1 | // Copyright (C) 2022 The Qt Company Ltd. |
---|---|
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #include "qlocaltime_p.h" |
5 | #include "qplatformdefs.h" |
6 | |
7 | #include "private/qcalendarmath_p.h" |
8 | #if QT_CONFIG(datetimeparser) |
9 | #include "private/qdatetimeparser_p.h" |
10 | #endif |
11 | #include "private/qgregoriancalendar_p.h" |
12 | #include "private/qnumeric_p.h" |
13 | #include "private/qtenvironmentvariables_p.h" |
14 | #if QT_CONFIG(timezone) |
15 | #include "private/qtimezoneprivate_p.h" |
16 | #endif |
17 | |
18 | #include <time.h> |
19 | #ifdef Q_OS_WIN |
20 | # include <qt_windows.h> |
21 | #endif |
22 | |
23 | #ifdef __GLIBC__ // Extends struct tm with some extra fields: |
24 | #define HAVE_TM_GMTOFF // tm_gmtoff is the UTC offset. |
25 | #define HAVE_TM_ZONE // tm_zone is the zone abbreviation. |
26 | #endif |
27 | |
28 | QT_BEGIN_NAMESPACE |
29 | |
30 | using namespace QtPrivate::DateTimeConstants; |
31 | namespace { |
32 | /* |
33 | Qt represents n BCE as -n, whereas struct tm's tm_year field represents a |
34 | year by the number of years after (negative for before) 1900, so that 1+m |
35 | BCE is -1900 -m; so treating 1 BCE as 0 CE. We thus shift by different |
36 | offsets depending on whether the year is BCE or CE. |
37 | */ |
38 | constexpr int tmYearFromQYear(int year) { return year - (year < 0 ? 1899 : 1900); } |
39 | constexpr int qYearFromTmYear(int year) { return year + (year < -1899 ? 1899 : 1900); } |
40 | |
41 | constexpr inline qint64 tmSecsWithinDay(const struct tm &when) |
42 | { |
43 | return (when.tm_hour * MINS_PER_HOUR + when.tm_min) * SECS_PER_MIN + when.tm_sec; |
44 | } |
45 | |
46 | /* Call mktime() and make sense of the result. |
47 | |
48 | This packages the call to mktime() with the needed determination of whether |
49 | that succeeded and whether the call has materially perturbed, including |
50 | normalizing, the struct tm it was passed (as opposed to merely filling in |
51 | details). |
52 | */ |
53 | class MkTimeResult |
54 | { |
55 | // mktime()'s return on error; or last second of 1969 UTC: |
56 | static constexpr time_t maybeError = -1; |
57 | inline bool meansEnd1969(); |
58 | bool changed(const struct tm &prior) const; |
59 | |
60 | public: |
61 | struct tm local = {}; // Describes the local time in familiar form. |
62 | time_t utcSecs = maybeError; // Seconds since UTC epoch. |
63 | bool good = false; // Ignore the rest unless this is true. |
64 | bool adjusted = true; // Is local at odds with prior ? |
65 | MkTimeResult() { local.tm_isdst = -1; } |
66 | |
67 | // Note: the calls to qMkTime() and meansEnd1969() potentially modify local. |
68 | explicit MkTimeResult(const struct tm &prior) |
69 | : local(prior), utcSecs(qMkTime(when: &local)), |
70 | good(utcSecs != maybeError || meansEnd1969()), |
71 | adjusted(changed(prior)) |
72 | {} |
73 | }; |
74 | |
75 | /* If mktime() returns -1, is it really an error ? |
76 | |
77 | It might return -1 because we're looking at the last second of 1969 and |
78 | mktime does support times before 1970 (POSIX says "If the year is <1970 or |
79 | the value is negative, the relationship is undefined" and MS rejects the |
80 | value, consistent with that; so we don't call mktime() on MS in this case and |
81 | can't get -1 unless it's a real error). However, on UNIX, that's -1 UTC time |
82 | and all we know, aside from mktime's return, is the local time. (We could |
83 | check errno, but we call mktime from within a qt_scoped_lock(QBasicMutex), |
84 | whose unlocking and destruction of the locker might frob errno.) |
85 | |
86 | We can assume time-zone offsets are less than a day, so this can only arise |
87 | if the struct tm describes either the last day of 1969 or the first day of |
88 | 1970. When we do know the offset (a glibc extension supplies it as a member |
89 | of struct tm), we can determine whether we're on the last second of the day, |
90 | refining that check. That makes for a cheap pre-test; if it holds, we can ask |
91 | mktime() about the preceding second; if it gives us -2, then the -1 we |
92 | originally saw is not (or at least didn't need to be) an error. We can then |
93 | synthesize a corrected value for local using the -2 result. |
94 | */ |
95 | inline bool MkTimeResult::meansEnd1969() |
96 | { |
97 | #ifdef Q_OS_WIN |
98 | return false; |
99 | #else |
100 | if (local.tm_year < 69 || local.tm_year > 70 |
101 | # ifdef HAVE_TM_GMTOFF |
102 | // Africa/Monrovia had offset 00:44:30 at the epoch, so (although all |
103 | // other zones' offsets were round multiples of five minutes) we need |
104 | // the offset to determine whether the time might match: |
105 | || (tmSecsWithinDay(when: local) - local.tm_gmtoff + 1) % SECS_PER_DAY |
106 | # endif |
107 | || (local.tm_year == 69 // ... and less than a day: |
108 | ? local.tm_mon < 11 || local.tm_mday < 31 |
109 | : local.tm_mon > 0 || local.tm_mday > 1)) { |
110 | return false; |
111 | } |
112 | struct tm copy = local; |
113 | copy.tm_sec--; // Preceding second should get -2, not -1 |
114 | if (qMkTime(when: ©) != -2) |
115 | return false; |
116 | // The original call to qMkTime() may have returned -1 as failure, not |
117 | // updating local, even though it could have; so fake it here. Assumes there |
118 | // was no transition in the last minute of the day ! |
119 | local = copy; |
120 | local.tm_sec++; // Advance back to the intended second |
121 | return true; |
122 | #endif |
123 | } |
124 | |
125 | bool MkTimeResult::changed(const struct tm &prior) const |
126 | { |
127 | // If mktime() has been passed a copy of prior and local is its value on |
128 | // return, this checks whether mktime() has made a material change |
129 | // (including normalization) to the value, as opposed to merely filling in |
130 | // the fields that it's specified to fill in. It returns true if there has |
131 | // been any material change. |
132 | return !(prior.tm_year == local.tm_year && prior.tm_mon == local.tm_mon |
133 | && prior.tm_mday == local.tm_mday && prior.tm_hour == local.tm_hour |
134 | && prior.tm_min == local.tm_min && prior.tm_sec == local.tm_sec |
135 | && (prior.tm_isdst == -1 |
136 | ? local.tm_isdst >= 0 : prior.tm_isdst == local.tm_isdst)); |
137 | } |
138 | |
139 | struct tm timeToTm(qint64 localDay, int secs) |
140 | { |
141 | Q_ASSERT(0 <= secs && secs < SECS_PER_DAY); |
142 | const auto ymd = QGregorianCalendar::partsFromJulian(jd: JULIAN_DAY_FOR_EPOCH + localDay); |
143 | struct tm local = {}; |
144 | local.tm_year = tmYearFromQYear(year: ymd.year); |
145 | local.tm_mon = ymd.month - 1; |
146 | local.tm_mday = ymd.day; |
147 | local.tm_hour = secs / 3600; |
148 | local.tm_min = (secs % 3600) / 60; |
149 | local.tm_sec = (secs % 60); |
150 | local.tm_isdst = -1; |
151 | return local; |
152 | } |
153 | |
154 | // Transitions account for a small fraction of 1% of the time. |
155 | // So mark functions only used in handling them as cold. |
156 | Q_DECL_COLD_FUNCTION |
157 | struct tm matchYearMonth(struct tm when, const struct tm &base) |
158 | { |
159 | // Adjust *when to be a denormal representation of the same point in time |
160 | // but with tm_year and tm_mon the same as base. In practice this will |
161 | // represent an adjacent month, so don't worry too much about optimising for |
162 | // any other case; we almost certainly run zero or one iteration of one of |
163 | // the year loops then zero or one iteration of one of the month loops. |
164 | while (when.tm_year > base.tm_year) { |
165 | --when.tm_year; |
166 | when.tm_mon += 12; |
167 | } |
168 | while (when.tm_year < base.tm_year) { |
169 | ++when.tm_year; |
170 | when.tm_mon -= 12; |
171 | } |
172 | Q_ASSERT(when.tm_year == base.tm_year); |
173 | while (when.tm_mon > base.tm_mon) { |
174 | const auto yearMon = QRoundingDown::qDivMod<12>(a: when.tm_mon); |
175 | int year = yearMon.quotient; |
176 | // We want the month before's Qt month number, which is the tm_mon mod 12: |
177 | int month = yearMon.remainder; |
178 | if (month == 0) { |
179 | --year; |
180 | month = 12; |
181 | } |
182 | year += when.tm_year; |
183 | when.tm_mday += QGregorianCalendar::monthLength(month, year: qYearFromTmYear(year)); |
184 | --when.tm_mon; |
185 | } |
186 | while (when.tm_mon < base.tm_mon) { |
187 | const auto yearMon = QRoundingDown::qDivMod<12>(a: when.tm_mon); |
188 | // Qt month number is offset from tm_mon by one: |
189 | when.tm_mday -= QGregorianCalendar::monthLength( |
190 | month: yearMon.remainder + 1, year: qYearFromTmYear(year: yearMon.quotient + when.tm_year)); |
191 | ++when.tm_mon; |
192 | } |
193 | Q_ASSERT(when.tm_mon == base.tm_mon); |
194 | return when; |
195 | } |
196 | |
197 | Q_DECL_COLD_FUNCTION |
198 | struct tm adjacentDay(struct tm when, int dayStep) |
199 | { |
200 | // Before we adjust it, when is a return from timeToTm(), so in normal form. |
201 | Q_ASSERT(dayStep * dayStep == 1); |
202 | when.tm_mday += dayStep; |
203 | // That may have bumped us across a month boundary or even a year one. |
204 | // So now we normalize it. |
205 | |
206 | if (dayStep < 0) { |
207 | if (when.tm_mday <= 0) { |
208 | // Month before's day-count; but tm_mon's value is one less than Qt's |
209 | // month numbering so, before we decrement it, it has the value we need, |
210 | // unless it's 0. |
211 | int daysInMonth = when.tm_mon |
212 | ? QGregorianCalendar::monthLength(month: when.tm_mon, year: qYearFromTmYear(year: when.tm_year)) |
213 | : QGregorianCalendar::monthLength(month: 12, year: qYearFromTmYear(year: when.tm_year - 1)); |
214 | when.tm_mday += daysInMonth; |
215 | if (--when.tm_mon < 0) { |
216 | --when.tm_year; |
217 | when.tm_mon = 11; |
218 | } |
219 | Q_ASSERT(when.tm_mday >= 1); |
220 | } |
221 | } else if (when.tm_mday > 28) { |
222 | // We have to wind through months one at a time, since their lengths vary. |
223 | int daysInMonth = QGregorianCalendar::monthLength( |
224 | month: when.tm_mon + 1, year: qYearFromTmYear(year: when.tm_year)); |
225 | if (when.tm_mday > daysInMonth) { |
226 | when.tm_mday -= daysInMonth; |
227 | if (++when.tm_mon > 11) { |
228 | ++when.tm_year; |
229 | when.tm_mon = 0; |
230 | } |
231 | Q_ASSERT(when.tm_mday <= QGregorianCalendar::monthLength( |
232 | when.tm_mon + 1, qYearFromTmYear(when.tm_year))); |
233 | } |
234 | } |
235 | return when; |
236 | } |
237 | |
238 | Q_DECL_COLD_FUNCTION |
239 | qint64 secondsBetween(const struct tm &start, const struct tm &stop) |
240 | { |
241 | // Nominal difference between start and stop, in seconds (negative if start |
242 | // is after stop); may differ from actual UTC difference if there's a |
243 | // transition between them. |
244 | struct tm from = matchYearMonth(when: start, base: stop); |
245 | qint64 diff = stop.tm_mday - from.tm_mday; // in days |
246 | diff = diff * 24 + stop.tm_hour - from.tm_hour; // in hours |
247 | diff = diff * 60 + stop.tm_min - from.tm_min; // in minutes |
248 | return diff * 60 + stop.tm_sec - from.tm_sec; // in seconds |
249 | } |
250 | |
251 | Q_DECL_COLD_FUNCTION |
252 | MkTimeResult hopAcrossGap(const MkTimeResult &outside, const struct tm &base) |
253 | { |
254 | // base fell in a gap; outside is one resolution |
255 | // This returns the other resolution, if possible. |
256 | const qint64 shift = secondsBetween(start: outside.local, stop: base); |
257 | struct tm across; |
258 | // Shift is the nominal time adjustment between outside and base; now obtain |
259 | // the actual time that far from outside: |
260 | if (qLocalTime(utc: outside.utcSecs + shift, local: &across)) { |
261 | const qint64 wider = secondsBetween(start: outside.local, stop: across); |
262 | // That should be bigger than shift (typically by a factor of two), in |
263 | // the same direction: |
264 | if (shift > 0 ? wider > shift : wider < shift) { |
265 | MkTimeResult result(across); |
266 | if (result.good && !result.adjusted) |
267 | return result; |
268 | } |
269 | } |
270 | // This can surely only arise if the other resolution lies outside the |
271 | // time_t-range supported by the system functions. |
272 | return {}; |
273 | } |
274 | |
275 | Q_DECL_COLD_FUNCTION |
276 | MkTimeResult resolveRejected(struct tm base, MkTimeResult result, |
277 | QDateTimePrivate::TransitionOptions resolve) |
278 | { |
279 | // May result from a time outside the supported range of system time_t |
280 | // functions, or from a gap (on a platform where mktime() rejects them). |
281 | // QDateTime filters on times well outside the supported range, but may |
282 | // pass values only slightly outside the range. |
283 | |
284 | // The easy case - no need to find a resolution anyway: |
285 | if (!resolve.testAnyFlags(flags: QDateTimePrivate::GapMask)) |
286 | return {}; |
287 | |
288 | constexpr time_t twoDaysInSeconds = 2 * 24 * 60 * 60; |
289 | // Bracket base, one day each side (in case the zone skipped a whole day): |
290 | MkTimeResult early(adjacentDay(when: base, dayStep: -1)); |
291 | MkTimeResult later(adjacentDay(when: base, dayStep: +1)); |
292 | if (!early.good || !later.good) // Assume out of range, rather than gap. |
293 | return {}; |
294 | |
295 | // OK, looks like a gap. |
296 | Q_ASSERT(twoDaysInSeconds + early.utcSecs > later.utcSecs); |
297 | result.adjusted = true; |
298 | |
299 | // Extrapolate backwards from later if this option is set: |
300 | QDateTimePrivate::TransitionOption beforeLater = QDateTimePrivate::GapUseBefore; |
301 | if (resolve.testFlag(flag: QDateTimePrivate::FlipForReverseDst)) { |
302 | // Reverse DST has DST before a gap and not after: |
303 | if (early.local.tm_isdst == 1 && !later.local.tm_isdst) |
304 | beforeLater = QDateTimePrivate::GapUseAfter; |
305 | } |
306 | if (resolve.testFlag(flag: beforeLater)) // Result will be before the gap: |
307 | result.utcSecs = later.utcSecs - secondsBetween(start: base, stop: later.local); |
308 | else // Result will be after the gap: |
309 | result.utcSecs = early.utcSecs + secondsBetween(start: early.local, stop: base); |
310 | |
311 | if (!qLocalTime(utc: result.utcSecs, local: &result.local)) // Abandon hope. |
312 | return {}; |
313 | |
314 | return result; |
315 | } |
316 | |
317 | Q_DECL_COLD_FUNCTION |
318 | bool preferAlternative(QDateTimePrivate::TransitionOptions resolve, |
319 | // is_dst flags of incumbent and an alternative: |
320 | int gotDst, int altDst, |
321 | // True precisely if alternative selects a later UTC time: |
322 | bool altIsLater, |
323 | // True for a gap, false for a fold: |
324 | bool inGap) |
325 | { |
326 | // If resolve has this option set, prefer the later candidate, else the earlier: |
327 | QDateTimePrivate::TransitionOption preferLater = inGap ? QDateTimePrivate::GapUseAfter |
328 | : QDateTimePrivate::FoldUseAfter; |
329 | if (resolve.testFlag(flag: QDateTimePrivate::FlipForReverseDst)) { |
330 | // gotDst and altDst are {-1: unknown, 0: standard, 1: daylight-saving} |
331 | // So gotDst ^ altDst is 1 precisely if exactly one candidate thinks it's DST. |
332 | if ((altDst ^ gotDst) == 1) { |
333 | // In this case, we can tell whether we have reversed DST: that's a |
334 | // gap with DST before it or a fold with DST after it. |
335 | #if 1 |
336 | const bool isReversed = (altDst == 1) != (altIsLater == inGap); |
337 | #else // Pedagogic version of the same thing: |
338 | bool isReversed; |
339 | if (altIsLater == inGap) // alt is after a gap or before a fold, so summer-time |
340 | isReversed = altDst != 1; // flip if summer-time isn't DST |
341 | else // alt is before a gap or after a fold, so winter-time |
342 | isReversed = altDst == 1; // flip if winter-time is DST |
343 | #endif |
344 | if (isReversed) { |
345 | preferLater = inGap ? QDateTimePrivate::GapUseBefore |
346 | : QDateTimePrivate::FoldUseBefore; |
347 | } |
348 | } // Otherwise, we can't tell, so assume not. |
349 | } |
350 | return resolve.testFlag(flag: preferLater) == altIsLater; |
351 | } |
352 | |
353 | /* |
354 | Determine UTC time and offset, if possible, at a given local time. |
355 | |
356 | The local time is specified as a number of seconds since the epoch (so, in |
357 | effect, a time_t, albeit delivered as qint64). If the specified local time |
358 | falls in a transition, resolve determines what to do. |
359 | |
360 | If the specified local time is outside what the system time_t APIs will |
361 | handle, this fails. |
362 | */ |
363 | MkTimeResult resolveLocalTime(qint64 local, QDateTimePrivate::TransitionOptions resolve) |
364 | { |
365 | const auto localDaySecs = QRoundingDown::qDivMod<SECS_PER_DAY>(a: local); |
366 | struct tm base = timeToTm(localDay: localDaySecs.quotient, secs: localDaySecs.remainder); |
367 | |
368 | // Get provisional result (correct > 99.9 % of the time): |
369 | MkTimeResult result(base); |
370 | |
371 | // Our callers (mostly) deal with questions of being within the range that |
372 | // system time_t functions can handle, and timeToTm() gave us data in |
373 | // normalized form, so the only excuse for !good or a change to the HH:mm:ss |
374 | // fields (aside from being at the boundary of time_t's supported range) is |
375 | // that we hit a gap, although we have to handle these cases differently: |
376 | if (!result.good) { |
377 | // Rejected. The tricky case: maybe mktime() doesn't resolve gaps. |
378 | return resolveRejected(base, result, resolve); |
379 | } else if (result.local.tm_isdst < 0) { |
380 | // Apparently success without knowledge of whether this is DST or not. |
381 | // Should not happen, but that means our usual understanding of what the |
382 | // system is up to has gone out the window. So just let it be. |
383 | } else if (result.adjusted) { |
384 | // Shunted out of a gap. |
385 | if (!resolve.testAnyFlags(flags: QDateTimePrivate::GapMask)) { |
386 | result = {}; |
387 | return result; |
388 | } |
389 | |
390 | // Try to obtain a matching point on the other side of the gap: |
391 | const MkTimeResult flipped = hopAcrossGap(outside: result, base); |
392 | // Even if that failed, result may be the correct resolution |
393 | |
394 | if (preferAlternative(resolve, gotDst: result.local.tm_isdst, altDst: flipped.local.tm_isdst, |
395 | altIsLater: flipped.utcSecs > result.utcSecs, inGap: true)) { |
396 | // If hopAcrossGap() failed and we do need its answer, give up. |
397 | if (!flipped.good || flipped.adjusted) |
398 | return {}; |
399 | |
400 | // As resolution of local, flipped involves adjustment (across gap): |
401 | result = flipped; |
402 | result.adjusted = true; |
403 | } |
404 | } else if (resolve.testFlag(flag: QDateTimePrivate::FlipForReverseDst) |
405 | // In fold, DST counts as before and standard as after - |
406 | // we may not need to check whether we're in a transition: |
407 | && resolve.testFlag(flag: result.local.tm_isdst ? QDateTimePrivate::FoldUseBefore |
408 | : QDateTimePrivate::FoldUseAfter)) { |
409 | // We prefer DST or standard and got what we wanted, so we're good. |
410 | // As below, but we don't need to check, because we're on the side of |
411 | // the transition that it would select as valid, if we were near one. |
412 | // NB: this branch is routinely exercised, when QDT::Data::isShort() |
413 | // obliges us to rediscover an offsetFromUtc that ShortData has no space |
414 | // to store, as it does remember the DST status we got before. |
415 | } else { |
416 | // What we gave was valid. However, it might have been in a fall-back. |
417 | // If so, the same input but with tm_isdst flipped should also be valid. |
418 | struct tm copy = base; |
419 | copy.tm_isdst = !result.local.tm_isdst; |
420 | const MkTimeResult flipped(copy); |
421 | if (flipped.good && !flipped.adjusted) { |
422 | // We're in a fall-back |
423 | if (!resolve.testAnyFlags(flags: QDateTimePrivate::FoldMask)) { |
424 | result = {}; |
425 | return result; |
426 | } |
427 | |
428 | // Work out which repeat to use: |
429 | if (preferAlternative(resolve, gotDst: result.local.tm_isdst, altDst: flipped.local.tm_isdst, |
430 | altIsLater: flipped.utcSecs > result.utcSecs, inGap: false)) { |
431 | result = flipped; |
432 | } |
433 | } // else: not in a transition, nothing to worry about. |
434 | } |
435 | return result; |
436 | } |
437 | |
438 | inline std::optional<qint64> tmToJd(const struct tm &date) |
439 | { |
440 | return QGregorianCalendar::julianFromParts(year: qYearFromTmYear(year: date.tm_year), |
441 | month: date.tm_mon + 1, day: date.tm_mday); |
442 | } |
443 | |
444 | #define IC(N) std::integral_constant<qint64, N>() |
445 | |
446 | // True if combining day and seconds overflows qint64; otherwise, sets *epochSeconds |
447 | inline bool daysAndSecondsOverflow(qint64 julianDay, qint64 daySeconds, qint64 *epochSeconds) |
448 | { |
449 | return qMulOverflow(v1: julianDay - JULIAN_DAY_FOR_EPOCH, IC(SECS_PER_DAY), r: epochSeconds) |
450 | || qAddOverflow(v1: *epochSeconds, v2: daySeconds, r: epochSeconds); |
451 | } |
452 | |
453 | // True if combining seconds and millis overflows; otherwise sets *epochMillis |
454 | inline bool secondsAndMillisOverflow(qint64 epochSeconds, qint64 millis, qint64 *epochMillis) |
455 | { |
456 | return qMulOverflow(v1: epochSeconds, IC(MSECS_PER_SEC), r: epochMillis) |
457 | || qAddOverflow(v1: *epochMillis, v2: millis, r: epochMillis); |
458 | } |
459 | |
460 | #undef IC |
461 | |
462 | } // namespace |
463 | |
464 | namespace QLocalTime { |
465 | |
466 | #ifndef QT_BOOTSTRAPPED |
467 | // Even if local time is currently in DST, this returns the standard time offset |
468 | // (in seconds) nominally in effect at present: |
469 | int getCurrentStandardUtcOffset() |
470 | { |
471 | #ifdef Q_OS_WIN |
472 | TIME_ZONE_INFORMATION tzInfo; |
473 | if (GetTimeZoneInformation(&tzInfo) != TIME_ZONE_ID_INVALID) { |
474 | int bias = tzInfo.Bias; // In minutes. |
475 | // StandardBias is usually zero, but include it if given: |
476 | if (tzInfo.StandardDate.wMonth) // Zero month means ignore StandardBias. |
477 | bias += tzInfo.StandardBias; |
478 | // MS's bias is +ve in the USA, so minutes *behind* UTC - we want seconds *ahead*: |
479 | return -bias * SECS_PER_MIN; |
480 | } |
481 | #else |
482 | qTzSet(); |
483 | const time_t curr = time(timer: nullptr); |
484 | if (curr != -1) { |
485 | /* Set t to the UTC representation of curr; the time whose local |
486 | standard time representation coincides with that differs from curr by |
487 | local time's standard offset. Note that gmtime() leaves the tm_isdst |
488 | flag set to 0, so mktime() will, even if local time is currently |
489 | using DST, return the time since epoch at which local standard time |
490 | would have the same representation as UTC's representation of |
491 | curr. The fact that mktime() also flips tm_isdst and updates the time |
492 | fields to the DST-equivalent time needn't concern us here; all that |
493 | matters is that it returns the time after epoch at which standard |
494 | time's representation would have matched UTC's, had it been in |
495 | effect. |
496 | */ |
497 | # if defined(_POSIX_THREAD_SAFE_FUNCTIONS) |
498 | struct tm t; |
499 | if (gmtime_r(timer: &curr, tp: &t)) { |
500 | time_t mkt = qMkTime(when: &t); |
501 | int offset = int(curr - mkt); |
502 | Q_ASSERT(std::abs(offset) <= SECS_PER_DAY); |
503 | return offset; |
504 | } |
505 | # else |
506 | if (struct tm *tp = gmtime(&curr)) { |
507 | struct tm t = *tp; // Copy it quick, hopefully before it can get stomped |
508 | time_t mkt = qMkTime(&t); |
509 | int offset = int(curr - mkt); |
510 | Q_ASSERT(std::abs(offset) <= SECS_PER_DAY); |
511 | return offset; |
512 | } |
513 | # endif |
514 | } // else, presumably: errno == EOVERFLOW |
515 | #endif // Platform choice |
516 | qDebug(msg: "Unable to determine current standard time offset from UTC"); |
517 | // We can't tell, presume UTC. |
518 | return 0; |
519 | } |
520 | |
521 | // This is local time's offset (in seconds), at the specified time, including |
522 | // any DST part. |
523 | int getUtcOffset(qint64 atMSecsSinceEpoch) |
524 | { |
525 | return QDateTimePrivate::expressUtcAsLocal(utcMSecs: atMSecsSinceEpoch).offset; |
526 | } |
527 | #endif // QT_BOOTSTRAPPED |
528 | |
529 | // Calls the platform variant of localtime() for the given utcMillis, and |
530 | // returns the local milliseconds, offset from UTC and DST status. |
531 | QDateTimePrivate::ZoneState utcToLocal(qint64 utcMillis) |
532 | { |
533 | const auto epoch = QRoundingDown::qDivMod<MSECS_PER_SEC>(a: utcMillis); |
534 | const time_t epochSeconds = epoch.quotient; |
535 | const int msec = epoch.remainder; |
536 | Q_ASSERT(msec >= 0 && msec < MSECS_PER_SEC); |
537 | if (qint64(epochSeconds) * MSECS_PER_SEC + msec != utcMillis) // time_t range too narrow |
538 | return {utcMillis}; |
539 | |
540 | tm local; |
541 | if (!qLocalTime(utc: epochSeconds, local: &local)) |
542 | return {utcMillis}; |
543 | |
544 | auto jd = tmToJd(date: local); |
545 | if (Q_UNLIKELY(!jd)) |
546 | return {utcMillis}; |
547 | |
548 | const qint64 daySeconds = tmSecsWithinDay(when: local); |
549 | Q_ASSERT(0 <= daySeconds && daySeconds < SECS_PER_DAY); |
550 | qint64 localSeconds, localMillis; |
551 | if (Q_UNLIKELY(daysAndSecondsOverflow(*jd, daySeconds, &localSeconds) |
552 | || secondsAndMillisOverflow(localSeconds, qint64(msec), &localMillis))) { |
553 | return {utcMillis}; |
554 | } |
555 | const auto dst |
556 | = local.tm_isdst ? QDateTimePrivate::DaylightTime : QDateTimePrivate::StandardTime; |
557 | return { localMillis, int(localSeconds - epochSeconds), dst }; |
558 | } |
559 | |
560 | QString localTimeAbbbreviationAt(qint64 local, QDateTimePrivate::TransitionOptions resolve) |
561 | { |
562 | auto use = resolveLocalTime(local: QRoundingDown::qDiv<MSECS_PER_SEC>(a: local), resolve); |
563 | if (!use.good) |
564 | return {}; |
565 | #ifdef HAVE_TM_ZONE |
566 | if (use.local.tm_zone) |
567 | return QString::fromLocal8Bit(ba: use.local.tm_zone); |
568 | #endif |
569 | return qTzName(dstIndex: use.local.tm_isdst > 0 ? 1 : 0); |
570 | } |
571 | |
572 | QDateTimePrivate::ZoneState mapLocalTime(qint64 local, QDateTimePrivate::TransitionOptions resolve) |
573 | { |
574 | // Revised later to match what use.local tells us: |
575 | qint64 localSecs = local / MSECS_PER_SEC; |
576 | auto use = resolveLocalTime(local: localSecs, resolve); |
577 | if (!use.good) |
578 | return {local}; |
579 | |
580 | qint64 millis = local - localSecs * MSECS_PER_SEC; |
581 | // Division is defined to round towards zero: |
582 | Q_ASSERT(local < 0 ? (millis <= 0 && millis > -MSECS_PER_SEC) |
583 | : (millis >= 0 && millis < MSECS_PER_SEC)); |
584 | |
585 | QDateTimePrivate::DaylightStatus dst = |
586 | use.local.tm_isdst > 0 ? QDateTimePrivate::DaylightTime : QDateTimePrivate::StandardTime; |
587 | |
588 | #ifdef HAVE_TM_GMTOFF |
589 | const int offset = use.local.tm_gmtoff; |
590 | localSecs = offset + use.utcSecs; |
591 | #else |
592 | // Provisional offset, until we have a revised localSecs: |
593 | int offset = localSecs - use.utcSecs; |
594 | auto jd = tmToJd(use.local); |
595 | if (Q_UNLIKELY(!jd)) |
596 | return {local, offset, dst, false}; |
597 | |
598 | qint64 daySecs = tmSecsWithinDay(use.local); |
599 | Q_ASSERT(0 <= daySecs && daySecs < SECS_PER_DAY); |
600 | if (daySecs > 0 && *jd < JULIAN_DAY_FOR_EPOCH) { |
601 | jd = *jd + 1; |
602 | daySecs -= SECS_PER_DAY; |
603 | } |
604 | if (Q_UNLIKELY(daysAndSecondsOverflow(*jd, daySecs, &localSecs))) |
605 | return {local, offset, dst, false}; |
606 | |
607 | // Use revised localSecs to refine offset: |
608 | offset = localSecs - use.utcSecs; |
609 | #endif // HAVE_TM_GMTOFF |
610 | |
611 | // The only way localSecs and millis can now have opposite sign is for |
612 | // resolution of the local time to have kicked us across the epoch, in which |
613 | // case there's no danger of overflow. So if overflow is in danger of |
614 | // happening, we're already doing the best we can to avoid it. |
615 | qint64 revised; |
616 | if (secondsAndMillisOverflow(epochSeconds: localSecs, millis, epochMillis: &revised)) |
617 | return {local, offset, QDateTimePrivate::UnknownDaylightTime, false}; |
618 | return {revised, offset, dst, true}; |
619 | } |
620 | |
621 | /*! |
622 | \internal |
623 | Determine the range of the system time_t functions. |
624 | |
625 | On MS-systems (where time_t is 64-bit by default), the start-point is the |
626 | epoch, the end-point is the end of the year 3000 (for mktime(); for |
627 | _localtime64_s it's 18 days later, but we ignore that here). Darwin's range |
628 | runs from the beginning of 1900 to the end of its 64-bit time_t and Linux |
629 | uses the full range of time_t (but this might still be 32-bit on some |
630 | embedded systems). |
631 | |
632 | (One potential constraint might appear to be the range of struct tm's int |
633 | tm_year, only allowing time_t to represent times from the start of year |
634 | 1900+INT_MIN to the end of year INT_MAX. The 26-bit number of seconds in a |
635 | year means that a 64-bit time_t can indeed represent times outside the range |
636 | of 32-bit years, by a factor of 32 - but the range of representable |
637 | milliseconds needs ten more bits than that of seconds, so can't reach the |
638 | ends of the 32-bit year range.) |
639 | |
640 | Given the diversity of ranges, we conservatively estimate the actual |
641 | supported range by experiment on the first call to qdatetime.cpp's |
642 | millisInSystemRange() by exploration among the known candidates, converting |
643 | the result to milliseconds and flagging whether each end is the qint64 |
644 | range's bound (so millisInSystemRange will know not to try to pad beyond |
645 | those bounds). The probed date-times are somewhat inside the range, but |
646 | close enough to the relevant bound that we can be fairly sure the bound is |
647 | reached, if the probe succeeds. |
648 | */ |
649 | SystemMillisRange computeSystemMillisRange() |
650 | { |
651 | // Assert this here, as this is called just once, in a static initialization. |
652 | Q_ASSERT(QGregorianCalendar::julianFromParts(1970, 1, 1) == JULIAN_DAY_FOR_EPOCH); |
653 | |
654 | constexpr qint64 TIME_T_MAX = std::numeric_limits<time_t>::max(); |
655 | using Bounds = std::numeric_limits<qint64>; |
656 | constexpr bool isNarrow = Bounds::max() / MSECS_PER_SEC > TIME_T_MAX; |
657 | if constexpr (isNarrow) { |
658 | const qint64 msecsMax = quint64(TIME_T_MAX) * MSECS_PER_SEC - 1 + MSECS_PER_SEC; |
659 | const qint64 msecsMin = -1 - msecsMax; // TIME_T_MIN is -1 - TIME_T_MAX |
660 | // If we reach back to msecsMin, use it; otherwise, assume 1970 cut-off (MS). |
661 | struct tm local = {}; |
662 | local.tm_year = tmYearFromQYear(year: 1901); |
663 | local.tm_mon = 11; |
664 | local.tm_mday = 15; // A day and a bit after the start of 32-bit time_t: |
665 | local.tm_isdst = -1; |
666 | return {.min: qMkTime(when: &local) == -1 ? 0 : msecsMin, .max: msecsMax, .minClip: false, .maxClip: false}; |
667 | } else { |
668 | const struct { int year; qint64 millis; } starts[] = { |
669 | { .year: int(QDateTime::YearRange::First) + 1, .millis: Bounds::min() }, |
670 | // Beginning of the Common Era: |
671 | { .year: 1, .millis: -Q_INT64_C(62135596800000) }, |
672 | // Invention of the Gregorian calendar: |
673 | { .year: 1582, .millis: -Q_INT64_C(12244089600000) }, |
674 | // Its adoption by the anglophone world: |
675 | { .year: 1752, .millis: -Q_INT64_C(6879427200000) }, |
676 | // Before this, struct tm's tm_year is negative (Darwin): |
677 | { .year: 1900, .millis: -Q_INT64_C(2208988800000) }, |
678 | }, ends[] = { |
679 | { .year: int(QDateTime::YearRange::Last) - 1, .millis: Bounds::max() }, |
680 | // MS's end-of-range, end of year 3000: |
681 | { .year: 3000, Q_INT64_C(32535215999999) }, |
682 | }; |
683 | // Assume we do at least reach the end of a signed 32-bit time_t (since |
684 | // our actual time_t is bigger than that): |
685 | qint64 stop = |
686 | quint64(std::numeric_limits<qint32>::max()) * MSECS_PER_SEC - 1 + MSECS_PER_SEC; |
687 | // Cleared if first pass round loop fails: |
688 | bool stopMax = true; |
689 | for (const auto c : ends) { |
690 | struct tm local = {}; |
691 | local.tm_year = tmYearFromQYear(year: c.year); |
692 | local.tm_mon = 11; |
693 | local.tm_mday = 31; |
694 | local.tm_hour = 23; |
695 | local.tm_min = local.tm_sec = 59; |
696 | local.tm_isdst = -1; |
697 | if (qMkTime(when: &local) != -1) { |
698 | stop = c.millis; |
699 | break; |
700 | } |
701 | stopMax = false; |
702 | } |
703 | bool startMin = true; |
704 | for (const auto c : starts) { |
705 | struct tm local {}; |
706 | local.tm_year = tmYearFromQYear(year: c.year); |
707 | local.tm_mon = 1; |
708 | local.tm_mday = 1; |
709 | local.tm_isdst = -1; |
710 | if (qMkTime(when: &local) != -1) |
711 | return {.min: c.millis, .max: stop, .minClip: startMin, .maxClip: stopMax}; |
712 | startMin = false; |
713 | } |
714 | return {.min: 0, .max: stop, .minClip: false, .maxClip: stopMax}; |
715 | } |
716 | } |
717 | |
718 | } // QLocalTime |
719 | |
720 | QT_END_NAMESPACE |
721 |
Definitions
- tmYearFromQYear
- qYearFromTmYear
- tmSecsWithinDay
- MkTimeResult
- maybeError
- MkTimeResult
- MkTimeResult
- meansEnd1969
- changed
- timeToTm
- matchYearMonth
- adjacentDay
- secondsBetween
- hopAcrossGap
- resolveRejected
- preferAlternative
- resolveLocalTime
- tmToJd
- daysAndSecondsOverflow
- secondsAndMillisOverflow
- getCurrentStandardUtcOffset
- getUtcOffset
- utcToLocal
- localTimeAbbbreviationAt
- mapLocalTime
Learn to use CMake with our Intro Training
Find out more