers any state that is required between calls, so converting |
| 2524 | data received in chunks, for example, when receiving it over a network, is just as |
| 2525 | easy, by calling the encoder whenever new data is available: |
| 2526 | |
| 2527 | \snippet code/src_corelib_text_qstringconverter.cpp 3 |
| 2528 | |
| 2529 | The QStringEncoder object maintains state between chunks and therefore |
| 2530 | works correctly even if a UTF-16 surrogate character is split between |
| 2531 | chunks. |
| 2532 | |
| 2533 | QStringEncoder objects can't be copied because of their internal state, but |
| 2534 | can be moved. |
| 2535 | |
| 2536 | \sa QStringConverter, QStringDecoder |
| 2537 | */ |
| 2538 | |
| 2539 | /*! |
| 2540 | \fn constexpr QStringEncoder::QStringEncoder(const Interface *i) |
| 2541 | \internal |
| 2542 | */ |
| 2543 | |
| 2544 | /*! |
| 2545 | \fn constexpr QStringEncoder::QStringEncoder() |
| 2546 | |
| 2547 | Default constructs an encoder. The default encoder is not valid, |
| 2548 | and can't be used for converting text. |
| 2549 | */ |
| 2550 | |
| 2551 | /*! |
| 2552 | \fn constexpr QStringEncoder::QStringEncoder(Encoding encoding, Flags flags = Flag::Default) |
| 2553 | |
| 2554 | Creates an encoder object using \a encoding and \a flags. |
| 2555 | */ |
| 2556 | |
| 2557 | /*! |
| 2558 | \fn QStringEncoder::QStringEncoder(QAnyStringView name, Flags flags = Flag::Default) |
| 2559 | |
| 2560 | Creates an encoder object using \a name and \a flags. |
| 2561 | If \a name is not the name of a known encoding an invalid converter will get created. |
| 2562 | |
| 2563 | \note In Qt versions prior to 6.8, this function took only a \c{const char *}, |
| 2564 | which was expected to be UTF-8-encoded. |
| 2565 | |
| 2566 | \sa isValid() |
| 2567 | */ |
| 2568 | |
| 2569 | /*! |
| 2570 | \fn QStringEncoder::DecodedData<const QString &> QStringEncoder::encode(const QString &in) |
| 2571 | \fn QStringEncoder::DecodedData<QStringView> QStringEncoder::encode(QStringView in) |
| 2572 | \fn QStringEncoder::DecodedData<const QString &> QStringEncoder::operator()(const QString &in) |
| 2573 | \fn QStringEncoder::DecodedData<QStringView> QStringEncoder::operator()(QStringView in) |
| 2574 | |
| 2575 | Converts \a in and returns a struct that is implicitly convertible to QByteArray. |
| 2576 | |
| 2577 | \snippet code/src_corelib_text_qstringconverter.cpp 5 |
| 2578 | */ |
| 2579 | |
| 2580 | /*! |
| 2581 | \fn qsizetype QStringEncoder::requiredSpace(qsizetype inputLength) const |
| 2582 | |
| 2583 | Returns the maximum amount of characters required to be able to process |
| 2584 | \a inputLength decoded data. |
| 2585 | |
| 2586 | \sa appendToBuffer() |
| 2587 | */ |
| 2588 | |
| 2589 | /*! |
| 2590 | \fn char *QStringEncoder::appendToBuffer(char *out, QStringView in) |
| 2591 | |
| 2592 | Encodes \a in and writes the encoded result into the buffer |
| 2593 | starting at \a out. Returns a pointer to the end of the data written. |
| 2594 | |
| 2595 | \note \a out must be large enough to be able to hold all the decoded data. Use |
| 2596 | requiredSpace() to determine the maximum size requirement to be able to encode |
| 2597 | \a in. |
| 2598 | |
| 2599 | \sa requiredSpace() |
| 2600 | */ |
| 2601 | |
| 2602 | /*! |
| 2603 | \class QStringDecoder |
| 2604 | \inmodule QtCore |
| 2605 | \brief The QStringDecoder class provides a state-based decoder for text. |
| 2606 | \reentrant |
| 2607 | \ingroup i18n |
| 2608 | |
| 2609 | A text decoder converts text an encoded text format that uses a specific encoding |
| 2610 | into Qt's internal representation. |
| 2611 | |
| 2612 | Converting encoded data into a QString can be achieved |
| 2613 | using the following code: |
| 2614 | |
| 2615 | \snippet code/src_corelib_text_qstringconverter.cpp 0 |
| 2616 | |
| 2617 | The decoder remembers any state that is required between calls, so converting |
| 2618 | data received in chunks, for example, when receiving it over a network, is just as |
| 2619 | easy, by calling the decoder whenever new data is available: |
| 2620 | |
| 2621 | \snippet code/src_corelib_text_qstringconverter.cpp 2 |
| 2622 | |
| 2623 | The QStringDecoder object maintains state between chunks and therefore |
| 2624 | works correctly even if chunks are split in the middle of a multi-byte character |
| 2625 | sequence. |
| 2626 | |
| 2627 | QStringDecoder objects can't be copied because of their internal state, but |
| 2628 | can be moved. |
| 2629 | |
| 2630 | \sa QStringConverter, QStringEncoder |
| 2631 | */ |
| 2632 | |
| 2633 | /*! |
| 2634 | \fn constexpr QStringDecoder::QStringDecoder(const Interface *i) |
| 2635 | \internal |
| 2636 | */ |
| 2637 | |
| 2638 | /*! |
| 2639 | \fn constexpr QStringDecoder::QStringDecoder() |
| 2640 | |
| 2641 | Default constructs an decoder. The default decoder is not valid, |
| 2642 | and can't be used for converting text. |
| 2643 | */ |
| 2644 | |
| 2645 | /*! |
| 2646 | \fn constexpr QStringDecoder::QStringDecoder(Encoding encoding, Flags flags = Flag::Default) |
| 2647 | |
| 2648 | Creates an decoder object using \a encoding and \a flags. |
| 2649 | */ |
| 2650 | |
| 2651 | /*! |
| 2652 | \fn QStringDecoder::QStringDecoder(QAnyStringView name, Flags flags = Flag::Default) |
| 2653 | |
| 2654 | Creates an decoder object using \a name and \a flags. |
| 2655 | If \a name is not the name of a known encoding an invalid converter will get created. |
| 2656 | |
| 2657 | \note In Qt versions prior to 6.8, this function took only a \c{const char *}, |
| 2658 | which was expected to be UTF-8-encoded. |
| 2659 | |
| 2660 | \sa isValid() |
| 2661 | */ |
| 2662 | |
| 2663 | /*! |
| 2664 | \fn QStringDecoder::EncodedData<const QByteArray &> QStringDecoder::operator()(const QByteArray &ba) |
| 2665 | \fn QStringDecoder::EncodedData<const QByteArray &> QStringDecoder::decode(const QByteArray &ba) |
| 2666 | \fn QStringDecoder::EncodedData<QByteArrayView> QStringDecoder::operator()(QByteArrayView ba) |
| 2667 | \fn QStringDecoder::EncodedData<QByteArrayView> QStringDecoder::decode(QByteArrayView ba) |
| 2668 | |
| 2669 | Converts \a ba and returns a struct that is implicitly convertible to QString. |
| 2670 | |
| 2671 | |
| 2672 | \snippet code/src_corelib_text_qstringconverter.cpp 4 |
| 2673 | */ |
| 2674 | |
| 2675 | /*! |
| 2676 | \fn qsizetype QStringDecoder::requiredSpace(qsizetype inputLength) const |
| 2677 | |
| 2678 | Returns the maximum amount of UTF-16 code units required to be able to process |
| 2679 | \a inputLength encoded data. |
| 2680 | |
| 2681 | \sa appendToBuffer |
| 2682 | */ |
| 2683 | |
| 2684 | /*! |
| 2685 | \fn QChar *QStringDecoder::appendToBuffer(QChar *out, QByteArrayView in) |
| 2686 | |
| 2687 | Decodes the sequence of bytes viewed by \a in and writes the decoded result into |
| 2688 | the buffer starting at \a out. Returns a pointer to the end of data written. |
| 2689 | |
| 2690 | \a out needs to be large enough to be able to hold all the decoded data. Use |
| 2691 | \l{requiredSpace} to determine the maximum size requirements to decode an encoded |
| 2692 | data buffer of \c in.size() bytes. |
| 2693 | |
| 2694 | \sa requiredSpace |
| 2695 | */ |
| 2696 | |
| 2697 | /*! |
| 2698 | \fn char16_t *QStringDecoder::appendToBuffer(char16_t *out, QByteArrayView in) |
| 2699 | \since 6.6 |
| 2700 | \overload |
| 2701 | */ |
| 2702 | |
| 2703 | QT_END_NAMESPACE |
| 2704 | |