1 | // Copyright (C) 2022 The Qt Company Ltd. |
---|---|
2 | // Copyright (C) 2018 Intel Corporation. |
3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
4 | |
5 | #include "qsemaphore.h" |
6 | #include "qfutex_p.h" |
7 | #include "qdeadlinetimer.h" |
8 | #include "qdatetime.h" |
9 | #include "qdebug.h" |
10 | #include "qlocking_p.h" |
11 | #include "qwaitcondition_p.h" |
12 | |
13 | #include <chrono> |
14 | |
15 | QT_BEGIN_NAMESPACE |
16 | |
17 | using namespace QtFutex; |
18 | |
19 | /*! |
20 | \class QSemaphore |
21 | \inmodule QtCore |
22 | \brief The QSemaphore class provides a general counting semaphore. |
23 | |
24 | \threadsafe |
25 | |
26 | \ingroup thread |
27 | |
28 | A semaphore is a generalization of a mutex. While a mutex can |
29 | only be locked once, it's possible to acquire a semaphore |
30 | multiple times. Semaphores are typically used to protect a |
31 | certain number of identical resources. |
32 | |
33 | Semaphores support two fundamental operations, acquire() and |
34 | release(): |
35 | |
36 | \list |
37 | \li acquire(\e{n}) tries to acquire \e n resources. If there aren't |
38 | that many resources available, the call will block until this |
39 | is the case. |
40 | \li release(\e{n}) releases \e n resources. |
41 | \endlist |
42 | |
43 | There's also a tryAcquire() function that returns immediately if |
44 | it cannot acquire the resources, and an available() function that |
45 | returns the number of available resources at any time. |
46 | |
47 | Example: |
48 | |
49 | \snippet code/src_corelib_thread_qsemaphore.cpp 0 |
50 | |
51 | A typical application of semaphores is for controlling access to |
52 | a circular buffer shared by a producer thread and a consumer |
53 | thread. The \l{Producer and Consumer using Semaphores} example shows how |
54 | to use QSemaphore to solve that problem. |
55 | |
56 | A non-computing example of a semaphore would be dining at a |
57 | restaurant. A semaphore is initialized with the number of chairs |
58 | in the restaurant. As people arrive, they want a seat. As seats |
59 | are filled, available() is decremented. As people leave, the |
60 | available() is incremented, allowing more people to enter. If a |
61 | party of 10 people want to be seated, but there are only 9 seats, |
62 | those 10 people will wait, but a party of 4 people would be |
63 | seated (taking the available seats to 5, making the party of 10 |
64 | people wait longer). |
65 | |
66 | \sa QSemaphoreReleaser, QMutex, QWaitCondition, QThread, |
67 | {Producer and Consumer using Semaphores} |
68 | */ |
69 | |
70 | /* |
71 | QSemaphore futex operation |
72 | |
73 | QSemaphore stores a 32-bit integer with the counter of currently available |
74 | tokens (value between 0 and INT_MAX). When a thread attempts to acquire n |
75 | tokens and the counter is larger than that, we perform a compare-and-swap |
76 | with the new count. If that succeeds, the acquisition worked; if not, we |
77 | loop again because the counter changed. If there were not enough tokens, |
78 | we'll perform a futex-wait. |
79 | |
80 | Before we do, we set the high bit in the futex to indicate that semaphore |
81 | is contended: that is, there's a thread waiting for more tokens. On |
82 | release() for n tokens, we perform a fetch-and-add of n and then check if |
83 | that high bit was set. If it was, then we clear that bit and perform a |
84 | futex-wake on the semaphore to indicate the waiting threads can wake up and |
85 | acquire tokens. Which ones get woken up is unspecified. |
86 | |
87 | If the system has the ability to wake up a precise number of threads, has |
88 | Linux's FUTEX_WAKE_OP functionality, and is 64-bit, instead of using a |
89 | single bit indicating a contended semaphore, we'll store the number of |
90 | tokens *plus* total number of waiters in the high word. Additionally, all |
91 | multi-token waiters will be waiting on that high word. So when releasing n |
92 | tokens on those systems, we tell the kernel to wake up n single-token |
93 | threads and all of the multi-token ones. Which threads get woken up is |
94 | unspecified, but it's likely single-token threads will get woken up first. |
95 | */ |
96 | |
97 | #if defined(FUTEX_OP) && QT_POINTER_SIZE > 4 |
98 | static constexpr bool futexHasWaiterCount = true; |
99 | #else |
100 | static constexpr bool futexHasWaiterCount = false; |
101 | #endif |
102 | |
103 | static constexpr quintptr futexNeedsWakeAllBit = futexHasWaiterCount ? |
104 | (Q_UINT64_C(1) << (sizeof(quintptr) * CHAR_BIT - 1)) : 0x80000000U; |
105 | |
106 | static int futexAvailCounter(quintptr v) |
107 | { |
108 | // the low 31 bits |
109 | if (futexHasWaiterCount) { |
110 | // the high bit of the low word isn't used |
111 | Q_ASSERT((v & 0x80000000U) == 0); |
112 | |
113 | // so we can be a little faster |
114 | return int(unsigned(v)); |
115 | } |
116 | return int(v & 0x7fffffffU); |
117 | } |
118 | |
119 | static bool futexNeedsWake(quintptr v) |
120 | { |
121 | // If we're counting waiters, the number of waiters plus value is stored in the |
122 | // low 31 bits of the high word (that is, bits 32-62). If we're not, then we only |
123 | // use futexNeedsWakeAllBit to indicate anyone is waiting. |
124 | if constexpr (futexHasWaiterCount) |
125 | return unsigned(quint64(v) >> 32) > unsigned(v); |
126 | return v >> 31; |
127 | } |
128 | |
129 | static QBasicAtomicInteger<quint32> *futexLow32(QBasicAtomicInteger<quintptr> *ptr) |
130 | { |
131 | auto result = reinterpret_cast<QBasicAtomicInteger<quint32> *>(ptr); |
132 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN && QT_POINTER_SIZE > 4 |
133 | ++result; |
134 | #endif |
135 | return result; |
136 | } |
137 | |
138 | static QBasicAtomicInteger<quint32> *futexHigh32(QBasicAtomicInteger<quintptr> *ptr) |
139 | { |
140 | Q_ASSERT(futexHasWaiterCount); |
141 | auto result = reinterpret_cast<QBasicAtomicInteger<quint32> *>(ptr); |
142 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN && QT_POINTER_SIZE > 4 |
143 | ++result; |
144 | #endif |
145 | return result; |
146 | } |
147 | |
148 | template <bool IsTimed> bool |
149 | futexSemaphoreTryAcquire_loop(QBasicAtomicInteger<quintptr> &u, quintptr curValue, quintptr nn, |
150 | QDeadlineTimer timer) |
151 | { |
152 | using namespace std::chrono; |
153 | int n = int(unsigned(nn)); |
154 | |
155 | // we're called after one testAndSet, so start by waiting first |
156 | for (;;) { |
157 | // indicate we're waiting |
158 | auto ptr = futexLow32(ptr: &u); |
159 | if (n > 1 || !futexHasWaiterCount) { |
160 | u.fetchAndOrRelaxed(valueToAdd: futexNeedsWakeAllBit); |
161 | curValue |= futexNeedsWakeAllBit; |
162 | if constexpr (futexHasWaiterCount) { |
163 | Q_ASSERT(n > 1); |
164 | ptr = futexHigh32(ptr: &u); |
165 | curValue = quint64(curValue) >> 32; |
166 | } |
167 | } |
168 | |
169 | if (IsTimed) { |
170 | bool timedout = !futexWait(futex&: *ptr, expectedValue: curValue, deadline: timer); |
171 | if (timedout) |
172 | return false; |
173 | } else { |
174 | futexWait(futex&: *ptr, expectedValue: curValue); |
175 | } |
176 | |
177 | curValue = u.loadAcquire(); |
178 | |
179 | // try to acquire |
180 | while (futexAvailCounter(v: curValue) >= n) { |
181 | quintptr newValue = curValue - nn; |
182 | if (u.testAndSetOrdered(expectedValue: curValue, newValue, currentValue&: curValue)) |
183 | return true; // succeeded! |
184 | } |
185 | |
186 | // not enough tokens available, put us to wait |
187 | if (IsTimed && timer.hasExpired()) |
188 | return false; |
189 | } |
190 | } |
191 | |
192 | static constexpr QDeadlineTimer::ForeverConstant Expired = |
193 | QDeadlineTimer::ForeverConstant(1); |
194 | |
195 | template <typename T> bool |
196 | futexSemaphoreTryAcquire(QBasicAtomicInteger<quintptr> &u, int n, T timeout) |
197 | { |
198 | constexpr bool IsTimed = std::is_same_v<QDeadlineTimer, T>; |
199 | // Try to acquire without waiting (we still loop because the testAndSet |
200 | // call can fail). |
201 | quintptr nn = unsigned(n); |
202 | if (futexHasWaiterCount) |
203 | nn |= quint64(nn) << 32; // token count replicated in high word |
204 | |
205 | quintptr curValue = u.loadAcquire(); |
206 | while (futexAvailCounter(v: curValue) >= n) { |
207 | // try to acquire |
208 | quintptr newValue = curValue - nn; |
209 | if (u.testAndSetOrdered(expectedValue: curValue, newValue, currentValue&: curValue)) |
210 | return true; // succeeded! |
211 | } |
212 | if constexpr (IsTimed) { |
213 | if (timeout.hasExpired()) |
214 | return false; |
215 | } else { |
216 | if (timeout == Expired) |
217 | return false; |
218 | } |
219 | |
220 | // we need to wait |
221 | constexpr quintptr oneWaiter = quintptr(Q_UINT64_C(1) << 32); // zero on 32-bit |
222 | if constexpr (futexHasWaiterCount) { |
223 | // We don't use the fetched value from above so futexWait() fails if |
224 | // it changed after the testAndSetOrdered above. |
225 | quint32 waiterCount = (quint64(curValue) >> 32) & 0x7fffffffU; |
226 | if (waiterCount == 0x7fffffffU) { |
227 | qCritical() << "Waiter count overflow in QSemaphore"; |
228 | return false; |
229 | } |
230 | |
231 | // increase the waiter count |
232 | u.fetchAndAddRelaxed(valueToAdd: oneWaiter); |
233 | curValue += oneWaiter; |
234 | |
235 | // Also adjust nn to subtract oneWaiter when we succeed in acquiring. |
236 | nn += oneWaiter; |
237 | } |
238 | |
239 | if (futexSemaphoreTryAcquire_loop<IsTimed>(u, curValue, nn, timeout)) |
240 | return true; |
241 | |
242 | Q_ASSERT(IsTimed); |
243 | |
244 | if (futexHasWaiterCount) { |
245 | // decrement the number of threads waiting |
246 | Q_ASSERT(futexHigh32(&u)->loadRelaxed() & 0x7fffffffU); |
247 | u.fetchAndSubRelaxed(valueToAdd: oneWaiter); |
248 | } |
249 | return false; |
250 | } |
251 | |
252 | namespace QtSemaphorePrivate { |
253 | using namespace QtPrivate; |
254 | struct Layout1 |
255 | { |
256 | alignas(IdealMutexAlignment) std::mutex mutex; |
257 | qsizetype avail = 0; |
258 | alignas(IdealMutexAlignment) std::condition_variable cond; |
259 | }; |
260 | |
261 | struct Layout2 |
262 | { |
263 | alignas(IdealMutexAlignment) std::mutex mutex; |
264 | alignas(IdealMutexAlignment) std::condition_variable cond; |
265 | qsizetype avail = 0; |
266 | }; |
267 | |
268 | // Choose Layout1 if it is smaller than Layout2. That happens for platforms |
269 | // where sizeof(mutex) is 64. |
270 | using Members = std::conditional_t<sizeof(Layout1) <= sizeof(Layout2), Layout1, Layout2>; |
271 | } // namespace QtSemaphorePrivate |
272 | |
273 | class QSemaphorePrivate : public QtSemaphorePrivate::Members |
274 | { |
275 | public: |
276 | explicit QSemaphorePrivate(qsizetype n) { avail = n; } |
277 | }; |
278 | |
279 | /*! |
280 | Creates a new semaphore and initializes the number of resources |
281 | it guards to \a n (by default, 0). |
282 | |
283 | \sa release(), available() |
284 | */ |
285 | QSemaphore::QSemaphore(int n) |
286 | { |
287 | Q_ASSERT_X(n >= 0, "QSemaphore", "parameter 'n' must be non-negative"); |
288 | if (futexAvailable()) { |
289 | quintptr nn = unsigned(n); |
290 | if (futexHasWaiterCount) |
291 | nn |= quint64(nn) << 32; // token count replicated in high word |
292 | u.storeRelaxed(newValue: nn); |
293 | } else { |
294 | d = new QSemaphorePrivate(n); |
295 | } |
296 | } |
297 | |
298 | /*! |
299 | Destroys the semaphore. |
300 | |
301 | \warning Destroying a semaphore that is in use may result in |
302 | undefined behavior. |
303 | */ |
304 | QSemaphore::~QSemaphore() |
305 | { |
306 | if (!futexAvailable()) |
307 | delete d; |
308 | } |
309 | |
310 | /*! |
311 | Tries to acquire \c n resources guarded by the semaphore. If \a n |
312 | > available(), this call will block until enough resources are |
313 | available. |
314 | |
315 | \sa release(), available(), tryAcquire() |
316 | */ |
317 | void QSemaphore::acquire(int n) |
318 | { |
319 | #if QT_VERSION >= QT_VERSION_CHECK(7, 0, 0) |
320 | # warning "Move the Q_ASSERT to inline code, make QSemaphore have wide contract, " \ |
321 | "and mark noexcept where futexes are in use." |
322 | #else |
323 | Q_ASSERT_X(n >= 0, "QSemaphore::acquire", "parameter 'n' must be non-negative"); |
324 | #endif |
325 | |
326 | if (futexAvailable()) { |
327 | futexSemaphoreTryAcquire(u&: u, n, timeout: QDeadlineTimer::Forever); |
328 | return; |
329 | } |
330 | |
331 | const auto sufficientResourcesAvailable = [this, n] { return d->avail >= n; }; |
332 | |
333 | auto locker = qt_unique_lock(mutex&: d->mutex); |
334 | d->cond.wait(lock&: locker, p: sufficientResourcesAvailable); |
335 | d->avail -= n; |
336 | } |
337 | |
338 | /*! |
339 | Releases \a n resources guarded by the semaphore. |
340 | |
341 | This function can be used to "create" resources as well. For |
342 | example: |
343 | |
344 | \snippet code/src_corelib_thread_qsemaphore.cpp 1 |
345 | |
346 | QSemaphoreReleaser is a \l{http://en.cppreference.com/w/cpp/language/raii}{RAII} |
347 | wrapper around this function. |
348 | |
349 | \sa acquire(), available(), QSemaphoreReleaser |
350 | */ |
351 | void QSemaphore::release(int n) |
352 | { |
353 | Q_ASSERT_X(n >= 0, "QSemaphore::release", "parameter 'n' must be non-negative"); |
354 | |
355 | if (futexAvailable()) { |
356 | quintptr nn = unsigned(n); |
357 | if (futexHasWaiterCount) |
358 | nn |= quint64(nn) << 32; // token count replicated in high word |
359 | quintptr prevValue = u.loadRelaxed(); |
360 | quintptr newValue; |
361 | do { // loop just to ensure the operations are done atomically |
362 | newValue = prevValue + nn; |
363 | newValue &= (futexNeedsWakeAllBit - 1); |
364 | } while (!u.testAndSetRelease(expectedValue: prevValue, newValue, currentValue&: prevValue)); |
365 | if (futexNeedsWake(v: prevValue)) { |
366 | #ifdef FUTEX_OP |
367 | if (futexHasWaiterCount) { |
368 | /* |
369 | On 64-bit systems, the single-token waiters wait on the low half |
370 | and the multi-token waiters wait on the upper half. So we ask |
371 | the kernel to wake up n single-token waiters and all multi-token |
372 | waiters (if any), and clear the multi-token wait bit. |
373 | |
374 | atomic { |
375 | int oldval = *upper; |
376 | *upper = oldval | 0; |
377 | futexWake(lower, n); |
378 | if (oldval != 0) // always true |
379 | futexWake(upper, INT_MAX); |
380 | } |
381 | */ |
382 | quint32 op = FUTEX_OP_OR; |
383 | quint32 oparg = 0; |
384 | quint32 cmp = FUTEX_OP_CMP_NE; |
385 | quint32 cmparg = 0; |
386 | futexWakeOp(futex1&: *futexLow32(ptr: &u), wake1: n, INT_MAX, futex2&: *futexHigh32(ptr: &u), FUTEX_OP(op, oparg, cmp, cmparg)); |
387 | return; |
388 | } |
389 | #endif |
390 | // Unset the bit and wake everyone. There are two possibilities |
391 | // under which a thread can set the bit between the AND and the |
392 | // futexWake: |
393 | // 1) it did see the new counter value, but it wasn't enough for |
394 | // its acquisition anyway, so it has to wait; |
395 | // 2) it did not see the new counter value, in which case its |
396 | // futexWait will fail. |
397 | futexWakeAll(futex&: *futexLow32(ptr: &u)); |
398 | if (futexHasWaiterCount) |
399 | futexWakeAll(futex&: *futexHigh32(ptr: &u)); |
400 | } |
401 | return; |
402 | } |
403 | |
404 | // Keep mutex locked until after notify_all() lest another thread acquire()s |
405 | // the semaphore once d->avail == 0 and then destroys it, leaving `d` dangling. |
406 | const auto locker = qt_scoped_lock(mutex&: d->mutex); |
407 | d->avail += n; |
408 | d->cond.notify_all(); |
409 | } |
410 | |
411 | /*! |
412 | Returns the number of resources currently available to the |
413 | semaphore. This number can never be negative. |
414 | |
415 | \sa acquire(), release() |
416 | */ |
417 | int QSemaphore::available() const |
418 | { |
419 | if (futexAvailable()) |
420 | return futexAvailCounter(v: u.loadRelaxed()); |
421 | |
422 | const auto locker = qt_scoped_lock(mutex&: d->mutex); |
423 | return d->avail; |
424 | } |
425 | |
426 | /*! |
427 | Tries to acquire \c n resources guarded by the semaphore and |
428 | returns \c true on success. If available() < \a n, this call |
429 | immediately returns \c false without acquiring any resources. |
430 | |
431 | Example: |
432 | |
433 | \snippet code/src_corelib_thread_qsemaphore.cpp 2 |
434 | |
435 | \sa acquire() |
436 | */ |
437 | bool QSemaphore::tryAcquire(int n) |
438 | { |
439 | Q_ASSERT_X(n >= 0, "QSemaphore::tryAcquire", "parameter 'n' must be non-negative"); |
440 | |
441 | if (futexAvailable()) |
442 | return futexSemaphoreTryAcquire(u&: u, n, timeout: Expired); |
443 | |
444 | const auto locker = qt_scoped_lock(mutex&: d->mutex); |
445 | if (n > d->avail) |
446 | return false; |
447 | d->avail -= n; |
448 | return true; |
449 | } |
450 | |
451 | /*! |
452 | \fn QSemaphore::tryAcquire(int n, int timeout) |
453 | |
454 | Tries to acquire \c n resources guarded by the semaphore and |
455 | returns \c true on success. If available() < \a n, this call will |
456 | wait for at most \a timeout milliseconds for resources to become |
457 | available. |
458 | |
459 | Note: Passing a negative number as the \a timeout is equivalent to |
460 | calling acquire(), i.e. this function will wait forever for |
461 | resources to become available if \a timeout is negative. |
462 | |
463 | Example: |
464 | |
465 | \snippet code/src_corelib_thread_qsemaphore.cpp 3 |
466 | |
467 | \sa acquire() |
468 | */ |
469 | |
470 | /*! |
471 | \since 6.6 |
472 | |
473 | Tries to acquire \c n resources guarded by the semaphore and returns \c |
474 | true on success. If available() < \a n, this call will wait until \a timer |
475 | expires for resources to become available. |
476 | |
477 | Example: |
478 | |
479 | \snippet code/src_corelib_thread_qsemaphore.cpp tryAcquire-QDeadlineTimer |
480 | |
481 | \sa acquire() |
482 | */ |
483 | bool QSemaphore::tryAcquire(int n, QDeadlineTimer timer) |
484 | { |
485 | if (timer.isForever()) { |
486 | acquire(n); |
487 | return true; |
488 | } |
489 | |
490 | if (timer.hasExpired()) |
491 | return tryAcquire(n); |
492 | |
493 | Q_ASSERT_X(n >= 0, "QSemaphore::tryAcquire", "parameter 'n' must be non-negative"); |
494 | |
495 | if (futexAvailable()) |
496 | return futexSemaphoreTryAcquire(u&: u, n, timeout: timer); |
497 | |
498 | using namespace std::chrono; |
499 | const auto sufficientResourcesAvailable = [this, n] { return d->avail >= n; }; |
500 | |
501 | auto locker = qt_unique_lock(mutex&: d->mutex); |
502 | if (!d->cond.wait_until(lock&: locker, atime: timer.deadline<steady_clock>(), p: sufficientResourcesAvailable)) |
503 | return false; |
504 | d->avail -= n; |
505 | return true; |
506 | } |
507 | |
508 | /*! |
509 | \fn template <typename Rep, typename Period> QSemaphore::tryAcquire(int n, std::chrono::duration<Rep, Period> timeout) |
510 | \overload |
511 | \since 6.3 |
512 | */ |
513 | |
514 | /*! |
515 | \fn bool QSemaphore::try_acquire() |
516 | \since 6.3 |
517 | |
518 | This function is provided for \c{std::counting_semaphore} compatibility. |
519 | |
520 | It is equivalent to calling \c{tryAcquire(1)}, where the function returns |
521 | \c true on acquiring the resource successfully. |
522 | |
523 | \sa tryAcquire(), try_acquire_for(), try_acquire_until() |
524 | */ |
525 | |
526 | /*! |
527 | \fn template <typename Rep, typename Period> bool QSemaphore::try_acquire_for(const std::chrono::duration<Rep, Period> &timeout) |
528 | \since 6.3 |
529 | |
530 | This function is provided for \c{std::counting_semaphore} compatibility. |
531 | |
532 | It is equivalent to calling \c{tryAcquire(1, timeout)}, where the call |
533 | times out on the given \a timeout value. The function returns \c true |
534 | on acquiring the resource successfully. |
535 | |
536 | \sa tryAcquire(), try_acquire(), try_acquire_until() |
537 | */ |
538 | |
539 | /*! |
540 | \fn template <typename Clock, typename Duration> bool QSemaphore::try_acquire_until(const std::chrono::time_point<Clock, Duration> &tp) |
541 | \since 6.3 |
542 | |
543 | This function is provided for \c{std::counting_semaphore} compatibility. |
544 | |
545 | It is equivalent to calling \c{tryAcquire(1, tp - Clock::now())}, |
546 | which means that the \a tp (time point) is recorded, ignoring the |
547 | adjustments to \c{Clock} while waiting. The function returns \c true |
548 | on acquiring the resource successfully. |
549 | |
550 | \sa tryAcquire(), try_acquire(), try_acquire_for() |
551 | */ |
552 | |
553 | /*! |
554 | \class QSemaphoreReleaser |
555 | \brief The QSemaphoreReleaser class provides exception-safe deferral of a QSemaphore::release() call. |
556 | \since 5.10 |
557 | \ingroup thread |
558 | \inmodule QtCore |
559 | |
560 | \reentrant |
561 | |
562 | QSemaphoreReleaser can be used wherever you would otherwise use |
563 | QSemaphore::release(). Constructing a QSemaphoreReleaser defers the |
564 | release() call on the semaphore until the QSemaphoreReleaser is |
565 | destroyed (see |
566 | \l{http://en.cppreference.com/w/cpp/language/raii}{RAII pattern}). |
567 | |
568 | You can use this to reliably release a semaphore to avoid dead-lock |
569 | in the face of exceptions or early returns: |
570 | |
571 | \snippet code/src_corelib_thread_qsemaphore.cpp 4 |
572 | |
573 | If an early return is taken or an exception is thrown before the |
574 | \c{sem.release()} call is reached, the semaphore is not released, |
575 | possibly preventing the thread waiting in the corresponding |
576 | \c{sem.acquire()} call from ever continuing execution. |
577 | |
578 | When using RAII instead: |
579 | |
580 | \snippet code/src_corelib_thread_qsemaphore.cpp 5 |
581 | |
582 | this can no longer happen, because the compiler will make sure that |
583 | the QSemaphoreReleaser destructor is always called, and therefore |
584 | the semaphore is always released. |
585 | |
586 | QSemaphoreReleaser is move-enabled and can therefore be returned |
587 | from functions to transfer responsibility for releasing a semaphore |
588 | out of a function or a scope: |
589 | |
590 | \snippet code/src_corelib_thread_qsemaphore.cpp 6 |
591 | |
592 | A QSemaphoreReleaser can be canceled by a call to cancel(). A canceled |
593 | semaphore releaser will no longer call QSemaphore::release() in its |
594 | destructor. |
595 | |
596 | \sa QMutexLocker |
597 | */ |
598 | |
599 | /*! |
600 | \fn QSemaphoreReleaser::QSemaphoreReleaser() |
601 | |
602 | Default constructor. Creates a QSemaphoreReleaser that does nothing. |
603 | */ |
604 | |
605 | /*! |
606 | \fn QSemaphoreReleaser::QSemaphoreReleaser(QSemaphore &sem, int n) |
607 | |
608 | Constructor. Stores the arguments and calls \a{sem}.release(\a{n}) |
609 | in the destructor. |
610 | */ |
611 | |
612 | /*! |
613 | \fn QSemaphoreReleaser::QSemaphoreReleaser(QSemaphore *sem, int n) |
614 | |
615 | Constructor. Stores the arguments and calls \a{sem}->release(\a{n}) |
616 | in the destructor. |
617 | */ |
618 | |
619 | /*! |
620 | \fn QSemaphoreReleaser::QSemaphoreReleaser(QSemaphoreReleaser &&other) |
621 | |
622 | Move constructor. Takes over responsibility to call QSemaphore::release() |
623 | from \a other, which in turn is canceled. |
624 | |
625 | \sa cancel() |
626 | */ |
627 | |
628 | /*! |
629 | \fn QSemaphoreReleaser::operator=(QSemaphoreReleaser &&other) |
630 | |
631 | Move assignment operator. Takes over responsibility to call QSemaphore::release() |
632 | from \a other, which in turn is canceled. |
633 | |
634 | If this semaphore releaser had the responsibility to call some QSemaphore::release() |
635 | itself, it performs the call before taking over from \a other. |
636 | |
637 | \sa cancel() |
638 | */ |
639 | |
640 | /*! |
641 | \fn QSemaphoreReleaser::~QSemaphoreReleaser() |
642 | |
643 | Unless canceled, calls QSemaphore::release() with the arguments provided |
644 | to the constructor, or by the last move assignment. |
645 | */ |
646 | |
647 | /*! |
648 | \fn QSemaphoreReleaser::swap(QSemaphoreReleaser &other) |
649 | |
650 | Exchanges the responsibilities of \c{*this} and \a other. |
651 | |
652 | Unlike move assignment, neither of the two objects ever releases its |
653 | semaphore, if any, as a consequence of swapping. |
654 | |
655 | Therefore this function is very fast and never fails. |
656 | */ |
657 | |
658 | /*! |
659 | \fn QSemaphoreReleaser::semaphore() const |
660 | |
661 | Returns a pointer to the QSemaphore object provided to the constructor, |
662 | or by the last move assignment, if any. Otherwise, returns \nullptr. |
663 | */ |
664 | |
665 | /*! |
666 | \fn QSemaphoreReleaser::cancel() |
667 | |
668 | Cancels this QSemaphoreReleaser such that the destructor will no longer |
669 | call \c{semaphore()->release()}. Returns the value of semaphore() |
670 | before this call. After this call, semaphore() will return \nullptr. |
671 | |
672 | To enable again, assign a new QSemaphoreReleaser: |
673 | |
674 | \snippet code/src_corelib_thread_qsemaphore.cpp 7 |
675 | */ |
676 | |
677 | |
678 | QT_END_NAMESPACE |
679 |
Definitions
Learn Advanced QML with KDAB
Find out more