1 | // Copyright (C) 2022 The Qt Company Ltd. |
2 | // Copyright (C) 2018 Intel Corporation. |
3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
4 | |
5 | #include "qsemaphore.h" |
6 | #include "qfutex_p.h" |
7 | #include "qdeadlinetimer.h" |
8 | #include "qdatetime.h" |
9 | #include "qdebug.h" |
10 | #include "qlocking_p.h" |
11 | #include "qwaitcondition_p.h" |
12 | |
13 | #include <chrono> |
14 | |
15 | QT_BEGIN_NAMESPACE |
16 | |
17 | using namespace QtFutex; |
18 | |
19 | /*! |
20 | \class QSemaphore |
21 | \inmodule QtCore |
22 | \brief The QSemaphore class provides a general counting semaphore. |
23 | |
24 | \threadsafe |
25 | |
26 | \ingroup thread |
27 | |
28 | A semaphore is a generalization of a mutex. While a mutex can |
29 | only be locked once, it's possible to acquire a semaphore |
30 | multiple times. Semaphores are typically used to protect a |
31 | certain number of identical resources. |
32 | |
33 | Semaphores support two fundamental operations, acquire() and |
34 | release(): |
35 | |
36 | \list |
37 | \li acquire(\e{n}) tries to acquire \e n resources. If there aren't |
38 | that many resources available, the call will block until this |
39 | is the case. |
40 | \li release(\e{n}) releases \e n resources. |
41 | \endlist |
42 | |
43 | There's also a tryAcquire() function that returns immediately if |
44 | it cannot acquire the resources, and an available() function that |
45 | returns the number of available resources at any time. |
46 | |
47 | Example: |
48 | |
49 | \snippet code/src_corelib_thread_qsemaphore.cpp 0 |
50 | |
51 | A typical application of semaphores is for controlling access to |
52 | a circular buffer shared by a producer thread and a consumer |
53 | thread. The \l{Semaphores Example} shows how |
54 | to use QSemaphore to solve that problem. |
55 | |
56 | A non-computing example of a semaphore would be dining at a |
57 | restaurant. A semaphore is initialized with the number of chairs |
58 | in the restaurant. As people arrive, they want a seat. As seats |
59 | are filled, available() is decremented. As people leave, the |
60 | available() is incremented, allowing more people to enter. If a |
61 | party of 10 people want to be seated, but there are only 9 seats, |
62 | those 10 people will wait, but a party of 4 people would be |
63 | seated (taking the available seats to 5, making the party of 10 |
64 | people wait longer). |
65 | |
66 | \sa QSemaphoreReleaser, QMutex, QWaitCondition, QThread, {Semaphores Example} |
67 | */ |
68 | |
69 | /* |
70 | QSemaphore futex operation |
71 | |
72 | QSemaphore stores a 32-bit integer with the counter of currently available |
73 | tokens (value between 0 and INT_MAX). When a thread attempts to acquire n |
74 | tokens and the counter is larger than that, we perform a compare-and-swap |
75 | with the new count. If that succeeds, the acquisition worked; if not, we |
76 | loop again because the counter changed. If there were not enough tokens, |
77 | we'll perform a futex-wait. |
78 | |
79 | Before we do, we set the high bit in the futex to indicate that semaphore |
80 | is contended: that is, there's a thread waiting for more tokens. On |
81 | release() for n tokens, we perform a fetch-and-add of n and then check if |
82 | that high bit was set. If it was, then we clear that bit and perform a |
83 | futex-wake on the semaphore to indicate the waiting threads can wake up and |
84 | acquire tokens. Which ones get woken up is unspecified. |
85 | |
86 | If the system has the ability to wake up a precise number of threads, has |
87 | Linux's FUTEX_WAKE_OP functionality, and is 64-bit, instead of using a |
88 | single bit indicating a contended semaphore, we'll store the number of |
89 | tokens *plus* total number of waiters in the high word. Additionally, all |
90 | multi-token waiters will be waiting on that high word. So when releasing n |
91 | tokens on those systems, we tell the kernel to wake up n single-token |
92 | threads and all of the multi-token ones. Which threads get woken up is |
93 | unspecified, but it's likely single-token threads will get woken up first. |
94 | */ |
95 | |
96 | #if defined(FUTEX_OP) && QT_POINTER_SIZE > 4 |
97 | static constexpr bool futexHasWaiterCount = true; |
98 | #else |
99 | static constexpr bool futexHasWaiterCount = false; |
100 | #endif |
101 | |
102 | static constexpr quintptr futexNeedsWakeAllBit = futexHasWaiterCount ? |
103 | (Q_UINT64_C(1) << (sizeof(quintptr) * CHAR_BIT - 1)) : 0x80000000U; |
104 | |
105 | static int futexAvailCounter(quintptr v) |
106 | { |
107 | // the low 31 bits |
108 | if (futexHasWaiterCount) { |
109 | // the high bit of the low word isn't used |
110 | Q_ASSERT((v & 0x80000000U) == 0); |
111 | |
112 | // so we can be a little faster |
113 | return int(unsigned(v)); |
114 | } |
115 | return int(v & 0x7fffffffU); |
116 | } |
117 | |
118 | static bool futexNeedsWake(quintptr v) |
119 | { |
120 | // If we're counting waiters, the number of waiters plus value is stored in the |
121 | // low 31 bits of the high word (that is, bits 32-62). If we're not, then we only |
122 | // use futexNeedsWakeAllBit to indicate anyone is waiting. |
123 | if constexpr (futexHasWaiterCount) |
124 | return unsigned(quint64(v) >> 32) > unsigned(v); |
125 | return v >> 31; |
126 | } |
127 | |
128 | static QBasicAtomicInteger<quint32> *futexLow32(QBasicAtomicInteger<quintptr> *ptr) |
129 | { |
130 | auto result = reinterpret_cast<QBasicAtomicInteger<quint32> *>(ptr); |
131 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN && QT_POINTER_SIZE > 4 |
132 | ++result; |
133 | #endif |
134 | return result; |
135 | } |
136 | |
137 | static QBasicAtomicInteger<quint32> *futexHigh32(QBasicAtomicInteger<quintptr> *ptr) |
138 | { |
139 | Q_ASSERT(futexHasWaiterCount); |
140 | auto result = reinterpret_cast<QBasicAtomicInteger<quint32> *>(ptr); |
141 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN && QT_POINTER_SIZE > 4 |
142 | ++result; |
143 | #endif |
144 | return result; |
145 | } |
146 | |
147 | template <bool IsTimed> bool |
148 | futexSemaphoreTryAcquire_loop(QBasicAtomicInteger<quintptr> &u, quintptr curValue, quintptr nn, |
149 | QDeadlineTimer timer) |
150 | { |
151 | qint64 remainingTime = IsTimed ? timer.remainingTimeNSecs() : -1; |
152 | int n = int(unsigned(nn)); |
153 | |
154 | // we're called after one testAndSet, so start by waiting first |
155 | for (;;) { |
156 | // indicate we're waiting |
157 | auto ptr = futexLow32(ptr: &u); |
158 | if (n > 1 || !futexHasWaiterCount) { |
159 | u.fetchAndOrRelaxed(valueToAdd: futexNeedsWakeAllBit); |
160 | curValue |= futexNeedsWakeAllBit; |
161 | if constexpr (futexHasWaiterCount) { |
162 | Q_ASSERT(n > 1); |
163 | ptr = futexHigh32(ptr: &u); |
164 | curValue = quint64(curValue) >> 32; |
165 | } |
166 | } |
167 | |
168 | if (IsTimed && remainingTime > 0) { |
169 | bool timedout = !futexWait(futex&: *ptr, expectedValue: curValue, nstimeout: remainingTime); |
170 | if (timedout) |
171 | return false; |
172 | } else { |
173 | futexWait(futex&: *ptr, expectedValue: curValue); |
174 | } |
175 | |
176 | curValue = u.loadAcquire(); |
177 | if (IsTimed) |
178 | remainingTime = timer.remainingTimeNSecs(); |
179 | |
180 | // try to acquire |
181 | while (futexAvailCounter(v: curValue) >= n) { |
182 | quintptr newValue = curValue - nn; |
183 | if (u.testAndSetOrdered(expectedValue: curValue, newValue, currentValue&: curValue)) |
184 | return true; // succeeded! |
185 | } |
186 | |
187 | // not enough tokens available, put us to wait |
188 | if (remainingTime == 0) |
189 | return false; |
190 | } |
191 | } |
192 | |
193 | static constexpr QDeadlineTimer::ForeverConstant Expired = |
194 | QDeadlineTimer::ForeverConstant(1); |
195 | |
196 | template <typename T> bool |
197 | futexSemaphoreTryAcquire(QBasicAtomicInteger<quintptr> &u, int n, T timeout) |
198 | { |
199 | constexpr bool IsTimed = std::is_same_v<QDeadlineTimer, T>; |
200 | // Try to acquire without waiting (we still loop because the testAndSet |
201 | // call can fail). |
202 | quintptr nn = unsigned(n); |
203 | if (futexHasWaiterCount) |
204 | nn |= quint64(nn) << 32; // token count replicated in high word |
205 | |
206 | quintptr curValue = u.loadAcquire(); |
207 | while (futexAvailCounter(v: curValue) >= n) { |
208 | // try to acquire |
209 | quintptr newValue = curValue - nn; |
210 | if (u.testAndSetOrdered(expectedValue: curValue, newValue, currentValue&: curValue)) |
211 | return true; // succeeded! |
212 | } |
213 | if constexpr (IsTimed) { |
214 | if (timeout.hasExpired()) |
215 | return false; |
216 | } else { |
217 | if (timeout == Expired) |
218 | return false; |
219 | } |
220 | |
221 | // we need to wait |
222 | constexpr quintptr oneWaiter = quintptr(Q_UINT64_C(1) << 32); // zero on 32-bit |
223 | if constexpr (futexHasWaiterCount) { |
224 | // We don't use the fetched value from above so futexWait() fails if |
225 | // it changed after the testAndSetOrdered above. |
226 | quint32 waiterCount = (quint64(curValue) >> 32) & 0x7fffffffU; |
227 | if (waiterCount == 0x7fffffffU) { |
228 | qCritical() << "Waiter count overflow in QSemaphore" ; |
229 | return false; |
230 | } |
231 | |
232 | // increase the waiter count |
233 | u.fetchAndAddRelaxed(valueToAdd: oneWaiter); |
234 | curValue += oneWaiter; |
235 | |
236 | // Also adjust nn to subtract oneWaiter when we succeed in acquiring. |
237 | nn += oneWaiter; |
238 | } |
239 | |
240 | if (futexSemaphoreTryAcquire_loop<IsTimed>(u, curValue, nn, timeout)) |
241 | return true; |
242 | |
243 | Q_ASSERT(IsTimed); |
244 | |
245 | if (futexHasWaiterCount) { |
246 | // decrement the number of threads waiting |
247 | Q_ASSERT(futexHigh32(&u)->loadRelaxed() & 0x7fffffffU); |
248 | u.fetchAndSubRelaxed(valueToAdd: oneWaiter); |
249 | } |
250 | return false; |
251 | } |
252 | |
253 | class QSemaphorePrivate { |
254 | public: |
255 | explicit QSemaphorePrivate(int n) : avail(n) { } |
256 | |
257 | QtPrivate::mutex mutex; |
258 | QtPrivate::condition_variable cond; |
259 | |
260 | int avail; |
261 | }; |
262 | |
263 | /*! |
264 | Creates a new semaphore and initializes the number of resources |
265 | it guards to \a n (by default, 0). |
266 | |
267 | \sa release(), available() |
268 | */ |
269 | QSemaphore::QSemaphore(int n) |
270 | { |
271 | Q_ASSERT_X(n >= 0, "QSemaphore" , "parameter 'n' must be non-negative" ); |
272 | if (futexAvailable()) { |
273 | quintptr nn = unsigned(n); |
274 | if (futexHasWaiterCount) |
275 | nn |= quint64(nn) << 32; // token count replicated in high word |
276 | u.storeRelaxed(newValue: nn); |
277 | } else { |
278 | d = new QSemaphorePrivate(n); |
279 | } |
280 | } |
281 | |
282 | /*! |
283 | Destroys the semaphore. |
284 | |
285 | \warning Destroying a semaphore that is in use may result in |
286 | undefined behavior. |
287 | */ |
288 | QSemaphore::~QSemaphore() |
289 | { |
290 | if (!futexAvailable()) |
291 | delete d; |
292 | } |
293 | |
294 | /*! |
295 | Tries to acquire \c n resources guarded by the semaphore. If \a n |
296 | > available(), this call will block until enough resources are |
297 | available. |
298 | |
299 | \sa release(), available(), tryAcquire() |
300 | */ |
301 | void QSemaphore::acquire(int n) |
302 | { |
303 | #if QT_VERSION >= QT_VERSION_CHECK(7, 0, 0) |
304 | # warning "Move the Q_ASSERT to inline code, make QSemaphore have wide contract, " \ |
305 | "and mark noexcept where futexes are in use." |
306 | #else |
307 | Q_ASSERT_X(n >= 0, "QSemaphore::acquire" , "parameter 'n' must be non-negative" ); |
308 | #endif |
309 | |
310 | if (futexAvailable()) { |
311 | futexSemaphoreTryAcquire(u&: u, n, timeout: QDeadlineTimer::Forever); |
312 | return; |
313 | } |
314 | |
315 | const auto sufficientResourcesAvailable = [this, n] { return d->avail >= n; }; |
316 | |
317 | auto locker = qt_unique_lock(mutex&: d->mutex); |
318 | d->cond.wait(lock&: locker, p: sufficientResourcesAvailable); |
319 | d->avail -= n; |
320 | } |
321 | |
322 | /*! |
323 | Releases \a n resources guarded by the semaphore. |
324 | |
325 | This function can be used to "create" resources as well. For |
326 | example: |
327 | |
328 | \snippet code/src_corelib_thread_qsemaphore.cpp 1 |
329 | |
330 | QSemaphoreReleaser is a \l{http://en.cppreference.com/w/cpp/language/raii}{RAII} |
331 | wrapper around this function. |
332 | |
333 | \sa acquire(), available(), QSemaphoreReleaser |
334 | */ |
335 | void QSemaphore::release(int n) |
336 | { |
337 | Q_ASSERT_X(n >= 0, "QSemaphore::release" , "parameter 'n' must be non-negative" ); |
338 | |
339 | if (futexAvailable()) { |
340 | quintptr nn = unsigned(n); |
341 | if (futexHasWaiterCount) |
342 | nn |= quint64(nn) << 32; // token count replicated in high word |
343 | quintptr prevValue = u.loadRelaxed(); |
344 | quintptr newValue; |
345 | do { // loop just to ensure the operations are done atomically |
346 | newValue = prevValue + nn; |
347 | newValue &= (futexNeedsWakeAllBit - 1); |
348 | } while (!u.testAndSetRelease(expectedValue: prevValue, newValue, currentValue&: prevValue)); |
349 | if (futexNeedsWake(v: prevValue)) { |
350 | #ifdef FUTEX_OP |
351 | if (futexHasWaiterCount) { |
352 | /* |
353 | On 64-bit systems, the single-token waiters wait on the low half |
354 | and the multi-token waiters wait on the upper half. So we ask |
355 | the kernel to wake up n single-token waiters and all multi-token |
356 | waiters (if any), and clear the multi-token wait bit. |
357 | |
358 | atomic { |
359 | int oldval = *upper; |
360 | *upper = oldval | 0; |
361 | futexWake(lower, n); |
362 | if (oldval != 0) // always true |
363 | futexWake(upper, INT_MAX); |
364 | } |
365 | */ |
366 | quint32 op = FUTEX_OP_OR; |
367 | quint32 oparg = 0; |
368 | quint32 cmp = FUTEX_OP_CMP_NE; |
369 | quint32 cmparg = 0; |
370 | futexWakeOp(futex1&: *futexLow32(ptr: &u), wake1: n, INT_MAX, futex2&: *futexHigh32(ptr: &u), FUTEX_OP(op, oparg, cmp, cmparg)); |
371 | return; |
372 | } |
373 | #endif |
374 | // Unset the bit and wake everyone. There are two possibilities |
375 | // under which a thread can set the bit between the AND and the |
376 | // futexWake: |
377 | // 1) it did see the new counter value, but it wasn't enough for |
378 | // its acquisition anyway, so it has to wait; |
379 | // 2) it did not see the new counter value, in which case its |
380 | // futexWait will fail. |
381 | if (futexHasWaiterCount) { |
382 | futexWakeAll(futex&: *futexLow32(ptr: &u)); |
383 | futexWakeAll(futex&: *futexHigh32(ptr: &u)); |
384 | } else { |
385 | futexWakeAll(futex&: u); |
386 | } |
387 | } |
388 | return; |
389 | } |
390 | |
391 | const auto locker = qt_scoped_lock(mutex&: d->mutex); |
392 | d->avail += n; |
393 | d->cond.notify_all(); |
394 | } |
395 | |
396 | /*! |
397 | Returns the number of resources currently available to the |
398 | semaphore. This number can never be negative. |
399 | |
400 | \sa acquire(), release() |
401 | */ |
402 | int QSemaphore::available() const |
403 | { |
404 | if (futexAvailable()) |
405 | return futexAvailCounter(v: u.loadRelaxed()); |
406 | |
407 | const auto locker = qt_scoped_lock(mutex&: d->mutex); |
408 | return d->avail; |
409 | } |
410 | |
411 | /*! |
412 | Tries to acquire \c n resources guarded by the semaphore and |
413 | returns \c true on success. If available() < \a n, this call |
414 | immediately returns \c false without acquiring any resources. |
415 | |
416 | Example: |
417 | |
418 | \snippet code/src_corelib_thread_qsemaphore.cpp 2 |
419 | |
420 | \sa acquire() |
421 | */ |
422 | bool QSemaphore::tryAcquire(int n) |
423 | { |
424 | Q_ASSERT_X(n >= 0, "QSemaphore::tryAcquire" , "parameter 'n' must be non-negative" ); |
425 | |
426 | if (futexAvailable()) |
427 | return futexSemaphoreTryAcquire(u&: u, n, timeout: Expired); |
428 | |
429 | const auto locker = qt_scoped_lock(mutex&: d->mutex); |
430 | if (n > d->avail) |
431 | return false; |
432 | d->avail -= n; |
433 | return true; |
434 | } |
435 | |
436 | /*! |
437 | \fn QSemaphore::tryAcquire(int n, int timeout) |
438 | |
439 | Tries to acquire \c n resources guarded by the semaphore and |
440 | returns \c true on success. If available() < \a n, this call will |
441 | wait for at most \a timeout milliseconds for resources to become |
442 | available. |
443 | |
444 | Note: Passing a negative number as the \a timeout is equivalent to |
445 | calling acquire(), i.e. this function will wait forever for |
446 | resources to become available if \a timeout is negative. |
447 | |
448 | Example: |
449 | |
450 | \snippet code/src_corelib_thread_qsemaphore.cpp 3 |
451 | |
452 | \sa acquire() |
453 | */ |
454 | |
455 | /*! |
456 | \since 6.6 |
457 | |
458 | Tries to acquire \c n resources guarded by the semaphore and returns \c |
459 | true on success. If available() < \a n, this call will wait until \a timer |
460 | expires for resources to become available. |
461 | |
462 | Example: |
463 | |
464 | \snippet code/src_corelib_thread_qsemaphore.cpp tryAcquire-QDeadlineTimer |
465 | |
466 | \sa acquire() |
467 | */ |
468 | bool QSemaphore::tryAcquire(int n, QDeadlineTimer timer) |
469 | { |
470 | if (timer.isForever()) { |
471 | acquire(n); |
472 | return true; |
473 | } |
474 | |
475 | if (timer.hasExpired()) |
476 | return tryAcquire(n); |
477 | |
478 | Q_ASSERT_X(n >= 0, "QSemaphore::tryAcquire" , "parameter 'n' must be non-negative" ); |
479 | |
480 | if (futexAvailable()) |
481 | return futexSemaphoreTryAcquire(u&: u, n, timeout: timer); |
482 | |
483 | using namespace std::chrono; |
484 | const auto sufficientResourcesAvailable = [this, n] { return d->avail >= n; }; |
485 | |
486 | auto locker = qt_unique_lock(mutex&: d->mutex); |
487 | if (!d->cond.wait_until(lock&: locker, atime: timer.deadline<steady_clock>(), p: sufficientResourcesAvailable)) |
488 | return false; |
489 | d->avail -= n; |
490 | return true; |
491 | } |
492 | |
493 | /*! |
494 | \fn template <typename Rep, typename Period> QSemaphore::tryAcquire(int n, std::chrono::duration<Rep, Period> timeout) |
495 | \overload |
496 | \since 6.3 |
497 | */ |
498 | |
499 | /*! |
500 | \fn bool QSemaphore::try_acquire() |
501 | \since 6.3 |
502 | |
503 | This function is provided for \c{std::counting_semaphore} compatibility. |
504 | |
505 | It is equivalent to calling \c{tryAcquire(1)}, where the function returns |
506 | \c true on acquiring the resource successfully. |
507 | |
508 | \sa tryAcquire(), try_acquire_for(), try_acquire_until() |
509 | */ |
510 | |
511 | /*! |
512 | \fn template <typename Rep, typename Period> bool QSemaphore::try_acquire_for(const std::chrono::duration<Rep, Period> &timeout) |
513 | \since 6.3 |
514 | |
515 | This function is provided for \c{std::counting_semaphore} compatibility. |
516 | |
517 | It is equivalent to calling \c{tryAcquire(1, timeout)}, where the call |
518 | times out on the given \a timeout value. The function returns \c true |
519 | on acquiring the resource successfully. |
520 | |
521 | \sa tryAcquire(), try_acquire(), try_acquire_until() |
522 | */ |
523 | |
524 | /*! |
525 | \fn template <typename Clock, typename Duration> bool QSemaphore::try_acquire_until(const std::chrono::time_point<Clock, Duration> &tp) |
526 | \since 6.3 |
527 | |
528 | This function is provided for \c{std::counting_semaphore} compatibility. |
529 | |
530 | It is equivalent to calling \c{tryAcquire(1, tp - Clock::now())}, |
531 | which means that the \a tp (time point) is recorded, ignoring the |
532 | adjustments to \c{Clock} while waiting. The function returns \c true |
533 | on acquiring the resource successfully. |
534 | |
535 | \sa tryAcquire(), try_acquire(), try_acquire_for() |
536 | */ |
537 | |
538 | /*! |
539 | \class QSemaphoreReleaser |
540 | \brief The QSemaphoreReleaser class provides exception-safe deferral of a QSemaphore::release() call. |
541 | \since 5.10 |
542 | \ingroup thread |
543 | \inmodule QtCore |
544 | |
545 | \reentrant |
546 | |
547 | QSemaphoreReleaser can be used wherever you would otherwise use |
548 | QSemaphore::release(). Constructing a QSemaphoreReleaser defers the |
549 | release() call on the semaphore until the QSemaphoreReleaser is |
550 | destroyed (see |
551 | \l{http://en.cppreference.com/w/cpp/language/raii}{RAII pattern}). |
552 | |
553 | You can use this to reliably release a semaphore to avoid dead-lock |
554 | in the face of exceptions or early returns: |
555 | |
556 | \snippet code/src_corelib_thread_qsemaphore.cpp 4 |
557 | |
558 | If an early return is taken or an exception is thrown before the |
559 | \c{sem.release()} call is reached, the semaphore is not released, |
560 | possibly preventing the thread waiting in the corresponding |
561 | \c{sem.acquire()} call from ever continuing execution. |
562 | |
563 | When using RAII instead: |
564 | |
565 | \snippet code/src_corelib_thread_qsemaphore.cpp 5 |
566 | |
567 | this can no longer happen, because the compiler will make sure that |
568 | the QSemaphoreReleaser destructor is always called, and therefore |
569 | the semaphore is always released. |
570 | |
571 | QSemaphoreReleaser is move-enabled and can therefore be returned |
572 | from functions to transfer responsibility for releasing a semaphore |
573 | out of a function or a scope: |
574 | |
575 | \snippet code/src_corelib_thread_qsemaphore.cpp 6 |
576 | |
577 | A QSemaphoreReleaser can be canceled by a call to cancel(). A canceled |
578 | semaphore releaser will no longer call QSemaphore::release() in its |
579 | destructor. |
580 | |
581 | \sa QMutexLocker |
582 | */ |
583 | |
584 | /*! |
585 | \fn QSemaphoreReleaser::QSemaphoreReleaser() |
586 | |
587 | Default constructor. Creates a QSemaphoreReleaser that does nothing. |
588 | */ |
589 | |
590 | /*! |
591 | \fn QSemaphoreReleaser::QSemaphoreReleaser(QSemaphore &sem, int n) |
592 | |
593 | Constructor. Stores the arguments and calls \a{sem}.release(\a{n}) |
594 | in the destructor. |
595 | */ |
596 | |
597 | /*! |
598 | \fn QSemaphoreReleaser::QSemaphoreReleaser(QSemaphore *sem, int n) |
599 | |
600 | Constructor. Stores the arguments and calls \a{sem}->release(\a{n}) |
601 | in the destructor. |
602 | */ |
603 | |
604 | /*! |
605 | \fn QSemaphoreReleaser::QSemaphoreReleaser(QSemaphoreReleaser &&other) |
606 | |
607 | Move constructor. Takes over responsibility to call QSemaphore::release() |
608 | from \a other, which in turn is canceled. |
609 | |
610 | \sa cancel() |
611 | */ |
612 | |
613 | /*! |
614 | \fn QSemaphoreReleaser::operator=(QSemaphoreReleaser &&other) |
615 | |
616 | Move assignment operator. Takes over responsibility to call QSemaphore::release() |
617 | from \a other, which in turn is canceled. |
618 | |
619 | If this semaphore releaser had the responsibility to call some QSemaphore::release() |
620 | itself, it performs the call before taking over from \a other. |
621 | |
622 | \sa cancel() |
623 | */ |
624 | |
625 | /*! |
626 | \fn QSemaphoreReleaser::~QSemaphoreReleaser() |
627 | |
628 | Unless canceled, calls QSemaphore::release() with the arguments provided |
629 | to the constructor, or by the last move assignment. |
630 | */ |
631 | |
632 | /*! |
633 | \fn QSemaphoreReleaser::swap(QSemaphoreReleaser &other) |
634 | |
635 | Exchanges the responsibilities of \c{*this} and \a other. |
636 | |
637 | Unlike move assignment, neither of the two objects ever releases its |
638 | semaphore, if any, as a consequence of swapping. |
639 | |
640 | Therefore this function is very fast and never fails. |
641 | */ |
642 | |
643 | /*! |
644 | \fn QSemaphoreReleaser::semaphore() const |
645 | |
646 | Returns a pointer to the QSemaphore object provided to the constructor, |
647 | or by the last move assignment, if any. Otherwise, returns \nullptr. |
648 | */ |
649 | |
650 | /*! |
651 | \fn QSemaphoreReleaser::cancel() |
652 | |
653 | Cancels this QSemaphoreReleaser such that the destructor will no longer |
654 | call \c{semaphore()->release()}. Returns the value of semaphore() |
655 | before this call. After this call, semaphore() will return \nullptr. |
656 | |
657 | To enable again, assign a new QSemaphoreReleaser: |
658 | |
659 | \snippet code/src_corelib_thread_qsemaphore.cpp 7 |
660 | */ |
661 | |
662 | |
663 | QT_END_NAMESPACE |
664 | |