1 | // Copyright (C) 2020 The Qt Company Ltd. |
2 | // Copyright (C) 2020 Intel Corporation. |
3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
4 | |
5 | #include <qstringconverter.h> |
6 | #include <private/qstringconverter_p.h> |
7 | #include "qendian.h" |
8 | |
9 | #include "private/qsimd_p.h" |
10 | #include "private/qstringiterator_p.h" |
11 | #include "private/qtools_p.h" |
12 | #include "qbytearraymatcher.h" |
13 | |
14 | #if QT_CONFIG(icu) |
15 | #include <unicode/ucnv.h> |
16 | #include <unicode/ucnv_cb.h> |
17 | #include <unicode/ucnv_err.h> |
18 | #include <unicode/ustring.h> |
19 | #endif |
20 | |
21 | #ifdef Q_OS_WIN |
22 | #include <qt_windows.h> |
23 | #ifndef QT_BOOTSTRAPPED |
24 | #include <QtCore/qvarlengtharray.h> |
25 | #endif // !QT_BOOTSTRAPPED |
26 | #endif |
27 | |
28 | #if __has_include(<bit>) && __cplusplus > 201703L |
29 | #include <bit> |
30 | #endif |
31 | |
32 | QT_BEGIN_NAMESPACE |
33 | |
34 | using namespace QtMiscUtils; |
35 | |
36 | static_assert(std::is_nothrow_move_constructible_v<QStringEncoder>); |
37 | static_assert(std::is_nothrow_move_assignable_v<QStringEncoder>); |
38 | static_assert(std::is_nothrow_move_constructible_v<QStringDecoder>); |
39 | static_assert(std::is_nothrow_move_assignable_v<QStringDecoder>); |
40 | |
41 | enum { Endian = 0, Data = 1 }; |
42 | |
43 | static const uchar utf8bom[] = { 0xef, 0xbb, 0xbf }; |
44 | |
45 | #if defined(__SSE2__) || defined(__ARM_NEON__) |
46 | static Q_ALWAYS_INLINE uint qBitScanReverse(unsigned v) noexcept |
47 | { |
48 | #if defined(__cpp_lib_int_pow2) && __cpp_lib_int_pow2 >= 202002L |
49 | return std::bit_width(v) - 1; |
50 | #else |
51 | uint result = qCountLeadingZeroBits(v); |
52 | // Now Invert the result: clz will count *down* from the msb to the lsb, so the msb index is 31 |
53 | // and the lsb index is 0. The result for _bit_scan_reverse is expected to be the index when |
54 | // counting up: msb index is 0 (because it starts there), and the lsb index is 31. |
55 | result ^= sizeof(unsigned) * 8 - 1; |
56 | return result; |
57 | #endif |
58 | } |
59 | #endif |
60 | |
61 | #if defined(__SSE2__) |
62 | static inline bool simdEncodeAscii(uchar *&dst, const char16_t *&nextAscii, const char16_t *&src, const char16_t *end) |
63 | { |
64 | // do sixteen characters at a time |
65 | for ( ; end - src >= 16; src += 16, dst += 16) { |
66 | # ifdef __AVX2__ |
67 | __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src)); |
68 | __m128i data1 = _mm256_castsi256_si128(data); |
69 | __m128i data2 = _mm256_extracti128_si256(data, 1); |
70 | # else |
71 | __m128i data1 = _mm_loadu_si128(p: (const __m128i*)src); |
72 | __m128i data2 = _mm_loadu_si128(p: 1+(const __m128i*)src); |
73 | # endif |
74 | |
75 | // check if everything is ASCII |
76 | // the highest ASCII value is U+007F |
77 | // Do the packing directly: |
78 | // The PACKUSWB instruction has packs a signed 16-bit integer to an unsigned 8-bit |
79 | // with saturation. That is, anything from 0x0100 to 0x7fff is saturated to 0xff, |
80 | // while all negatives (0x8000 to 0xffff) get saturated to 0x00. To detect non-ASCII, |
81 | // we simply do a signed greater-than comparison to 0x00. That means we detect NULs as |
82 | // "non-ASCII", but it's an acceptable compromise. |
83 | __m128i packed = _mm_packus_epi16(a: data1, b: data2); |
84 | __m128i nonAscii = _mm_cmpgt_epi8(a: packed, b: _mm_setzero_si128()); |
85 | |
86 | // store, even if there are non-ASCII characters here |
87 | _mm_storeu_si128(p: (__m128i*)dst, b: packed); |
88 | |
89 | // n will contain 1 bit set per character in [data1, data2] that is non-ASCII (or NUL) |
90 | ushort n = ~_mm_movemask_epi8(a: nonAscii); |
91 | if (n) { |
92 | // find the next probable ASCII character |
93 | // we don't want to load 32 bytes again in this loop if we know there are non-ASCII |
94 | // characters still coming |
95 | nextAscii = src + qBitScanReverse(v: n) + 1; |
96 | |
97 | n = qCountTrailingZeroBits(v: n); |
98 | dst += n; |
99 | src += n; |
100 | return false; |
101 | } |
102 | } |
103 | |
104 | if (end - src >= 8) { |
105 | // do eight characters at a time |
106 | __m128i data = _mm_loadu_si128(p: reinterpret_cast<const __m128i *>(src)); |
107 | __m128i packed = _mm_packus_epi16(a: data, b: data); |
108 | __m128i nonAscii = _mm_cmpgt_epi8(a: packed, b: _mm_setzero_si128()); |
109 | |
110 | // store even non-ASCII |
111 | _mm_storel_epi64(p: reinterpret_cast<__m128i *>(dst), a: packed); |
112 | |
113 | uchar n = ~_mm_movemask_epi8(a: nonAscii); |
114 | if (n) { |
115 | nextAscii = src + qBitScanReverse(v: n) + 1; |
116 | n = qCountTrailingZeroBits(v: n); |
117 | dst += n; |
118 | src += n; |
119 | return false; |
120 | } |
121 | } |
122 | |
123 | return src == end; |
124 | } |
125 | |
126 | static inline bool simdDecodeAscii(char16_t *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end) |
127 | { |
128 | // do sixteen characters at a time |
129 | for ( ; end - src >= 16; src += 16, dst += 16) { |
130 | __m128i data = _mm_loadu_si128(p: (const __m128i*)src); |
131 | |
132 | #ifdef __AVX2__ |
133 | const int BitSpacing = 2; |
134 | // load and zero extend to an YMM register |
135 | const __m256i extended = _mm256_cvtepu8_epi16(data); |
136 | |
137 | uint n = _mm256_movemask_epi8(extended); |
138 | if (!n) { |
139 | // store |
140 | _mm256_storeu_si256((__m256i*)dst, extended); |
141 | continue; |
142 | } |
143 | #else |
144 | const int BitSpacing = 1; |
145 | |
146 | // check if everything is ASCII |
147 | // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII |
148 | uint n = _mm_movemask_epi8(a: data); |
149 | if (!n) { |
150 | // unpack |
151 | _mm_storeu_si128(p: (__m128i*)dst, b: _mm_unpacklo_epi8(a: data, b: _mm_setzero_si128())); |
152 | _mm_storeu_si128(p: 1+(__m128i*)dst, b: _mm_unpackhi_epi8(a: data, b: _mm_setzero_si128())); |
153 | continue; |
154 | } |
155 | #endif |
156 | |
157 | // copy the front part that is still ASCII |
158 | while (!(n & 1)) { |
159 | *dst++ = *src++; |
160 | n >>= BitSpacing; |
161 | } |
162 | |
163 | // find the next probable ASCII character |
164 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
165 | // characters still coming |
166 | n = qBitScanReverse(v: n); |
167 | nextAscii = src + (n / BitSpacing) + 1; |
168 | return false; |
169 | |
170 | } |
171 | |
172 | if (end - src >= 8) { |
173 | __m128i data = _mm_loadl_epi64(p: reinterpret_cast<const __m128i *>(src)); |
174 | uint n = _mm_movemask_epi8(a: data) & 0xff; |
175 | if (!n) { |
176 | // unpack and store |
177 | _mm_storeu_si128(p: reinterpret_cast<__m128i *>(dst), b: _mm_unpacklo_epi8(a: data, b: _mm_setzero_si128())); |
178 | } else { |
179 | while (!(n & 1)) { |
180 | *dst++ = *src++; |
181 | n >>= 1; |
182 | } |
183 | |
184 | n = qBitScanReverse(v: n); |
185 | nextAscii = src + n + 1; |
186 | return false; |
187 | } |
188 | } |
189 | |
190 | return src == end; |
191 | } |
192 | |
193 | static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii) |
194 | { |
195 | #ifdef __AVX2__ |
196 | // do 32 characters at a time |
197 | // (this is similar to simdTestMask in qstring.cpp) |
198 | const __m256i mask = _mm256_set1_epi8(char(0x80)); |
199 | for ( ; end - src >= 32; src += 32) { |
200 | __m256i data = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src)); |
201 | if (_mm256_testz_si256(mask, data)) |
202 | continue; |
203 | |
204 | uint n = _mm256_movemask_epi8(data); |
205 | Q_ASSUME(n); |
206 | |
207 | // find the next probable ASCII character |
208 | // we don't want to load 32 bytes again in this loop if we know there are non-ASCII |
209 | // characters still coming |
210 | nextAscii = src + qBitScanReverse(n) + 1; |
211 | |
212 | // return the non-ASCII character |
213 | return src + qCountTrailingZeroBits(n); |
214 | } |
215 | #endif |
216 | |
217 | // do sixteen characters at a time |
218 | for ( ; end - src >= 16; src += 16) { |
219 | __m128i data = _mm_loadu_si128(p: reinterpret_cast<const __m128i*>(src)); |
220 | |
221 | // check if everything is ASCII |
222 | // movemask extracts the high bit of every byte, so n is non-zero if something isn't ASCII |
223 | uint n = _mm_movemask_epi8(a: data); |
224 | if (!n) |
225 | continue; |
226 | |
227 | // find the next probable ASCII character |
228 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
229 | // characters still coming |
230 | nextAscii = src + qBitScanReverse(v: n) + 1; |
231 | |
232 | // return the non-ASCII character |
233 | return src + qCountTrailingZeroBits(v: n); |
234 | } |
235 | |
236 | // do four characters at a time |
237 | for ( ; end - src >= 4; src += 4) { |
238 | quint32 data = qFromUnaligned<quint32>(src); |
239 | data &= 0x80808080U; |
240 | if (!data) |
241 | continue; |
242 | |
243 | // We don't try to guess which of the three bytes is ASCII and which |
244 | // one isn't. The chance that at least two of them are non-ASCII is |
245 | // better than 75%. |
246 | nextAscii = src; |
247 | return src; |
248 | } |
249 | nextAscii = end; |
250 | return src; |
251 | } |
252 | |
253 | // Compare only the US-ASCII beginning of [src8, end8) and [src16, end16) |
254 | // and advance src8 and src16 to the first character that could not be compared |
255 | static void simdCompareAscii(const qchar8_t *&src8, const qchar8_t *end8, const char16_t *&src16, const char16_t *end16) |
256 | { |
257 | int bitSpacing = 1; |
258 | qptrdiff len = qMin(a: end8 - src8, b: end16 - src16); |
259 | qptrdiff offset = 0; |
260 | uint mask = 0; |
261 | |
262 | // do sixteen characters at a time |
263 | for ( ; offset + 16 < len; offset += 16) { |
264 | __m128i data8 = _mm_loadu_si128(p: reinterpret_cast<const __m128i *>(src8 + offset)); |
265 | #ifdef __AVX2__ |
266 | // AVX2 version, use 256-bit registers and VPMOVXZBW |
267 | __m256i data16 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(src16 + offset)); |
268 | |
269 | // expand US-ASCII as if it were Latin1 and confirm it's US-ASCII |
270 | __m256i datax8 = _mm256_cvtepu8_epi16(data8); |
271 | mask = _mm256_movemask_epi8(datax8); |
272 | if (mask) |
273 | break; |
274 | |
275 | // compare Latin1 to UTF-16 |
276 | __m256i latin1cmp = _mm256_cmpeq_epi16(datax8, data16); |
277 | mask = ~_mm256_movemask_epi8(latin1cmp); |
278 | if (mask) |
279 | break; |
280 | #else |
281 | // non-AVX2 code |
282 | __m128i datalo16 = _mm_loadu_si128(p: reinterpret_cast<const __m128i *>(src16 + offset)); |
283 | __m128i datahi16 = _mm_loadu_si128(p: reinterpret_cast<const __m128i *>(src16 + offset) + 1); |
284 | |
285 | // expand US-ASCII as if it were Latin1, we'll confirm later |
286 | __m128i datalo8 = _mm_unpacklo_epi8(a: data8, b: _mm_setzero_si128()); |
287 | __m128i datahi8 = _mm_unpackhi_epi8(a: data8, b: _mm_setzero_si128()); |
288 | |
289 | // compare Latin1 to UTF-16 |
290 | __m128i latin1cmplo = _mm_cmpeq_epi16(a: datalo8, b: datalo16); |
291 | __m128i latin1cmphi = _mm_cmpeq_epi16(a: datahi8, b: datahi16); |
292 | mask = _mm_movemask_epi8(a: latin1cmphi) << 16; |
293 | mask |= ushort(_mm_movemask_epi8(a: latin1cmplo)); |
294 | mask = ~mask; |
295 | if (mask) |
296 | break; |
297 | |
298 | // confirm it was US-ASCII |
299 | mask = _mm_movemask_epi8(a: data8); |
300 | if (mask) { |
301 | bitSpacing = 0; |
302 | break; |
303 | } |
304 | #endif |
305 | } |
306 | |
307 | // helper for comparing 4 or 8 characters |
308 | auto cmp_lt_16 = [&mask, &offset](int n, __m128i data8, __m128i data16) { |
309 | // n = 4 -> sizemask = 0xff |
310 | // n = 8 -> sizemask = 0xffff |
311 | unsigned sizemask = (1U << (2 * n)) - 1; |
312 | |
313 | // expand as if Latin1 |
314 | data8 = _mm_unpacklo_epi8(a: data8, b: _mm_setzero_si128()); |
315 | |
316 | // compare and confirm it's US-ASCII |
317 | __m128i latin1cmp = _mm_cmpeq_epi16(a: data8, b: data16); |
318 | mask = ~_mm_movemask_epi8(a: latin1cmp) & sizemask; |
319 | mask |= _mm_movemask_epi8(a: data8); |
320 | if (mask == 0) |
321 | offset += n; |
322 | }; |
323 | |
324 | // do eight characters at a time |
325 | if (mask == 0 && offset + 8 < len) { |
326 | __m128i data8 = _mm_loadl_epi64(p: reinterpret_cast<const __m128i *>(src8 + offset)); |
327 | __m128i data16 = _mm_loadu_si128(p: reinterpret_cast<const __m128i *>(src16 + offset)); |
328 | cmp_lt_16(8, data8, data16); |
329 | } |
330 | |
331 | // do four characters |
332 | if (mask == 0 && offset + 4 < len) { |
333 | __m128i data8 = _mm_cvtsi32_si128(a: qFromUnaligned<quint32>(src: src8 + offset)); |
334 | __m128i data16 = _mm_loadl_epi64(p: reinterpret_cast<const __m128i *>(src16 + offset)); |
335 | cmp_lt_16(4, data8, data16); |
336 | } |
337 | |
338 | // correct the source pointers to point to the first character we couldn't deal with |
339 | if (mask) |
340 | offset += qCountTrailingZeroBits(v: mask) >> bitSpacing; |
341 | src8 += offset; |
342 | src16 += offset; |
343 | } |
344 | #elif defined(__ARM_NEON__) |
345 | static inline bool simdEncodeAscii(uchar *&dst, const char16_t *&nextAscii, const char16_t *&src, const char16_t *end) |
346 | { |
347 | uint16x8_t maxAscii = vdupq_n_u16(0x7f); |
348 | uint16x8_t mask1 = { 1, 1 << 2, 1 << 4, 1 << 6, 1 << 8, 1 << 10, 1 << 12, 1 << 14 }; |
349 | uint16x8_t mask2 = vshlq_n_u16(mask1, 1); |
350 | |
351 | // do sixteen characters at a time |
352 | for ( ; end - src >= 16; src += 16, dst += 16) { |
353 | // load 2 lanes (or: "load interleaved") |
354 | uint16x8x2_t in = vld2q_u16(reinterpret_cast<const uint16_t *>(src)); |
355 | |
356 | // check if any of the elements > 0x7f, select 1 bit per element (element 0 -> bit 0, element 1 -> bit 1, etc), |
357 | // add those together into a scalar, and merge the scalars. |
358 | uint16_t nonAscii = vaddvq_u16(vandq_u16(vcgtq_u16(in.val[0], maxAscii), mask1)) |
359 | | vaddvq_u16(vandq_u16(vcgtq_u16(in.val[1], maxAscii), mask2)); |
360 | |
361 | // merge the two lanes by shifting the values of the second by 8 and inserting them |
362 | uint16x8_t out = vsliq_n_u16(in.val[0], in.val[1], 8); |
363 | |
364 | // store, even if there are non-ASCII characters here |
365 | vst1q_u8(dst, vreinterpretq_u8_u16(out)); |
366 | |
367 | if (nonAscii) { |
368 | // find the next probable ASCII character |
369 | // we don't want to load 32 bytes again in this loop if we know there are non-ASCII |
370 | // characters still coming |
371 | nextAscii = src + qBitScanReverse(nonAscii) + 1; |
372 | |
373 | nonAscii = qCountTrailingZeroBits(nonAscii); |
374 | dst += nonAscii; |
375 | src += nonAscii; |
376 | return false; |
377 | } |
378 | } |
379 | return src == end; |
380 | } |
381 | |
382 | static inline bool simdDecodeAscii(char16_t *&dst, const uchar *&nextAscii, const uchar *&src, const uchar *end) |
383 | { |
384 | // do eight characters at a time |
385 | uint8x8_t msb_mask = vdup_n_u8(0x80); |
386 | uint8x8_t add_mask = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 }; |
387 | for ( ; end - src >= 8; src += 8, dst += 8) { |
388 | uint8x8_t c = vld1_u8(src); |
389 | uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask)); |
390 | if (!n) { |
391 | // store |
392 | vst1q_u16(reinterpret_cast<uint16_t *>(dst), vmovl_u8(c)); |
393 | continue; |
394 | } |
395 | |
396 | // copy the front part that is still ASCII |
397 | while (!(n & 1)) { |
398 | *dst++ = *src++; |
399 | n >>= 1; |
400 | } |
401 | |
402 | // find the next probable ASCII character |
403 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
404 | // characters still coming |
405 | n = qBitScanReverse(n); |
406 | nextAscii = src + n + 1; |
407 | return false; |
408 | |
409 | } |
410 | return src == end; |
411 | } |
412 | |
413 | static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii) |
414 | { |
415 | // The SIMD code below is untested, so just force an early return until |
416 | // we've had the time to verify it works. |
417 | nextAscii = end; |
418 | return src; |
419 | |
420 | // do eight characters at a time |
421 | uint8x8_t msb_mask = vdup_n_u8(0x80); |
422 | uint8x8_t add_mask = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 }; |
423 | for ( ; end - src >= 8; src += 8) { |
424 | uint8x8_t c = vld1_u8(src); |
425 | uint8_t n = vaddv_u8(vand_u8(vcge_u8(c, msb_mask), add_mask)); |
426 | if (!n) |
427 | continue; |
428 | |
429 | // find the next probable ASCII character |
430 | // we don't want to load 16 bytes again in this loop if we know there are non-ASCII |
431 | // characters still coming |
432 | nextAscii = src + qBitScanReverse(n) + 1; |
433 | |
434 | // return the non-ASCII character |
435 | return src + qCountTrailingZeroBits(n); |
436 | } |
437 | nextAscii = end; |
438 | return src; |
439 | } |
440 | |
441 | static void simdCompareAscii(const qchar8_t *&, const qchar8_t *, const char16_t *&, const char16_t *) |
442 | { |
443 | } |
444 | #else |
445 | static inline bool simdEncodeAscii(uchar *, const char16_t *, const char16_t *, const char16_t *) |
446 | { |
447 | return false; |
448 | } |
449 | |
450 | static inline bool simdDecodeAscii(char16_t *, const uchar *, const uchar *, const uchar *) |
451 | { |
452 | return false; |
453 | } |
454 | |
455 | static inline const uchar *simdFindNonAscii(const uchar *src, const uchar *end, const uchar *&nextAscii) |
456 | { |
457 | nextAscii = end; |
458 | return src; |
459 | } |
460 | |
461 | static void simdCompareAscii(const qchar8_t *&, const qchar8_t *, const char16_t *&, const char16_t *) |
462 | { |
463 | } |
464 | #endif |
465 | |
466 | enum { = 1 }; |
467 | |
468 | QByteArray QUtf8::convertFromUnicode(QStringView in) |
469 | { |
470 | qsizetype len = in.size(); |
471 | |
472 | // create a QByteArray with the worst case scenario size |
473 | QByteArray result(len * 3, Qt::Uninitialized); |
474 | uchar *dst = reinterpret_cast<uchar *>(const_cast<char *>(result.constData())); |
475 | const char16_t *src = reinterpret_cast<const char16_t *>(in.data()); |
476 | const char16_t *const end = src + len; |
477 | |
478 | while (src != end) { |
479 | const char16_t *nextAscii = end; |
480 | if (simdEncodeAscii(dst, nextAscii, src, end)) |
481 | break; |
482 | |
483 | do { |
484 | char16_t u = *src++; |
485 | int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(u, dst, src, end); |
486 | if (res < 0) { |
487 | // encoding error - append '?' |
488 | *dst++ = '?'; |
489 | } |
490 | } while (src < nextAscii); |
491 | } |
492 | |
493 | result.truncate(pos: dst - reinterpret_cast<uchar *>(const_cast<char *>(result.constData()))); |
494 | return result; |
495 | } |
496 | |
497 | QByteArray QUtf8::convertFromUnicode(QStringView in, QStringConverterBase::State *state) |
498 | { |
499 | QByteArray ba(3*in.size() +3, Qt::Uninitialized); |
500 | char *end = convertFromUnicode(out: ba.data(), in, state); |
501 | ba.truncate(pos: end - ba.data()); |
502 | return ba; |
503 | } |
504 | |
505 | char *QUtf8::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state) |
506 | { |
507 | Q_ASSERT(state); |
508 | qsizetype len = in.size(); |
509 | if (!len) |
510 | return out; |
511 | |
512 | auto appendReplacementChar = [state](uchar *cursor) -> uchar * { |
513 | if (state->flags & QStringConverter::Flag::ConvertInvalidToNull) { |
514 | *cursor++ = 0; |
515 | } else { |
516 | // QChar::replacement encoded in utf8 |
517 | *cursor++ = 0xef; |
518 | *cursor++ = 0xbf; |
519 | *cursor++ = 0xbd; |
520 | } |
521 | return cursor; |
522 | }; |
523 | |
524 | uchar *cursor = reinterpret_cast<uchar *>(out); |
525 | const char16_t *src = in.utf16(); |
526 | const char16_t *const end = src + len; |
527 | |
528 | if (!(state->flags & QStringDecoder::Flag::Stateless)) { |
529 | if (state->remainingChars) { |
530 | int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(u: state->state_data[0], dst&: cursor, src, end); |
531 | if (res < 0) |
532 | cursor = appendReplacementChar(cursor); |
533 | state->state_data[0] = 0; |
534 | state->remainingChars = 0; |
535 | } else if (!(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom) { |
536 | // append UTF-8 BOM |
537 | *cursor++ = utf8bom[0]; |
538 | *cursor++ = utf8bom[1]; |
539 | *cursor++ = utf8bom[2]; |
540 | state->internalState |= HeaderDone; |
541 | } |
542 | } |
543 | |
544 | while (src != end) { |
545 | const char16_t *nextAscii = end; |
546 | if (simdEncodeAscii(dst&: cursor, nextAscii, src, end)) |
547 | break; |
548 | |
549 | do { |
550 | char16_t uc = *src++; |
551 | int res = QUtf8Functions::toUtf8<QUtf8BaseTraits>(u: uc, dst&: cursor, src, end); |
552 | if (Q_LIKELY(res >= 0)) |
553 | continue; |
554 | |
555 | if (res == QUtf8BaseTraits::Error) { |
556 | // encoding error |
557 | ++state->invalidChars; |
558 | cursor = appendReplacementChar(cursor); |
559 | } else if (res == QUtf8BaseTraits::EndOfString) { |
560 | if (state->flags & QStringConverter::Flag::Stateless) { |
561 | ++state->invalidChars; |
562 | cursor = appendReplacementChar(cursor); |
563 | } else { |
564 | state->remainingChars = 1; |
565 | state->state_data[0] = uc; |
566 | } |
567 | return reinterpret_cast<char *>(cursor); |
568 | } |
569 | } while (src < nextAscii); |
570 | } |
571 | |
572 | return reinterpret_cast<char *>(cursor); |
573 | } |
574 | |
575 | char *QUtf8::convertFromLatin1(char *out, QLatin1StringView in) |
576 | { |
577 | // ### SIMD-optimize: |
578 | for (uchar ch : in) { |
579 | if (ch < 128) { |
580 | *out++ = ch; |
581 | } else { |
582 | // as per https://en.wikipedia.org/wiki/UTF-8#Encoding, 2nd row |
583 | *out++ = 0b110'0'0000u | (ch >> 6); |
584 | *out++ = 0b10'00'0000u | (ch & 0b0011'1111); |
585 | } |
586 | } |
587 | return out; |
588 | } |
589 | |
590 | QString QUtf8::convertToUnicode(QByteArrayView in) |
591 | { |
592 | // UTF-8 to UTF-16 always needs the exact same number of words or less: |
593 | // UTF-8 UTF-16 |
594 | // 1 byte 1 word |
595 | // 2 bytes 1 word |
596 | // 3 bytes 1 word |
597 | // 4 bytes 2 words (one surrogate pair) |
598 | // That is, we'll use the full buffer if the input is US-ASCII (1-byte UTF-8), |
599 | // half the buffer for U+0080-U+07FF text (e.g., Greek, Cyrillic, Arabic) or |
600 | // non-BMP text, and one third of the buffer for U+0800-U+FFFF text (e.g, CJK). |
601 | // |
602 | // The table holds for invalid sequences too: we'll insert one replacement char |
603 | // per invalid byte. |
604 | QString result(in.size(), Qt::Uninitialized); |
605 | QChar *data = const_cast<QChar*>(result.constData()); // we know we're not shared |
606 | const QChar *end = convertToUnicode(buffer: data, in); |
607 | result.truncate(pos: end - data); |
608 | return result; |
609 | } |
610 | |
611 | /*! \internal |
612 | \since 6.6 |
613 | \overload |
614 | |
615 | Converts the UTF-8 sequence of bytes viewed by \a in to a sequence of |
616 | QChar starting at \a dst in the destination buffer. The buffer is expected |
617 | to be large enough to hold the result. An upper bound for the size of the |
618 | buffer is \c in.size() QChars. |
619 | |
620 | If, during decoding, an error occurs, a QChar::ReplacementCharacter is |
621 | written. |
622 | |
623 | Returns a pointer to one past the last QChar written. |
624 | |
625 | This function never throws. |
626 | |
627 | For QChar buffers, instead of casting manually, you can use the static |
628 | QUtf8::convertToUnicode(QChar *, QByteArrayView) directly. |
629 | */ |
630 | char16_t *QUtf8::convertToUnicode(char16_t *dst, QByteArrayView in) noexcept |
631 | { |
632 | const uchar *const start = reinterpret_cast<const uchar *>(in.data()); |
633 | const uchar *src = start; |
634 | const uchar *end = src + in.size(); |
635 | |
636 | // attempt to do a full decoding in SIMD |
637 | const uchar *nextAscii = end; |
638 | if (!simdDecodeAscii(dst, nextAscii, src, end)) { |
639 | // at least one non-ASCII entry |
640 | // check if we failed to decode the UTF-8 BOM; if so, skip it |
641 | if (Q_UNLIKELY(src == start) |
642 | && end - src >= 3 |
643 | && Q_UNLIKELY(src[0] == utf8bom[0] && src[1] == utf8bom[1] && src[2] == utf8bom[2])) { |
644 | src += 3; |
645 | } |
646 | |
647 | while (src < end) { |
648 | nextAscii = end; |
649 | if (simdDecodeAscii(dst, nextAscii, src, end)) |
650 | break; |
651 | |
652 | do { |
653 | uchar b = *src++; |
654 | const qsizetype res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst, src, end); |
655 | if (res < 0) { |
656 | // decoding error |
657 | *dst++ = QChar::ReplacementCharacter; |
658 | } |
659 | } while (src < nextAscii); |
660 | } |
661 | } |
662 | |
663 | return dst; |
664 | } |
665 | |
666 | QString QUtf8::convertToUnicode(QByteArrayView in, QStringConverter::State *state) |
667 | { |
668 | // See above for buffer requirements for stateless decoding. However, that |
669 | // fails if the state is not empty. The following situations can add to the |
670 | // requirements: |
671 | // state contains chars starts with requirement |
672 | // 1 of 2 bytes valid continuation 0 |
673 | // 2 of 3 bytes same 0 |
674 | // 3 bytes of 4 same +1 (need to insert surrogate pair) |
675 | // 1 of 2 bytes invalid continuation +1 (need to insert replacement and restart) |
676 | // 2 of 3 bytes same +1 (same) |
677 | // 3 of 4 bytes same +1 (same) |
678 | QString result(in.size() + 1, Qt::Uninitialized); |
679 | QChar *end = convertToUnicode(out: result.data(), in, state); |
680 | result.truncate(pos: end - result.constData()); |
681 | return result; |
682 | } |
683 | |
684 | char16_t *QUtf8::convertToUnicode(char16_t *dst, QByteArrayView in, QStringConverter::State *state) |
685 | { |
686 | qsizetype len = in.size(); |
687 | |
688 | Q_ASSERT(state); |
689 | if (!len) |
690 | return dst; |
691 | |
692 | |
693 | char16_t replacement = QChar::ReplacementCharacter; |
694 | if (state->flags & QStringConverter::Flag::ConvertInvalidToNull) |
695 | replacement = QChar::Null; |
696 | |
697 | qsizetype res; |
698 | uchar ch = 0; |
699 | |
700 | const uchar *src = reinterpret_cast<const uchar *>(in.data()); |
701 | const uchar *end = src + len; |
702 | |
703 | if (!(state->flags & QStringConverter::Flag::Stateless)) { |
704 | bool = state->internalState & HeaderDone || state->flags & QStringConverter::Flag::ConvertInitialBom; |
705 | if (state->remainingChars || !headerdone) { |
706 | // handle incoming state first |
707 | uchar remainingCharsData[4]; // longest UTF-8 sequence possible |
708 | qsizetype remainingCharsCount = state->remainingChars; |
709 | qsizetype newCharsToCopy = qMin<qsizetype>(a: sizeof(remainingCharsData) - remainingCharsCount, b: end - src); |
710 | |
711 | memset(s: remainingCharsData, c: 0, n: sizeof(remainingCharsData)); |
712 | memcpy(dest: remainingCharsData, src: &state->state_data[0], n: remainingCharsCount); |
713 | memcpy(dest: remainingCharsData + remainingCharsCount, src: src, n: newCharsToCopy); |
714 | |
715 | const uchar *begin = &remainingCharsData[1]; |
716 | res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b: remainingCharsData[0], dst, src&: begin, |
717 | end: static_cast<const uchar *>(remainingCharsData) + remainingCharsCount + newCharsToCopy); |
718 | if (res == QUtf8BaseTraits::Error) { |
719 | ++state->invalidChars; |
720 | *dst++ = replacement; |
721 | ++src; |
722 | } else if (res == QUtf8BaseTraits::EndOfString) { |
723 | // if we got EndOfString again, then there were too few bytes in src; |
724 | // copy to our state and return |
725 | state->remainingChars = remainingCharsCount + newCharsToCopy; |
726 | memcpy(dest: &state->state_data[0], src: remainingCharsData, n: state->remainingChars); |
727 | return dst; |
728 | } else if (!headerdone) { |
729 | // eat the UTF-8 BOM |
730 | if (dst[-1] == 0xfeff) |
731 | --dst; |
732 | } |
733 | state->internalState |= HeaderDone; |
734 | |
735 | // adjust src now that we have maybe consumed a few chars |
736 | if (res >= 0) { |
737 | Q_ASSERT(res > remainingCharsCount); |
738 | src += res - remainingCharsCount; |
739 | } |
740 | } |
741 | } else if (!(state->flags & QStringConverter::Flag::ConvertInitialBom)) { |
742 | // stateless, remove initial BOM |
743 | if (len > 2 && src[0] == utf8bom[0] && src[1] == utf8bom[1] && src[2] == utf8bom[2]) |
744 | // skip BOM |
745 | src += 3; |
746 | } |
747 | |
748 | // main body, stateless decoding |
749 | res = 0; |
750 | const uchar *nextAscii = src; |
751 | while (res >= 0 && src < end) { |
752 | if (src >= nextAscii && simdDecodeAscii(dst, nextAscii, src, end)) |
753 | break; |
754 | |
755 | ch = *src++; |
756 | res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b: ch, dst, src, end); |
757 | if (res == QUtf8BaseTraits::Error) { |
758 | res = 0; |
759 | ++state->invalidChars; |
760 | *dst++ = replacement; |
761 | } |
762 | } |
763 | |
764 | if (res == QUtf8BaseTraits::EndOfString) { |
765 | // unterminated UTF sequence |
766 | if (state->flags & QStringConverter::Flag::Stateless) { |
767 | *dst++ = QChar::ReplacementCharacter; |
768 | ++state->invalidChars; |
769 | while (src++ < end) { |
770 | *dst++ = QChar::ReplacementCharacter; |
771 | ++state->invalidChars; |
772 | } |
773 | state->remainingChars = 0; |
774 | } else { |
775 | --src; // unread the byte in ch |
776 | state->remainingChars = end - src; |
777 | memcpy(dest: &state->state_data[0], src: src, n: end - src); |
778 | } |
779 | } else { |
780 | state->remainingChars = 0; |
781 | } |
782 | |
783 | return dst; |
784 | } |
785 | |
786 | struct QUtf8NoOutputTraits : public QUtf8BaseTraitsNoAscii |
787 | { |
788 | struct NoOutput {}; |
789 | static void appendUtf16(const NoOutput &, char16_t) {} |
790 | static void appendUcs4(const NoOutput &, char32_t) {} |
791 | }; |
792 | |
793 | QUtf8::ValidUtf8Result QUtf8::isValidUtf8(QByteArrayView in) |
794 | { |
795 | const uchar *src = reinterpret_cast<const uchar *>(in.data()); |
796 | const uchar *end = src + in.size(); |
797 | const uchar *nextAscii = src; |
798 | bool isValidAscii = true; |
799 | |
800 | while (src < end) { |
801 | if (src >= nextAscii) |
802 | src = simdFindNonAscii(src, end, nextAscii); |
803 | if (src == end) |
804 | break; |
805 | |
806 | do { |
807 | uchar b = *src++; |
808 | if ((b & 0x80) == 0) |
809 | continue; |
810 | |
811 | isValidAscii = false; |
812 | QUtf8NoOutputTraits::NoOutput output; |
813 | const qsizetype res = QUtf8Functions::fromUtf8<QUtf8NoOutputTraits>(b, dst&: output, src, end); |
814 | if (res < 0) { |
815 | // decoding error |
816 | return { .isValidUtf8: false, .isValidAscii: false }; |
817 | } |
818 | } while (src < nextAscii); |
819 | } |
820 | |
821 | return { .isValidUtf8: true, .isValidAscii: isValidAscii }; |
822 | } |
823 | |
824 | int QUtf8::compareUtf8(QByteArrayView utf8, QStringView utf16, Qt::CaseSensitivity cs) noexcept |
825 | { |
826 | auto src1 = reinterpret_cast<const qchar8_t *>(utf8.data()); |
827 | auto end1 = src1 + utf8.size(); |
828 | auto src2 = reinterpret_cast<const char16_t *>(utf16.data()); |
829 | auto end2 = src2 + utf16.size(); |
830 | |
831 | do { |
832 | simdCompareAscii(src8&: src1, end8: end1, src16&: src2, end16: end2); |
833 | |
834 | if (src1 < end1 && src2 < end2) { |
835 | char32_t uc1 = *src1++; |
836 | char32_t uc2 = *src2++; |
837 | |
838 | if (uc1 >= 0x80) { |
839 | char32_t *output = &uc1; |
840 | qsizetype res = QUtf8Functions::fromUtf8<QUtf8BaseTraitsNoAscii>(b: uc1, dst&: output, src&: src1, end: end1); |
841 | if (res < 0) { |
842 | // decoding error |
843 | uc1 = QChar::ReplacementCharacter; |
844 | } |
845 | |
846 | // Only decode the UTF-16 surrogate pair if the UTF-8 code point |
847 | // wasn't US-ASCII (a surrogate cannot match US-ASCII). |
848 | if (QChar::isHighSurrogate(ucs4: uc2) && src2 < end2 && QChar::isLowSurrogate(ucs4: *src2)) |
849 | uc2 = QChar::surrogateToUcs4(high: uc2, low: *src2++); |
850 | } |
851 | if (cs == Qt::CaseInsensitive) { |
852 | uc1 = QChar::toCaseFolded(ucs4: uc1); |
853 | uc2 = QChar::toCaseFolded(ucs4: uc2); |
854 | } |
855 | if (uc1 != uc2) |
856 | return int(uc1) - int(uc2); |
857 | } |
858 | } while (src1 < end1 && src2 < end2); |
859 | |
860 | // the shorter string sorts first |
861 | return (end1 > src1) - int(end2 > src2); |
862 | } |
863 | |
864 | int QUtf8::compareUtf8(QByteArrayView utf8, QLatin1StringView s, Qt::CaseSensitivity cs) |
865 | { |
866 | char32_t uc1 = QChar::Null; |
867 | auto src1 = reinterpret_cast<const uchar *>(utf8.data()); |
868 | auto end1 = src1 + utf8.size(); |
869 | auto src2 = reinterpret_cast<const uchar *>(s.latin1()); |
870 | auto end2 = src2 + s.size(); |
871 | |
872 | while (src1 < end1 && src2 < end2) { |
873 | uchar b = *src1++; |
874 | char32_t *output = &uc1; |
875 | const qsizetype res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst&: output, src&: src1, end: end1); |
876 | if (res < 0) { |
877 | // decoding error |
878 | uc1 = QChar::ReplacementCharacter; |
879 | } |
880 | |
881 | char32_t uc2 = *src2++; |
882 | if (cs == Qt::CaseInsensitive) { |
883 | uc1 = QChar::toCaseFolded(ucs4: uc1); |
884 | uc2 = QChar::toCaseFolded(ucs4: uc2); |
885 | } |
886 | if (uc1 != uc2) |
887 | return int(uc1) - int(uc2); |
888 | } |
889 | |
890 | // the shorter string sorts first |
891 | return (end1 > src1) - (end2 > src2); |
892 | } |
893 | |
894 | int QUtf8::compareUtf8(QByteArrayView lhs, QByteArrayView rhs, Qt::CaseSensitivity cs) noexcept |
895 | { |
896 | if (lhs.isEmpty()) |
897 | return qt_lencmp(lhs: 0, rhs: rhs.size()); |
898 | |
899 | if (cs == Qt::CaseSensitive) { |
900 | const auto l = std::min(a: lhs.size(), b: rhs.size()); |
901 | int r = memcmp(s1: lhs.data(), s2: rhs.data(), n: l); |
902 | return r ? r : qt_lencmp(lhs: lhs.size(), rhs: rhs.size()); |
903 | } |
904 | |
905 | char32_t uc1 = QChar::Null; |
906 | auto src1 = reinterpret_cast<const uchar *>(lhs.data()); |
907 | auto end1 = src1 + lhs.size(); |
908 | char32_t uc2 = QChar::Null; |
909 | auto src2 = reinterpret_cast<const uchar *>(rhs.data()); |
910 | auto end2 = src2 + rhs.size(); |
911 | |
912 | while (src1 < end1 && src2 < end2) { |
913 | uchar b = *src1++; |
914 | char32_t *output = &uc1; |
915 | qsizetype res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst&: output, src&: src1, end: end1); |
916 | if (res < 0) { |
917 | // decoding error |
918 | uc1 = QChar::ReplacementCharacter; |
919 | } |
920 | |
921 | b = *src2++; |
922 | output = &uc2; |
923 | res = QUtf8Functions::fromUtf8<QUtf8BaseTraits>(b, dst&: output, src&: src2, end: end2); |
924 | if (res < 0) { |
925 | // decoding error |
926 | uc2 = QChar::ReplacementCharacter; |
927 | } |
928 | |
929 | uc1 = QChar::toCaseFolded(ucs4: uc1); |
930 | uc2 = QChar::toCaseFolded(ucs4: uc2); |
931 | if (uc1 != uc2) |
932 | return int(uc1) - int(uc2); |
933 | } |
934 | |
935 | // the shorter string sorts first |
936 | return (end1 > src1) - (end2 > src2); |
937 | } |
938 | |
939 | QByteArray QUtf16::convertFromUnicode(QStringView in, QStringConverter::State *state, DataEndianness endian) |
940 | { |
941 | bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom; |
942 | qsizetype length = 2 * in.size(); |
943 | if (writeBom) |
944 | length += 2; |
945 | |
946 | QByteArray d(length, Qt::Uninitialized); |
947 | char *end = convertFromUnicode(out: d.data(), in, state, endian); |
948 | Q_ASSERT(end - d.constData() == d.size()); |
949 | Q_UNUSED(end); |
950 | return d; |
951 | } |
952 | |
953 | char *QUtf16::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state, DataEndianness endian) |
954 | { |
955 | Q_ASSERT(state); |
956 | bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom; |
957 | |
958 | if (endian == DetectEndianness) |
959 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
960 | |
961 | if (writeBom) { |
962 | // set them up the BOM |
963 | QChar bom(QChar::ByteOrderMark); |
964 | if (endian == BigEndianness) |
965 | qToBigEndian(src: bom.unicode(), dest: out); |
966 | else |
967 | qToLittleEndian(src: bom.unicode(), dest: out); |
968 | out += 2; |
969 | } |
970 | if (endian == BigEndianness) |
971 | qToBigEndian<char16_t>(source: in.data(), count: in.size(), dest: out); |
972 | else |
973 | qToLittleEndian<char16_t>(source: in.data(), count: in.size(), dest: out); |
974 | |
975 | state->remainingChars = 0; |
976 | state->internalState |= HeaderDone; |
977 | return out + 2*in.size(); |
978 | } |
979 | |
980 | QString QUtf16::convertToUnicode(QByteArrayView in, QStringConverter::State *state, DataEndianness endian) |
981 | { |
982 | QString result((in.size() + 1) >> 1, Qt::Uninitialized); // worst case |
983 | QChar *qch = convertToUnicode(out: result.data(), in, state, endian); |
984 | result.truncate(pos: qch - result.constData()); |
985 | return result; |
986 | } |
987 | |
988 | QChar *QUtf16::convertToUnicode(QChar *out, QByteArrayView in, QStringConverter::State *state, DataEndianness endian) |
989 | { |
990 | qsizetype len = in.size(); |
991 | const char *chars = in.data(); |
992 | |
993 | Q_ASSERT(state); |
994 | |
995 | if (endian == DetectEndianness) |
996 | endian = (DataEndianness)state->state_data[Endian]; |
997 | |
998 | const char *end = chars + len; |
999 | |
1000 | // make sure we can decode at least one char |
1001 | if (state->remainingChars + len < 2) { |
1002 | if (len) { |
1003 | Q_ASSERT(state->remainingChars == 0 && len == 1); |
1004 | state->remainingChars = 1; |
1005 | state->state_data[Data] = *chars; |
1006 | } |
1007 | return out; |
1008 | } |
1009 | |
1010 | bool = state && state->internalState & HeaderDone; |
1011 | if (state->flags & QStringConverter::Flag::ConvertInitialBom) |
1012 | headerdone = true; |
1013 | |
1014 | if (!headerdone || state->remainingChars) { |
1015 | uchar buf; |
1016 | if (state->remainingChars) |
1017 | buf = state->state_data[Data]; |
1018 | else |
1019 | buf = *chars++; |
1020 | |
1021 | // detect BOM, set endianness |
1022 | state->internalState |= HeaderDone; |
1023 | QChar ch(buf, *chars++); |
1024 | if (endian == DetectEndianness) { |
1025 | // someone set us up the BOM |
1026 | if (ch == QChar::ByteOrderSwapped) { |
1027 | endian = BigEndianness; |
1028 | } else if (ch == QChar::ByteOrderMark) { |
1029 | endian = LittleEndianness; |
1030 | } else { |
1031 | if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { |
1032 | endian = BigEndianness; |
1033 | } else { |
1034 | endian = LittleEndianness; |
1035 | } |
1036 | } |
1037 | } |
1038 | if (endian == BigEndianness) |
1039 | ch = QChar::fromUcs2(c: (ch.unicode() >> 8) | ((ch.unicode() & 0xff) << 8)); |
1040 | if (headerdone || ch != QChar::ByteOrderMark) |
1041 | *out++ = ch; |
1042 | } else if (endian == DetectEndianness) { |
1043 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
1044 | } |
1045 | |
1046 | qsizetype nPairs = (end - chars) >> 1; |
1047 | if (endian == BigEndianness) |
1048 | qFromBigEndian<char16_t>(source: chars, count: nPairs, dest: out); |
1049 | else |
1050 | qFromLittleEndian<char16_t>(source: chars, count: nPairs, dest: out); |
1051 | out += nPairs; |
1052 | |
1053 | state->state_data[Endian] = endian; |
1054 | state->remainingChars = 0; |
1055 | if ((end - chars) & 1) { |
1056 | if (state->flags & QStringConverter::Flag::Stateless) { |
1057 | *out++ = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? QChar::Null : QChar::ReplacementCharacter; |
1058 | } else { |
1059 | state->remainingChars = 1; |
1060 | state->state_data[Data] = *(end - 1); |
1061 | } |
1062 | } else { |
1063 | state->state_data[Data] = 0; |
1064 | } |
1065 | |
1066 | return out; |
1067 | } |
1068 | |
1069 | QByteArray QUtf32::convertFromUnicode(QStringView in, QStringConverter::State *state, DataEndianness endian) |
1070 | { |
1071 | bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom; |
1072 | qsizetype length = 4*in.size(); |
1073 | if (writeBom) |
1074 | length += 4; |
1075 | QByteArray ba(length, Qt::Uninitialized); |
1076 | char *end = convertFromUnicode(out: ba.data(), in, state, endian); |
1077 | ba.truncate(pos: end - ba.constData()); |
1078 | return ba; |
1079 | } |
1080 | |
1081 | char *QUtf32::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state, DataEndianness endian) |
1082 | { |
1083 | Q_ASSERT(state); |
1084 | |
1085 | bool writeBom = !(state->internalState & HeaderDone) && state->flags & QStringConverter::Flag::WriteBom; |
1086 | if (endian == DetectEndianness) |
1087 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
1088 | |
1089 | if (writeBom) { |
1090 | // set them up the BOM |
1091 | if (endian == BigEndianness) { |
1092 | out[0] = 0; |
1093 | out[1] = 0; |
1094 | out[2] = (char)0xfe; |
1095 | out[3] = (char)0xff; |
1096 | } else { |
1097 | out[0] = (char)0xff; |
1098 | out[1] = (char)0xfe; |
1099 | out[2] = 0; |
1100 | out[3] = 0; |
1101 | } |
1102 | out += 4; |
1103 | state->internalState |= HeaderDone; |
1104 | } |
1105 | |
1106 | const QChar *uc = in.data(); |
1107 | const QChar *end = in.data() + in.size(); |
1108 | QChar ch; |
1109 | char32_t ucs4; |
1110 | if (state->remainingChars == 1) { |
1111 | auto character = state->state_data[Data]; |
1112 | Q_ASSERT(character <= 0xFFFF); |
1113 | ch = QChar(character); |
1114 | // this is ugly, but shortcuts a whole lot of logic that would otherwise be required |
1115 | state->remainingChars = 0; |
1116 | goto decode_surrogate; |
1117 | } |
1118 | |
1119 | while (uc < end) { |
1120 | ch = *uc++; |
1121 | if (Q_LIKELY(!ch.isSurrogate())) { |
1122 | ucs4 = ch.unicode(); |
1123 | } else if (Q_LIKELY(ch.isHighSurrogate())) { |
1124 | decode_surrogate: |
1125 | if (uc == end) { |
1126 | if (state->flags & QStringConverter::Flag::Stateless) { |
1127 | ucs4 = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? 0 : QChar::ReplacementCharacter; |
1128 | } else { |
1129 | state->remainingChars = 1; |
1130 | state->state_data[Data] = ch.unicode(); |
1131 | return out; |
1132 | } |
1133 | } else if (uc->isLowSurrogate()) { |
1134 | ucs4 = QChar::surrogateToUcs4(high: ch, low: *uc++); |
1135 | } else { |
1136 | ucs4 = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? 0 : QChar::ReplacementCharacter; |
1137 | } |
1138 | } else { |
1139 | ucs4 = state->flags & QStringConverter::Flag::ConvertInvalidToNull ? 0 : QChar::ReplacementCharacter; |
1140 | } |
1141 | if (endian == BigEndianness) |
1142 | qToBigEndian(src: ucs4, dest: out); |
1143 | else |
1144 | qToLittleEndian(src: ucs4, dest: out); |
1145 | out += 4; |
1146 | } |
1147 | |
1148 | return out; |
1149 | } |
1150 | |
1151 | QString QUtf32::convertToUnicode(QByteArrayView in, QStringConverter::State *state, DataEndianness endian) |
1152 | { |
1153 | QString result; |
1154 | result.resize(size: (in.size() + 7) >> 1); // worst case |
1155 | QChar *end = convertToUnicode(out: result.data(), in, state, endian); |
1156 | result.truncate(pos: end - result.constData()); |
1157 | return result; |
1158 | } |
1159 | |
1160 | QChar *QUtf32::convertToUnicode(QChar *out, QByteArrayView in, QStringConverter::State *state, DataEndianness endian) |
1161 | { |
1162 | qsizetype len = in.size(); |
1163 | const char *chars = in.data(); |
1164 | |
1165 | Q_ASSERT(state); |
1166 | if (endian == DetectEndianness) |
1167 | endian = (DataEndianness)state->state_data[Endian]; |
1168 | |
1169 | const char *end = chars + len; |
1170 | |
1171 | uchar tuple[4]; |
1172 | memcpy(dest: tuple, src: &state->state_data[Data], n: 4); |
1173 | |
1174 | // make sure we can decode at least one char |
1175 | if (state->remainingChars + len < 4) { |
1176 | if (len) { |
1177 | while (chars < end) { |
1178 | tuple[state->remainingChars] = *chars; |
1179 | ++state->remainingChars; |
1180 | ++chars; |
1181 | } |
1182 | Q_ASSERT(state->remainingChars < 4); |
1183 | memcpy(dest: &state->state_data[Data], src: tuple, n: 4); |
1184 | } |
1185 | return out; |
1186 | } |
1187 | |
1188 | bool = state->internalState & HeaderDone; |
1189 | if (state->flags & QStringConverter::Flag::ConvertInitialBom) |
1190 | headerdone = true; |
1191 | |
1192 | qsizetype num = state->remainingChars; |
1193 | state->remainingChars = 0; |
1194 | |
1195 | if (!headerdone || endian == DetectEndianness || num) { |
1196 | while (num < 4) |
1197 | tuple[num++] = *chars++; |
1198 | if (endian == DetectEndianness) { |
1199 | // someone set us up the BOM? |
1200 | if (tuple[0] == 0xff && tuple[1] == 0xfe && tuple[2] == 0 && tuple[3] == 0) { |
1201 | endian = LittleEndianness; |
1202 | } else if (tuple[0] == 0 && tuple[1] == 0 && tuple[2] == 0xfe && tuple[3] == 0xff) { |
1203 | endian = BigEndianness; |
1204 | } else if (QSysInfo::ByteOrder == QSysInfo::BigEndian) { |
1205 | endian = BigEndianness; |
1206 | } else { |
1207 | endian = LittleEndianness; |
1208 | } |
1209 | } |
1210 | char32_t code = (endian == BigEndianness) ? qFromBigEndian<char32_t>(src: tuple) : qFromLittleEndian<char32_t>(src: tuple); |
1211 | if (headerdone || code != QChar::ByteOrderMark) { |
1212 | if (QChar::requiresSurrogates(ucs4: code)) { |
1213 | *out++ = QChar(QChar::highSurrogate(ucs4: code)); |
1214 | *out++ = QChar(QChar::lowSurrogate(ucs4: code)); |
1215 | } else { |
1216 | *out++ = QChar(code); |
1217 | } |
1218 | } |
1219 | num = 0; |
1220 | } else if (endian == DetectEndianness) { |
1221 | endian = (QSysInfo::ByteOrder == QSysInfo::BigEndian) ? BigEndianness : LittleEndianness; |
1222 | } |
1223 | state->state_data[Endian] = endian; |
1224 | state->internalState |= HeaderDone; |
1225 | |
1226 | while (chars < end) { |
1227 | tuple[num++] = *chars++; |
1228 | if (num == 4) { |
1229 | char32_t code = (endian == BigEndianness) ? qFromBigEndian<char32_t>(src: tuple) : qFromLittleEndian<char32_t>(src: tuple); |
1230 | for (char16_t c : QChar::fromUcs4(c: code)) |
1231 | *out++ = c; |
1232 | num = 0; |
1233 | } |
1234 | } |
1235 | |
1236 | if (num) { |
1237 | if (state->flags & QStringDecoder::Flag::Stateless) { |
1238 | *out++ = QChar::ReplacementCharacter; |
1239 | } else { |
1240 | state->state_data[Endian] = endian; |
1241 | state->remainingChars = num; |
1242 | memcpy(dest: &state->state_data[Data], src: tuple, n: 4); |
1243 | } |
1244 | } |
1245 | |
1246 | return out; |
1247 | } |
1248 | |
1249 | #if defined(Q_OS_WIN) && !defined(QT_BOOTSTRAPPED) |
1250 | int QLocal8Bit::checkUtf8() |
1251 | { |
1252 | return GetACP() == CP_UTF8 ? 1 : -1; |
1253 | } |
1254 | |
1255 | static QString convertToUnicodeCharByChar(QByteArrayView in, QStringConverter::State *state) |
1256 | { |
1257 | qsizetype length = in.size(); |
1258 | const char *chars = in.data(); |
1259 | |
1260 | Q_ASSERT(state); |
1261 | if (state->flags & QStringConverter::Flag::Stateless) // temporary |
1262 | state = nullptr; |
1263 | |
1264 | if (!chars || !length) |
1265 | return QString(); |
1266 | |
1267 | qsizetype copyLocation = 0; |
1268 | qsizetype extra = 2; |
1269 | if (state && state->remainingChars) { |
1270 | copyLocation = state->remainingChars; |
1271 | extra += copyLocation; |
1272 | } |
1273 | qsizetype newLength = length + extra; |
1274 | char *mbcs = new char[newLength]; |
1275 | //ensure that we have a NULL terminated string |
1276 | mbcs[newLength-1] = 0; |
1277 | mbcs[newLength-2] = 0; |
1278 | memcpy(&(mbcs[copyLocation]), chars, length); |
1279 | if (copyLocation) { |
1280 | //copy the last character from the state |
1281 | mbcs[0] = (char)state->state_data[0]; |
1282 | state->remainingChars = 0; |
1283 | } |
1284 | const char *mb = mbcs; |
1285 | const char *next = 0; |
1286 | QString s; |
1287 | while ((next = CharNextExA(CP_ACP, mb, 0)) != mb) { |
1288 | wchar_t wc[2] ={0}; |
1289 | int charlength = int(next - mb); // always just a few bytes |
1290 | int len = MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED|MB_ERR_INVALID_CHARS, mb, charlength, wc, 2); |
1291 | if (len>0) { |
1292 | s.append(QChar(wc[0])); |
1293 | } else { |
1294 | int r = GetLastError(); |
1295 | //check if the character being dropped is the last character |
1296 | if (r == ERROR_NO_UNICODE_TRANSLATION && mb == (mbcs+newLength -3) && state) { |
1297 | state->remainingChars = 1; |
1298 | state->state_data[0] = (char)*mb; |
1299 | } |
1300 | } |
1301 | mb = next; |
1302 | } |
1303 | delete [] mbcs; |
1304 | return s; |
1305 | } |
1306 | |
1307 | |
1308 | QString QLocal8Bit::convertToUnicode_sys(QByteArrayView in, QStringConverter::State *state) |
1309 | { |
1310 | qsizetype length = in.size(); |
1311 | |
1312 | Q_ASSERT(length < INT_MAX); // ### FIXME |
1313 | const char *mb = in.data(); |
1314 | int mblen = length; |
1315 | |
1316 | if (!mb || !mblen) |
1317 | return QString(); |
1318 | |
1319 | QVarLengthArray<wchar_t, 4096> wc(4096); |
1320 | int len; |
1321 | QString sp; |
1322 | bool prepend = false; |
1323 | char state_data = 0; |
1324 | int remainingChars = 0; |
1325 | |
1326 | //save the current state information |
1327 | if (state) { |
1328 | state_data = (char)state->state_data[0]; |
1329 | remainingChars = state->remainingChars; |
1330 | } |
1331 | |
1332 | //convert the pending character (if available) |
1333 | if (state && remainingChars) { |
1334 | char prev[3] = {0}; |
1335 | prev[0] = state_data; |
1336 | prev[1] = mb[0]; |
1337 | remainingChars = 0; |
1338 | len = MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, |
1339 | prev, 2, wc.data(), wc.length()); |
1340 | if (len) { |
1341 | sp.append(QChar(wc[0])); |
1342 | if (mblen == 1) { |
1343 | state->remainingChars = 0; |
1344 | return sp; |
1345 | } |
1346 | prepend = true; |
1347 | mb++; |
1348 | mblen--; |
1349 | wc[0] = 0; |
1350 | } |
1351 | } |
1352 | |
1353 | while (!(len=MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED|MB_ERR_INVALID_CHARS, |
1354 | mb, mblen, wc.data(), wc.length()))) { |
1355 | int r = GetLastError(); |
1356 | if (r == ERROR_INSUFFICIENT_BUFFER) { |
1357 | const int wclen = MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, |
1358 | mb, mblen, 0, 0); |
1359 | wc.resize(wclen); |
1360 | } else if (r == ERROR_NO_UNICODE_TRANSLATION) { |
1361 | //find the last non NULL character |
1362 | while (mblen > 1 && !(mb[mblen-1])) |
1363 | mblen--; |
1364 | //check whether, we hit an invalid character in the middle |
1365 | if ((mblen <= 1) || (remainingChars && state_data)) |
1366 | return convertToUnicodeCharByChar(in, state); |
1367 | //Remove the last character and try again... |
1368 | state_data = mb[mblen-1]; |
1369 | remainingChars = 1; |
1370 | mblen--; |
1371 | } else { |
1372 | // Fail. |
1373 | qWarning("MultiByteToWideChar: Cannot convert multibyte text" ); |
1374 | break; |
1375 | } |
1376 | } |
1377 | |
1378 | if (len <= 0) |
1379 | return QString(); |
1380 | |
1381 | if (wc[len-1] == 0) // len - 1: we don't want terminator |
1382 | --len; |
1383 | |
1384 | //save the new state information |
1385 | if (state) { |
1386 | state->state_data[0] = (char)state_data; |
1387 | state->remainingChars = remainingChars; |
1388 | } |
1389 | QString s((QChar*)wc.data(), len); |
1390 | if (prepend) { |
1391 | return sp+s; |
1392 | } |
1393 | return s; |
1394 | } |
1395 | |
1396 | QByteArray QLocal8Bit::convertFromUnicode_sys(QStringView in, QStringConverter::State *state) |
1397 | { |
1398 | const QChar *ch = in.data(); |
1399 | qsizetype uclen = in.size(); |
1400 | |
1401 | Q_ASSERT(uclen < INT_MAX); // ### FIXME |
1402 | Q_ASSERT(state); |
1403 | Q_UNUSED(state); // ### Fixme |
1404 | if (state->flags & QStringConverter::Flag::Stateless) // temporary |
1405 | state = nullptr; |
1406 | |
1407 | if (!ch) |
1408 | return QByteArray(); |
1409 | if (uclen == 0) |
1410 | return QByteArray("" ); |
1411 | BOOL used_def; |
1412 | QByteArray mb(4096, 0); |
1413 | int len; |
1414 | while (!(len=WideCharToMultiByte(CP_ACP, 0, (const wchar_t*)ch, uclen, |
1415 | mb.data(), mb.size()-1, 0, &used_def))) |
1416 | { |
1417 | int r = GetLastError(); |
1418 | if (r == ERROR_INSUFFICIENT_BUFFER) { |
1419 | mb.resize(1+WideCharToMultiByte(CP_ACP, 0, |
1420 | (const wchar_t*)ch, uclen, |
1421 | 0, 0, 0, &used_def)); |
1422 | // and try again... |
1423 | } else { |
1424 | // Fail. Probably can't happen in fact (dwFlags is 0). |
1425 | #ifndef QT_NO_DEBUG |
1426 | // Can't use qWarning(), as it'll recurse to handle %ls |
1427 | fprintf(stderr, |
1428 | "WideCharToMultiByte: Cannot convert multibyte text (error %d): %ls\n" , |
1429 | r, reinterpret_cast<const wchar_t*>(QString(ch, uclen).utf16())); |
1430 | #endif |
1431 | break; |
1432 | } |
1433 | } |
1434 | mb.resize(len); |
1435 | return mb; |
1436 | } |
1437 | #endif |
1438 | |
1439 | void QStringConverter::State::clear() noexcept |
1440 | { |
1441 | if (clearFn) |
1442 | clearFn(this); |
1443 | else |
1444 | state_data[0] = state_data[1] = state_data[2] = state_data[3] = 0; |
1445 | remainingChars = 0; |
1446 | invalidChars = 0; |
1447 | internalState = 0; |
1448 | } |
1449 | |
1450 | void QStringConverter::State::reset() noexcept |
1451 | { |
1452 | if (flags & Flag::UsesIcu) { |
1453 | #if QT_CONFIG(icu) |
1454 | UConverter *converter = static_cast<UConverter *>(d[0]); |
1455 | if (converter) |
1456 | ucnv_reset(converter); |
1457 | #else |
1458 | Q_UNREACHABLE(); |
1459 | #endif |
1460 | } else { |
1461 | clear(); |
1462 | } |
1463 | } |
1464 | |
1465 | static QChar *fromUtf16(QChar *out, QByteArrayView in, QStringConverter::State *state) |
1466 | { |
1467 | return QUtf16::convertToUnicode(out, in, state, endian: DetectEndianness); |
1468 | } |
1469 | |
1470 | static char *toUtf16(char *out, QStringView in, QStringConverter::State *state) |
1471 | { |
1472 | return QUtf16::convertFromUnicode(out, in, state, endian: DetectEndianness); |
1473 | } |
1474 | |
1475 | static QChar *fromUtf16BE(QChar *out, QByteArrayView in, QStringConverter::State *state) |
1476 | { |
1477 | return QUtf16::convertToUnicode(out, in, state, endian: BigEndianness); |
1478 | } |
1479 | |
1480 | static char *toUtf16BE(char *out, QStringView in, QStringConverter::State *state) |
1481 | { |
1482 | return QUtf16::convertFromUnicode(out, in, state, endian: BigEndianness); |
1483 | } |
1484 | |
1485 | static QChar *fromUtf16LE(QChar *out, QByteArrayView in, QStringConverter::State *state) |
1486 | { |
1487 | return QUtf16::convertToUnicode(out, in, state, endian: LittleEndianness); |
1488 | } |
1489 | |
1490 | static char *toUtf16LE(char *out, QStringView in, QStringConverter::State *state) |
1491 | { |
1492 | return QUtf16::convertFromUnicode(out, in, state, endian: LittleEndianness); |
1493 | } |
1494 | |
1495 | static QChar *fromUtf32(QChar *out, QByteArrayView in, QStringConverter::State *state) |
1496 | { |
1497 | return QUtf32::convertToUnicode(out, in, state, endian: DetectEndianness); |
1498 | } |
1499 | |
1500 | static char *toUtf32(char *out, QStringView in, QStringConverter::State *state) |
1501 | { |
1502 | return QUtf32::convertFromUnicode(out, in, state, endian: DetectEndianness); |
1503 | } |
1504 | |
1505 | static QChar *fromUtf32BE(QChar *out, QByteArrayView in, QStringConverter::State *state) |
1506 | { |
1507 | return QUtf32::convertToUnicode(out, in, state, endian: BigEndianness); |
1508 | } |
1509 | |
1510 | static char *toUtf32BE(char *out, QStringView in, QStringConverter::State *state) |
1511 | { |
1512 | return QUtf32::convertFromUnicode(out, in, state, endian: BigEndianness); |
1513 | } |
1514 | |
1515 | static QChar *fromUtf32LE(QChar *out, QByteArrayView in, QStringConverter::State *state) |
1516 | { |
1517 | return QUtf32::convertToUnicode(out, in, state, endian: LittleEndianness); |
1518 | } |
1519 | |
1520 | static char *toUtf32LE(char *out, QStringView in, QStringConverter::State *state) |
1521 | { |
1522 | return QUtf32::convertFromUnicode(out, in, state, endian: LittleEndianness); |
1523 | } |
1524 | |
1525 | char *QLatin1::convertFromUnicode(char *out, QStringView in, QStringConverter::State *state) noexcept |
1526 | { |
1527 | Q_ASSERT(state); |
1528 | if (state->flags & QStringConverter::Flag::Stateless) // temporary |
1529 | state = nullptr; |
1530 | |
1531 | const char replacement = (state && state->flags & QStringConverter::Flag::ConvertInvalidToNull) ? 0 : '?'; |
1532 | qsizetype invalid = 0; |
1533 | for (qsizetype i = 0; i < in.size(); ++i) { |
1534 | if (in[i] > QChar(0xff)) { |
1535 | *out = replacement; |
1536 | ++invalid; |
1537 | } else { |
1538 | *out = (char)in[i].cell(); |
1539 | } |
1540 | ++out; |
1541 | } |
1542 | if (state) |
1543 | state->invalidChars += invalid; |
1544 | return out; |
1545 | } |
1546 | |
1547 | static QChar *fromLocal8Bit(QChar *out, QByteArrayView in, QStringConverter::State *state) |
1548 | { |
1549 | QString s = QLocal8Bit::convertToUnicode(in, state); |
1550 | memcpy(dest: out, src: s.constData(), n: s.size()*sizeof(QChar)); |
1551 | return out + s.size(); |
1552 | } |
1553 | |
1554 | static char *toLocal8Bit(char *out, QStringView in, QStringConverter::State *state) |
1555 | { |
1556 | QByteArray s = QLocal8Bit::convertFromUnicode(in, state); |
1557 | memcpy(dest: out, src: s.constData(), n: s.size()); |
1558 | return out + s.size(); |
1559 | } |
1560 | |
1561 | |
1562 | static qsizetype fromUtf8Len(qsizetype l) { return l + 1; } |
1563 | static qsizetype toUtf8Len(qsizetype l) { return 3*(l + 1); } |
1564 | |
1565 | static qsizetype fromUtf16Len(qsizetype l) { return l/2 + 2; } |
1566 | static qsizetype toUtf16Len(qsizetype l) { return 2*(l + 1); } |
1567 | |
1568 | static qsizetype fromUtf32Len(qsizetype l) { return l/2 + 2; } |
1569 | static qsizetype toUtf32Len(qsizetype l) { return 4*(l + 1); } |
1570 | |
1571 | static qsizetype fromLatin1Len(qsizetype l) { return l + 1; } |
1572 | static qsizetype toLatin1Len(qsizetype l) { return l + 1; } |
1573 | |
1574 | |
1575 | |
1576 | /*! |
1577 | \class QStringConverterBase |
1578 | \internal |
1579 | |
1580 | Just a common base class for QStringConverter and QTextCodec |
1581 | */ |
1582 | |
1583 | /*! |
1584 | \class QStringConverter |
1585 | \inmodule QtCore |
1586 | \brief The QStringConverter class provides a base class for encoding and decoding text. |
1587 | \reentrant |
1588 | \ingroup i18n |
1589 | |
1590 | Qt uses UTF-16 to store, draw and manipulate strings. In many |
1591 | situations you may wish to deal with data that uses a different |
1592 | encoding. Most text data transferred over files and network connections is encoded |
1593 | in UTF-8. |
1594 | |
1595 | The QStringConverter class is a base class for the \l {QStringEncoder} and |
1596 | \l {QStringDecoder} classes that help with converting between different |
1597 | text encodings. QStringDecoder can decode a string from an encoded representation |
1598 | into UTF-16, the format Qt uses internally. QStringEncoder does the opposite |
1599 | operation, encoding UTF-16 encoded data (usually in the form of a QString) to |
1600 | the requested encoding. |
1601 | |
1602 | The supported encodings are: |
1603 | |
1604 | \list |
1605 | \li UTF-8 |
1606 | \li UTF-16 |
1607 | \li UTF-16BE |
1608 | \li UTF-16LE |
1609 | \li UTF-32 |
1610 | \li UTF-32BE |
1611 | \li UTF-32LE |
1612 | \li ISO-8859-1 (Latin-1) |
1613 | \li The system encoding |
1614 | \endlist |
1615 | |
1616 | \l {QStringConverter}s can be used as follows to convert some encoded |
1617 | string to and from UTF-16. |
1618 | |
1619 | Suppose you have some string encoded in UTF-8, and |
1620 | want to convert it to a QString. The simple way |
1621 | to do it is to use a \l {QStringDecoder} like this: |
1622 | |
1623 | \snippet code/src_corelib_text_qstringconverter.cpp 0 |
1624 | |
1625 | After this, \c string holds the text in decoded form. |
1626 | Converting a string from Unicode to the local encoding is just as |
1627 | easy using the \l {QStringEncoder} class: |
1628 | |
1629 | \snippet code/src_corelib_text_qstringconverter.cpp 1 |
1630 | |
1631 | To read or write text files in various encodings, use QTextStream and |
1632 | its \l{QTextStream::setEncoding()}{setEncoding()} function. |
1633 | |
1634 | Some care must be taken when trying to convert the data in chunks, |
1635 | for example, when receiving it over a network. In such cases it is |
1636 | possible that a multi-byte character will be split over two |
1637 | chunks. At best this might result in the loss of a character and |
1638 | at worst cause the entire conversion to fail. |
1639 | |
1640 | Both QStringEncoder and QStringDecoder make this easy, by tracking |
1641 | this in an internal state. So simply calling the encoder or decoder |
1642 | again with the next chunk of data will automatically continue encoding |
1643 | or decoding the data correctly: |
1644 | |
1645 | \snippet code/src_corelib_text_qstringconverter.cpp 2 |
1646 | |
1647 | The QStringDecoder object maintains state between chunks and therefore |
1648 | works correctly even if a multi-byte character is split between |
1649 | chunks. |
1650 | |
1651 | QStringConverter objects can't be copied because of their internal state, but |
1652 | can be moved. |
1653 | |
1654 | \sa QTextStream, QStringDecoder, QStringEncoder |
1655 | */ |
1656 | |
1657 | /*! |
1658 | \enum QStringConverter::Flag |
1659 | |
1660 | \value Default Default conversion rules apply. |
1661 | \value ConvertInvalidToNull If this flag is set, each invalid input |
1662 | character is output as a null character. If it is not set, |
1663 | invalid input characters are represented as QChar::ReplacementCharacter |
1664 | if the output encoding can represent that character, otherwise as a question mark. |
1665 | \value WriteBom When converting from a QString to an output encoding, write a QChar::ByteOrderMark as the first |
1666 | character if the output encoding supports this. This is the case for UTF-8, UTF-16 and UTF-32 |
1667 | encodings. |
1668 | \value ConvertInitialBom When converting from an input encoding to a QString the QStringDecoder usually skips an |
1669 | leading QChar::ByteOrderMark. When this flag is set, the byte order mark will not be |
1670 | skipped, but converted to utf-16 and inserted at the start of the created QString. |
1671 | \value Stateless Ignore possible converter states between different function calls |
1672 | to encode or decode strings. This will also cause the QStringConverter to raise an error if an incomplete |
1673 | sequence of data is encountered. |
1674 | \omitvalue UsesIcu |
1675 | */ |
1676 | |
1677 | /*! |
1678 | \enum QStringConverter::Encoding |
1679 | \value Utf8 Create a converter to or from UTF-8 |
1680 | \value Utf16 Create a converter to or from UTF-16. When decoding, the byte order will get automatically |
1681 | detected by a leading byte order mark. If none exists or when encoding, the system byte order will |
1682 | be assumed. |
1683 | \value Utf16BE Create a converter to or from big-endian UTF-16. |
1684 | \value Utf16LE Create a converter to or from little-endian UTF-16. |
1685 | \value Utf32 Create a converter to or from UTF-32. When decoding, the byte order will get automatically |
1686 | detected by a leading byte order mark. If none exists or when encoding, the system byte order will |
1687 | be assumed. |
1688 | \value Utf32BE Create a converter to or from big-endian UTF-32. |
1689 | \value Utf32LE Create a converter to or from little-endian UTF-32. |
1690 | \value Latin1 Create a converter to or from ISO-8859-1 (Latin1). |
1691 | \value System Create a converter to or from the underlying encoding of the |
1692 | operating systems locale. This is always assumed to be UTF-8 for Unix based |
1693 | systems. On Windows, this converts to and from the locale code page. |
1694 | \omitvalue LastEncoding |
1695 | */ |
1696 | |
1697 | /*! |
1698 | \struct QStringConverter::Interface |
1699 | \internal |
1700 | */ |
1701 | |
1702 | const QStringConverter::Interface QStringConverter::encodingInterfaces[QStringConverter::LastEncoding + 1] = |
1703 | { |
1704 | { .name: "UTF-8" , .toUtf16: QUtf8::convertToUnicode, .toUtf16Len: fromUtf8Len, .fromUtf16: QUtf8::convertFromUnicode, .fromUtf16Len: toUtf8Len }, |
1705 | { .name: "UTF-16" , .toUtf16: fromUtf16, .toUtf16Len: fromUtf16Len, .fromUtf16: toUtf16, .fromUtf16Len: toUtf16Len }, |
1706 | { .name: "UTF-16LE" , .toUtf16: fromUtf16LE, .toUtf16Len: fromUtf16Len, .fromUtf16: toUtf16LE, .fromUtf16Len: toUtf16Len }, |
1707 | { .name: "UTF-16BE" , .toUtf16: fromUtf16BE, .toUtf16Len: fromUtf16Len, .fromUtf16: toUtf16BE, .fromUtf16Len: toUtf16Len }, |
1708 | { .name: "UTF-32" , .toUtf16: fromUtf32, .toUtf16Len: fromUtf32Len, .fromUtf16: toUtf32, .fromUtf16Len: toUtf32Len }, |
1709 | { .name: "UTF-32LE" , .toUtf16: fromUtf32LE, .toUtf16Len: fromUtf32Len, .fromUtf16: toUtf32LE, .fromUtf16Len: toUtf32Len }, |
1710 | { .name: "UTF-32BE" , .toUtf16: fromUtf32BE, .toUtf16Len: fromUtf32Len, .fromUtf16: toUtf32BE, .fromUtf16Len: toUtf32Len }, |
1711 | { .name: "ISO-8859-1" , .toUtf16: QLatin1::convertToUnicode, .toUtf16Len: fromLatin1Len, .fromUtf16: QLatin1::convertFromUnicode, .fromUtf16Len: toLatin1Len }, |
1712 | { .name: "Locale" , .toUtf16: fromLocal8Bit, .toUtf16Len: fromUtf8Len, .fromUtf16: toLocal8Bit, .fromUtf16Len: toUtf8Len } |
1713 | }; |
1714 | |
1715 | // match names case insensitive and skipping '-' and '_' |
1716 | static bool nameMatch(const char *a, const char *b) |
1717 | { |
1718 | while (*a && *b) { |
1719 | if (*a == '-' || *a == '_') { |
1720 | ++a; |
1721 | continue; |
1722 | } |
1723 | if (*b == '-' || *b == '_') { |
1724 | ++b; |
1725 | continue; |
1726 | } |
1727 | if (QtMiscUtils::toAsciiLower(ch: *a) != QtMiscUtils::toAsciiLower(ch: *b)) |
1728 | return false; |
1729 | ++a; |
1730 | ++b; |
1731 | } |
1732 | return !*a && !*b; |
1733 | } |
1734 | |
1735 | |
1736 | /*! |
1737 | \fn constexpr QStringConverter::QStringConverter() |
1738 | \internal |
1739 | */ |
1740 | |
1741 | /*! |
1742 | \fn constexpr QStringConverter::QStringConverter(Encoding, Flags) |
1743 | \internal |
1744 | */ |
1745 | |
1746 | |
1747 | #if QT_CONFIG(icu) |
1748 | // only derives from QStringConverter to get access to protected types |
1749 | struct QStringConverterICU : QStringConverter |
1750 | { |
1751 | static void clear_function(QStringConverterBase::State *state) noexcept |
1752 | { |
1753 | ucnv_close(converter: static_cast<UConverter *>(state->d[0])); |
1754 | state->d[0] = nullptr; |
1755 | } |
1756 | |
1757 | static void ensureConverter(QStringConverter::State *state) |
1758 | { |
1759 | // old code might reset the state via clear instead of reset |
1760 | // in that case, the converter has been closed, and we have to reopen it |
1761 | if (state->d[0] == nullptr) |
1762 | state->d[0] = createConverterForName(name: static_cast<const char *>(state->d[1]), state); |
1763 | } |
1764 | |
1765 | static QChar *toUtf16(QChar *out, QByteArrayView in, QStringConverter::State *state) |
1766 | { |
1767 | ensureConverter(state); |
1768 | |
1769 | auto icu_conv = static_cast<UConverter *>(state->d[0]); |
1770 | UErrorCode err = U_ZERO_ERROR; |
1771 | auto source = in.data(); |
1772 | auto sourceLimit = in.data() + in.size(); |
1773 | |
1774 | qsizetype length = toLen(inLength: in.size()); |
1775 | |
1776 | UChar *target = reinterpret_cast<UChar *>(out); |
1777 | auto targetLimit = target + length; |
1778 | // We explicitly clean up anyway, so no need to set flush to true, |
1779 | // which would just reset the converter. |
1780 | UBool flush = false; |
1781 | |
1782 | // If the QStringConverter was moved, the state that we used as a context is stale now. |
1783 | UConverterToUCallback action; |
1784 | const void *context; |
1785 | ucnv_getToUCallBack(converter: icu_conv, action: &action, context: &context); |
1786 | if (context != state) |
1787 | ucnv_setToUCallBack(converter: icu_conv, newAction: action, newContext: &state, oldAction: nullptr, oldContext: nullptr, err: &err); |
1788 | |
1789 | ucnv_toUnicode(converter: icu_conv, target: &target, targetLimit, source: &source, sourceLimit, offsets: nullptr, flush, err: &err); |
1790 | // We did reserve enough space: |
1791 | Q_ASSERT(err != U_BUFFER_OVERFLOW_ERROR); |
1792 | if (state->flags.testFlag(flag: QStringConverter::Flag::Stateless)) { |
1793 | if (auto leftOver = ucnv_toUCountPending(cnv: icu_conv, status: &err)) { |
1794 | ucnv_reset(converter: icu_conv); |
1795 | state->invalidChars += leftOver; |
1796 | } |
1797 | } |
1798 | return reinterpret_cast<QChar *>(target); |
1799 | } |
1800 | |
1801 | static char *fromUtf16(char *out, QStringView in, QStringConverter::State *state) |
1802 | { |
1803 | ensureConverter(state); |
1804 | auto icu_conv = static_cast<UConverter *>(state->d[0]); |
1805 | UErrorCode err = U_ZERO_ERROR; |
1806 | auto source = reinterpret_cast<const UChar *>(in.data()); |
1807 | auto sourceLimit = reinterpret_cast<const UChar *>(in.data() + in.size()); |
1808 | |
1809 | qsizetype length = UCNV_GET_MAX_BYTES_FOR_STRING(in.size(), ucnv_getMaxCharSize(icu_conv)); |
1810 | |
1811 | char *target = out; |
1812 | char *targetLimit = out + length; |
1813 | UBool flush = false; |
1814 | |
1815 | // If the QStringConverter was moved, the state that we used as a context is stale now. |
1816 | UConverterFromUCallback action; |
1817 | const void *context; |
1818 | ucnv_getFromUCallBack(converter: icu_conv, action: &action, context: &context); |
1819 | if (context != state) |
1820 | ucnv_setFromUCallBack(converter: icu_conv, newAction: action, newContext: &state, oldAction: nullptr, oldContext: nullptr, err: &err); |
1821 | |
1822 | ucnv_fromUnicode(converter: icu_conv, target: &target, targetLimit, source: &source, sourceLimit, offsets: nullptr, flush, err: &err); |
1823 | // We did reserve enough space: |
1824 | Q_ASSERT(err != U_BUFFER_OVERFLOW_ERROR); |
1825 | if (state->flags.testFlag(flag: QStringConverter::Flag::Stateless)) { |
1826 | if (auto leftOver = ucnv_fromUCountPending(cnv: icu_conv, status: &err)) { |
1827 | ucnv_reset(converter: icu_conv); |
1828 | state->invalidChars += leftOver; |
1829 | } |
1830 | } |
1831 | return target; |
1832 | } |
1833 | |
1834 | Q_DISABLE_COPY_MOVE(QStringConverterICU) |
1835 | |
1836 | template<qsizetype X> |
1837 | static qsizetype fromLen(qsizetype inLength) |
1838 | { |
1839 | return X * inLength * sizeof(UChar); |
1840 | } |
1841 | |
1842 | static qsizetype toLen(qsizetype inLength) |
1843 | { |
1844 | |
1845 | /* Assumption: each input char might map to a different codepoint |
1846 | Each codepoint can take up to 4 bytes == 2 QChar |
1847 | We can ignore reserving space for a BOM, as only UTF encodings use one |
1848 | and those are not handled by the ICU converter. |
1849 | */ |
1850 | return 2 * inLength; |
1851 | } |
1852 | |
1853 | static constexpr QStringConverter::Interface forLength[] = { |
1854 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<1>}, |
1855 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<2>}, |
1856 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<3>}, |
1857 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<4>}, |
1858 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<5>}, |
1859 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<6>}, |
1860 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<7>}, |
1861 | {.name: "icu, recompile if you see this" , .toUtf16: QStringConverterICU::toUtf16, .toUtf16Len: QStringConverterICU::toLen, .fromUtf16: QStringConverterICU::fromUtf16, .fromUtf16Len: QStringConverterICU::fromLen<8>} |
1862 | }; |
1863 | |
1864 | static UConverter *createConverterForName(const char *name, const State *state) |
1865 | { |
1866 | Q_ASSERT(name); |
1867 | Q_ASSERT(state); |
1868 | UErrorCode status = U_ZERO_ERROR; |
1869 | UConverter *conv = ucnv_open(converterName: name, err: &status); |
1870 | if (status != U_ZERO_ERROR && status != U_AMBIGUOUS_ALIAS_WARNING) { |
1871 | ucnv_close(converter: conv); |
1872 | return nullptr; |
1873 | } |
1874 | |
1875 | if (state->flags.testFlag(flag: Flag::ConvertInvalidToNull)) { |
1876 | UErrorCode error = U_ZERO_ERROR; |
1877 | |
1878 | auto nullToSubstituter = [](const void *context, UConverterToUnicodeArgs *toUArgs, |
1879 | const char *, int32_t length, |
1880 | UConverterCallbackReason reason, UErrorCode *err) { |
1881 | if (reason <= UCNV_IRREGULAR) { |
1882 | *err = U_ZERO_ERROR; |
1883 | UChar c = '\0'; |
1884 | ucnv_cbToUWriteUChars(args: toUArgs, source: &c, length: 1, offsetIndex: 0, err); |
1885 | // Recover outer scope's state (which isn't const) from context: |
1886 | auto state = const_cast<State *>(static_cast<const State *>(context)); |
1887 | state->invalidChars += length; |
1888 | } |
1889 | }; |
1890 | ucnv_setToUCallBack(converter: conv, newAction: nullToSubstituter, newContext: state, oldAction: nullptr, oldContext: nullptr, err: &error); |
1891 | |
1892 | auto nullFromSubstituter = [](const void *context, UConverterFromUnicodeArgs *fromUArgs, |
1893 | const UChar *, int32_t length, |
1894 | UChar32, UConverterCallbackReason reason, UErrorCode *err) { |
1895 | if (reason <= UCNV_IRREGULAR) { |
1896 | *err = U_ZERO_ERROR; |
1897 | const UChar replacement[] = { 0 }; |
1898 | const UChar *stringBegin = std::begin(arr: replacement); |
1899 | ucnv_cbFromUWriteUChars(args: fromUArgs, source: &stringBegin, sourceLimit: std::end(arr: replacement), offsetIndex: 0, err); |
1900 | // Recover outer scope's state (which isn't const) from context: |
1901 | auto state = const_cast<State *>(static_cast<const State *>(context)); |
1902 | state->invalidChars += length; |
1903 | } |
1904 | }; |
1905 | ucnv_setFromUCallBack(converter: conv, newAction: nullFromSubstituter, newContext: state, oldAction: nullptr, oldContext: nullptr, err: &error); |
1906 | } else { |
1907 | UErrorCode error = U_ZERO_ERROR; |
1908 | |
1909 | auto qmarkToSubstituter = [](const void *context, UConverterToUnicodeArgs *toUArgs, |
1910 | const char *codeUnits,int32_t length, |
1911 | UConverterCallbackReason reason, UErrorCode *err) { |
1912 | if (reason <= UCNV_IRREGULAR) { |
1913 | // Recover outer scope's state (which isn't const) from context: |
1914 | auto state = const_cast<State *>(static_cast<const State *>(context)); |
1915 | state->invalidChars += length; |
1916 | } |
1917 | // use existing ICU callback for logic |
1918 | UCNV_TO_U_CALLBACK_SUBSTITUTE(context: nullptr, toUArgs, codeUnits, length, reason, err); |
1919 | |
1920 | }; |
1921 | ucnv_setToUCallBack(converter: conv, newAction: qmarkToSubstituter, newContext: state, oldAction: nullptr, oldContext: nullptr, err: &error); |
1922 | |
1923 | auto qmarkFromSubstituter = [](const void *context, UConverterFromUnicodeArgs *fromUArgs, |
1924 | const UChar *codeUnits, int32_t length, |
1925 | UChar32 codePoint, UConverterCallbackReason reason, UErrorCode *err) { |
1926 | if (reason <= UCNV_IRREGULAR) { |
1927 | // Recover outer scope's state (which isn't const) from context: |
1928 | auto state = const_cast<State *>(static_cast<const State *>(context)); |
1929 | state->invalidChars += length; |
1930 | } |
1931 | // use existing ICU callback for logic |
1932 | UCNV_FROM_U_CALLBACK_SUBSTITUTE(context: nullptr, fromUArgs, codeUnits, length, |
1933 | codePoint, reason, err); |
1934 | }; |
1935 | ucnv_setFromUCallBack(converter: conv, newAction: qmarkFromSubstituter, newContext: state, oldAction: nullptr, oldContext: nullptr, err: &error); |
1936 | } |
1937 | return conv; |
1938 | } |
1939 | |
1940 | static const QStringConverter::Interface *make_icu_converter( |
1941 | QStringConverterBase::State *state, |
1942 | const char *name) |
1943 | { |
1944 | UErrorCode status = U_ZERO_ERROR; |
1945 | UConverter *conv = createConverterForName(name, state); |
1946 | if (!conv) |
1947 | return nullptr; |
1948 | |
1949 | const char *icuName = ucnv_getName(converter: conv, err: &status); |
1950 | // ucnv_getStandardName returns a name which is owned by the library |
1951 | // we can thus store it in the state without worrying aobut its lifetime |
1952 | const char *persistentName = ucnv_getStandardName(name: icuName, standard: "MIME" , pErrorCode: &status); |
1953 | if (U_FAILURE(code: status) || !persistentName) { |
1954 | status = U_ZERO_ERROR; |
1955 | persistentName = ucnv_getStandardName(name: icuName, standard: "IANA" , pErrorCode: &status); |
1956 | } |
1957 | state->d[1] = const_cast<char *>(persistentName); |
1958 | state->d[0] = conv; |
1959 | state->flags |= QStringConverterBase::Flag::UsesIcu; |
1960 | qsizetype maxCharSize = ucnv_getMaxCharSize(converter: conv); |
1961 | state->clearFn = QStringConverterICU::clear_function; |
1962 | if (maxCharSize > 8 || maxCharSize < 1) { |
1963 | qWarning(msg: "Encountered unexpected codec \"%s\" which requires >8x space" , name); |
1964 | return nullptr; |
1965 | } else { |
1966 | return &forLength[maxCharSize - 1]; |
1967 | } |
1968 | |
1969 | } |
1970 | |
1971 | }; |
1972 | #endif |
1973 | |
1974 | /*! |
1975 | \internal |
1976 | */ |
1977 | QStringConverter::QStringConverter(const char *name, Flags f) |
1978 | : iface(nullptr), state(f) |
1979 | { |
1980 | auto e = encodingForName(name); |
1981 | if (e) |
1982 | iface = encodingInterfaces + int(*e); |
1983 | #if QT_CONFIG(icu) |
1984 | else |
1985 | iface = QStringConverterICU::make_icu_converter(state: &state, name); |
1986 | #endif |
1987 | } |
1988 | |
1989 | |
1990 | const char *QStringConverter::name() const noexcept |
1991 | { |
1992 | if (!iface) |
1993 | return nullptr; |
1994 | if (state.flags & QStringConverter::Flag::UsesIcu) { |
1995 | #if QT_CONFIG(icu) |
1996 | return static_cast<const char*>(state.d[1]); |
1997 | #else |
1998 | return nullptr; |
1999 | #endif |
2000 | } else { |
2001 | return iface->name; |
2002 | } |
2003 | } |
2004 | |
2005 | /*! |
2006 | \fn bool QStringConverter::isValid() const |
2007 | |
2008 | Returns true if this is a valid string converter that can be used for encoding or |
2009 | decoding text. |
2010 | |
2011 | Default constructed string converters or converters constructed with an unsupported |
2012 | name are not valid. |
2013 | */ |
2014 | |
2015 | /*! |
2016 | \fn void QStringConverter::resetState() |
2017 | |
2018 | Resets the internal state of the converter, clearing potential errors or partial |
2019 | conversions. |
2020 | */ |
2021 | |
2022 | /*! |
2023 | \fn bool QStringConverter::hasError() const |
2024 | |
2025 | Returns true if a conversion could not correctly convert a character. This could for example |
2026 | get triggered by an invalid UTF-8 sequence or when a character can't get converted due to |
2027 | limitations in the target encoding. |
2028 | */ |
2029 | |
2030 | /*! |
2031 | \fn const char *QStringConverter::name() const |
2032 | |
2033 | Returns the canonical name of the encoding this QStringConverter can encode or decode. |
2034 | Returns a nullptr if the converter is not valid. |
2035 | |
2036 | \sa isValid() |
2037 | */ |
2038 | |
2039 | /*! |
2040 | Convert \a name to the corresponding \l Encoding member, if there is one. |
2041 | |
2042 | If the \a name is not the name of a codec listed in the Encoding enumeration, |
2043 | \c{std::nullopt} is returned. Such a name may, none the less, be accepted by |
2044 | the QStringConverter constructor when Qt is built with ICU, if ICU provides a |
2045 | converter with the given name. |
2046 | */ |
2047 | std::optional<QStringConverter::Encoding> QStringConverter::encodingForName(const char *name) noexcept |
2048 | { |
2049 | for (qsizetype i = 0; i < LastEncoding + 1; ++i) { |
2050 | if (nameMatch(a: encodingInterfaces[i].name, b: name)) |
2051 | return QStringConverter::Encoding(i); |
2052 | } |
2053 | if (nameMatch(a: name, b: "latin1" )) |
2054 | return QStringConverter::Latin1; |
2055 | return std::nullopt; |
2056 | } |
2057 | |
2058 | /*! |
2059 | Returns the encoding for the content of \a data if it can be determined. |
2060 | \a expectedFirstCharacter can be passed as an additional hint to help determine |
2061 | the encoding. |
2062 | |
2063 | The returned optional is empty, if the encoding is unclear. |
2064 | */ |
2065 | std::optional<QStringConverter::Encoding> |
2066 | QStringConverter::encodingForData(QByteArrayView data, char16_t expectedFirstCharacter) noexcept |
2067 | { |
2068 | // someone set us up the BOM? |
2069 | qsizetype arraySize = data.size(); |
2070 | if (arraySize > 3) { |
2071 | char32_t uc = qFromUnaligned<char32_t>(src: data.data()); |
2072 | if (uc == qToBigEndian(source: char32_t(QChar::ByteOrderMark))) |
2073 | return QStringConverter::Utf32BE; |
2074 | if (uc == qToLittleEndian(source: char32_t(QChar::ByteOrderMark))) |
2075 | return QStringConverter::Utf32LE; |
2076 | if (expectedFirstCharacter) { |
2077 | // catch also anything starting with the expected character |
2078 | if (qToLittleEndian(source: uc) == expectedFirstCharacter) |
2079 | return QStringConverter::Utf32LE; |
2080 | else if (qToBigEndian(source: uc) == expectedFirstCharacter) |
2081 | return QStringConverter::Utf32BE; |
2082 | } |
2083 | } |
2084 | |
2085 | if (arraySize > 2) { |
2086 | if (memcmp(s1: data.data(), s2: utf8bom, n: sizeof(utf8bom)) == 0) |
2087 | return QStringConverter::Utf8; |
2088 | } |
2089 | |
2090 | if (arraySize > 1) { |
2091 | char16_t uc = qFromUnaligned<char16_t>(src: data.data()); |
2092 | if (uc == qToBigEndian(source: char16_t(QChar::ByteOrderMark))) |
2093 | return QStringConverter::Utf16BE; |
2094 | if (uc == qToLittleEndian(source: char16_t(QChar::ByteOrderMark))) |
2095 | return QStringConverter::Utf16LE; |
2096 | if (expectedFirstCharacter) { |
2097 | // catch also anything starting with the expected character |
2098 | if (qToLittleEndian(source: uc) == expectedFirstCharacter) |
2099 | return QStringConverter::Utf16LE; |
2100 | else if (qToBigEndian(source: uc) == expectedFirstCharacter) |
2101 | return QStringConverter::Utf16BE; |
2102 | } |
2103 | } |
2104 | return std::nullopt; |
2105 | } |
2106 | |
2107 | static QByteArray parseHtmlMetaForEncoding(QByteArrayView data) |
2108 | { |
2109 | static constexpr auto metaSearcher = qMakeStaticByteArrayMatcher(pattern: "meta " ); |
2110 | static constexpr auto charsetSearcher = qMakeStaticByteArrayMatcher(pattern: "charset=" ); |
2111 | |
2112 | QByteArray = data.first(n: qMin(a: data.size(), b: qsizetype(1024))).toByteArray().toLower(); |
2113 | qsizetype pos = metaSearcher.indexIn(haystack: header); |
2114 | if (pos != -1) { |
2115 | pos = charsetSearcher.indexIn(haystack: header, from: pos); |
2116 | if (pos != -1) { |
2117 | pos += qstrlen(str: "charset=" ); |
2118 | if (pos < header.size() && (header.at(i: pos) == '\"' || header.at(i: pos) == '\'')) |
2119 | ++pos; |
2120 | |
2121 | qsizetype pos2 = pos; |
2122 | // The attribute can be closed with either """, "'", ">" or "/", |
2123 | // none of which are valid charset characters. |
2124 | while (++pos2 < header.size()) { |
2125 | char ch = header.at(i: pos2); |
2126 | if (ch == '\"' || ch == '\'' || ch == '>' || ch == '/') { |
2127 | QByteArray name = header.mid(index: pos, len: pos2 - pos); |
2128 | qsizetype colon = name.indexOf(c: ':'); |
2129 | if (colon > 0) |
2130 | name = name.left(len: colon); |
2131 | name = name.simplified(); |
2132 | if (name == "unicode" ) // QTBUG-41998, ICU will return UTF-16. |
2133 | name = QByteArrayLiteral("UTF-8" ); |
2134 | if (!name.isEmpty()) |
2135 | return name; |
2136 | } |
2137 | } |
2138 | } |
2139 | } |
2140 | return QByteArray(); |
2141 | } |
2142 | |
2143 | /*! |
2144 | Tries to determine the encoding of the HTML in \a data by looking at leading byte |
2145 | order marks or a charset specifier in the HTML meta tag. If the optional is empty, |
2146 | the encoding specified is not supported by QStringConverter. If no encoding is |
2147 | detected, the method returns Utf8. |
2148 | |
2149 | \sa QStringDecoder::decoderForHtml() |
2150 | */ |
2151 | std::optional<QStringConverter::Encoding> QStringConverter::encodingForHtml(QByteArrayView data) |
2152 | { |
2153 | // determine charset |
2154 | std::optional<QStringConverter::Encoding> encoding = encodingForData(data); |
2155 | if (encoding) |
2156 | // trust the initial BOM |
2157 | return encoding; |
2158 | |
2159 | QByteArray encodingTag = parseHtmlMetaForEncoding(data); |
2160 | if (!encodingTag.isEmpty()) |
2161 | return encodingForName(name: encodingTag); |
2162 | |
2163 | return Utf8; |
2164 | } |
2165 | |
2166 | /*! |
2167 | Tries to determine the encoding of the HTML in \a data by looking at leading byte |
2168 | order marks or a charset specifier in the HTML meta tag and returns a QStringDecoder |
2169 | matching the encoding. If the returned decoder is not valid, |
2170 | the encoding specified is not supported by QStringConverter. If no encoding is |
2171 | detected, the method returns a decoder for Utf8. |
2172 | |
2173 | \sa isValid() |
2174 | */ |
2175 | QStringDecoder QStringDecoder::decoderForHtml(QByteArrayView data) |
2176 | { |
2177 | // determine charset |
2178 | std::optional<QStringConverter::Encoding> encoding = encodingForData(data); |
2179 | if (encoding) |
2180 | // trust the initial BOM |
2181 | return QStringDecoder(encoding.value()); |
2182 | |
2183 | QByteArray encodingTag = parseHtmlMetaForEncoding(data); |
2184 | if (!encodingTag.isEmpty()) |
2185 | return QStringDecoder(encodingTag); |
2186 | |
2187 | return QStringDecoder(Utf8); |
2188 | } |
2189 | |
2190 | |
2191 | /*! |
2192 | Returns the canonical name for encoding \a e. |
2193 | */ |
2194 | const char *QStringConverter::nameForEncoding(QStringConverter::Encoding e) |
2195 | { |
2196 | return encodingInterfaces[int(e)].name; |
2197 | } |
2198 | |
2199 | /*! |
2200 | \class QStringEncoder |
2201 | \inmodule QtCore |
2202 | \brief The QStringEncoder class provides a state-based encoder for text. |
2203 | \reentrant |
2204 | \ingroup i18n |
2205 | |
2206 | A text encoder converts text from Qt's internal representation into an encoded |
2207 | text format using a specific encoding. |
2208 | |
2209 | Converting a string from Unicode to the local encoding can be achieved |
2210 | using the following code: |
2211 | |
2212 | \snippet code/src_corelib_text_qstringconverter.cpp 1 |
2213 | |
2214 | The encoder remembers any state that is required between calls, so converting |
2215 | data received in chunks, for example, when receiving it over a network, is just as |
2216 | easy, by calling the encoder whenever new data is available: |
2217 | |
2218 | \snippet code/src_corelib_text_qstringconverter.cpp 3 |
2219 | |
2220 | The QStringEncoder object maintains state between chunks and therefore |
2221 | works correctly even if a UTF-16 surrogate character is split between |
2222 | chunks. |
2223 | |
2224 | QStringEncoder objects can't be copied because of their internal state, but |
2225 | can be moved. |
2226 | |
2227 | \sa QStringConverter, QStringDecoder |
2228 | */ |
2229 | |
2230 | /*! |
2231 | \fn constexpr QStringEncoder::QStringEncoder(const Interface *i) |
2232 | \internal |
2233 | */ |
2234 | |
2235 | /*! |
2236 | \fn constexpr QStringEncoder::QStringEncoder() |
2237 | |
2238 | Default constructs an encoder. The default encoder is not valid, |
2239 | and can't be used for converting text. |
2240 | */ |
2241 | |
2242 | /*! |
2243 | \fn constexpr QStringEncoder::QStringEncoder(Encoding encoding, Flags flags = Flag::Default) |
2244 | |
2245 | Creates an encoder object using \a encoding and \a flags. |
2246 | */ |
2247 | |
2248 | /*! |
2249 | \fn constexpr QStringEncoder::QStringEncoder(const char *name, Flags flags = Flag::Default) |
2250 | |
2251 | Creates an encoder object using \a name and \a flags. |
2252 | If \a name is not the name of a known encoding an invalid converter will get created. |
2253 | |
2254 | \sa isValid() |
2255 | */ |
2256 | |
2257 | /*! |
2258 | \fn QByteArray QStringEncoder::encode(const QString &in) |
2259 | \fn QByteArray QStringEncoder::encode(QStringView in) |
2260 | \fn QByteArray QStringEncoder::operator()(const QString &in) |
2261 | \fn QByteArray QStringEncoder::operator()(QStringView in) |
2262 | |
2263 | Converts \a in and returns the data as a byte array. |
2264 | */ |
2265 | |
2266 | /*! |
2267 | \fn qsizetype QStringEncoder::requiredSpace(qsizetype inputLength) const |
2268 | |
2269 | Returns the maximum amount of characters required to be able to process |
2270 | \a inputLength decoded data. |
2271 | |
2272 | \sa appendToBuffer() |
2273 | */ |
2274 | |
2275 | /*! |
2276 | \fn char *QStringEncoder::appendToBuffer(char *out, QStringView in) |
2277 | |
2278 | Encodes \a in and writes the encoded result into the buffer |
2279 | starting at \a out. Returns a pointer to the end of the data written. |
2280 | |
2281 | \note \a out must be large enough to be able to hold all the decoded data. Use |
2282 | requiredSpace() to determine the maximum size requirement to be able to encode |
2283 | \a in. |
2284 | |
2285 | \sa requiredSpace() |
2286 | */ |
2287 | |
2288 | /*! |
2289 | \class QStringDecoder |
2290 | \inmodule QtCore |
2291 | \brief The QStringDecoder class provides a state-based decoder for text. |
2292 | \reentrant |
2293 | \ingroup i18n |
2294 | |
2295 | A text decoder converts text an encoded text format that uses a specific encoding |
2296 | into Qt's internal representation. |
2297 | |
2298 | Converting encoded data into a QString can be achieved |
2299 | using the following code: |
2300 | |
2301 | \snippet code/src_corelib_text_qstringconverter.cpp 0 |
2302 | |
2303 | The decoder remembers any state that is required between calls, so converting |
2304 | data received in chunks, for example, when receiving it over a network, is just as |
2305 | easy, by calling the decoder whenever new data is available: |
2306 | |
2307 | \snippet code/src_corelib_text_qstringconverter.cpp 2 |
2308 | |
2309 | The QStringDecoder object maintains state between chunks and therefore |
2310 | works correctly even if chunks are split in the middle of a multi-byte character |
2311 | sequence. |
2312 | |
2313 | QStringDecoder objects can't be copied because of their internal state, but |
2314 | can be moved. |
2315 | |
2316 | \sa QStringConverter, QStringEncoder |
2317 | */ |
2318 | |
2319 | /*! |
2320 | \fn constexpr QStringDecoder::QStringDecoder(const Interface *i) |
2321 | \internal |
2322 | */ |
2323 | |
2324 | /*! |
2325 | \fn constexpr QStringDecoder::QStringDecoder() |
2326 | |
2327 | Default constructs an decoder. The default decoder is not valid, |
2328 | and can't be used for converting text. |
2329 | */ |
2330 | |
2331 | /*! |
2332 | \fn constexpr QStringDecoder::QStringDecoder(Encoding encoding, Flags flags = Flag::Default) |
2333 | |
2334 | Creates an decoder object using \a encoding and \a flags. |
2335 | */ |
2336 | |
2337 | /*! |
2338 | \fn constexpr QStringDecoder::QStringDecoder(const char *name, Flags flags = Flag::Default) |
2339 | |
2340 | Creates an decoder object using \a name and \a flags. |
2341 | If \a name is not the name of a known encoding an invalid converter will get created. |
2342 | |
2343 | \sa isValid() |
2344 | */ |
2345 | |
2346 | /*! |
2347 | \fn QString QStringDecoder::operator()(const QByteArray &ba) |
2348 | \fn QString QStringDecoder::decode(const QByteArray &ba) |
2349 | \fn QString QStringDecoder::operator()(QByteArrayView ba) |
2350 | \fn QString QStringDecoder::decode(QByteArrayView ba) |
2351 | |
2352 | Converts \a ba and returns the data as a QString. |
2353 | */ |
2354 | |
2355 | /*! |
2356 | \fn qsizetype QStringDecoder::requiredSpace(qsizetype inputLength) const |
2357 | |
2358 | Returns the maximum amount of UTF-16 code units required to be able to process |
2359 | \a inputLength encoded data. |
2360 | |
2361 | \sa appendToBuffer |
2362 | */ |
2363 | |
2364 | /*! |
2365 | \fn QChar *QStringDecoder::appendToBuffer(QChar *out, QByteArrayView in) |
2366 | |
2367 | Decodes the sequence of bytes viewed by \a in and writes the decoded result into |
2368 | the buffer starting at \a out. Returns a pointer to the end of data written. |
2369 | |
2370 | \a out needs to be large enough to be able to hold all the decoded data. Use |
2371 | \l{requiredSpace} to determine the maximum size requirements to decode an encoded |
2372 | data buffer of \c in.size() bytes. |
2373 | |
2374 | \sa requiredSpace |
2375 | */ |
2376 | |
2377 | /*! |
2378 | \fn char16_t *QStringDecoder::appendToBuffer(char16_t *out, QByteArrayView in) |
2379 | \since 6.6 |
2380 | \overload |
2381 | */ |
2382 | |
2383 | QT_END_NAMESPACE |
2384 | |