| 1 | // Copyright (C) 2022 The Qt Company Ltd. |
| 2 | // Copyright (C) 2018 Intel Corporation. |
| 3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 4 | |
| 5 | #include "qsemaphore.h" |
| 6 | #include "qfutex_p.h" |
| 7 | #include "qdeadlinetimer.h" |
| 8 | #include "qdatetime.h" |
| 9 | #include "qdebug.h" |
| 10 | #include "qlocking_p.h" |
| 11 | #include "qwaitcondition_p.h" |
| 12 | |
| 13 | #include <chrono> |
| 14 | |
| 15 | QT_BEGIN_NAMESPACE |
| 16 | |
| 17 | using namespace QtFutex; |
| 18 | |
| 19 | /*! |
| 20 | \class QSemaphore |
| 21 | \inmodule QtCore |
| 22 | \brief The QSemaphore class provides a general counting semaphore. |
| 23 | |
| 24 | \threadsafe |
| 25 | |
| 26 | \ingroup thread |
| 27 | |
| 28 | A semaphore is a generalization of a mutex. While a mutex can |
| 29 | only be locked once, it's possible to acquire a semaphore |
| 30 | multiple times. Semaphores are typically used to protect a |
| 31 | certain number of identical resources. |
| 32 | |
| 33 | Semaphores support two fundamental operations, acquire() and |
| 34 | release(): |
| 35 | |
| 36 | \list |
| 37 | \li acquire(\e{n}) tries to acquire \e n resources. If there aren't |
| 38 | that many resources available, the call will block until this |
| 39 | is the case. |
| 40 | \li release(\e{n}) releases \e n resources. |
| 41 | \endlist |
| 42 | |
| 43 | There's also a tryAcquire() function that returns immediately if |
| 44 | it cannot acquire the resources, and an available() function that |
| 45 | returns the number of available resources at any time. |
| 46 | |
| 47 | Example: |
| 48 | |
| 49 | \snippet code/src_corelib_thread_qsemaphore.cpp 0 |
| 50 | |
| 51 | A typical application of semaphores is for controlling access to |
| 52 | a circular buffer shared by a producer thread and a consumer |
| 53 | thread. The \l{Producer and Consumer using Semaphores} example shows how |
| 54 | to use QSemaphore to solve that problem. |
| 55 | |
| 56 | A non-computing example of a semaphore would be dining at a |
| 57 | restaurant. A semaphore is initialized with the number of chairs |
| 58 | in the restaurant. As people arrive, they want a seat. As seats |
| 59 | are filled, available() is decremented. As people leave, the |
| 60 | available() is incremented, allowing more people to enter. If a |
| 61 | party of 10 people want to be seated, but there are only 9 seats, |
| 62 | those 10 people will wait, but a party of 4 people would be |
| 63 | seated (taking the available seats to 5, making the party of 10 |
| 64 | people wait longer). |
| 65 | |
| 66 | \sa QSemaphoreReleaser, QMutex, QWaitCondition, QThread, |
| 67 | {Producer and Consumer using Semaphores} |
| 68 | */ |
| 69 | |
| 70 | /* |
| 71 | QSemaphore futex operation |
| 72 | |
| 73 | QSemaphore stores a 32-bit integer with the counter of currently available |
| 74 | tokens (value between 0 and INT_MAX). When a thread attempts to acquire n |
| 75 | tokens and the counter is larger than that, we perform a compare-and-swap |
| 76 | with the new count. If that succeeds, the acquisition worked; if not, we |
| 77 | loop again because the counter changed. If there were not enough tokens, |
| 78 | we'll perform a futex-wait. |
| 79 | |
| 80 | Before we do, we set the high bit in the futex to indicate that semaphore |
| 81 | is contended: that is, there's a thread waiting for more tokens. On |
| 82 | release() for n tokens, we perform a fetch-and-add of n and then check if |
| 83 | that high bit was set. If it was, then we clear that bit and perform a |
| 84 | futex-wake on the semaphore to indicate the waiting threads can wake up and |
| 85 | acquire tokens. Which ones get woken up is unspecified. |
| 86 | |
| 87 | If the system has the ability to wake up a precise number of threads, has |
| 88 | Linux's FUTEX_WAKE_OP functionality, and is 64-bit, instead of using a |
| 89 | single bit indicating a contended semaphore, we'll store the number of |
| 90 | tokens *plus* total number of waiters in the high word. Additionally, all |
| 91 | multi-token waiters will be waiting on that high word. So when releasing n |
| 92 | tokens on those systems, we tell the kernel to wake up n single-token |
| 93 | threads and all of the multi-token ones. Which threads get woken up is |
| 94 | unspecified, but it's likely single-token threads will get woken up first. |
| 95 | */ |
| 96 | |
| 97 | #if defined(FUTEX_OP) && QT_POINTER_SIZE > 4 |
| 98 | static constexpr bool futexHasWaiterCount = true; |
| 99 | #else |
| 100 | static constexpr bool futexHasWaiterCount = false; |
| 101 | #endif |
| 102 | |
| 103 | static constexpr quintptr futexNeedsWakeAllBit = futexHasWaiterCount ? |
| 104 | (Q_UINT64_C(1) << (sizeof(quintptr) * CHAR_BIT - 1)) : 0x80000000U; |
| 105 | |
| 106 | static int futexAvailCounter(quintptr v) |
| 107 | { |
| 108 | // the low 31 bits |
| 109 | if (futexHasWaiterCount) { |
| 110 | // the high bit of the low word isn't used |
| 111 | Q_ASSERT((v & 0x80000000U) == 0); |
| 112 | |
| 113 | // so we can be a little faster |
| 114 | return int(unsigned(v)); |
| 115 | } |
| 116 | return int(v & 0x7fffffffU); |
| 117 | } |
| 118 | |
| 119 | static bool futexNeedsWake(quintptr v) |
| 120 | { |
| 121 | // If we're counting waiters, the number of waiters plus value is stored in the |
| 122 | // low 31 bits of the high word (that is, bits 32-62). If we're not, then we only |
| 123 | // use futexNeedsWakeAllBit to indicate anyone is waiting. |
| 124 | if constexpr (futexHasWaiterCount) |
| 125 | return unsigned(quint64(v) >> 32) > unsigned(v); |
| 126 | return v >> 31; |
| 127 | } |
| 128 | |
| 129 | static QBasicAtomicInteger<quint32> *futexLow32(QBasicAtomicInteger<quintptr> *ptr) |
| 130 | { |
| 131 | auto result = reinterpret_cast<QBasicAtomicInteger<quint32> *>(ptr); |
| 132 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN && QT_POINTER_SIZE > 4 |
| 133 | ++result; |
| 134 | #endif |
| 135 | return result; |
| 136 | } |
| 137 | |
| 138 | static QBasicAtomicInteger<quint32> *futexHigh32(QBasicAtomicInteger<quintptr> *ptr) |
| 139 | { |
| 140 | Q_ASSERT(futexHasWaiterCount); |
| 141 | auto result = reinterpret_cast<QBasicAtomicInteger<quint32> *>(ptr); |
| 142 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN && QT_POINTER_SIZE > 4 |
| 143 | ++result; |
| 144 | #endif |
| 145 | return result; |
| 146 | } |
| 147 | |
| 148 | template <bool IsTimed> bool |
| 149 | futexSemaphoreTryAcquire_loop(QBasicAtomicInteger<quintptr> &u, quintptr curValue, quintptr nn, |
| 150 | QDeadlineTimer timer) |
| 151 | { |
| 152 | using namespace std::chrono; |
| 153 | int n = int(unsigned(nn)); |
| 154 | |
| 155 | // we're called after one testAndSet, so start by waiting first |
| 156 | for (;;) { |
| 157 | // indicate we're waiting |
| 158 | auto ptr = futexLow32(ptr: &u); |
| 159 | if (n > 1 || !futexHasWaiterCount) { |
| 160 | u.fetchAndOrRelaxed(valueToAdd: futexNeedsWakeAllBit); |
| 161 | curValue |= futexNeedsWakeAllBit; |
| 162 | if constexpr (futexHasWaiterCount) { |
| 163 | Q_ASSERT(n > 1); |
| 164 | ptr = futexHigh32(ptr: &u); |
| 165 | curValue = quint64(curValue) >> 32; |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | if (IsTimed) { |
| 170 | bool timedout = !futexWait(futex&: *ptr, expectedValue: curValue, deadline: timer); |
| 171 | if (timedout) |
| 172 | return false; |
| 173 | } else { |
| 174 | futexWait(futex&: *ptr, expectedValue: curValue); |
| 175 | } |
| 176 | |
| 177 | curValue = u.loadAcquire(); |
| 178 | |
| 179 | // try to acquire |
| 180 | while (futexAvailCounter(v: curValue) >= n) { |
| 181 | quintptr newValue = curValue - nn; |
| 182 | if (u.testAndSetOrdered(expectedValue: curValue, newValue, currentValue&: curValue)) |
| 183 | return true; // succeeded! |
| 184 | } |
| 185 | |
| 186 | // not enough tokens available, put us to wait |
| 187 | if (IsTimed && timer.hasExpired()) |
| 188 | return false; |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | static constexpr QDeadlineTimer::ForeverConstant Expired = |
| 193 | QDeadlineTimer::ForeverConstant(1); |
| 194 | |
| 195 | template <typename T> bool |
| 196 | futexSemaphoreTryAcquire(QBasicAtomicInteger<quintptr> &u, int n, T timeout) |
| 197 | { |
| 198 | constexpr bool IsTimed = std::is_same_v<QDeadlineTimer, T>; |
| 199 | // Try to acquire without waiting (we still loop because the testAndSet |
| 200 | // call can fail). |
| 201 | quintptr nn = unsigned(n); |
| 202 | if (futexHasWaiterCount) |
| 203 | nn |= quint64(nn) << 32; // token count replicated in high word |
| 204 | |
| 205 | quintptr curValue = u.loadAcquire(); |
| 206 | while (futexAvailCounter(v: curValue) >= n) { |
| 207 | // try to acquire |
| 208 | quintptr newValue = curValue - nn; |
| 209 | if (u.testAndSetOrdered(expectedValue: curValue, newValue, currentValue&: curValue)) |
| 210 | return true; // succeeded! |
| 211 | } |
| 212 | if constexpr (IsTimed) { |
| 213 | if (timeout.hasExpired()) |
| 214 | return false; |
| 215 | } else { |
| 216 | if (timeout == Expired) |
| 217 | return false; |
| 218 | } |
| 219 | |
| 220 | // we need to wait |
| 221 | constexpr quintptr oneWaiter = quintptr(Q_UINT64_C(1) << 32); // zero on 32-bit |
| 222 | if constexpr (futexHasWaiterCount) { |
| 223 | // We don't use the fetched value from above so futexWait() fails if |
| 224 | // it changed after the testAndSetOrdered above. |
| 225 | quint32 waiterCount = (quint64(curValue) >> 32) & 0x7fffffffU; |
| 226 | if (waiterCount == 0x7fffffffU) { |
| 227 | qCritical() << "Waiter count overflow in QSemaphore" ; |
| 228 | return false; |
| 229 | } |
| 230 | |
| 231 | // increase the waiter count |
| 232 | u.fetchAndAddRelaxed(valueToAdd: oneWaiter); |
| 233 | curValue += oneWaiter; |
| 234 | |
| 235 | // Also adjust nn to subtract oneWaiter when we succeed in acquiring. |
| 236 | nn += oneWaiter; |
| 237 | } |
| 238 | |
| 239 | if (futexSemaphoreTryAcquire_loop<IsTimed>(u, curValue, nn, timeout)) |
| 240 | return true; |
| 241 | |
| 242 | Q_ASSERT(IsTimed); |
| 243 | |
| 244 | if (futexHasWaiterCount) { |
| 245 | // decrement the number of threads waiting |
| 246 | Q_ASSERT(futexHigh32(&u)->loadRelaxed() & 0x7fffffffU); |
| 247 | u.fetchAndSubRelaxed(valueToAdd: oneWaiter); |
| 248 | } |
| 249 | return false; |
| 250 | } |
| 251 | |
| 252 | namespace QtSemaphorePrivate { |
| 253 | using namespace QtPrivate; |
| 254 | struct Layout1 |
| 255 | { |
| 256 | alignas(IdealMutexAlignment) std::mutex mutex; |
| 257 | qsizetype avail = 0; |
| 258 | alignas(IdealMutexAlignment) std::condition_variable cond; |
| 259 | }; |
| 260 | |
| 261 | struct Layout2 |
| 262 | { |
| 263 | alignas(IdealMutexAlignment) std::mutex mutex; |
| 264 | alignas(IdealMutexAlignment) std::condition_variable cond; |
| 265 | qsizetype avail = 0; |
| 266 | }; |
| 267 | |
| 268 | // Choose Layout1 if it is smaller than Layout2. That happens for platforms |
| 269 | // where sizeof(mutex) is 64. |
| 270 | using Members = std::conditional_t<sizeof(Layout1) <= sizeof(Layout2), Layout1, Layout2>; |
| 271 | } // namespace QtSemaphorePrivate |
| 272 | |
| 273 | class QSemaphorePrivate : public QtSemaphorePrivate::Members |
| 274 | { |
| 275 | public: |
| 276 | explicit QSemaphorePrivate(qsizetype n) { avail = n; } |
| 277 | }; |
| 278 | |
| 279 | /*! |
| 280 | Creates a new semaphore and initializes the number of resources |
| 281 | it guards to \a n (by default, 0). |
| 282 | |
| 283 | \sa release(), available() |
| 284 | */ |
| 285 | QSemaphore::QSemaphore(int n) |
| 286 | { |
| 287 | Q_ASSERT_X(n >= 0, "QSemaphore" , "parameter 'n' must be non-negative" ); |
| 288 | if (futexAvailable()) { |
| 289 | quintptr nn = unsigned(n); |
| 290 | if (futexHasWaiterCount) |
| 291 | nn |= quint64(nn) << 32; // token count replicated in high word |
| 292 | u.storeRelaxed(newValue: nn); |
| 293 | } else { |
| 294 | d = new QSemaphorePrivate(n); |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | /*! |
| 299 | Destroys the semaphore. |
| 300 | |
| 301 | \warning Destroying a semaphore that is in use may result in |
| 302 | undefined behavior. |
| 303 | */ |
| 304 | QSemaphore::~QSemaphore() |
| 305 | { |
| 306 | if (!futexAvailable()) |
| 307 | delete d; |
| 308 | } |
| 309 | |
| 310 | /*! |
| 311 | Tries to acquire \c n resources guarded by the semaphore. If \a n |
| 312 | > available(), this call will block until enough resources are |
| 313 | available. |
| 314 | |
| 315 | \sa release(), available(), tryAcquire() |
| 316 | */ |
| 317 | void QSemaphore::acquire(int n) |
| 318 | { |
| 319 | #if QT_VERSION >= QT_VERSION_CHECK(7, 0, 0) |
| 320 | # warning "Move the Q_ASSERT to inline code, make QSemaphore have wide contract, " \ |
| 321 | "and mark noexcept where futexes are in use." |
| 322 | #else |
| 323 | Q_ASSERT_X(n >= 0, "QSemaphore::acquire" , "parameter 'n' must be non-negative" ); |
| 324 | #endif |
| 325 | |
| 326 | if (futexAvailable()) { |
| 327 | futexSemaphoreTryAcquire(u&: u, n, timeout: QDeadlineTimer::Forever); |
| 328 | return; |
| 329 | } |
| 330 | |
| 331 | const auto sufficientResourcesAvailable = [this, n] { return d->avail >= n; }; |
| 332 | |
| 333 | auto locker = qt_unique_lock(mutex&: d->mutex); |
| 334 | d->cond.wait(lock&: locker, p: sufficientResourcesAvailable); |
| 335 | d->avail -= n; |
| 336 | } |
| 337 | |
| 338 | /*! |
| 339 | Releases \a n resources guarded by the semaphore. |
| 340 | |
| 341 | This function can be used to "create" resources as well. For |
| 342 | example: |
| 343 | |
| 344 | \snippet code/src_corelib_thread_qsemaphore.cpp 1 |
| 345 | |
| 346 | QSemaphoreReleaser is a \l{http://en.cppreference.com/w/cpp/language/raii}{RAII} |
| 347 | wrapper around this function. |
| 348 | |
| 349 | \sa acquire(), available(), QSemaphoreReleaser |
| 350 | */ |
| 351 | void QSemaphore::release(int n) |
| 352 | { |
| 353 | Q_ASSERT_X(n >= 0, "QSemaphore::release" , "parameter 'n' must be non-negative" ); |
| 354 | |
| 355 | if (futexAvailable()) { |
| 356 | quintptr nn = unsigned(n); |
| 357 | if (futexHasWaiterCount) |
| 358 | nn |= quint64(nn) << 32; // token count replicated in high word |
| 359 | quintptr prevValue = u.loadRelaxed(); |
| 360 | quintptr newValue; |
| 361 | do { // loop just to ensure the operations are done atomically |
| 362 | newValue = prevValue + nn; |
| 363 | newValue &= (futexNeedsWakeAllBit - 1); |
| 364 | } while (!u.testAndSetRelease(expectedValue: prevValue, newValue, currentValue&: prevValue)); |
| 365 | if (futexNeedsWake(v: prevValue)) { |
| 366 | #ifdef FUTEX_OP |
| 367 | if (futexHasWaiterCount) { |
| 368 | /* |
| 369 | On 64-bit systems, the single-token waiters wait on the low half |
| 370 | and the multi-token waiters wait on the upper half. So we ask |
| 371 | the kernel to wake up n single-token waiters and all multi-token |
| 372 | waiters (if any), and clear the multi-token wait bit. |
| 373 | |
| 374 | atomic { |
| 375 | int oldval = *upper; |
| 376 | *upper = oldval | 0; |
| 377 | futexWake(lower, n); |
| 378 | if (oldval != 0) // always true |
| 379 | futexWake(upper, INT_MAX); |
| 380 | } |
| 381 | */ |
| 382 | quint32 op = FUTEX_OP_OR; |
| 383 | quint32 oparg = 0; |
| 384 | quint32 cmp = FUTEX_OP_CMP_NE; |
| 385 | quint32 cmparg = 0; |
| 386 | futexWakeOp(futex1&: *futexLow32(ptr: &u), wake1: n, INT_MAX, futex2&: *futexHigh32(ptr: &u), FUTEX_OP(op, oparg, cmp, cmparg)); |
| 387 | return; |
| 388 | } |
| 389 | #endif |
| 390 | // Unset the bit and wake everyone. There are two possibilities |
| 391 | // under which a thread can set the bit between the AND and the |
| 392 | // futexWake: |
| 393 | // 1) it did see the new counter value, but it wasn't enough for |
| 394 | // its acquisition anyway, so it has to wait; |
| 395 | // 2) it did not see the new counter value, in which case its |
| 396 | // futexWait will fail. |
| 397 | futexWakeAll(futex&: *futexLow32(ptr: &u)); |
| 398 | if (futexHasWaiterCount) |
| 399 | futexWakeAll(futex&: *futexHigh32(ptr: &u)); |
| 400 | } |
| 401 | return; |
| 402 | } |
| 403 | |
| 404 | // Keep mutex locked until after notify_all() lest another thread acquire()s |
| 405 | // the semaphore once d->avail == 0 and then destroys it, leaving `d` dangling. |
| 406 | const auto locker = qt_scoped_lock(mutex&: d->mutex); |
| 407 | d->avail += n; |
| 408 | d->cond.notify_all(); |
| 409 | } |
| 410 | |
| 411 | /*! |
| 412 | Returns the number of resources currently available to the |
| 413 | semaphore. This number can never be negative. |
| 414 | |
| 415 | \sa acquire(), release() |
| 416 | */ |
| 417 | int QSemaphore::available() const |
| 418 | { |
| 419 | if (futexAvailable()) |
| 420 | return futexAvailCounter(v: u.loadRelaxed()); |
| 421 | |
| 422 | const auto locker = qt_scoped_lock(mutex&: d->mutex); |
| 423 | return d->avail; |
| 424 | } |
| 425 | |
| 426 | /*! |
| 427 | Tries to acquire \c n resources guarded by the semaphore and |
| 428 | returns \c true on success. If available() < \a n, this call |
| 429 | immediately returns \c false without acquiring any resources. |
| 430 | |
| 431 | Example: |
| 432 | |
| 433 | \snippet code/src_corelib_thread_qsemaphore.cpp 2 |
| 434 | |
| 435 | \sa acquire() |
| 436 | */ |
| 437 | bool QSemaphore::tryAcquire(int n) |
| 438 | { |
| 439 | Q_ASSERT_X(n >= 0, "QSemaphore::tryAcquire" , "parameter 'n' must be non-negative" ); |
| 440 | |
| 441 | if (futexAvailable()) |
| 442 | return futexSemaphoreTryAcquire(u&: u, n, timeout: Expired); |
| 443 | |
| 444 | const auto locker = qt_scoped_lock(mutex&: d->mutex); |
| 445 | if (n > d->avail) |
| 446 | return false; |
| 447 | d->avail -= n; |
| 448 | return true; |
| 449 | } |
| 450 | |
| 451 | /*! |
| 452 | \fn QSemaphore::tryAcquire(int n, int timeout) |
| 453 | |
| 454 | Tries to acquire \c n resources guarded by the semaphore and |
| 455 | returns \c true on success. If available() < \a n, this call will |
| 456 | wait for at most \a timeout milliseconds for resources to become |
| 457 | available. |
| 458 | |
| 459 | Note: Passing a negative number as the \a timeout is equivalent to |
| 460 | calling acquire(), i.e. this function will wait forever for |
| 461 | resources to become available if \a timeout is negative. |
| 462 | |
| 463 | Example: |
| 464 | |
| 465 | \snippet code/src_corelib_thread_qsemaphore.cpp 3 |
| 466 | |
| 467 | \sa acquire() |
| 468 | */ |
| 469 | |
| 470 | /*! |
| 471 | \since 6.6 |
| 472 | |
| 473 | Tries to acquire \c n resources guarded by the semaphore and returns \c |
| 474 | true on success. If available() < \a n, this call will wait until \a timer |
| 475 | expires for resources to become available. |
| 476 | |
| 477 | Example: |
| 478 | |
| 479 | \snippet code/src_corelib_thread_qsemaphore.cpp tryAcquire-QDeadlineTimer |
| 480 | |
| 481 | \sa acquire() |
| 482 | */ |
| 483 | bool QSemaphore::tryAcquire(int n, QDeadlineTimer timer) |
| 484 | { |
| 485 | if (timer.isForever()) { |
| 486 | acquire(n); |
| 487 | return true; |
| 488 | } |
| 489 | |
| 490 | if (timer.hasExpired()) |
| 491 | return tryAcquire(n); |
| 492 | |
| 493 | Q_ASSERT_X(n >= 0, "QSemaphore::tryAcquire" , "parameter 'n' must be non-negative" ); |
| 494 | |
| 495 | if (futexAvailable()) |
| 496 | return futexSemaphoreTryAcquire(u&: u, n, timeout: timer); |
| 497 | |
| 498 | using namespace std::chrono; |
| 499 | const auto sufficientResourcesAvailable = [this, n] { return d->avail >= n; }; |
| 500 | |
| 501 | auto locker = qt_unique_lock(mutex&: d->mutex); |
| 502 | if (!d->cond.wait_until(lock&: locker, atime: timer.deadline<steady_clock>(), p: sufficientResourcesAvailable)) |
| 503 | return false; |
| 504 | d->avail -= n; |
| 505 | return true; |
| 506 | } |
| 507 | |
| 508 | /*! |
| 509 | \fn template <typename Rep, typename Period> QSemaphore::tryAcquire(int n, std::chrono::duration<Rep, Period> timeout) |
| 510 | \overload |
| 511 | \since 6.3 |
| 512 | */ |
| 513 | |
| 514 | /*! |
| 515 | \fn bool QSemaphore::try_acquire() |
| 516 | \since 6.3 |
| 517 | |
| 518 | This function is provided for \c{std::counting_semaphore} compatibility. |
| 519 | |
| 520 | It is equivalent to calling \c{tryAcquire(1)}, where the function returns |
| 521 | \c true on acquiring the resource successfully. |
| 522 | |
| 523 | \sa tryAcquire(), try_acquire_for(), try_acquire_until() |
| 524 | */ |
| 525 | |
| 526 | /*! |
| 527 | \fn template <typename Rep, typename Period> bool QSemaphore::try_acquire_for(const std::chrono::duration<Rep, Period> &timeout) |
| 528 | \since 6.3 |
| 529 | |
| 530 | This function is provided for \c{std::counting_semaphore} compatibility. |
| 531 | |
| 532 | It is equivalent to calling \c{tryAcquire(1, timeout)}, where the call |
| 533 | times out on the given \a timeout value. The function returns \c true |
| 534 | on acquiring the resource successfully. |
| 535 | |
| 536 | \sa tryAcquire(), try_acquire(), try_acquire_until() |
| 537 | */ |
| 538 | |
| 539 | /*! |
| 540 | \fn template <typename Clock, typename Duration> bool QSemaphore::try_acquire_until(const std::chrono::time_point<Clock, Duration> &tp) |
| 541 | \since 6.3 |
| 542 | |
| 543 | This function is provided for \c{std::counting_semaphore} compatibility. |
| 544 | |
| 545 | It is equivalent to calling \c{tryAcquire(1, tp - Clock::now())}, |
| 546 | which means that the \a tp (time point) is recorded, ignoring the |
| 547 | adjustments to \c{Clock} while waiting. The function returns \c true |
| 548 | on acquiring the resource successfully. |
| 549 | |
| 550 | \sa tryAcquire(), try_acquire(), try_acquire_for() |
| 551 | */ |
| 552 | |
| 553 | /*! |
| 554 | \class QSemaphoreReleaser |
| 555 | \brief The QSemaphoreReleaser class provides exception-safe deferral of a QSemaphore::release() call. |
| 556 | \since 5.10 |
| 557 | \ingroup thread |
| 558 | \inmodule QtCore |
| 559 | |
| 560 | \reentrant |
| 561 | |
| 562 | QSemaphoreReleaser can be used wherever you would otherwise use |
| 563 | QSemaphore::release(). Constructing a QSemaphoreReleaser defers the |
| 564 | release() call on the semaphore until the QSemaphoreReleaser is |
| 565 | destroyed (see |
| 566 | \l{http://en.cppreference.com/w/cpp/language/raii}{RAII pattern}). |
| 567 | |
| 568 | You can use this to reliably release a semaphore to avoid dead-lock |
| 569 | in the face of exceptions or early returns: |
| 570 | |
| 571 | \snippet code/src_corelib_thread_qsemaphore.cpp 4 |
| 572 | |
| 573 | If an early return is taken or an exception is thrown before the |
| 574 | \c{sem.release()} call is reached, the semaphore is not released, |
| 575 | possibly preventing the thread waiting in the corresponding |
| 576 | \c{sem.acquire()} call from ever continuing execution. |
| 577 | |
| 578 | When using RAII instead: |
| 579 | |
| 580 | \snippet code/src_corelib_thread_qsemaphore.cpp 5 |
| 581 | |
| 582 | this can no longer happen, because the compiler will make sure that |
| 583 | the QSemaphoreReleaser destructor is always called, and therefore |
| 584 | the semaphore is always released. |
| 585 | |
| 586 | QSemaphoreReleaser is move-enabled and can therefore be returned |
| 587 | from functions to transfer responsibility for releasing a semaphore |
| 588 | out of a function or a scope: |
| 589 | |
| 590 | \snippet code/src_corelib_thread_qsemaphore.cpp 6 |
| 591 | |
| 592 | A QSemaphoreReleaser can be canceled by a call to cancel(). A canceled |
| 593 | semaphore releaser will no longer call QSemaphore::release() in its |
| 594 | destructor. |
| 595 | |
| 596 | \sa QMutexLocker |
| 597 | */ |
| 598 | |
| 599 | /*! |
| 600 | \fn QSemaphoreReleaser::QSemaphoreReleaser() |
| 601 | |
| 602 | Default constructor. Creates a QSemaphoreReleaser that does nothing. |
| 603 | */ |
| 604 | |
| 605 | /*! |
| 606 | \fn QSemaphoreReleaser::QSemaphoreReleaser(QSemaphore &sem, int n) |
| 607 | |
| 608 | Constructor. Stores the arguments and calls \a{sem}.release(\a{n}) |
| 609 | in the destructor. |
| 610 | */ |
| 611 | |
| 612 | /*! |
| 613 | \fn QSemaphoreReleaser::QSemaphoreReleaser(QSemaphore *sem, int n) |
| 614 | |
| 615 | Constructor. Stores the arguments and calls \a{sem}->release(\a{n}) |
| 616 | in the destructor. |
| 617 | */ |
| 618 | |
| 619 | /*! |
| 620 | \fn QSemaphoreReleaser::QSemaphoreReleaser(QSemaphoreReleaser &&other) |
| 621 | |
| 622 | Move constructor. Takes over responsibility to call QSemaphore::release() |
| 623 | from \a other, which in turn is canceled. |
| 624 | |
| 625 | \sa cancel() |
| 626 | */ |
| 627 | |
| 628 | /*! |
| 629 | \fn QSemaphoreReleaser::operator=(QSemaphoreReleaser &&other) |
| 630 | |
| 631 | Move assignment operator. Takes over responsibility to call QSemaphore::release() |
| 632 | from \a other, which in turn is canceled. |
| 633 | |
| 634 | If this semaphore releaser had the responsibility to call some QSemaphore::release() |
| 635 | itself, it performs the call before taking over from \a other. |
| 636 | |
| 637 | \sa cancel() |
| 638 | */ |
| 639 | |
| 640 | /*! |
| 641 | \fn QSemaphoreReleaser::~QSemaphoreReleaser() |
| 642 | |
| 643 | Unless canceled, calls QSemaphore::release() with the arguments provided |
| 644 | to the constructor, or by the last move assignment. |
| 645 | */ |
| 646 | |
| 647 | /*! |
| 648 | \fn QSemaphoreReleaser::swap(QSemaphoreReleaser &other) |
| 649 | |
| 650 | Exchanges the responsibilities of \c{*this} and \a other. |
| 651 | |
| 652 | Unlike move assignment, neither of the two objects ever releases its |
| 653 | semaphore, if any, as a consequence of swapping. |
| 654 | |
| 655 | Therefore this function is very fast and never fails. |
| 656 | */ |
| 657 | |
| 658 | /*! |
| 659 | \fn QSemaphoreReleaser::semaphore() const |
| 660 | |
| 661 | Returns a pointer to the QSemaphore object provided to the constructor, |
| 662 | or by the last move assignment, if any. Otherwise, returns \nullptr. |
| 663 | */ |
| 664 | |
| 665 | /*! |
| 666 | \fn QSemaphoreReleaser::cancel() |
| 667 | |
| 668 | Cancels this QSemaphoreReleaser such that the destructor will no longer |
| 669 | call \c{semaphore()->release()}. Returns the value of semaphore() |
| 670 | before this call. After this call, semaphore() will return \nullptr. |
| 671 | |
| 672 | To enable again, assign a new QSemaphoreReleaser: |
| 673 | |
| 674 | \snippet code/src_corelib_thread_qsemaphore.cpp 7 |
| 675 | */ |
| 676 | |
| 677 | |
| 678 | QT_END_NAMESPACE |
| 679 | |